rustc_expand/
expand.rs

1use std::path::PathBuf;
2use std::rc::Rc;
3use std::sync::Arc;
4use std::{iter, mem, slice};
5
6use rustc_ast::mut_visit::*;
7use rustc_ast::tokenstream::TokenStream;
8use rustc_ast::visit::{self, AssocCtxt, Visitor, VisitorResult, try_visit, walk_list};
9use rustc_ast::{
10    self as ast, AssocItemKind, AstNodeWrapper, AttrArgs, AttrItemKind, AttrStyle, AttrVec,
11    DUMMY_NODE_ID, EarlyParsedAttribute, ExprKind, ForeignItemKind, HasAttrs, HasNodeId, Inline,
12    ItemKind, MacStmtStyle, MetaItemInner, MetaItemKind, ModKind, NodeId, PatKind, StmtKind,
13    TyKind, token,
14};
15use rustc_ast_pretty::pprust;
16use rustc_attr_parsing::{
17    AttributeParser, CFG_TEMPLATE, Early, EvalConfigResult, ShouldEmit, eval_config_entry,
18    parse_cfg, validate_attr,
19};
20use rustc_data_structures::flat_map_in_place::FlatMapInPlace;
21use rustc_data_structures::stack::ensure_sufficient_stack;
22use rustc_errors::PResult;
23use rustc_feature::Features;
24use rustc_hir::Target;
25use rustc_hir::def::MacroKinds;
26use rustc_hir::limit::Limit;
27use rustc_parse::parser::{
28    AttemptLocalParseRecovery, CommaRecoveryMode, ForceCollect, Parser, RecoverColon, RecoverComma,
29    token_descr,
30};
31use rustc_session::Session;
32use rustc_session::lint::builtin::{UNUSED_ATTRIBUTES, UNUSED_DOC_COMMENTS};
33use rustc_session::parse::feature_err;
34use rustc_span::hygiene::SyntaxContext;
35use rustc_span::{ErrorGuaranteed, FileName, Ident, LocalExpnId, Span, Symbol, sym};
36use smallvec::SmallVec;
37
38use crate::base::*;
39use crate::config::{StripUnconfigured, attr_into_trace};
40use crate::errors::{
41    EmptyDelegationMac, GlobDelegationOutsideImpls, GlobDelegationTraitlessQpath, IncompleteParse,
42    RecursionLimitReached, RemoveExprNotSupported, RemoveNodeNotSupported, UnsupportedKeyValue,
43    WrongFragmentKind,
44};
45use crate::fluent_generated;
46use crate::mbe::diagnostics::annotate_err_with_kind;
47use crate::module::{
48    DirOwnership, ParsedExternalMod, mod_dir_path, mod_file_path_from_attr, parse_external_mod,
49};
50use crate::placeholders::{PlaceholderExpander, placeholder};
51use crate::stats::*;
52
53macro_rules! ast_fragments {
54    (
55        $($Kind:ident($AstTy:ty) {
56            $kind_name:expr;
57            $(one
58                fn $mut_visit_ast:ident;
59                fn $visit_ast:ident;
60                fn $ast_to_string:path;
61            )?
62            $(many
63                fn $flat_map_ast_elt:ident;
64                fn $visit_ast_elt:ident($($args:tt)*);
65                fn $ast_to_string_elt:path;
66            )?
67            fn $make_ast:ident;
68        })*
69    ) => {
70        /// A fragment of AST that can be produced by a single macro expansion.
71        /// Can also serve as an input and intermediate result for macro expansion operations.
72        pub enum AstFragment {
73            OptExpr(Option<Box<ast::Expr>>),
74            MethodReceiverExpr(Box<ast::Expr>),
75            $($Kind($AstTy),)*
76        }
77
78        /// "Discriminant" of an AST fragment.
79        #[derive(Copy, Clone, Debug, PartialEq, Eq)]
80        pub enum AstFragmentKind {
81            OptExpr,
82            MethodReceiverExpr,
83            $($Kind,)*
84        }
85
86        impl AstFragmentKind {
87            pub fn name(self) -> &'static str {
88                match self {
89                    AstFragmentKind::OptExpr => "expression",
90                    AstFragmentKind::MethodReceiverExpr => "expression",
91                    $(AstFragmentKind::$Kind => $kind_name,)*
92                }
93            }
94
95            fn make_from(self, result: Box<dyn MacResult + '_>) -> Option<AstFragment> {
96                match self {
97                    AstFragmentKind::OptExpr =>
98                        result.make_expr().map(Some).map(AstFragment::OptExpr),
99                    AstFragmentKind::MethodReceiverExpr =>
100                        result.make_expr().map(AstFragment::MethodReceiverExpr),
101                    $(AstFragmentKind::$Kind => result.$make_ast().map(AstFragment::$Kind),)*
102                }
103            }
104        }
105
106        impl AstFragment {
107            fn add_placeholders(&mut self, placeholders: &[NodeId]) {
108                if placeholders.is_empty() {
109                    return;
110                }
111                match self {
112                    $($(AstFragment::$Kind(ast) => ast.extend(placeholders.iter().flat_map(|id| {
113                        ${ignore($flat_map_ast_elt)}
114                        placeholder(AstFragmentKind::$Kind, *id, None).$make_ast()
115                    })),)?)*
116                    _ => panic!("unexpected AST fragment kind")
117                }
118            }
119
120            pub(crate) fn make_opt_expr(self) -> Option<Box<ast::Expr>> {
121                match self {
122                    AstFragment::OptExpr(expr) => expr,
123                    _ => panic!("AstFragment::make_* called on the wrong kind of fragment"),
124                }
125            }
126
127            pub(crate) fn make_method_receiver_expr(self) -> Box<ast::Expr> {
128                match self {
129                    AstFragment::MethodReceiverExpr(expr) => expr,
130                    _ => panic!("AstFragment::make_* called on the wrong kind of fragment"),
131                }
132            }
133
134            $(pub fn $make_ast(self) -> $AstTy {
135                match self {
136                    AstFragment::$Kind(ast) => ast,
137                    _ => panic!("AstFragment::make_* called on the wrong kind of fragment"),
138                }
139            })*
140
141            fn make_ast<T: InvocationCollectorNode>(self) -> T::OutputTy {
142                T::fragment_to_output(self)
143            }
144
145            pub(crate) fn mut_visit_with(&mut self, vis: &mut impl MutVisitor) {
146                match self {
147                    AstFragment::OptExpr(opt_expr) => {
148                        if let Some(expr) = opt_expr.take() {
149                            *opt_expr = vis.filter_map_expr(expr)
150                        }
151                    }
152                    AstFragment::MethodReceiverExpr(expr) => vis.visit_method_receiver_expr(expr),
153                    $($(AstFragment::$Kind(ast) => vis.$mut_visit_ast(ast),)?)*
154                    $($(AstFragment::$Kind(ast) =>
155                        ast.flat_map_in_place(|ast| vis.$flat_map_ast_elt(ast, $($args)*)),)?)*
156                }
157            }
158
159            pub fn visit_with<'a, V: Visitor<'a>>(&'a self, visitor: &mut V) -> V::Result {
160                match self {
161                    AstFragment::OptExpr(Some(expr)) => try_visit!(visitor.visit_expr(expr)),
162                    AstFragment::OptExpr(None) => {}
163                    AstFragment::MethodReceiverExpr(expr) => try_visit!(visitor.visit_method_receiver_expr(expr)),
164                    $($(AstFragment::$Kind(ast) => try_visit!(visitor.$visit_ast(ast)),)?)*
165                    $($(AstFragment::$Kind(ast) => walk_list!(visitor, $visit_ast_elt, &ast[..], $($args)*),)?)*
166                }
167                V::Result::output()
168            }
169
170            pub(crate) fn to_string(&self) -> String {
171                match self {
172                    AstFragment::OptExpr(Some(expr)) => pprust::expr_to_string(expr),
173                    AstFragment::OptExpr(None) => unreachable!(),
174                    AstFragment::MethodReceiverExpr(expr) => pprust::expr_to_string(expr),
175                    $($(AstFragment::$Kind(ast) => $ast_to_string(ast),)?)*
176                    $($(
177                        AstFragment::$Kind(ast) => {
178                            // The closure unwraps a `P` if present, or does nothing otherwise.
179                            elems_to_string(&*ast, |ast| $ast_to_string_elt(&*ast))
180                        }
181                    )?)*
182                }
183            }
184        }
185
186        impl<'a> MacResult for crate::mbe::macro_rules::ParserAnyMacro<'a> {
187            $(fn $make_ast(self: Box<crate::mbe::macro_rules::ParserAnyMacro<'a>>)
188                           -> Option<$AstTy> {
189                Some(self.make(AstFragmentKind::$Kind).$make_ast())
190            })*
191        }
192    }
193}
194
195ast_fragments! {
196    Expr(Box<ast::Expr>) {
197        "expression";
198        one fn visit_expr; fn visit_expr; fn pprust::expr_to_string;
199        fn make_expr;
200    }
201    Pat(Box<ast::Pat>) {
202        "pattern";
203        one fn visit_pat; fn visit_pat; fn pprust::pat_to_string;
204        fn make_pat;
205    }
206    Ty(Box<ast::Ty>) {
207        "type";
208        one fn visit_ty; fn visit_ty; fn pprust::ty_to_string;
209        fn make_ty;
210    }
211    Stmts(SmallVec<[ast::Stmt; 1]>) {
212        "statement";
213        many fn flat_map_stmt; fn visit_stmt(); fn pprust::stmt_to_string;
214        fn make_stmts;
215    }
216    Items(SmallVec<[Box<ast::Item>; 1]>) {
217        "item";
218        many fn flat_map_item; fn visit_item(); fn pprust::item_to_string;
219        fn make_items;
220    }
221    TraitItems(SmallVec<[Box<ast::AssocItem>; 1]>) {
222        "trait item";
223        many fn flat_map_assoc_item; fn visit_assoc_item(AssocCtxt::Trait);
224            fn pprust::assoc_item_to_string;
225        fn make_trait_items;
226    }
227    ImplItems(SmallVec<[Box<ast::AssocItem>; 1]>) {
228        "impl item";
229        many fn flat_map_assoc_item; fn visit_assoc_item(AssocCtxt::Impl { of_trait: false });
230            fn pprust::assoc_item_to_string;
231        fn make_impl_items;
232    }
233    TraitImplItems(SmallVec<[Box<ast::AssocItem>; 1]>) {
234        "impl item";
235        many fn flat_map_assoc_item; fn visit_assoc_item(AssocCtxt::Impl { of_trait: true });
236            fn pprust::assoc_item_to_string;
237        fn make_trait_impl_items;
238    }
239    ForeignItems(SmallVec<[Box<ast::ForeignItem>; 1]>) {
240        "foreign item";
241        many fn flat_map_foreign_item; fn visit_foreign_item(); fn pprust::foreign_item_to_string;
242        fn make_foreign_items;
243    }
244    Arms(SmallVec<[ast::Arm; 1]>) {
245        "match arm";
246        many fn flat_map_arm; fn visit_arm(); fn unreachable_to_string;
247        fn make_arms;
248    }
249    ExprFields(SmallVec<[ast::ExprField; 1]>) {
250        "field expression";
251        many fn flat_map_expr_field; fn visit_expr_field(); fn unreachable_to_string;
252        fn make_expr_fields;
253    }
254    PatFields(SmallVec<[ast::PatField; 1]>) {
255        "field pattern";
256        many fn flat_map_pat_field; fn visit_pat_field(); fn unreachable_to_string;
257        fn make_pat_fields;
258    }
259    GenericParams(SmallVec<[ast::GenericParam; 1]>) {
260        "generic parameter";
261        many fn flat_map_generic_param; fn visit_generic_param(); fn unreachable_to_string;
262        fn make_generic_params;
263    }
264    Params(SmallVec<[ast::Param; 1]>) {
265        "function parameter";
266        many fn flat_map_param; fn visit_param(); fn unreachable_to_string;
267        fn make_params;
268    }
269    FieldDefs(SmallVec<[ast::FieldDef; 1]>) {
270        "field";
271        many fn flat_map_field_def; fn visit_field_def(); fn unreachable_to_string;
272        fn make_field_defs;
273    }
274    Variants(SmallVec<[ast::Variant; 1]>) {
275        "variant"; many fn flat_map_variant; fn visit_variant(); fn unreachable_to_string;
276        fn make_variants;
277    }
278    WherePredicates(SmallVec<[ast::WherePredicate; 1]>) {
279        "where predicate";
280        many fn flat_map_where_predicate; fn visit_where_predicate(); fn unreachable_to_string;
281        fn make_where_predicates;
282    }
283    Crate(ast::Crate) {
284        "crate";
285        one fn visit_crate; fn visit_crate; fn unreachable_to_string;
286        fn make_crate;
287    }
288}
289
290pub enum SupportsMacroExpansion {
291    No,
292    Yes { supports_inner_attrs: bool },
293}
294
295impl AstFragmentKind {
296    pub(crate) fn dummy(self, span: Span, guar: ErrorGuaranteed) -> AstFragment {
297        self.make_from(DummyResult::any(span, guar)).expect("couldn't create a dummy AST fragment")
298    }
299
300    pub fn supports_macro_expansion(self) -> SupportsMacroExpansion {
301        match self {
302            AstFragmentKind::OptExpr
303            | AstFragmentKind::Expr
304            | AstFragmentKind::MethodReceiverExpr
305            | AstFragmentKind::Stmts
306            | AstFragmentKind::Ty
307            | AstFragmentKind::Pat => SupportsMacroExpansion::Yes { supports_inner_attrs: false },
308            AstFragmentKind::Items
309            | AstFragmentKind::TraitItems
310            | AstFragmentKind::ImplItems
311            | AstFragmentKind::TraitImplItems
312            | AstFragmentKind::ForeignItems
313            | AstFragmentKind::Crate => SupportsMacroExpansion::Yes { supports_inner_attrs: true },
314            AstFragmentKind::Arms
315            | AstFragmentKind::ExprFields
316            | AstFragmentKind::PatFields
317            | AstFragmentKind::GenericParams
318            | AstFragmentKind::Params
319            | AstFragmentKind::FieldDefs
320            | AstFragmentKind::Variants
321            | AstFragmentKind::WherePredicates => SupportsMacroExpansion::No,
322        }
323    }
324
325    pub(crate) fn expect_from_annotatables(
326        self,
327        items: impl IntoIterator<Item = Annotatable>,
328    ) -> AstFragment {
329        let mut items = items.into_iter();
330        match self {
331            AstFragmentKind::Arms => {
332                AstFragment::Arms(items.map(Annotatable::expect_arm).collect())
333            }
334            AstFragmentKind::ExprFields => {
335                AstFragment::ExprFields(items.map(Annotatable::expect_expr_field).collect())
336            }
337            AstFragmentKind::PatFields => {
338                AstFragment::PatFields(items.map(Annotatable::expect_pat_field).collect())
339            }
340            AstFragmentKind::GenericParams => {
