rustc_hir_analysis/hir_ty_lowering/errors.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
use rustc_data_structures::fx::{FxIndexMap, FxIndexSet};
use rustc_data_structures::sorted_map::SortedMap;
use rustc_data_structures::unord::UnordMap;
use rustc_errors::codes::*;
use rustc_errors::{
Applicability, Diag, ErrorGuaranteed, MultiSpan, pluralize, struct_span_code_err,
};
use rustc_hir as hir;
use rustc_hir::def::{DefKind, Res};
use rustc_hir::def_id::DefId;
use rustc_middle::bug;
use rustc_middle::query::Key;
use rustc_middle::ty::print::{PrintPolyTraitRefExt as _, PrintTraitRefExt as _};
use rustc_middle::ty::{
self, AdtDef, Binder, GenericParamDefKind, TraitRef, Ty, TyCtxt, TypeVisitableExt,
suggest_constraining_type_param,
};
use rustc_session::parse::feature_err;
use rustc_span::edit_distance::find_best_match_for_name;
use rustc_span::symbol::{Ident, kw, sym};
use rustc_span::{BytePos, DUMMY_SP, Span, Symbol};
use rustc_trait_selection::error_reporting::traits::report_dyn_incompatibility;
use rustc_trait_selection::traits::{
FulfillmentError, TraitAliasExpansionInfo, dyn_compatibility_violations_for_assoc_item,
};
use crate::errors::{
self, AssocItemConstraintsNotAllowedHere, ManualImplementation, MissingTypeParams,
ParenthesizedFnTraitExpansion, TraitObjectDeclaredWithNoTraits,
};
use crate::fluent_generated as fluent;
use crate::hir_ty_lowering::{AssocItemQSelf, HirTyLowerer};
impl<'tcx> dyn HirTyLowerer<'tcx> + '_ {
/// On missing type parameters, emit an E0393 error and provide a structured suggestion using
/// the type parameter's name as a placeholder.
pub(crate) fn complain_about_missing_type_params(
&self,
missing_type_params: Vec<Symbol>,
def_id: DefId,
span: Span,
empty_generic_args: bool,
) {
if missing_type_params.is_empty() {
return;
}
self.dcx().emit_err(MissingTypeParams {
span,
def_span: self.tcx().def_span(def_id),
span_snippet: self.tcx().sess.source_map().span_to_snippet(span).ok(),
missing_type_params,
empty_generic_args,
});
}
/// When the code is using the `Fn` traits directly, instead of the `Fn(A) -> B` syntax, emit
/// an error and attempt to build a reasonable structured suggestion.
pub(crate) fn complain_about_internal_fn_trait(
&self,
span: Span,
trait_def_id: DefId,
trait_segment: &'_ hir::PathSegment<'_>,
is_impl: bool,
) {
if self.tcx().features().unboxed_closures() {
return;
}
let trait_def = self.tcx().trait_def(trait_def_id);
if !trait_def.paren_sugar {
if trait_segment.args().parenthesized == hir::GenericArgsParentheses::ParenSugar {
// For now, require that parenthetical notation be used only with `Fn()` etc.
feature_err(
&self.tcx().sess,
sym::unboxed_closures,
span,
"parenthetical notation is only stable when used with `Fn`-family traits",
)
.emit();
}
return;
}
let sess = self.tcx().sess;
if trait_segment.args().parenthesized != hir::GenericArgsParentheses::ParenSugar {
// For now, require that parenthetical notation be used only with `Fn()` etc.
let mut err = feature_err(
sess,
sym::unboxed_closures,
span,
"the precise format of `Fn`-family traits' type parameters is subject to change",
);
// Do not suggest the other syntax if we are in trait impl:
// the desugaring would contain an associated type constraint.
if !is_impl {
err.span_suggestion(
span,
"use parenthetical notation instead",
fn_trait_to_string(self.tcx(), trait_segment, true),
Applicability::MaybeIncorrect,
);
}
err.emit();
}
if is_impl {
let trait_name = self.tcx().def_path_str(trait_def_id);
self.dcx().emit_err(ManualImplementation { span, trait_name });
}
}
pub(super) fn complain_about_assoc_item_not_found<I>(
&self,
all_candidates: impl Fn() -> I,
qself: AssocItemQSelf,
assoc_kind: ty::AssocKind,
assoc_name: Ident,
span: Span,
constraint: Option<&hir::AssocItemConstraint<'tcx>>,
) -> ErrorGuaranteed
where
I: Iterator<Item = ty::PolyTraitRef<'tcx>>,
{
let tcx = self.tcx();
// First and foremost, provide a more user-friendly & “intuitive” error on kind mismatches.
if let Some(assoc_item) = all_candidates().find_map(|r| {
tcx.associated_items(r.def_id())
.filter_by_name_unhygienic(assoc_name.name)
.find(|item| tcx.hygienic_eq(assoc_name, item.ident(tcx), r.def_id()))
}) {
return self.complain_about_assoc_kind_mismatch(
assoc_item, assoc_kind, assoc_name, span, constraint,
);
}
let assoc_kind_str = assoc_kind_str(assoc_kind);
let qself_str = qself.to_string(tcx);
// The fallback span is needed because `assoc_name` might be an `Fn()`'s `Output` without a
// valid span, so we point at the whole path segment instead.
let is_dummy = assoc_name.span == DUMMY_SP;
let mut err = errors::AssocItemNotFound {
span: if is_dummy { span } else { assoc_name.span },
assoc_name,
assoc_kind: assoc_kind_str,
qself: &qself_str,
label: None,
sugg: None,
};
if is_dummy {
err.label = Some(errors::AssocItemNotFoundLabel::NotFound { span });
return self.dcx().emit_err(err);
}
let all_candidate_names: Vec<_> = all_candidates()
.flat_map(|r| tcx.associated_items(r.def_id()).in_definition_order())
.filter_map(|item| {
(!item.is_impl_trait_in_trait() && item.kind == assoc_kind).then_some(item.name)
})
.collect();
if let Some(suggested_name) =
find_best_match_for_name(&all_candidate_names, assoc_name.name, None)
{
err.sugg = Some(errors::AssocItemNotFoundSugg::Similar {
span: assoc_name.span,
assoc_kind: assoc_kind_str,
suggested_name,
});
return self.dcx().emit_err(err);
}
// If we didn't find a good item in the supertraits (or couldn't get
// the supertraits), like in ItemCtxt, then look more generally from
// all visible traits. If there's one clear winner, just suggest that.
let visible_traits: Vec<_> = tcx
.all_traits()
.filter(|trait_def_id| {
let viz = tcx.visibility(*trait_def_id);
let def_id = self.item_def_id();
viz.is_accessible_from(def_id, tcx)
})
.collect();
let wider_candidate_names: Vec<_> = visible_traits
.iter()
.flat_map(|trait_def_id| tcx.associated_items(*trait_def_id).in_definition_order())
.filter_map(|item| {
(!item.is_impl_trait_in_trait() && item.kind == assoc_kind).then_some(item.name)
})
.collect();
if let Some(suggested_name) =
find_best_match_for_name(&wider_candidate_names, assoc_name.name, None)
{
if let [best_trait] = visible_traits
.iter()
.copied()
.filter(|trait_def_id| {
tcx.associated_items(trait_def_id)
.filter_by_name_unhygienic(suggested_name)
.any(|item| item.kind == assoc_kind)
})
.collect::<Vec<_>>()[..]
{
let trait_name = tcx.def_path_str(best_trait);
err.label = Some(errors::AssocItemNotFoundLabel::FoundInOtherTrait {
span: assoc_name.span,
assoc_kind: assoc_kind_str,
trait_name: &trait_name,
suggested_name,
identically_named: suggested_name == assoc_name.name,
});
if let AssocItemQSelf::TyParam(ty_param_def_id, ty_param_span) = qself
// Not using `self.item_def_id()` here as that would yield the opaque type itself if we're
// inside an opaque type while we're interested in the overarching type alias (TAIT).
// FIXME: However, for trait aliases, this incorrectly returns the enclosing module...
&& let item_def_id =
tcx.hir().get_parent_item(tcx.local_def_id_to_hir_id(ty_param_def_id))
// FIXME: ...which obviously won't have any generics.
&& let Some(generics) = tcx.hir().get_generics(item_def_id.def_id)
{
// FIXME: Suggest adding supertrait bounds if we have a `Self` type param.