341                AstFragment::GenericParams(items.map(Annotatable::expect_generic_param).collect())
342            }
343            AstFragmentKind::Params => {
344                AstFragment::Params(items.map(Annotatable::expect_param).collect())
345            }
346            AstFragmentKind::FieldDefs => {
347                AstFragment::FieldDefs(items.map(Annotatable::expect_field_def).collect())
348            }
349            AstFragmentKind::Variants => {
350                AstFragment::Variants(items.map(Annotatable::expect_variant).collect())
351            }
352            AstFragmentKind::WherePredicates => AstFragment::WherePredicates(
353                items.map(Annotatable::expect_where_predicate).collect(),
354            ),
355            AstFragmentKind::Items => {
356                AstFragment::Items(items.map(Annotatable::expect_item).collect())
357            }
358            AstFragmentKind::ImplItems => {
359                AstFragment::ImplItems(items.map(Annotatable::expect_impl_item).collect())
360            }
361            AstFragmentKind::TraitImplItems => {
362                AstFragment::TraitImplItems(items.map(Annotatable::expect_impl_item).collect())
363            }
364            AstFragmentKind::TraitItems => {
365                AstFragment::TraitItems(items.map(Annotatable::expect_trait_item).collect())
366            }
367            AstFragmentKind::ForeignItems => {
368                AstFragment::ForeignItems(items.map(Annotatable::expect_foreign_item).collect())
369            }
370            AstFragmentKind::Stmts => {
371                AstFragment::Stmts(items.map(Annotatable::expect_stmt).collect())
372            }
373            AstFragmentKind::Expr => AstFragment::Expr(
374                items.next().expect("expected exactly one expression").expect_expr(),
375            ),
376            AstFragmentKind::MethodReceiverExpr => AstFragment::MethodReceiverExpr(
377                items.next().expect("expected exactly one expression").expect_expr(),
378            ),
379            AstFragmentKind::OptExpr => {
380                AstFragment::OptExpr(items.next().map(Annotatable::expect_expr))
381            }
382            AstFragmentKind::Crate => {
383                AstFragment::Crate(items.next().expect("expected exactly one crate").expect_crate())
384            }
385            AstFragmentKind::Pat | AstFragmentKind::Ty => {
386                panic!("patterns and types aren't annotatable")
387            }
388        }
389    }
390}
391
392pub struct Invocation {
393    pub kind: InvocationKind,
394    pub fragment_kind: AstFragmentKind,
395    pub expansion_data: ExpansionData,
396}
397
398pub enum InvocationKind {
399    Bang {
400        mac: Box<ast::MacCall>,
401        span: Span,
402    },
403    Attr {
404        attr: ast::Attribute,
405        /// Re-insertion position for inert attributes.
406        pos: usize,
407        item: Annotatable,
408        /// Required for resolving derive helper attributes.
409        derives: Vec<ast::Path>,
410    },
411    Derive {
412        path: ast::Path,
413        is_const: bool,
414        item: Annotatable,
415    },
416    GlobDelegation {
417        item: Box<ast::AssocItem>,
418        /// Whether this is a trait impl or an inherent impl
419        of_trait: bool,
420    },
421}
422
423impl InvocationKind {
424    fn placeholder_visibility(&self) -> Option<ast::Visibility> {
425        // HACK: For unnamed fields placeholders should have the same visibility as the actual
426        // fields because for tuple structs/variants resolve determines visibilities of their
427        // constructor using these field visibilities before attributes on them are expanded.
428        // The assumption is that the attribute expansion cannot change field visibilities,
429        // and it holds because only inert attributes are supported in this position.
430        match self {
431            InvocationKind::Attr { item: Annotatable::FieldDef(field), .. }
432            | InvocationKind::Derive { item: Annotatable::FieldDef(field), .. }
433                if field.ident.is_none() =>
434            {
435                Some(field.vis.clone())
436            }
437            _ => None,
438        }
439    }
440}
441
442impl Invocation {
443    pub fn span(&self) -> Span {
444        match &self.kind {
445            InvocationKind::Bang { span, .. } => *span,
446            InvocationKind::Attr { attr, .. } => attr.span,
447            InvocationKind::Derive { path, .. } => path.span,
448            InvocationKind::GlobDelegation { item, .. } => item.span,
449        }
450    }
451
452    fn span_mut(&mut self) -> &mut Span {
453        match &mut self.kind {
454            InvocationKind::Bang { span, .. } => span,
455            InvocationKind::Attr { attr, .. } => &mut attr.span,
456            InvocationKind::Derive { path, .. } => &mut path.span,
457            InvocationKind::GlobDelegation { item, .. } => &mut item.span,
458        }
459    }
460}
461
462pub struct MacroExpander<'a, 'b> {
463    pub cx: &'a mut ExtCtxt<'b>,
464    monotonic: bool, // cf. `cx.monotonic_expander()`
465}
466
467impl<'a, 'b> MacroExpander<'a, 'b> {
468    pub fn new(cx: &'a mut ExtCtxt<'b>, monotonic: bool) -> Self {
469        MacroExpander { cx, monotonic }
470    }
471
472    pub fn expand_crate(&mut self, krate: ast::Crate) -> ast::Crate {
473        let file_path = match self.cx.source_map().span_to_filename(krate.spans.inner_span) {
474            FileName::Real(name) => name
475                .into_local_path()
476                .expect("attempting to resolve a file path in an external file"),
477            other => PathBuf::from(other.prefer_local_unconditionally().to_string()),
478        };
479        let dir_path = file_path.parent().unwrap_or(&file_path).to_owned();
480        self.cx.root_path = dir_path.clone();
481        self.cx.current_expansion.module = Rc::new(ModuleData {
482            mod_path: vec![Ident::with_dummy_span(self.cx.ecfg.crate_name)],
483            file_path_stack: vec![file_path],
484            dir_path,
485        });
486        let krate = self.fully_expand_fragment(AstFragment::Crate(krate)).make_crate();
487        assert_eq!(krate.id, ast::CRATE_NODE_ID);
488        self.cx.trace_macros_diag();
489        krate
490    }
491
492    /// Recursively expand all macro invocations in this AST fragment.
493    pub fn fully_expand_fragment(&mut self, input_fragment: AstFragment) -> AstFragment {
494        let orig_expansion_data = self.cx.current_expansion.clone();
495        let orig_force_mode = self.cx.force_mode;
496
497        // Collect all macro invocations and replace them with placeholders.
498        let (mut fragment_with_placeholders, mut invocations) =
499            self.collect_invocations(input_fragment, &[]);
500
501        // Optimization: if we resolve all imports now,
502        // we'll be able to immediately resolve most of imported macros.
503        self.resolve_imports();
504
505        // Resolve paths in all invocations and produce output expanded fragments for them, but
506        // do not insert them into our input AST fragment yet, only store in `expanded_fragments`.
507        // The output fragments also go through expansion recursively until no invocations are left.
508        // Unresolved macros produce dummy outputs as a recovery measure.
509        invocations.reverse();
510        let mut expanded_fragments = Vec::new();
511        let mut undetermined_invocations = Vec::new();
512        let (mut progress, mut force) = (false, !self.monotonic);
513        loop {
514            let Some((invoc, ext)) = invocations.pop() else {
515                self.resolve_imports();
516                if undetermined_invocations.is_empty() {
517                    break;
518                }
519                invocations = mem::take(&mut undetermined_invocations);
520                force = !progress;
521                progress = false;
522                if force && self.monotonic {
523                    self.cx.dcx().span_delayed_bug(
524                        invocations.last().unwrap().0.span(),
525                        "expansion entered force mode without producing any errors",
526                    );
527                }
528                continue;
529            };
530
531            let ext = match ext {
532                Some(ext) => ext,
533                None => {
534                    let eager_expansion_root = if self.monotonic {
535                        invoc.expansion_data.id
536                    } else {
537                        orig_expansion_data.id
538                    };
539                    match self.cx.resolver.resolve_macro_invocation(
540                        &invoc,
541                        eager_expansion_root,
542                        force,
543                    ) {
544                        Ok(ext) => ext,
545                        Err(Indeterminate) => {
546                            // Cannot resolve, will retry this invocation later.
547                            undetermined_invocations.push((invoc, None));
548                            continue;
549                        }
550                    }
551                }
552            };
553
554            let ExpansionData { depth, id: expn_id, .. } = invoc.expansion_data;
555            let depth = depth - orig_expansion_data.depth;
556            self.cx.current_expansion = invoc.expansion_data.clone();
557            self.cx.force_mode = force;
558
559            let fragment_kind = invoc.fragment_kind;
560            match self.expand_invoc(invoc, &ext.kind) {
561                ExpandResult::Ready(fragment) => {
562                    let mut derive_invocations = Vec::new();
563                    let derive_placeholders = self
564                        .cx
565                        .resolver
566                        .take_derive_resolutions(expn_id)
567                        .map(|derives| {
568                            derive_invocations.reserve(derives.len());
569                            derives
570                                .into_iter()
571                                .map(|DeriveResolution { path, item, exts: _, is_const }| {
572                                    // FIXME: Consider using the derive resolutions (`_exts`)
573                                    // instead of enqueuing the derives to be resolved again later.
574                                    // Note that this can result in duplicate diagnostics.
575                                    let expn_id = LocalExpnId::fresh_empty();
576                                    derive_invocations.push((
577                                        Invocation {
578                                            kind: InvocationKind::Derive { path, item, is_const },
579                                            fragment_kind,
580                                            expansion_data: ExpansionData {
581                                                id: expn_id,
582                                                ..self.cx.current_expansion.clone()
583                                            },
584                                        },
585                                        None,
586                                    ));
587                                    NodeId::placeholder_from_expn_id(expn_id)
588                                })
589                                .collect::<Vec<_>>()
590                        })
591                        .unwrap_or_default();
592
593                    let (expanded_fragment, collected_invocations) =
594                        self.collect_invocations(fragment, &derive_placeholders);
595                    // We choose to expand any derive invocations associated with this macro
596                    // invocation *before* any macro invocations collected from the output
597                    // fragment.
598                    derive_invocations.extend(collected_invocations);
599
600                    progress = true;
601                    if expanded_fragments.len() < depth {
602                        expanded_fragments.push(Vec::new());
603                    }
604                    expanded_fragments[depth - 1].push((expn_id, expanded_fragment));
605                    invocations.extend(derive_invocations.into_iter().rev());
606                }
607                ExpandResult::Retry(invoc) => {
608                    if force {
609                        self.cx.dcx().span_bug(
610                            invoc.span(),
611                            "expansion entered force mode but is still stuck",
612                        );
613                    } else {
614                        // Cannot expand, will retry this invocation later.
615                        undetermined_invocations.push((invoc, Some(ext)));
616                    }
617                }
618            }
619        }
620
621        self.cx.current_expansion = orig_expansion_data;
622        self.cx.force_mode = orig_force_mode;
623
624        // Finally incorporate all the expanded macros into the input AST fragment.
625        let mut placeholder_expander = PlaceholderExpander::default();
626        while let Some(expanded_fragments) = expanded_fragments.pop() {
627            for (expn_id, expanded_fragment) in expanded_fragments.into_iter().rev() {
628                placeholder_expander
629                    .add(NodeId::placeholder_from_expn_id(expn_id), expanded_fragment);
630            }
631        }
632        fragment_with_placeholders.mut_visit_with(&mut placeholder_expander);
633        fragment_with_placeholders
634    }
635
636    fn resolve_imports(&mut self) {
637        if self.monotonic {
638            self.cx.resolver.resolve_imports();
639        }
640    }
641
642    /// Collects all macro invocations reachable at this time in this AST fragment, and replace
643    /// them with "placeholders" - dummy macro invocations with specially crafted `NodeId`s.
644    /// Then call into resolver that builds a skeleton ("reduced graph") of the fragment and
645    /// prepares data for resolving paths of macro invocations.
646    fn collect_invocations(
647        &mut self,
648        mut fragment: AstFragment,
649        extra_placeholders: &[NodeId],
650    ) -> (AstFragment, Vec<(Invocation, Option<Arc<SyntaxExtension>>)>) {
651        // Resolve `$crate`s in the fragment for pretty-printing.
652        self.cx.resolver.resolve_dollar_crates();
653
654        let mut invocations = {
655            let mut collector = InvocationCollector {
656                // Non-derive macro invocations cannot see the results of cfg expansion - they
657                // will either be removed along with the item, or invoked before the cfg/cfg_attr
658                // attribute is expanded. Therefore, we don't need to configure the tokens
659                // Derive macros *can* see the results of cfg-expansion - they are handled
660                // specially in `fully_expand_fragment`
661                cx: self.cx,
662                invocations: Vec::new(),
663                monotonic: self.monotonic,
664            };
665            fragment.mut_visit_with(&mut collector);
666            fragment.add_placeholders(extra_placeholders);
667            collector.invocations
668        };
669
670        if self.monotonic {
671            self.cx
672                .resolver
673                .visit_ast_fragment_with_placeholders(self.cx.current_expansion.id, &fragment);
674
675            if self.cx.sess.opts.incremental.is_some() {
676                for (invoc, _) in invocations.iter_mut() {
677                    let expn_id = invoc.expansion_data.id;
678                    let parent_def = self.cx.resolver.invocation_parent(expn_id);
679                    let span = invoc.span_mut();
680                    *span = span.with_parent(Some(parent_def));
681                }
682            }
683        }
684
685        (fragment, invocations)
686    }
687
688    fn error_recursion_limit_reached(&mut self) -> ErrorGuaranteed {
689        let expn_data = self.cx.current_expansion.id.expn_data();
690        let suggested_limit = match self.cx.ecfg.recursion_limit {
691            Limit(0) => Limit(2),
692            limit => limit * 2,
693        };
694
695        let guar = self.cx.dcx().emit_err(RecursionLimitReached {
696            span: expn_data.call_site,
697            descr: expn_data.kind.descr(),
698            suggested_limit,
699            crate_name: self.cx.ecfg.crate_name,
700        });
701
702        self.cx.macro_error_and_trace_macros_diag();
703        guar
704    }
705
706    /// A macro's expansion does not fit in this fragment kind.
707    /// For example, a non-type macro in a type position.
708    fn error_wrong_fragment_kind(
709        &mut self,
710        kind: AstFragmentKind,
711        mac: &ast::MacCall,
712        span: Span,
713    ) -> ErrorGuaranteed {
714        let guar =
715            self.cx.dcx().emit_err(WrongFragmentKind { span, kind: kind.name(), name: &mac.path });
716        self.cx.macro_error_and_trace_macros_diag();
717        guar
718    }
719
720    fn expand_invoc(
721        &mut self,
722        invoc: Invocation,
723        ext: &SyntaxExtensionKind,
724    ) -> ExpandResult<AstFragment, Invocation> {
725        let recursion_limit = match self.cx.reduced_recursion_limit {
726            Some((limit, _)) => limit,
727            None => self.cx.ecfg.recursion_limit,
728        };
729
730        if !recursion_limit.value_within_limit(self.cx.current_expansion.depth) {
731            let guar = match self.cx.reduced_recursion_limit {
732                Some((_, guar)) => guar,
733                None => self.error_recursion_limit_reached(),
734            };
735
736            // Reduce the recursion limit by half each time it triggers.
737            self.cx.reduced_recursion_limit = Some((recursion_limit / 2, guar));
738
739            return ExpandResult::Ready(invoc.fragment_kind.dummy(invoc.span(), guar));
740        }
741
742        let macro_stats = self.cx.sess.opts.unstable_opts.macro_stats;
743
744        let (fragment_kind, span) = (invoc.fragment_kind, invoc.span());
745        ExpandResult::Ready(match invoc.kind {
746            InvocationKind::Bang { mac, span } => {
747                if let SyntaxExtensionKind::Bang(expander) = ext {
748                    match expander.expand(self.cx, span, mac.args.tokens.clone()) {
749                        Ok(tok_result) => {
750                            let fragment =
751                                self.parse_ast_fragment(tok_result, fragment_kind, &mac.path, span);
752                            if macro_stats {
753                                update_bang_macro_stats(
754                                    self.cx,
755                                    fragment_kind,
756                                    span,
757                                    mac,
758                                    &fragment,
759                                );
760                            }
761                            fragment
762                        }
763                        Err(guar) => return ExpandResult::Ready(fragment_kind.dummy(span, guar)),
764                    }
765                } else if let Some(expander) = ext.as_legacy_bang() {
766                    let tok_result = match expander.expand(self.cx, span, mac.args.tokens.clone()) {
767                        ExpandResult::Ready(tok_result) => tok_result,
768                        ExpandResult::Retry(_) => {
769                            // retry the original
770                            return ExpandResult::Retry(Invocation {
771                                kind: InvocationKind::Bang { mac, span },
772                                ..invoc
773                            });
774                        }
775                    };
776                    if let Some(fragment) = fragment_kind.make_from(tok_result) {
777                        if macro_stats {
778                            update_bang_macro_stats(self.cx, fragment_kind, span, mac, &fragment);
779                        }
780                        fragment
781                    } else {
782                        let guar = self.error_wrong_fragment_kind(fragment_kind, &mac, span);
783                        fragment_kind.dummy(span, guar)
784                    }
785                } else {
786                    unreachable!();
787                }
788            }
789            InvocationKind::Attr { attr, pos, mut item, derives } => {
790                if let Some(expander) = ext.as_attr() {
791                    self.gate_proc_macro_input(&item);
792                    self.gate_proc_macro_attr_item(span, &item);
793                    let tokens = match &item {
794                        // FIXME: Collect tokens and use them instead of generating
795                        // fake ones. These are unstable, so it needs to be
796                        // fixed prior to stabilization
797                        // Fake tokens when we are invoking an inner attribute, and
798                        // we are invoking it on an out-of-line module or crate.
799                        Annotatable::Crate(krate) => {
800                            rustc_parse::fake_token_stream_for_crate(&self.cx.sess.psess, krate)
801                        }
802                        Annotatable::Item(item_inner)
803                            if matches!(attr.style, AttrStyle::Inner)
804                                && matches!(
805                                    item_inner.kind,
806                                    ItemKind::Mod(
807                                        _,
808                                        _,
809                                        ModKind::Unloaded
810                                            | ModKind::Loaded(_, Inline::No { .. }, _),
811                                    )
812                                ) =>
813                        {
814                            rustc_parse::fake_token_stream_for_item(&self.cx.sess.psess, item_inner)
815                        }
816                        _ => item.to_tokens(),
817                    };
818                    let attr_item = attr.get_normal_item();
819                    let safety = attr_item.unsafety;
820                    if let AttrArgs::Eq { .. } = attr_item.args.unparsed_ref().unwrap() {
821                        self.cx.dcx().emit_err(UnsupportedKeyValue { span });
822                    }
823                    let inner_tokens = attr_item.args.unparsed_ref().unwrap().inner_tokens();
824                    match expander.expand_with_safety(self.cx, safety, span, inner_tokens, tokens) {
825                        Ok(tok_result) => {
826                            let fragment = self.parse_ast_fragment(
827                                tok_result,
828                                fragment_kind,
829                                &attr_item.path,
830                                span,
831                            );
832                            if macro_stats {
833                                update_attr_macro_stats(
834                                    self.cx,
835                                    fragment_kind,
836                                    span,
837                                    &attr_item.path,
838                                    &attr,
839                                    item,
840                                    &fragment,
841                                );
842                            }
843                            fragment
844                        }
845                        Err(guar) => return ExpandResult::Ready(fragment_kind.dummy(span, guar)),
846                    }
847                } else if let SyntaxExtensionKind::LegacyAttr(expander) = ext {
848                    // `LegacyAttr` is only used for builtin attribute macros, which have their
849                    // safety checked by `check_builtin_meta_item`, so we don't need to check
850                    // `unsafety` here.
851                    match validate_attr::parse_meta(&self.cx.sess.psess, &attr) {
852                        Ok(meta) => {
853                            let item_clone = macro_stats.then(|| item.clone());
854                            let items = match expander.expand(self.cx, span, &meta, item, false) {
855                                ExpandResult::Ready(items) => items,
856                                ExpandResult::Retry(item) => {
857                                    // Reassemble the original invocation for retrying.
858                                    return ExpandResult::Retry(Invocation {
859                                        kind: InvocationKind::Attr { attr, pos, item, derives },
860                                        ..invoc
861                                    });
862                                }
863                            };
864                            if matches!(
865                                fragment_kind,
866                                AstFragmentKind::Expr | AstFragmentKind::MethodReceiverExpr
867                            ) && items.is_empty()
868                            {
869                                let guar = self.cx.dcx().emit_err(RemoveExprNotSupported { span });
870                                fragment_kind.dummy(span, guar)
871                            } else {
872                                let fragment = fragment_kind.expect_from_annotatables(items);
873                                if macro_stats {
874                                    update_attr_macro_stats(
875                                        self.cx,
876                                        fragment_kind,
877                                        span,
878                                        &meta.path,
879                                        &attr,
880                                        item_clone.unwrap(),
881                                        &fragment,
882                                    );
883                                }
884                                fragment
885                            }
886                        }
887                        Err(err) => {
888                            let _guar = err.emit();
889                            fragment_kind.expect_from_annotatables(iter::once(item))
890                        }
891                    }
892                } else if let SyntaxExtensionKind::NonMacroAttr = ext {
893                    // `-Zmacro-stats` ignores these because they don't do any real expansion.
894                    self.cx.expanded_inert_attrs.mark(&attr);
895                    item.visit_attrs(|attrs| attrs.insert(pos, attr));
896                    fragment_kind.expect_from_annotatables(iter::once(item))
897                } else {
898                    unreachable!();
899                }
900            }
901            InvocationKind::Derive { path, item, is_const } => match ext {
902                SyntaxExtensionKind::Derive(expander)
903                | SyntaxExtensionKind::LegacyDerive(expander) => {
904                    if let SyntaxExtensionKind::Derive(..) = ext {
905                        self.gate_proc_macro_input(&item);
906                    }
907                    // The `MetaItem` representing the trait to derive can't
908                    // have an unsafe around it (as of now).
909                    let meta = ast::MetaItem {
910                        unsafety: ast::Safety::Default,
911                        kind: MetaItemKind::Word,
912                        span,
913                        path,
914                    };
915                    let items = match expander.expand(self.cx, span, &meta, item, is_const) {
916                        ExpandResult::Ready(items) => items,
917                        ExpandResult::Retry(item) => {
918                            // Reassemble the original invocation for retrying.
919                            return ExpandResult::Retry(Invocation {
920                                kind: InvocationKind::Derive { path: meta.path, item, is_const },
921                                ..invoc
922                            });
923                        }
924                    };
925                    let fragment = fragment_kind.expect_from_annotatables(items);
926                    if macro_stats {
927                        update_derive_macro_stats(
928                            self.cx,
929                            fragment_kind,
930                            span,
931                            &meta.path,
932                            &fragment,
933                        );
934                    }
935                    fragment
936                }
937                SyntaxExtensionKind::MacroRules(expander)
938                    if expander.kinds().contains(MacroKinds::DERIVE) =>
939                {
940                    if is_const {
941                        let guar = self
942                            .cx
943                            .dcx()
944                            .span_err(span, "macro `derive` does not support const derives");
945                        return ExpandResult::Ready(fragment_kind.dummy(span, guar));
946                    }
947                    let body = item.to_tokens();
948                    match expander.expand_derive(self.cx, span, &body) {
949                        Ok(tok_result) => {
950                            let fragment =
951                                self.parse_ast_fragment(tok_result, fragment_kind, &path, span);
952                            if macro_stats {
953                                update_derive_macro_stats(
954                                    self.cx,
955                                    fragment_kind,
956                                    span,
957                                    &path,
958                                    &fragment,
959                                );
960                            }
961                            fragment
962                        }
963                        Err(guar) => return ExpandResult::Ready(fragment_kind.dummy(span, guar)),
964                    }
965                }
966                _ => unreachable!(),
967            },
968            InvocationKind::GlobDelegation { item, of_trait } => {
969                let AssocItemKind::DelegationMac(deleg) = &item.kind else { unreachable!() };
970                let suffixes = match ext {
971                    SyntaxExtensionKind::GlobDelegation(expander) => match expander.expand(self.cx)
972                    {
973                        ExpandResult::Ready(suffixes) => suffixes,
974                        ExpandResult::Retry(()) => {
975                            // Reassemble the original invocation for retrying.
976                            return ExpandResult::Retry(Invocation {
977                                kind: InvocationKind::GlobDelegation { item, of_trait },
978                                ..invoc
979                            });
980                        }
981                    },
982                    SyntaxExtensionKind::Bang(..) => {
983                        let msg = "expanded a dummy glob delegation";
984                        let guar = self.cx.dcx().span_delayed_bug(span, msg);
985                        return ExpandResult::Ready(fragment_kind.dummy(span, guar));
986                    }
987                    _ => unreachable!(),
988                };
989
990                type Node = AstNodeWrapper<Box<ast::AssocItem>, ImplItemTag>;
991                let single_delegations = build_single_delegations::<Node>(
992                    self.cx, deleg, &item, &suffixes, item.span, true,
993                );
994                // `-Zmacro-stats` ignores these because they don't seem important.