// FIXME(trait_alias): Suggest adding `Self: Trait` to
// `trait Alias = where Self::Proj:;` with `trait Trait { type Proj; }`.
if generics
.bounds_for_param(ty_param_def_id)
.flat_map(|pred| pred.bounds.iter())
.any(|b| match b {
hir::GenericBound::Trait(t, ..) => {
t.trait_ref.trait_def_id() == Some(best_trait)
}
_ => false,
})
{
// The type param already has a bound for `trait_name`, we just need to
// change the associated item.
err.sugg = Some(errors::AssocItemNotFoundSugg::SimilarInOtherTrait {
span: assoc_name.span,
assoc_kind: assoc_kind_str,
suggested_name,
});
return self.dcx().emit_err(err);
}
let trait_args = &ty::GenericArgs::identity_for_item(tcx, best_trait)[1..];
let mut trait_ref = trait_name.clone();
let applicability = if let [arg, args @ ..] = trait_args {
use std::fmt::Write;
write!(trait_ref, "</* {arg}").unwrap();
args.iter().try_for_each(|arg| write!(trait_ref, ", {arg}")).unwrap();
trait_ref += " */>";
Applicability::HasPlaceholders
} else {
Applicability::MaybeIncorrect
};
let identically_named = suggested_name == assoc_name.name;
if let DefKind::TyAlias = tcx.def_kind(item_def_id)
&& !tcx.type_alias_is_lazy(item_def_id)
{
err.sugg = Some(errors::AssocItemNotFoundSugg::SimilarInOtherTraitQPath {
lo: ty_param_span.shrink_to_lo(),
mi: ty_param_span.shrink_to_hi(),
hi: (!identically_named).then_some(assoc_name.span),
trait_ref,
identically_named,
suggested_name,
applicability,
});
} else {
let mut err = self.dcx().create_err(err);
if suggest_constraining_type_param(
tcx, generics, &mut err, &qself_str, &trait_ref, None, None,
) && !identically_named
{
// We suggested constraining a type parameter, but the associated item on it
// was also not an exact match, so we also suggest changing it.
err.span_suggestion_verbose(
assoc_name.span,
fluent::hir_analysis_assoc_item_not_found_similar_in_other_trait_with_bound_sugg,
suggested_name,
Applicability::MaybeIncorrect,
);
}
return err.emit();
}
}
return self.dcx().emit_err(err);
}
}
// If we still couldn't find any associated item, and only one associated item exists,
// suggest using it.
if let [candidate_name] = all_candidate_names.as_slice() {
err.sugg = Some(errors::AssocItemNotFoundSugg::Other {
span: assoc_name.span,
qself: &qself_str,
assoc_kind: assoc_kind_str,
suggested_name: *candidate_name,
});
} else {
err.label = Some(errors::AssocItemNotFoundLabel::NotFound { span: assoc_name.span });
}
self.dcx().emit_err(err)
}
fn complain_about_assoc_kind_mismatch(
&self,
assoc_item: &ty::AssocItem,
assoc_kind: ty::AssocKind,
ident: Ident,
span: Span,
constraint: Option<&hir::AssocItemConstraint<'tcx>>,
) -> ErrorGuaranteed {
let tcx = self.tcx();
let bound_on_assoc_const_label = if let ty::AssocKind::Const = assoc_item.kind
&& let Some(constraint) = constraint
&& let hir::AssocItemConstraintKind::Bound { .. } = constraint.kind
{
let lo = if constraint.gen_args.span_ext.is_dummy() {
ident.span
} else {
constraint.gen_args.span_ext
};
Some(lo.between(span.shrink_to_hi()))
} else {
None
};
// FIXME(associated_const_equality): This has quite a few false positives and negatives.
let wrap_in_braces_sugg = if let Some(constraint) = constraint
&& let Some(hir_ty) = constraint.ty()
&& let ty = self.lower_ty(hir_ty)
&& (ty.is_enum() || ty.references_error())
&& tcx.features().associated_const_equality()
{
Some(errors::AssocKindMismatchWrapInBracesSugg {
lo: hir_ty.span.shrink_to_lo(),
hi: hir_ty.span.shrink_to_hi(),
})
} else {
None
};
// For equality constraints, we want to blame the term (RHS) instead of the item (LHS) since
// one can argue that that's more “intuitive” to the user.