995                fragment_kind.expect_from_annotatables(single_delegations.map(|item| {
996                    Annotatable::AssocItem(Box::new(item), AssocCtxt::Impl { of_trait })
997                }))
998            }
999        })
1000    }
1001
1002    #[allow(rustc::untranslatable_diagnostic)] // FIXME: make this translatable
1003    fn gate_proc_macro_attr_item(&self, span: Span, item: &Annotatable) {
1004        let kind = match item {
1005            Annotatable::Item(_)
1006            | Annotatable::AssocItem(..)
1007            | Annotatable::ForeignItem(_)
1008            | Annotatable::Crate(..) => return,
1009            Annotatable::Stmt(stmt) => {
1010                // Attributes are stable on item statements,
1011                // but unstable on all other kinds of statements
1012                if stmt.is_item() {
1013                    return;
1014                }
1015                "statements"
1016            }
1017            Annotatable::Expr(_) => "expressions",
1018            Annotatable::Arm(..)
1019            | Annotatable::ExprField(..)
1020            | Annotatable::PatField(..)
1021            | Annotatable::GenericParam(..)
1022            | Annotatable::Param(..)
1023            | Annotatable::FieldDef(..)
1024            | Annotatable::Variant(..)
1025            | Annotatable::WherePredicate(..) => panic!("unexpected annotatable"),
1026        };
1027        if self.cx.ecfg.features.proc_macro_hygiene() {
1028            return;
1029        }
1030        feature_err(
1031            &self.cx.sess,
1032            sym::proc_macro_hygiene,
1033            span,
1034            format!("custom attributes cannot be applied to {kind}"),
1035        )
1036        .emit();
1037    }
1038
1039    fn gate_proc_macro_input(&self, annotatable: &Annotatable) {
1040        struct GateProcMacroInput<'a> {
1041            sess: &'a Session,
1042        }
1043
1044        impl<'ast, 'a> Visitor<'ast> for GateProcMacroInput<'a> {
1045            fn visit_item(&mut self, item: &'ast ast::Item) {
1046                match &item.kind {
1047                    ItemKind::Mod(_, _, mod_kind)
1048                        if !matches!(mod_kind, ModKind::Loaded(_, Inline::Yes, _)) =>
1049                    {
1050                        feature_err(
1051                            self.sess,
1052                            sym::proc_macro_hygiene,
1053                            item.span,
1054                            fluent_generated::expand_file_modules_in_proc_macro_input_are_unstable,
1055                        )
1056                        .emit();
1057                    }
1058                    _ => {}
1059                }
1060
1061                visit::walk_item(self, item);
1062            }
1063        }
1064
1065        if !self.cx.ecfg.features.proc_macro_hygiene() {
1066            annotatable.visit_with(&mut GateProcMacroInput { sess: &self.cx.sess });
1067        }
1068    }
1069
1070    fn parse_ast_fragment(
1071        &mut self,
1072        toks: TokenStream,
1073        kind: AstFragmentKind,
1074        path: &ast::Path,
1075        span: Span,
1076    ) -> AstFragment {
1077        let mut parser = self.cx.new_parser_from_tts(toks);
1078        match parse_ast_fragment(&mut parser, kind) {
1079            Ok(fragment) => {
1080                ensure_complete_parse(&parser, path, kind.name(), span);
1081                fragment
1082            }
1083            Err(mut err) => {
1084                if err.span.is_dummy() {
1085                    err.span(span);
1086                }
1087                annotate_err_with_kind(&mut err, kind, span);
1088                let guar = err.emit();
1089                self.cx.macro_error_and_trace_macros_diag();
1090                kind.dummy(span, guar)
1091            }
1092        }
1093    }
1094}
1095
1096pub fn parse_ast_fragment<'a>(
1097    this: &mut Parser<'a>,
1098    kind: AstFragmentKind,
1099) -> PResult<'a, AstFragment> {
1100    Ok(match kind {
1101        AstFragmentKind::Items => {
1102            let mut items = SmallVec::new();
1103            while let Some(item) = this.parse_item(ForceCollect::No)? {
1104                items.push(item);
1105            }
1106            AstFragment::Items(items)
1107        }
1108        AstFragmentKind::TraitItems => {
1109            let mut items = SmallVec::new();
1110            while let Some(item) = this.parse_trait_item(ForceCollect::No)? {
1111                items.extend(item);
1112            }
1113            AstFragment::TraitItems(items)
1114        }
1115        AstFragmentKind::ImplItems => {
1116            let mut items = SmallVec::new();
1117            while let Some(item) = this.parse_impl_item(ForceCollect::No)? {
1118                items.extend(item);
1119            }
1120            AstFragment::ImplItems(items)
1121        }
1122        AstFragmentKind::TraitImplItems => {
1123            let mut items = SmallVec::new();
1124            while let Some(item) = this.parse_impl_item(ForceCollect::No)? {
1125                items.extend(item);
1126            }
1127            AstFragment::TraitImplItems(items)
1128        }
1129        AstFragmentKind::ForeignItems => {
1130            let mut items = SmallVec::new();
1131            while let Some(item) = this.parse_foreign_item(ForceCollect::No)? {
1132                items.extend(item);
1133            }
1134            AstFragment::ForeignItems(items)
1135        }
1136        AstFragmentKind::Stmts => {
1137            let mut stmts = SmallVec::new();
1138            // Won't make progress on a `}`.
1139            while this.token != token::Eof && this.token != token::CloseBrace {
1140                if let Some(stmt) = this.parse_full_stmt(AttemptLocalParseRecovery::Yes)? {
1141                    stmts.push(stmt);
1142                }
1143            }
1144            AstFragment::Stmts(stmts)
1145        }
1146        AstFragmentKind::Expr => AstFragment::Expr(this.parse_expr()?),
1147        AstFragmentKind::MethodReceiverExpr => AstFragment::MethodReceiverExpr(this.parse_expr()?),
1148        AstFragmentKind::OptExpr => {
1149            if this.token != token::Eof {
1150                AstFragment::OptExpr(Some(this.parse_expr()?))
1151            } else {
1152                AstFragment::OptExpr(None)
1153            }
1154        }
1155        AstFragmentKind::Ty => AstFragment::Ty(this.parse_ty()?),
1156        AstFragmentKind::Pat => AstFragment::Pat(Box::new(this.parse_pat_allow_top_guard(
1157            None,
1158            RecoverComma::No,
1159            RecoverColon::Yes,
1160            CommaRecoveryMode::LikelyTuple,
1161        )?)),
1162        AstFragmentKind::Crate => AstFragment::Crate(this.parse_crate_mod()?),
1163        AstFragmentKind::Arms
1164        | AstFragmentKind::ExprFields
1165        | AstFragmentKind::PatFields
1166        | AstFragmentKind::GenericParams
1167        | AstFragmentKind::Params
1168        | AstFragmentKind::FieldDefs
1169        | AstFragmentKind::Variants
1170        | AstFragmentKind::WherePredicates => panic!("unexpected AST fragment kind"),
1171    })
1172}
1173
1174pub(crate) fn ensure_complete_parse<'a>(
1175    parser: &Parser<'a>,
1176    macro_path: &ast::Path,
1177    kind_name: &str,
1178    span: Span,
1179) {
1180    if parser.token != token::Eof {
1181        let descr = token_descr(&parser.token);
1182        // Avoid emitting backtrace info twice.
1183        let def_site_span = parser.token.span.with_ctxt(SyntaxContext::root());
1184
1185        let semi_span = parser.psess.source_map().next_point(span);
1186        let add_semicolon = match &parser.psess.source_map().span_to_snippet(semi_span) {
1187            Ok(snippet) if &snippet[..] != ";" && kind_name == "expression" => {
1188                Some(span.shrink_to_hi())
1189            }
1190            _ => None,
1191        };
1192
1193        let expands_to_match_arm = kind_name == "pattern" && parser.token == token::FatArrow;
1194
1195        parser.dcx().emit_err(IncompleteParse {
1196            span: def_site_span,
1197            descr,
1198            label_span: span,
1199            macro_path,
1200            kind_name,
1201            expands_to_match_arm,
1202            add_semicolon,
1203        });
1204    }
1205}
1206
1207/// Wraps a call to `walk_*` / `walk_flat_map_*`
1208/// for an AST node that supports attributes
1209/// (see the `Annotatable` enum)
1210/// This method assigns a `NodeId`, and sets that `NodeId`
1211/// as our current 'lint node id'. If a macro call is found
1212/// inside this AST node, we will use this AST node's `NodeId`
1213/// to emit lints associated with that macro (allowing
1214/// `#[allow]` / `#[deny]` to be applied close to
1215/// the macro invocation).
1216///
1217/// Do *not* call this for a macro AST node
1218/// (e.g. `ExprKind::MacCall`) - we cannot emit lints
1219/// at these AST nodes, since they are removed and
1220/// replaced with the result of macro expansion.
1221///
1222/// All other `NodeId`s are assigned by `visit_id`.
1223/// * `self` is the 'self' parameter for the current method,
1224/// * `id` is a mutable reference to the `NodeId` field
1225///    of the current AST node.
1226/// * `closure` is a closure that executes the
1227///   `walk_*` / `walk_flat_map_*` method
1228///   for the current AST node.
1229macro_rules! assign_id {
1230    ($self:ident, $id:expr, $closure:expr) => {{
1231        let old_id = $self.cx.current_expansion.lint_node_id;
1232        if $self.monotonic {
1233            debug_assert_eq!(*$id, ast::DUMMY_NODE_ID);
1234            let new_id = $self.cx.resolver.next_node_id();
1235            *$id = new_id;
1236            $self.cx.current_expansion.lint_node_id = new_id;
1237        }
1238        let ret = ($closure)();
1239        $self.cx.current_expansion.lint_node_id = old_id;
1240        ret
1241    }};
1242}
1243
1244enum AddSemicolon {
1245    Yes,
1246    No,
1247}
1248
1249/// A trait implemented for all `AstFragment` nodes and providing all pieces
1250/// of functionality used by `InvocationCollector`.
1251trait InvocationCollectorNode: HasAttrs + HasNodeId + Sized {
1252    type OutputTy = SmallVec<[Self; 1]>;
1253    type ItemKind = ItemKind;
1254    const KIND: AstFragmentKind;
1255    fn to_annotatable(self) -> Annotatable;
1256    fn fragment_to_output(fragment: AstFragment) -> Self::OutputTy;
1257    fn descr() -> &'static str {
1258        unreachable!()
1259    }
1260    fn walk_flat_map(self, _collector: &mut InvocationCollector<'_, '_>) -> Self::OutputTy {
1261        unreachable!()
1262    }
1263    fn walk(&mut self, _collector: &mut InvocationCollector<'_, '_>) {
1264        unreachable!()
1265    }
1266    fn is_mac_call(&self) -> bool {
1267        false
1268    }
1269    fn take_mac_call(self) -> (Box<ast::MacCall>, ast::AttrVec, AddSemicolon) {
1270        unreachable!()
1271    }
1272    fn delegation(&self) -> Option<(&ast::DelegationMac, &ast::Item<Self::ItemKind>)> {
1273        None
1274    }
1275    fn delegation_item_kind(_deleg: Box<ast::Delegation>) -> Self::ItemKind {
1276        unreachable!()
1277    }
1278    fn from_item(_item: ast::Item<Self::ItemKind>) -> Self {
1279        unreachable!()
1280    }
1281    fn flatten_outputs(_outputs: impl Iterator<Item = Self::OutputTy>) -> Self::OutputTy {
1282        unreachable!()
1283    }
1284    fn pre_flat_map_node_collect_attr(_cfg: &StripUnconfigured<'_>, _attr: &ast::Attribute) {}
1285    fn post_flat_map_node_collect_bang(_output: &mut Self::OutputTy, _add_semicolon: AddSemicolon) {
1286    }
1287    fn wrap_flat_map_node_walk_flat_map(
1288        node: Self,
1289        collector: &mut InvocationCollector<'_, '_>,
1290        walk_flat_map: impl FnOnce(Self, &mut InvocationCollector<'_, '_>) -> Self::OutputTy,
1291    ) -> Result<Self::OutputTy, Self> {
1292        Ok(walk_flat_map(node, collector))
1293    }
1294    fn expand_cfg_false(
1295        &mut self,
1296        collector: &mut InvocationCollector<'_, '_>,
1297        _pos: usize,
1298        span: Span,
1299    ) {
1300        collector.cx.dcx().emit_err(RemoveNodeNotSupported { span, descr: Self::descr() });
1301    }
1302
1303    /// All of the identifiers (items) declared by this node.
1304    /// This is an approximation and should only be used for diagnostics.
1305    fn declared_idents(&self) -> Vec<Ident> {
1306        vec![]
1307    }
1308}
1309
1310impl InvocationCollectorNode for Box<ast::Item> {
1311    const KIND: AstFragmentKind = AstFragmentKind::Items;
1312    fn to_annotatable(self) -> Annotatable {
1313        Annotatable::Item(self)
1314    }
1315    fn fragment_to_output(fragment: AstFragment) -> Self::OutputTy {
1316        fragment.make_items()
1317    }
1318    fn walk_flat_map(self, collector: &mut InvocationCollector<'_, '_>) -> Self::OutputTy {
1319        walk_flat_map_item(collector, self)
1320    }
1321    fn is_mac_call(&self) -> bool {
1322        matches!(self.kind, ItemKind::MacCall(..))
1323    }
1324    fn take_mac_call(self) -> (Box<ast::MacCall>, ast::AttrVec, AddSemicolon) {
1325        match self.kind {
1326            ItemKind::MacCall(mac) => (mac, self.attrs, AddSemicolon::No),
1327            _ => unreachable!(),
1328        }
1329    }
1330    fn delegation(&self) -> Option<(&ast::DelegationMac, &ast::Item<Self::ItemKind>)> {
1331        match &self.kind {
1332            ItemKind::DelegationMac(deleg) => Some((deleg, self)),
1333            _ => None,
1334        }
1335    }
1336    fn delegation_item_kind(deleg: Box<ast::Delegation>) -> Self::ItemKind {
1337        ItemKind::Delegation(deleg)
1338    }
1339    fn from_item(item: ast::Item<Self::ItemKind>) -> Self {
1340        Box::new(item)
1341    }
1342    fn flatten_outputs(items: impl Iterator<Item = Self::OutputTy>) -> Self::OutputTy {
1343        items.flatten().collect()
1344    }
1345    fn wrap_flat_map_node_walk_flat_map(
1346        mut node: Self,
1347        collector: &mut InvocationCollector<'_, '_>,
1348        walk_flat_map: impl FnOnce(Self, &mut InvocationCollector<'_, '_>) -> Self::OutputTy,
1349    ) -> Result<Self::OutputTy, Self> {
1350        if !matches!(node.kind, ItemKind::Mod(..)) {
1351            return Ok(walk_flat_map(node, collector));
1352        }
1353
1354        // Work around borrow checker not seeing through `P`'s deref.
1355        let (span, mut attrs) = (node.span, mem::take(&mut node.attrs));
1356        let ItemKind::Mod(_, ident, ref mut mod_kind) = node.kind else { unreachable!() };
1357        let ecx = &mut collector.cx;
1358        let (file_path, dir_path, dir_ownership) = match mod_kind {
1359            ModKind::Loaded(_, inline, _) => {
1360                // Inline `mod foo { ... }`, but we still need to push directories.
1361                let (dir_path, dir_ownership) = mod_dir_path(
1362                    ecx.sess,
1363                    ident,
1364                    &attrs,
1365                    &ecx.current_expansion.module,
1366                    ecx.current_expansion.dir_ownership,
1367                    *inline,
1368                );
1369                // If the module was parsed from an external file, recover its path.
1370                // This lets `parse_external_mod` catch cycles if it's self-referential.
1371                let file_path = match inline {
1372                    Inline::Yes => None,
1373                    Inline::No { .. } => mod_file_path_from_attr(ecx.sess, &attrs, &dir_path),
1374                };
1375                node.attrs = attrs;
1376                (file_path, dir_path, dir_ownership)
1377            }
1378            ModKind::Unloaded => {
1379                // We have an outline `mod foo;` so we need to parse the file.
1380                let old_attrs_len = attrs.len();
1381                let ParsedExternalMod {
1382                    items,
1383                    spans,
1384                    file_path,
1385                    dir_path,
1386                    dir_ownership,
1387                    had_parse_error,
1388                } = parse_external_mod(
1389                    ecx.sess,
1390                    ident,
1391                    span,
1392                    &ecx.current_expansion.module,
1393                    ecx.current_expansion.dir_ownership,
1394                    &mut attrs,
1395                );
1396
1397                if let Some(lint_store) = ecx.lint_store {
1398                    lint_store.pre_expansion_lint(
1399                        ecx.sess,
1400                        ecx.ecfg.features,
1401                        ecx.resolver.registered_tools(),
1402                        ecx.current_expansion.lint_node_id,
1403                        &attrs,
1404                        &items,
1405                        ident.name,
1406                    );
1407                }
1408
1409                *mod_kind = ModKind::Loaded(items, Inline::No { had_parse_error }, spans);
1410                node.attrs = attrs;
1411                if node.attrs.len() > old_attrs_len {
1412                    // If we loaded an out-of-line module and added some inner attributes,
1413                    // then we need to re-configure it and re-collect attributes for
1414                    // resolution and expansion.
1415                    return Err(node);
1416                }
1417                (Some(file_path), dir_path, dir_ownership)
1418            }
1419        };
1420
1421        // Set the module info before we flat map.
1422        let mut module = ecx.current_expansion.module.with_dir_path(dir_path);
1423        module.mod_path.push(ident);
1424        if let Some(file_path) = file_path {
1425            module.file_path_stack.push(file_path);
1426        }
1427
1428        let orig_module = mem::replace(&mut ecx.current_expansion.module, Rc::new(module));
1429        let orig_dir_ownership =
1430            mem::replace(&mut ecx.current_expansion.dir_ownership, dir_ownership);
1431
1432        let res = Ok(walk_flat_map(node, collector));
1433
1434        collector.cx.current_expansion.dir_ownership = orig_dir_ownership;
1435        collector.cx.current_expansion.module = orig_module;
1436        res
1437    }
1438
1439    fn declared_idents(&self) -> Vec<Ident> {
1440        if let ItemKind::Use(ut) = &self.kind {
1441            fn collect_use_tree_leaves(ut: &ast::UseTree, idents: &mut Vec<Ident>) {
1442                match &ut.kind {
1443                    ast::UseTreeKind::Glob => {}
1444                    ast::UseTreeKind::Simple(_) => idents.push(ut.ident()),
1445                    ast::UseTreeKind::Nested { items, .. } => {
1446                        for (ut, _) in items {
1447                            collect_use_tree_leaves(ut, idents);
1448                        }
1449                    }
1450                }
1451            }
1452            let mut idents = Vec::new();
1453            collect_use_tree_leaves(&ut, &mut idents);
1454            idents
1455        } else {
1456            self.kind.ident().into_iter().collect()
1457        }
1458    }
1459}
1460
1461struct TraitItemTag;
1462impl InvocationCollectorNode for AstNodeWrapper<Box<ast::AssocItem>, TraitItemTag> {
1463    type OutputTy = SmallVec<[Box<ast::AssocItem>; 1]>;
1464    type ItemKind = AssocItemKind;
1465    const KIND: AstFragmentKind = AstFragmentKind::TraitItems;
1466    fn to_annotatable(self) -> Annotatable {
1467        Annotatable::AssocItem(self.wrapped, AssocCtxt::Trait)
1468    }
1469    fn fragment_to_output(fragment: AstFragment) -> Self::OutputTy {
1470        fragment.make_trait_items()
1471    }
1472    fn walk_flat_map(self, collector: &mut InvocationCollector<'_, '_>) -> Self::OutputTy {
1473        walk_flat_map_assoc_item(collector, self.wrapped, AssocCtxt::Trait)
1474    }
1475    fn is_mac_call(&self) -> bool {
1476        matches!(self.wrapped.kind, AssocItemKind::MacCall(..))
1477    }
1478    fn take_mac_call(self) -> (Box<ast::MacCall>, ast::AttrVec, AddSemicolon) {
1479        let item = self.wrapped;
1480        match item.kind {
1481            AssocItemKind::MacCall(mac) => (mac, item.attrs, AddSemicolon::No),
1482            _ => unreachable!(),
1483        }
1484    }
1485    fn delegation(&self) -> Option<(&ast::DelegationMac, &ast::Item<Self::ItemKind>)> {
1486        match &self.wrapped.kind {
1487            AssocItemKind::DelegationMac(deleg) => Some((deleg, &self.wrapped)),
1488            _ => None,
1489        }
1490    }
1491    fn delegation_item_kind(deleg: Box<ast::Delegation>) -> Self::ItemKind {
1492        AssocItemKind::Delegation(deleg)
1493    }
1494    fn from_item(item: ast::Item<Self::ItemKind>) -> Self {
1495        AstNodeWrapper::new(Box::new(item), TraitItemTag)
1496    }
1497    fn flatten_outputs(items: impl Iterator<Item = Self::OutputTy>) -> Self::OutputTy {
1498        items.flatten().collect()
1499    }
1500}
1501
1502struct ImplItemTag;
1503impl InvocationCollectorNode for AstNodeWrapper<Box<ast::AssocItem>, ImplItemTag> {
1504    type OutputTy = SmallVec<[Box<ast::AssocItem>; 1]>;
1505    type ItemKind = AssocItemKind;
1506    const KIND: AstFragmentKind = AstFragmentKind::ImplItems;
1507    fn to_annotatable(self) -> Annotatable {
1508        Annotatable::AssocItem(self.wrapped, AssocCtxt::Impl { of_trait: false })
1509    }
1510    fn fragment_to_output(fragment: AstFragment) -> Self::OutputTy {
1511        fragment.make_impl_items()
1512    }
1513    fn walk_flat_map(self, collector: &mut InvocationCollector<'_, '_>) -> Self::OutputTy {
1514        walk_flat_map_assoc_item(collector, self.wrapped, AssocCtxt::Impl { of_trait: false })
1515    }
1516    fn is_mac_call(&self) -> bool {
1517        matches!(self.wrapped.kind, AssocItemKind::MacCall(..))
1518    }
1519    fn take_mac_call(self) -> (Box<ast::MacCall>, ast::AttrVec, AddSemicolon) {
1520        let item = self.wrapped;
1521        match item.kind {
1522            AssocItemKind::MacCall(mac) => (mac, item.attrs, AddSemicolon::No),
1523            _ => unreachable!(),
1524        }
1525    }
1526    fn delegation(&self) -> Option<(&ast::DelegationMac, &ast::Item<Self::ItemKind>)> {
1527        match &self.wrapped.kind {
1528            AssocItemKind::DelegationMac(deleg) => Some((deleg, &self.wrapped)),
1529            _ => None,
1530        }
1531    }
1532    fn delegation_item_kind(deleg: Box<ast::Delegation>) -> Self::ItemKind {
1533        AssocItemKind::Delegation(deleg)
1534    }
1535    fn from_item(item: ast::Item<Self::ItemKind>) -> Self {
1536        AstNodeWrapper::new(Box::new(item), ImplItemTag)
1537    }
1538    fn flatten_outputs(items: impl Iterator<Item = Self::OutputTy>) -> Self::OutputTy {
1539        items.flatten().collect()
1540    }
1541}
1542
1543struct TraitImplItemTag;
1544impl InvocationCollectorNode for AstNodeWrapper<Box<ast::AssocItem>, TraitImplItemTag> {
1545    type OutputTy = SmallVec<[Box<ast::AssocItem>; 1]>;
1546    type ItemKind = AssocItemKind;
1547    const KIND: AstFragmentKind = AstFragmentKind::TraitImplItems;
1548    fn to_annotatable(self) -> Annotatable {
1549        Annotatable::AssocItem(self.wrapped, AssocCtxt::Impl { of_trait: true })
1550    }
1551    fn fragment_to_output(fragment: AstFragment) -> Self::OutputTy {
1552        fragment.make_trait_impl_items()
1553    }
1554    fn walk_flat_map(self, collector: &mut InvocationCollector<'_, '_>) -> Self::OutputTy {
1555        walk_flat_map_assoc_item(collector, self.wrapped, AssocCtxt::Impl { of_trait: true })
1556    }
1557    fn is_mac_call(&self) -> bool {
1558        matches!(self.wrapped.kind, AssocItemKind::MacCall(..))
1559    }
1560    fn take_mac_call(self) -> (Box<ast::MacCall>, ast::AttrVec, AddSemicolon) {
1561        let item = self.wrapped;
1562        match item.kind {
1563            AssocItemKind::MacCall(mac) => (mac, item.attrs, AddSemicolon::No),
1564            _ => unreachable!(),
1565        }
1566    }
1567    fn delegation(&self) -> Option<(&ast::DelegationMac, &ast::Item<Self::ItemKind>)> {
1568        match &self.wrapped.kind {
1569            AssocItemKind::DelegationMac(deleg) => Some((deleg, &self.wrapped)),
1570            _ => None,
1571        }
1572    }
1573    fn delegation_item_kind(deleg: Box<ast::Delegation>) -> Self::ItemKind {
1574        AssocItemKind::Delegation(deleg)
1575    }
1576    fn from_item(item: ast::Item<Self::ItemKind>) -> Self {
1577        AstNodeWrapper::new(Box::new(item), TraitImplItemTag)
1578    }
1579    fn flatten_outputs(items: impl Iterator<Item = Self::OutputTy>) -> Self::OutputTy {
1580        items.flatten().collect()
1581    }
1582}
1583
1584impl InvocationCollectorNode for Box<ast::ForeignItem> {
1585    const KIND: AstFragmentKind = AstFragmentKind::ForeignItems;
1586    fn to_annotatable(self) -> Annotatable {
1587        Annotatable::ForeignItem(self)
1588    }
1589    fn fragment_to_output(fragment: AstFragment) -> Self::OutputTy {
1590        fragment.make_foreign_items()
1591    }
1592    fn walk_flat_map(self, collector: &mut InvocationCollector<'_, '_>) -> Self::OutputTy {
1593        walk_flat_map_foreign_item(collector, self)
1594    }
1595    fn is_mac_call(&self) -> bool {
1596        matches!(self.kind, ForeignItemKind::MacCall(..))