let (span, expected_because_label, expected, got) = if let Some(constraint) = constraint
&& let hir::AssocItemConstraintKind::Equality { term } = constraint.kind
{
let span = match term {
hir::Term::Ty(ty) => ty.span,
hir::Term::Const(ct) => ct.span(),
};
(span, Some(ident.span), assoc_item.kind, assoc_kind)
} else {
(ident.span, None, assoc_kind, assoc_item.kind)
};
self.dcx().emit_err(errors::AssocKindMismatch {
span,
expected: assoc_kind_str(expected),
got: assoc_kind_str(got),
expected_because_label,
assoc_kind: assoc_kind_str(assoc_item.kind),
def_span: tcx.def_span(assoc_item.def_id),
bound_on_assoc_const_label,
wrap_in_braces_sugg,
})
}
pub(super) fn report_ambiguous_assoc_ty(
&self,
span: Span,
types: &[String],
traits: &[String],
name: Symbol,
) -> ErrorGuaranteed {
let mut err = struct_span_code_err!(self.dcx(), span, E0223, "ambiguous associated type");
if self
.tcx()
.resolutions(())
.confused_type_with_std_module
.keys()
.any(|full_span| full_span.contains(span))
{
err.span_suggestion_verbose(
span.shrink_to_lo(),
"you are looking for the module in `std`, not the primitive type",
"std::",
Applicability::MachineApplicable,
);
} else {
let mut types = types.to_vec();
types.sort();
let mut traits = traits.to_vec();
traits.sort();
match (&types[..], &traits[..]) {
([], []) => {
err.span_suggestion_verbose(
span,
format!(
"if there were a type named `Type` that implements a trait named \
`Trait` with associated type `{name}`, you could use the \
fully-qualified path",
),
format!("<Type as Trait>::{name}"),
Applicability::HasPlaceholders,
);
}
([], [trait_str]) => {
err.span_suggestion_verbose(
span,
format!(
"if there were a type named `Example` that implemented `{trait_str}`, \
you could use the fully-qualified path",
),
format!("<Example as {trait_str}>::{name}"),
Applicability::HasPlaceholders,
);
}
([], traits) => {
err.span_suggestions(
span,
format!(
"if there were a type named `Example` that implemented one of the \
traits with associated type `{name}`, you could use the \
fully-qualified path",
),
traits.iter().map(|trait_str| format!("<Example as {trait_str}>::{name}")),
Applicability::HasPlaceholders,
);
}
([type_str], []) => {
err.span_suggestion_verbose(
span,
format!(
"if there were a trait named `Example` with associated type `{name}` \
implemented for `{type_str}`, you could use the fully-qualified path",
),
format!("<{type_str} as Example>::{name}"),
Applicability::HasPlaceholders,
);
}
(types, []) => {
err.span_suggestions(
span,
format!(
"if there were a trait named `Example` with associated type `{name}` \
implemented for one of the types, you could use the fully-qualified \
path",
),
types
.into_iter()
.map(|type_str| format!("<{type_str} as Example>::{name}")),
Applicability::HasPlaceholders,
);
}
(types, traits) => {
let mut suggestions = vec![];
for type_str in types {
for trait_str in traits {
suggestions.push(format!("<{type_str} as {trait_str}>::{name}"));
}
}
err.span_suggestions(
span,
"use fully-qualified syntax",
suggestions,
Applicability::MachineApplicable,
);
}
}
}
err.emit()
}
pub(crate) fn complain_about_ambiguous_inherent_assoc_ty(
&self,
name: Ident,
candidates: Vec<DefId>,
span: Span,
) -> ErrorGuaranteed {
let mut err = struct_span_code_err!(
self.dcx(),
name.span,
E0034,
"multiple applicable items in scope"
);
err.span_label(name.span, format!("multiple `{name}` found"));
self.note_ambiguous_inherent_assoc_ty(&mut err, candidates, span);
err.emit()
}
// FIXME(fmease): Heavily adapted from `rustc_hir_typeck::method::suggest`. Deduplicate.