1597    }
1598    fn take_mac_call(self) -> (Box<ast::MacCall>, ast::AttrVec, AddSemicolon) {
1599        match self.kind {
1600            ForeignItemKind::MacCall(mac) => (mac, self.attrs, AddSemicolon::No),
1601            _ => unreachable!(),
1602        }
1603    }
1604}
1605
1606impl InvocationCollectorNode for ast::Variant {
1607    const KIND: AstFragmentKind = AstFragmentKind::Variants;
1608    fn to_annotatable(self) -> Annotatable {
1609        Annotatable::Variant(self)
1610    }
1611    fn fragment_to_output(fragment: AstFragment) -> Self::OutputTy {
1612        fragment.make_variants()
1613    }
1614    fn walk_flat_map(self, collector: &mut InvocationCollector<'_, '_>) -> Self::OutputTy {
1615        walk_flat_map_variant(collector, self)
1616    }
1617}
1618
1619impl InvocationCollectorNode for ast::WherePredicate {
1620    const KIND: AstFragmentKind = AstFragmentKind::WherePredicates;
1621    fn to_annotatable(self) -> Annotatable {
1622        Annotatable::WherePredicate(self)
1623    }
1624    fn fragment_to_output(fragment: AstFragment) -> Self::OutputTy {
1625        fragment.make_where_predicates()
1626    }
1627    fn walk_flat_map(self, collector: &mut InvocationCollector<'_, '_>) -> Self::OutputTy {
1628        walk_flat_map_where_predicate(collector, self)
1629    }
1630}
1631
1632impl InvocationCollectorNode for ast::FieldDef {
1633    const KIND: AstFragmentKind = AstFragmentKind::FieldDefs;
1634    fn to_annotatable(self) -> Annotatable {
1635        Annotatable::FieldDef(self)
1636    }
1637    fn fragment_to_output(fragment: AstFragment) -> Self::OutputTy {
1638        fragment.make_field_defs()
1639    }
1640    fn walk_flat_map(self, collector: &mut InvocationCollector<'_, '_>) -> Self::OutputTy {
1641        walk_flat_map_field_def(collector, self)
1642    }
1643}
1644
1645impl InvocationCollectorNode for ast::PatField {
1646    const KIND: AstFragmentKind = AstFragmentKind::PatFields;
1647    fn to_annotatable(self) -> Annotatable {
1648        Annotatable::PatField(self)
1649    }
1650    fn fragment_to_output(fragment: AstFragment) -> Self::OutputTy {
1651        fragment.make_pat_fields()
1652    }
1653    fn walk_flat_map(self, collector: &mut InvocationCollector<'_, '_>) -> Self::OutputTy {
1654        walk_flat_map_pat_field(collector, self)
1655    }
1656}
1657
1658impl InvocationCollectorNode for ast::ExprField {
1659    const KIND: AstFragmentKind = AstFragmentKind::ExprFields;
1660    fn to_annotatable(self) -> Annotatable {
1661        Annotatable::ExprField(self)
1662    }
1663    fn fragment_to_output(fragment: AstFragment) -> Self::OutputTy {
1664        fragment.make_expr_fields()
1665    }
1666    fn walk_flat_map(self, collector: &mut InvocationCollector<'_, '_>) -> Self::OutputTy {
1667        walk_flat_map_expr_field(collector, self)
1668    }
1669}
1670
1671impl InvocationCollectorNode for ast::Param {
1672    const KIND: AstFragmentKind = AstFragmentKind::Params;
1673    fn to_annotatable(self) -> Annotatable {
1674        Annotatable::Param(self)
1675    }
1676    fn fragment_to_output(fragment: AstFragment) -> Self::OutputTy {
1677        fragment.make_params()
1678    }
1679    fn walk_flat_map(self, collector: &mut InvocationCollector<'_, '_>) -> Self::OutputTy {
1680        walk_flat_map_param(collector, self)
1681    }
1682}
1683
1684impl InvocationCollectorNode for ast::GenericParam {
1685    const KIND: AstFragmentKind = AstFragmentKind::GenericParams;
1686    fn to_annotatable(self) -> Annotatable {
1687        Annotatable::GenericParam(self)
1688    }
1689    fn fragment_to_output(fragment: AstFragment) -> Self::OutputTy {
1690        fragment.make_generic_params()
1691    }
1692    fn walk_flat_map(self, collector: &mut InvocationCollector<'_, '_>) -> Self::OutputTy {
1693        walk_flat_map_generic_param(collector, self)
1694    }
1695}
1696
1697impl InvocationCollectorNode for ast::Arm {
1698    const KIND: AstFragmentKind = AstFragmentKind::Arms;
1699    fn to_annotatable(self) -> Annotatable {
1700        Annotatable::Arm(self)
1701    }
1702    fn fragment_to_output(fragment: AstFragment) -> Self::OutputTy {
1703        fragment.make_arms()
1704    }
1705    fn walk_flat_map(self, collector: &mut InvocationCollector<'_, '_>) -> Self::OutputTy {
1706        walk_flat_map_arm(collector, self)
1707    }
1708}
1709
1710impl InvocationCollectorNode for ast::Stmt {
1711    const KIND: AstFragmentKind = AstFragmentKind::Stmts;
1712    fn to_annotatable(self) -> Annotatable {
1713        Annotatable::Stmt(Box::new(self))
1714    }
1715    fn fragment_to_output(fragment: AstFragment) -> Self::OutputTy {
1716        fragment.make_stmts()
1717    }
1718    fn walk_flat_map(self, collector: &mut InvocationCollector<'_, '_>) -> Self::OutputTy {
1719        walk_flat_map_stmt(collector, self)
1720    }
1721    fn is_mac_call(&self) -> bool {
1722        match &self.kind {
1723            StmtKind::MacCall(..) => true,
1724            StmtKind::Item(item) => matches!(item.kind, ItemKind::MacCall(..)),
1725            StmtKind::Semi(expr) => matches!(expr.kind, ExprKind::MacCall(..)),
1726            StmtKind::Expr(..) => unreachable!(),
1727            StmtKind::Let(..) | StmtKind::Empty => false,
1728        }
1729    }
1730    fn take_mac_call(self) -> (Box<ast::MacCall>, ast::AttrVec, AddSemicolon) {
1731        // We pull macro invocations (both attributes and fn-like macro calls) out of their
1732        // `StmtKind`s and treat them as statement macro invocations, not as items or expressions.
1733        let (add_semicolon, mac, attrs) = match self.kind {
1734            StmtKind::MacCall(mac) => {
1735                let ast::MacCallStmt { mac, style, attrs, .. } = *mac;
1736                (style == MacStmtStyle::Semicolon, mac, attrs)
1737            }
1738            StmtKind::Item(item) => match *item {
1739                ast::Item { kind: ItemKind::MacCall(mac), attrs, .. } => {
1740                    (mac.args.need_semicolon(), mac, attrs)
1741                }
1742                _ => unreachable!(),
1743            },
1744            StmtKind::Semi(expr) => match *expr {
1745                ast::Expr { kind: ExprKind::MacCall(mac), attrs, .. } => {
1746                    (mac.args.need_semicolon(), mac, attrs)
1747                }
1748                _ => unreachable!(),
1749            },
1750            _ => unreachable!(),
1751        };
1752        (mac, attrs, if add_semicolon { AddSemicolon::Yes } else { AddSemicolon::No })
1753    }
1754    fn delegation(&self) -> Option<(&ast::DelegationMac, &ast::Item<Self::ItemKind>)> {
1755        match &self.kind {
1756            StmtKind::Item(item) => match &item.kind {
1757                ItemKind::DelegationMac(deleg) => Some((deleg, item)),
1758                _ => None,
1759            },
1760            _ => None,
1761        }
1762    }
1763    fn delegation_item_kind(deleg: Box<ast::Delegation>) -> Self::ItemKind {
1764        ItemKind::Delegation(deleg)
1765    }
1766    fn from_item(item: ast::Item<Self::ItemKind>) -> Self {
1767        ast::Stmt { id: ast::DUMMY_NODE_ID, span: item.span, kind: StmtKind::Item(Box::new(item)) }
1768    }
1769    fn flatten_outputs(items: impl Iterator<Item = Self::OutputTy>) -> Self::OutputTy {
1770        items.flatten().collect()
1771    }
1772    fn post_flat_map_node_collect_bang(stmts: &mut Self::OutputTy, add_semicolon: AddSemicolon) {
1773        // If this is a macro invocation with a semicolon, then apply that
1774        // semicolon to the final statement produced by expansion.
1775        if matches!(add_semicolon, AddSemicolon::Yes) {
1776            if let Some(stmt) = stmts.pop() {
1777                stmts.push(stmt.add_trailing_semicolon());
1778            }
1779        }
1780    }
1781}
1782
1783impl InvocationCollectorNode for ast::Crate {
1784    type OutputTy = ast::Crate;
1785    const KIND: AstFragmentKind = AstFragmentKind::Crate;
1786    fn to_annotatable(self) -> Annotatable {
1787        Annotatable::Crate(self)
1788    }
1789    fn fragment_to_output(fragment: AstFragment) -> Self::OutputTy {
1790        fragment.make_crate()
1791    }
1792    fn walk(&mut self, collector: &mut InvocationCollector<'_, '_>) {
1793        walk_crate(collector, self)
1794    }
1795    fn expand_cfg_false(
1796        &mut self,
1797        collector: &mut InvocationCollector<'_, '_>,
1798        pos: usize,
1799        _span: Span,
1800    ) {
1801        // Attributes above `cfg(FALSE)` are left in place, because we may want to configure
1802        // some global crate properties even on fully unconfigured crates.
1803        self.attrs.truncate(pos);
1804        // Standard prelude imports are left in the crate for backward compatibility.
1805        self.items.truncate(collector.cx.num_standard_library_imports);
1806    }
1807}
1808
1809impl InvocationCollectorNode for ast::Ty {
1810    type OutputTy = Box<ast::Ty>;
1811    const KIND: AstFragmentKind = AstFragmentKind::Ty;
1812    fn to_annotatable(self) -> Annotatable {
1813        unreachable!()
1814    }
1815    fn fragment_to_output(fragment: AstFragment) -> Self::OutputTy {
1816        fragment.make_ty()
1817    }
1818    fn walk(&mut self, collector: &mut InvocationCollector<'_, '_>) {
1819        // Save the pre-expanded name of this `ImplTrait`, so that later when defining
1820        // an APIT we use a name that doesn't have any placeholder fragments in it.
1821        if let ast::TyKind::ImplTrait(..) = self.kind {
1822            // HACK: pprust breaks strings with newlines when the type
1823            // gets too long. We don't want these to show up in compiler
1824            // output or built artifacts, so replace them here...
1825            // Perhaps we should instead format APITs more robustly.
1826            let name = Symbol::intern(&pprust::ty_to_string(self).replace('\n', " "));
1827            collector.cx.resolver.insert_impl_trait_name(self.id, name);
1828        }
1829        walk_ty(collector, self)
1830    }
1831    fn is_mac_call(&self) -> bool {
1832        matches!(self.kind, ast::TyKind::MacCall(..))
1833    }
1834    fn take_mac_call(self) -> (Box<ast::MacCall>, ast::AttrVec, AddSemicolon) {
1835        match self.kind {
1836            TyKind::MacCall(mac) => (mac, AttrVec::new(), AddSemicolon::No),
1837            _ => unreachable!(),
1838        }
1839    }
1840}
1841
1842impl InvocationCollectorNode for ast::Pat {
1843    type OutputTy = Box<ast::Pat>;
1844    const KIND: AstFragmentKind = AstFragmentKind::Pat;
1845    fn to_annotatable(self) -> Annotatable {
1846        unreachable!()
1847    }
1848    fn fragment_to_output(fragment: AstFragment) -> Self::OutputTy {
1849        fragment.make_pat()
1850    }
1851    fn walk(&mut self, collector: &mut InvocationCollector<'_, '_>) {
1852        walk_pat(collector, self)
1853    }
1854    fn is_mac_call(&self) -> bool {
1855        matches!(self.kind, PatKind::MacCall(..))
1856    }
1857    fn take_mac_call(self) -> (Box<ast::MacCall>, ast::AttrVec, AddSemicolon) {
1858        match self.kind {
1859            PatKind::MacCall(mac) => (mac, AttrVec::new(), AddSemicolon::No),
1860            _ => unreachable!(),
1861        }
1862    }
1863}
1864
1865impl InvocationCollectorNode for ast::Expr {
1866    type OutputTy = Box<ast::Expr>;
1867    const KIND: AstFragmentKind = AstFragmentKind::Expr;
1868    fn to_annotatable(self) -> Annotatable {
1869        Annotatable::Expr(Box::new(self))
1870    }
1871    fn fragment_to_output(fragment: AstFragment) -> Self::OutputTy {
1872        fragment.make_expr()
1873    }
1874    fn descr() -> &'static str {
1875        "an expression"
1876    }
1877    fn walk(&mut self, collector: &mut InvocationCollector<'_, '_>) {
1878        walk_expr(collector, self)
1879    }
1880    fn is_mac_call(&self) -> bool {
1881        matches!(self.kind, ExprKind::MacCall(..))
1882    }
1883    fn take_mac_call(self) -> (Box<ast::MacCall>, ast::AttrVec, AddSemicolon) {
1884        match self.kind {
1885            ExprKind::MacCall(mac) => (mac, self.attrs, AddSemicolon::No),
1886            _ => unreachable!(),
1887        }
1888    }
1889}
1890
1891struct OptExprTag;
1892impl InvocationCollectorNode for AstNodeWrapper<Box<ast::Expr>, OptExprTag> {
1893    type OutputTy = Option<Box<ast::Expr>>;
1894    const KIND: AstFragmentKind = AstFragmentKind::OptExpr;
1895    fn to_annotatable(self) -> Annotatable {
1896        Annotatable::Expr(self.wrapped)
1897    }
1898    fn fragment_to_output(fragment: AstFragment) -> Self::OutputTy {
1899        fragment.make_opt_expr()
1900    }
1901    fn walk_flat_map(mut self, collector: &mut InvocationCollector<'_, '_>) -> Self::OutputTy {
1902        walk_expr(collector, &mut self.wrapped);
1903        Some(self.wrapped)
1904    }
1905    fn is_mac_call(&self) -> bool {
1906        matches!(self.wrapped.kind, ast::ExprKind::MacCall(..))
1907    }
1908    fn take_mac_call(self) -> (Box<ast::MacCall>, ast::AttrVec, AddSemicolon) {
1909        let node = self.wrapped;
1910        match node.kind {
1911            ExprKind::MacCall(mac) => (mac, node.attrs, AddSemicolon::No),
1912            _ => unreachable!(),
1913        }
1914    }
1915    fn pre_flat_map_node_collect_attr(cfg: &StripUnconfigured<'_>, attr: &ast::Attribute) {
1916        cfg.maybe_emit_expr_attr_err(attr);
1917    }
1918}
1919
1920/// This struct is a hack to workaround unstable of `stmt_expr_attributes`.
1921/// It can be removed once that feature is stabilized.
1922struct MethodReceiverTag;
1923
1924impl InvocationCollectorNode for AstNodeWrapper<ast::Expr, MethodReceiverTag> {
1925    type OutputTy = AstNodeWrapper<Box<ast::Expr>, MethodReceiverTag>;
1926    const KIND: AstFragmentKind = AstFragmentKind::MethodReceiverExpr;
1927    fn descr() -> &'static str {
1928        "an expression"
1929    }
1930    fn to_annotatable(self) -> Annotatable {
1931        Annotatable::Expr(Box::new(self.wrapped))
1932    }
1933    fn fragment_to_output(fragment: AstFragment) -> Self::OutputTy {
1934        AstNodeWrapper::new(fragment.make_method_receiver_expr(), MethodReceiverTag)
1935    }
1936    fn walk(&mut self, collector: &mut InvocationCollector<'_, '_>) {
1937        walk_expr(collector, &mut self.wrapped)
1938    }
1939    fn is_mac_call(&self) -> bool {
1940        matches!(self.wrapped.kind, ast::ExprKind::MacCall(..))
1941    }
1942    fn take_mac_call(self) -> (Box<ast::MacCall>, ast::AttrVec, AddSemicolon) {
1943        let node = self.wrapped;
1944        match node.kind {
1945            ExprKind::MacCall(mac) => (mac, node.attrs, AddSemicolon::No),
1946            _ => unreachable!(),
1947        }
1948    }
1949}
1950
1951fn build_single_delegations<'a, Node: InvocationCollectorNode>(
1952    ecx: &ExtCtxt<'_>,
1953    deleg: &'a ast::DelegationMac,
1954    item: &'a ast::Item<Node::ItemKind>,
1955    suffixes: &'a [(Ident, Option<Ident>)],
1956    item_span: Span,
1957    from_glob: bool,
1958) -> impl Iterator<Item = ast::Item<Node::ItemKind>> + 'a {
1959    if suffixes.is_empty() {
1960        // Report an error for now, to avoid keeping stem for resolution and
1961        // stability checks.
1962        let kind = String::from(if from_glob { "glob" } else { "list" });
1963        ecx.dcx().emit_err(EmptyDelegationMac { span: item.span, kind });
1964    }
1965
1966    suffixes.iter().map(move |&(ident, rename)| {
1967        let mut path = deleg.prefix.clone();
1968        path.segments.push(ast::PathSegment { ident, id: ast::DUMMY_NODE_ID, args: None });
1969
1970        ast::Item {
1971            attrs: item.attrs.clone(),
1972            id: ast::DUMMY_NODE_ID,
1973            span: if from_glob { item_span } else { ident.span },
1974            vis: item.vis.clone(),
1975            kind: Node::delegation_item_kind(Box::new(ast::Delegation {
1976                id: ast::DUMMY_NODE_ID,
1977                qself: deleg.qself.clone(),
1978                path,
1979                ident: rename.unwrap_or(ident),
1980                rename,
1981                body: deleg.body.clone(),
1982                from_glob,
1983            })),
1984            tokens: None,
1985        }
1986    })
1987}
1988
1989/// Required for `visit_node` obtained an owned `Node` from `&mut Node`.
1990trait DummyAstNode {
1991    fn dummy() -> Self;
1992}
1993
1994impl DummyAstNode for ast::Crate {
1995    fn dummy() -> Self {
1996        ast::Crate {
1997            attrs: Default::default(),
1998            items: Default::default(),
1999            spans: Default::default(),
2000            id: DUMMY_NODE_ID,
2001            is_placeholder: Default::default(),
2002        }
2003    }
2004}
2005
2006impl DummyAstNode for ast::Ty {
2007    fn dummy() -> Self {
2008        ast::Ty {
2009            id: DUMMY_NODE_ID,
2010            kind: TyKind::Dummy,
2011            span: Default::default(),
2012            tokens: Default::default(),
2013        }
2014    }
2015}
2016
2017impl DummyAstNode for ast::Pat {
2018    fn dummy() -> Self {
2019        ast::Pat {
2020            id: DUMMY_NODE_ID,
2021            kind: PatKind::Wild,
2022            span: Default::default(),
2023            tokens: Default::default(),
2024        }
2025    }
2026}
2027
2028impl DummyAstNode for ast::Expr {
2029    fn dummy() -> Self {
2030        ast::Expr::dummy()
2031    }
2032}
2033
2034impl DummyAstNode for AstNodeWrapper<ast::Expr, MethodReceiverTag> {
2035    fn dummy() -> Self {
2036        AstNodeWrapper::new(ast::Expr::dummy(), MethodReceiverTag)
2037    }
2038}
2039
2040struct InvocationCollector<'a, 'b> {
2041    cx: &'a mut ExtCtxt<'b>,
2042    invocations: Vec<(Invocation, Option<Arc<SyntaxExtension>>)>,
2043    monotonic: bool,
2044}
2045
2046impl<'a, 'b> InvocationCollector<'a, 'b> {
2047    fn cfg(&self) -> StripUnconfigured<'_> {
2048        StripUnconfigured {
2049            sess: self.cx.sess,
2050            features: Some(self.cx.ecfg.features),
2051            config_tokens: false,
2052            lint_node_id: self.cx.current_expansion.lint_node_id,
2053        }
2054    }
2055
2056    fn collect(&mut self, fragment_kind: AstFragmentKind, kind: InvocationKind) -> AstFragment {
2057        let expn_id = LocalExpnId::fresh_empty();
2058        if matches!(kind, InvocationKind::GlobDelegation { .. }) {
2059            // In resolver we need to know which invocation ids are delegations early,
2060            // before their `ExpnData` is filled.
2061            self.cx.resolver.register_glob_delegation(expn_id);
2062        }
2063        let vis = kind.placeholder_visibility();
2064        self.invocations.push((
2065            Invocation {
2066                kind,
2067                fragment_kind,
2068                expansion_data: ExpansionData {
2069                    id: expn_id,
2070                    depth: self.cx.current_expansion.depth + 1,
2071                    ..self.cx.current_expansion.clone()
2072                },
2073            },
2074            None,
2075        ));
2076        placeholder(fragment_kind, NodeId::placeholder_from_expn_id(expn_id), vis)
2077    }
2078
2079    fn collect_bang(&mut self, mac: Box<ast::MacCall>, kind: AstFragmentKind) -> AstFragment {
2080        // cache the macro call span so that it can be
2081        // easily adjusted for incremental compilation
2082        let span = mac.span();
2083        self.collect(kind, InvocationKind::Bang { mac, span })
2084    }
2085
2086    fn collect_attr(
2087        &mut self,
2088        (attr, pos, derives): (ast::Attribute, usize, Vec<ast::Path>),
2089        item: Annotatable,
2090        kind: AstFragmentKind,
2091    ) -> AstFragment {
2092        self.collect(kind, InvocationKind::Attr { attr, pos, item, derives })
2093    }
2094
2095    fn collect_glob_delegation(
2096        &mut self,
2097        item: Box<ast::AssocItem>,
2098        of_trait: bool,
2099        kind: AstFragmentKind,
2100    ) -> AstFragment {
2101        self.collect(kind, InvocationKind::GlobDelegation { item, of_trait })
2102    }
2103
2104    /// If `item` is an attribute invocation, remove the attribute and return it together with
2105    /// its position and derives following it. We have to collect the derives in order to resolve
2106    /// legacy derive helpers (helpers written before derives that introduce them).
2107    fn take_first_attr(
2108        &self,
2109        item: &mut impl HasAttrs,
2110    ) -> Option<(ast::Attribute, usize, Vec<ast::Path>)> {
2111        let mut attr = None;
2112
2113        let mut cfg_pos = None;
2114        let mut attr_pos = None;
2115        for (pos, attr) in item.attrs().iter().enumerate() {
2116            if !attr.is_doc_comment() && !self.cx.expanded_inert_attrs.is_marked(attr) {
2117                let name = attr.name();
2118                if name == Some(sym::cfg) || name == Some(sym::cfg_attr) {
2119                    cfg_pos = Some(pos); // a cfg attr found, no need to search anymore
2120                    break;
2121                } else if attr_pos.is_none()
2122                    && !name.is_some_and(rustc_feature::is_builtin_attr_name)
2123                {
2124                    attr_pos = Some(pos); // a non-cfg attr found, still may find a cfg attr
2125                }
2126            }
2127        }
2128
2129        item.visit_attrs(|attrs| {
2130            attr = Some(match (cfg_pos, attr_pos) {
2131                (Some(pos), _) => (attrs.remove(pos), pos, Vec::new()),
2132                (_, Some(pos)) => {
2133                    let attr = attrs.remove(pos);
2134                    let following_derives = attrs[pos..]
2135                        .iter()
2136                        .filter(|a| a.has_name(sym::derive))
2137                        .flat_map(|a| a.meta_item_list().unwrap_or_default())
2138                        .filter_map(|meta_item_inner| match meta_item_inner {
2139                            MetaItemInner::MetaItem(ast::MetaItem {
2140                                kind: MetaItemKind::Word,
2141                                path,
2142                                ..
2143                            }) => Some(path),
2144                            _ => None,
2145                        })
2146                        .collect();
2147
2148                    (attr, pos, following_derives)
2149                }
2150                _ => return,
2151            });
2152        });
2153
2154        attr
2155    }
2156
2157    // Detect use of feature-gated or invalid attributes on macro invocations
2158    // since they will not be detected after macro expansion.
2159    fn check_attributes(&self, attrs: &[ast::Attribute], call: &ast::MacCall) {
2160        let features = self.cx.ecfg.features;
2161        let mut attrs = attrs.iter().peekable();
2162        let mut span: Option<Span> = None;
2163        while let Some(attr) = attrs.next() {
2164            rustc_ast_passes::feature_gate::check_attribute(attr, self.cx.sess, features);
2165            validate_attr::check_attr(&self.cx.sess.psess, attr);
2166            AttributeParser::parse_limited_all(
2167                self.cx.sess,
2168                slice::from_ref(attr),
2169                None,
2170                Target::MacroCall,
2171                call.span(),
2172                self.cx.current_expansion.lint_node_id,
2173                Some(self.cx.ecfg.features),
2174                ShouldEmit::ErrorsAndLints,
2175            );
2176
2177            let current_span = if let Some(sp) = span { sp.to(attr.span) } else { attr.span };
2178            span = Some(current_span);
2179
2180            if attrs.peek().is_some_and(|next_attr| next_attr.doc_str().is_some()) {
2181                continue;
2182            }
2183
2184            if attr.doc_str_and_fragment_kind().is_some() {
2185                self.cx.sess.psess.buffer_lint(
2186                    UNUSED_DOC_COMMENTS,
2187                    current_span,
2188                    self.cx.current_expansion.lint_node_id,
2189                    crate::errors::MacroCallUnusedDocComment { span: attr.span },
2190                );
2191            } else if rustc_attr_parsing::is_builtin_attr(attr)
2192                && !AttributeParser::<Early>::is_parsed_attribute(&attr.path())
2193            {
2194                let attr_name = attr.name().unwrap();
2195                self.cx.sess.psess.buffer_lint(
2196                    UNUSED_ATTRIBUTES,
2197                    attr.span,
2198                    self.cx.current_expansion.lint_node_id,
2199                    crate::errors::UnusedBuiltinAttribute {
2200                        attr_name,
2201                        macro_name: pprust::path_to_string(&call.path),
2202                        invoc_span: call.path.span,
2203                        attr_span: attr.span,
2204                    },
2205                );
2206            }
2207        }
2208    }
2209
2210    fn expand_cfg_true(
2211        &mut self,
2212        node: &mut (impl HasAttrs + HasNodeId),
2213        attr: ast::Attribute,
2214        pos: usize,
2215    ) -> EvalConfigResult {
2216        let Some(cfg) = AttributeParser::parse_single(
2217            self.cfg().sess,
2218            &attr,
2219            attr.span,
2220            self.cfg().lint_node_id,
2221            self.cfg().features,
2222            ShouldEmit::ErrorsAndLints,
2223            parse_cfg,
2224            &CFG_TEMPLATE,
2225        ) else {
2226            // Cfg attribute was not parsable, give up
2227            return EvalConfigResult::True;
2228        };
2229
2230        let res = eval_config_entry(self.cfg().sess, &cfg);
2231        if res.as_bool() {
2232            // A trace attribute left in AST in place of the original `cfg` attribute.