fn note_ambiguous_inherent_assoc_ty(
&self,
err: &mut Diag<'_>,
candidates: Vec<DefId>,
span: Span,
) {
let tcx = self.tcx();
// Dynamic limit to avoid hiding just one candidate, which is silly.
let limit = if candidates.len() == 5 { 5 } else { 4 };
for (index, &item) in candidates.iter().take(limit).enumerate() {
let impl_ = tcx.impl_of_method(item).unwrap();
let note_span = if item.is_local() {
Some(tcx.def_span(item))
} else if impl_.is_local() {
Some(tcx.def_span(impl_))
} else {
None
};
let title = if candidates.len() > 1 {
format!("candidate #{}", index + 1)
} else {
"the candidate".into()
};
let impl_ty = tcx.at(span).type_of(impl_).instantiate_identity();
let note = format!("{title} is defined in an impl for the type `{impl_ty}`");
if let Some(span) = note_span {
err.span_note(span, note);
} else {
err.note(note);
}
}
if candidates.len() > limit {
err.note(format!("and {} others", candidates.len() - limit));
}
}
// FIXME(inherent_associated_types): Find similarly named associated types and suggest them.
pub(crate) fn complain_about_inherent_assoc_ty_not_found(
&self,
name: Ident,
self_ty: Ty<'tcx>,
candidates: Vec<(DefId, (DefId, DefId))>,
fulfillment_errors: Vec<FulfillmentError<'tcx>>,
span: Span,
) -> ErrorGuaranteed {
// FIXME(fmease): This was copied in parts from an old version of `rustc_hir_typeck::method::suggest`.
// Either
// * update this code by applying changes similar to #106702 or by taking a
// Vec<(DefId, (DefId, DefId), Option<Vec<FulfillmentError<'tcx>>>)> or
// * deduplicate this code across the two crates.
let tcx = self.tcx();
let adt_did = self_ty.ty_adt_def().map(|def| def.did());
let add_def_label = |err: &mut Diag<'_>| {
if let Some(did) = adt_did {
err.span_label(
tcx.def_span(did),
format!("associated item `{name}` not found for this {}", tcx.def_descr(did)),
);
}
};
if fulfillment_errors.is_empty() {
// FIXME(fmease): Copied from `rustc_hir_typeck::method::probe`. Deduplicate.
let limit = if candidates.len() == 5 { 5 } else { 4 };
let type_candidates = candidates
.iter()
.take(limit)
.map(|&(impl_, _)| {
format!("- `{}`", tcx.at(span).type_of(impl_).instantiate_identity())
})
.collect::<Vec<_>>()
.join("\n");
let additional_types = if candidates.len() > limit {
format!("\nand {} more types", candidates.len() - limit)
} else {
String::new()
};
let mut err = struct_span_code_err!(
self.dcx(),
name.span,
E0220,
"associated type `{name}` not found for `{self_ty}` in the current scope"
);
err.span_label(name.span, format!("associated item not found in `{self_ty}`"));
err.note(format!(
"the associated type was found for\n{type_candidates}{additional_types}",
));
add_def_label(&mut err);
return err.emit();
}
let mut bound_spans: SortedMap<Span, Vec<String>> = Default::default();
let mut bound_span_label = |self_ty: Ty<'_>, obligation: &str, quiet: &str| {
let msg = format!("`{}`", if obligation.len() > 50 { quiet } else { obligation });
match self_ty.kind() {
// Point at the type that couldn't satisfy the bound.
ty::Adt(def, _) => {
bound_spans.get_mut_or_insert_default(tcx.def_span(def.did())).push(msg)
}
// Point at the trait object that couldn't satisfy the bound.
ty::Dynamic(preds, _, _) => {
for pred in preds.iter() {
match pred.skip_binder() {
ty::ExistentialPredicate::Trait(tr) => {
bound_spans
.get_mut_or_insert_default(tcx.def_span(tr.def_id))
.push(msg.clone());
}
ty::ExistentialPredicate::Projection(_)
| ty::ExistentialPredicate::AutoTrait(_) => {}
}
}
}
// Point at the closure that couldn't satisfy the bound.