2233            // It can later be used by lints or other diagnostics.
2234            let mut trace_attr = attr_into_trace(attr, sym::cfg_trace);
2235            trace_attr.replace_args(AttrItemKind::Parsed(EarlyParsedAttribute::CfgTrace(cfg)));
2236            node.visit_attrs(|attrs| attrs.insert(pos, trace_attr));
2237        }
2238
2239        res
2240    }
2241
2242    fn expand_cfg_attr(&self, node: &mut impl HasAttrs, attr: &ast::Attribute, pos: usize) {
2243        node.visit_attrs(|attrs| {
2244            // Repeated `insert` calls is inefficient, but the number of
2245            // insertions is almost always 0 or 1 in practice.
2246            for cfg in self.cfg().expand_cfg_attr(attr, false).into_iter().rev() {
2247                attrs.insert(pos, cfg)
2248            }
2249        });
2250    }
2251
2252    fn flat_map_node<Node: InvocationCollectorNode<OutputTy: Default>>(
2253        &mut self,
2254        mut node: Node,
2255    ) -> Node::OutputTy {
2256        loop {
2257            return match self.take_first_attr(&mut node) {
2258                Some((attr, pos, derives)) => match attr.name() {
2259                    Some(sym::cfg) => {
2260                        let res = self.expand_cfg_true(&mut node, attr, pos);
2261                        match res {
2262                            EvalConfigResult::True => continue,
2263                            EvalConfigResult::False { reason, reason_span } => {
2264                                for ident in node.declared_idents() {
2265                                    self.cx.resolver.append_stripped_cfg_item(
2266                                        self.cx.current_expansion.lint_node_id,
2267                                        ident,
2268                                        reason.clone(),
2269                                        reason_span,
2270                                    )
2271                                }
2272                            }
2273                        }
2274
2275                        Default::default()
2276                    }
2277                    Some(sym::cfg_attr) => {
2278                        self.expand_cfg_attr(&mut node, &attr, pos);
2279                        continue;
2280                    }
2281                    _ => {
2282                        Node::pre_flat_map_node_collect_attr(&self.cfg(), &attr);
2283                        self.collect_attr((attr, pos, derives), node.to_annotatable(), Node::KIND)
2284                            .make_ast::<Node>()
2285                    }
2286                },
2287                None if node.is_mac_call() => {
2288                    let (mac, attrs, add_semicolon) = node.take_mac_call();
2289                    self.check_attributes(&attrs, &mac);
2290                    let mut res = self.collect_bang(mac, Node::KIND).make_ast::<Node>();
2291                    Node::post_flat_map_node_collect_bang(&mut res, add_semicolon);
2292                    res
2293                }
2294                None if let Some((deleg, item)) = node.delegation() => {
2295                    let Some(suffixes) = &deleg.suffixes else {
2296                        let traitless_qself =
2297                            matches!(&deleg.qself, Some(qself) if qself.position == 0);
2298                        let (item, of_trait) = match node.to_annotatable() {
2299                            Annotatable::AssocItem(item, AssocCtxt::Impl { of_trait }) => {
2300                                (item, of_trait)
2301                            }
2302                            ann @ (Annotatable::Item(_)
2303                            | Annotatable::AssocItem(..)
2304                            | Annotatable::Stmt(_)) => {
2305                                let span = ann.span();
2306                                self.cx.dcx().emit_err(GlobDelegationOutsideImpls { span });
2307                                return Default::default();
2308                            }
2309                            _ => unreachable!(),
2310                        };
2311                        if traitless_qself {
2312                            let span = item.span;
2313                            self.cx.dcx().emit_err(GlobDelegationTraitlessQpath { span });
2314                            return Default::default();
2315                        }
2316                        return self
2317                            .collect_glob_delegation(item, of_trait, Node::KIND)
2318                            .make_ast::<Node>();
2319                    };
2320
2321                    let single_delegations = build_single_delegations::<Node>(
2322                        self.cx, deleg, item, suffixes, item.span, false,
2323                    );
2324                    Node::flatten_outputs(single_delegations.map(|item| {
2325                        let mut item = Node::from_item(item);
2326                        assign_id!(self, item.node_id_mut(), || item.walk_flat_map(self))
2327                    }))
2328                }
2329                None => {
2330                    match Node::wrap_flat_map_node_walk_flat_map(node, self, |mut node, this| {
2331                        assign_id!(this, node.node_id_mut(), || node.walk_flat_map(this))
2332                    }) {
2333                        Ok(output) => output,
2334                        Err(returned_node) => {
2335                            node = returned_node;
2336                            continue;
2337                        }
2338                    }
2339                }
2340            };
2341        }
2342    }
2343
2344    fn visit_node<Node: InvocationCollectorNode<OutputTy: Into<Node>> + DummyAstNode>(
2345        &mut self,
2346        node: &mut Node,
2347    ) {
2348        loop {
2349            return match self.take_first_attr(node) {
2350                Some((attr, pos, derives)) => match attr.name() {
2351                    Some(sym::cfg) => {
2352                        let span = attr.span;
2353                        if self.expand_cfg_true(node, attr, pos).as_bool() {
2354                            continue;
2355                        }
2356
2357                        node.expand_cfg_false(self, pos, span);
2358                        continue;
2359                    }
2360                    Some(sym::cfg_attr) => {
2361                        self.expand_cfg_attr(node, &attr, pos);
2362                        continue;
2363                    }
2364                    _ => {
2365                        let n = mem::replace(node, Node::dummy());
2366                        *node = self
2367                            .collect_attr((attr, pos, derives), n.to_annotatable(), Node::KIND)
2368                            .make_ast::<Node>()
2369                            .into()
2370                    }
2371                },
2372                None if node.is_mac_call() => {
2373                    let n = mem::replace(node, Node::dummy());
2374                    let (mac, attrs, _) = n.take_mac_call();
2375                    self.check_attributes(&attrs, &mac);
2376
2377                    *node = self.collect_bang(mac, Node::KIND).make_ast::<Node>().into()
2378                }
2379                None if node.delegation().is_some() => unreachable!(),
2380                None => {
2381                    assign_id!(self, node.node_id_mut(), || node.walk(self))
2382                }
2383            };
2384        }
2385    }
2386}
2387
2388impl<'a, 'b> MutVisitor for InvocationCollector<'a, 'b> {
2389    fn flat_map_item(&mut self, node: Box<ast::Item>) -> SmallVec<[Box<ast::Item>; 1]> {
2390        self.flat_map_node(node)
2391    }
2392
2393    fn flat_map_assoc_item(
2394        &mut self,
2395        node: Box<ast::AssocItem>,
2396        ctxt: AssocCtxt,
2397    ) -> SmallVec<[Box<ast::AssocItem>; 1]> {
2398        match ctxt {
2399            AssocCtxt::Trait => self.flat_map_node(AstNodeWrapper::new(node, TraitItemTag)),
2400            AssocCtxt::Impl { of_trait: false, .. } => {
2401                self.flat_map_node(AstNodeWrapper::new(node, ImplItemTag))
2402            }
2403            AssocCtxt::Impl { of_trait: true, .. } => {
2404                self.flat_map_node(AstNodeWrapper::new(node, TraitImplItemTag))
2405            }
2406        }
2407    }
2408
2409    fn flat_map_foreign_item(
2410        &mut self,
2411        node: Box<ast::ForeignItem>,
2412    ) -> SmallVec<[Box<ast::ForeignItem>; 1]> {
2413        self.flat_map_node(node)
2414    }
2415
2416    fn flat_map_variant(&mut self, node: ast::Variant) -> SmallVec<[ast::Variant; 1]> {
2417        self.flat_map_node(node)
2418    }
2419
2420    fn flat_map_where_predicate(
2421        &mut self,
2422        node: ast::WherePredicate,
2423    ) -> SmallVec<[ast::WherePredicate; 1]> {
2424        self.flat_map_node(node)
2425    }
2426
2427    fn flat_map_field_def(&mut self, node: ast::FieldDef) -> SmallVec<[ast::FieldDef; 1]> {
2428        self.flat_map_node(node)
2429    }
2430
2431    fn flat_map_pat_field(&mut self, node: ast::PatField) -> SmallVec<[ast::PatField; 1]> {
2432        self.flat_map_node(node)
2433    }
2434
2435    fn flat_map_expr_field(&mut self, node: ast::ExprField) -> SmallVec<[ast::ExprField; 1]> {
2436        self.flat_map_node(node)
2437    }
2438
2439    fn flat_map_param(&mut self, node: ast::Param) -> SmallVec<[ast::Param; 1]> {
2440        self.flat_map_node(node)
2441    }
2442
2443    fn flat_map_generic_param(
2444        &mut self,
2445        node: ast::GenericParam,
2446    ) -> SmallVec<[ast::GenericParam; 1]> {
2447        self.flat_map_node(node)
2448    }
2449
2450    fn flat_map_arm(&mut self, node: ast::Arm) -> SmallVec<[ast::Arm; 1]> {
2451        self.flat_map_node(node)
2452    }
2453
2454    fn flat_map_stmt(&mut self, node: ast::Stmt) -> SmallVec<[ast::Stmt; 1]> {
2455        // FIXME: invocations in semicolon-less expressions positions are expanded as expressions,
2456        // changing that requires some compatibility measures.
2457        if node.is_expr() {
2458            // The only way that we can end up with a `MacCall` expression statement,
2459            // (as opposed to a `StmtKind::MacCall`) is if we have a macro as the
2460            // trailing expression in a block (e.g. `fn foo() { my_macro!() }`).
2461            // Record this information, so that we can report a more specific
2462            // `SEMICOLON_IN_EXPRESSIONS_FROM_MACROS` lint if needed.
2463            // See #78991 for an investigation of treating macros in this position
2464            // as statements, rather than expressions, during parsing.
2465            return match &node.kind {
2466                StmtKind::Expr(expr)
2467                    if matches!(**expr, ast::Expr { kind: ExprKind::MacCall(..), .. }) =>
2468                {
2469                    self.cx.current_expansion.is_trailing_mac = true;
2470                    // Don't use `assign_id` for this statement - it may get removed
2471                    // entirely due to a `#[cfg]` on the contained expression
2472                    let res = walk_flat_map_stmt(self, node);
2473                    self.cx.current_expansion.is_trailing_mac = false;
2474                    res
2475                }
2476                _ => walk_flat_map_stmt(self, node),
2477            };
2478        }
2479
2480        self.flat_map_node(node)
2481    }
2482
2483    fn visit_crate(&mut self, node: &mut ast::Crate) {
2484        self.visit_node(node)
2485    }
2486
2487    fn visit_ty(&mut self, node: &mut ast::Ty) {
2488        self.visit_node(node)
2489    }
2490
2491    fn visit_pat(&mut self, node: &mut ast::Pat) {
2492        self.visit_node(node)
2493    }
2494
2495    fn visit_expr(&mut self, node: &mut ast::Expr) {
2496        // FIXME: Feature gating is performed inconsistently between `Expr` and `OptExpr`.
2497        if let Some(attr) = node.attrs.first() {
2498            self.cfg().maybe_emit_expr_attr_err(attr);
2499        }
2500        ensure_sufficient_stack(|| self.visit_node(node))
2501    }
2502
2503    fn visit_method_receiver_expr(&mut self, node: &mut ast::Expr) {
2504        self.visit_node(AstNodeWrapper::from_mut(node, MethodReceiverTag))
2505    }
2506
2507    fn filter_map_expr(&mut self, node: Box<ast::Expr>) -> Option<Box<ast::Expr>> {
2508        self.flat_map_node(AstNodeWrapper::new(node, OptExprTag))
2509    }
2510
2511    fn visit_block(&mut self, node: &mut ast::Block) {
2512        let orig_dir_ownership = mem::replace(
2513            &mut self.cx.current_expansion.dir_ownership,
2514            DirOwnership::UnownedViaBlock,
2515        );
2516        walk_block(self, node);
2517        self.cx.current_expansion.dir_ownership = orig_dir_ownership;
2518    }
2519
2520    fn visit_id(&mut self, id: &mut NodeId) {
2521        // We may have already assigned a `NodeId`
2522        // by calling `assign_id`
2523        if self.monotonic && *id == ast::DUMMY_NODE_ID {
2524            *id = self.cx.resolver.next_node_id();
2525        }
2526    }
2527}
2528
2529pub struct ExpansionConfig<'feat> {
2530    pub crate_name: Symbol,
2531    pub features: &'feat Features,
2532    pub recursion_limit: Limit,
2533    pub trace_mac: bool,
2534    /// If false, strip `#[test]` nodes
2535    pub should_test: bool,
2536    /// If true, use verbose debugging for `proc_macro::Span`
2537    pub span_debug: bool,
2538    /// If true, show backtraces for proc-macro panics
2539    pub proc_macro_backtrace: bool,
2540}
2541
2542impl ExpansionConfig<'_> {
2543    pub fn default(crate_name: Symbol, features: &Features) -> ExpansionConfig<'_> {
2544        ExpansionConfig {
2545            crate_name,
2546            features,
2547            // FIXME should this limit be configurable?
2548            recursion_limit: Limit::new(1024),
2549            trace_mac: false,
2550            should_test: false,
2551            span_debug: false,
2552            proc_macro_backtrace: false,
2553        }
2554    }
2555}