ty::Closure(def_id, _) => {
bound_spans
.get_mut_or_insert_default(tcx.def_span(*def_id))
.push(format!("`{quiet}`"));
}
_ => {}
}
};
let format_pred = |pred: ty::Predicate<'tcx>| {
let bound_predicate = pred.kind();
match bound_predicate.skip_binder() {
ty::PredicateKind::Clause(ty::ClauseKind::Projection(pred)) => {
// `<Foo as Iterator>::Item = String`.
let projection_term = pred.projection_term;
let quiet_projection_term =
projection_term.with_self_ty(tcx, Ty::new_var(tcx, ty::TyVid::ZERO));
let term = pred.term;
let obligation = format!("{projection_term} = {term}");
let quiet = format!("{quiet_projection_term} = {term}");
bound_span_label(projection_term.self_ty(), &obligation, &quiet);
Some((obligation, projection_term.self_ty()))
}
ty::PredicateKind::Clause(ty::ClauseKind::Trait(poly_trait_ref)) => {
let p = poly_trait_ref.trait_ref;
let self_ty = p.self_ty();
let path = p.print_only_trait_path();
let obligation = format!("{self_ty}: {path}");
let quiet = format!("_: {path}");
bound_span_label(self_ty, &obligation, &quiet);
Some((obligation, self_ty))
}
_ => None,
}
};
// FIXME(fmease): `rustc_hir_typeck::method::suggest` uses a `skip_list` to filter out some bounds.
// I would do the same here if it didn't mean more code duplication.
let mut bounds: Vec<_> = fulfillment_errors
.into_iter()
.map(|error| error.root_obligation.predicate)
.filter_map(format_pred)
.map(|(p, _)| format!("`{p}`"))
.collect();
bounds.sort();
bounds.dedup();
let mut err = self.dcx().struct_span_err(
name.span,
format!("the associated type `{name}` exists for `{self_ty}`, but its trait bounds were not satisfied")
);
if !bounds.is_empty() {
err.note(format!(
"the following trait bounds were not satisfied:\n{}",
bounds.join("\n")
));
}
err.span_label(
name.span,
format!("associated type cannot be referenced on `{self_ty}` due to unsatisfied trait bounds")
);
for (span, mut bounds) in bound_spans {
if !tcx.sess.source_map().is_span_accessible(span) {
continue;
}
bounds.sort();
bounds.dedup();
let msg = match &bounds[..] {
[bound] => format!("doesn't satisfy {bound}"),
bounds if bounds.len() > 4 => format!("doesn't satisfy {} bounds", bounds.len()),
[bounds @ .., last] => format!("doesn't satisfy {} or {last}", bounds.join(", ")),
[] => unreachable!(),
};
err.span_label(span, msg);
}
add_def_label(&mut err);
err.emit()
}
/// When there are any missing associated types, emit an E0191 error and attempt to supply a
/// reasonable suggestion on how to write it. For the case of multiple associated types in the
/// same trait bound have the same name (as they come from different supertraits), we instead
/// emit a generic note suggesting using a `where` clause to constraint instead.
pub(crate) fn complain_about_missing_assoc_tys(
&self,
associated_types: FxIndexMap<Span, FxIndexSet<DefId>>,
potential_assoc_types: Vec<usize>,
trait_bounds: &[hir::PolyTraitRef<'_>],
) {
if associated_types.values().all(|v| v.is_empty()) {
return;
}
let tcx = self.tcx();
// FIXME: Marked `mut` so that we can replace the spans further below with a more
// appropriate one, but this should be handled earlier in the span assignment.
let mut associated_types: FxIndexMap<Span, Vec<_>> = associated_types
.into_iter()
.map(|(span, def_ids)| {
(span, def_ids.into_iter().map(|did| tcx.associated_item(did)).collect())
})
.collect();
let mut names: FxIndexMap<String, Vec<Symbol>> = Default::default();
let mut names_len = 0;
// Account for things like `dyn Foo + 'a`, like in tests `issue-22434.rs` and
// `issue-22560.rs`.
let mut trait_bound_spans: Vec<Span> = vec![];
let mut dyn_compatibility_violations = false;
for (span, items) in &associated_types {
if !items.is_empty() {
trait_bound_spans.push(*span);
}
for assoc_item in items {
let trait_def_id = assoc_item.container_id(tcx);
names.entry(tcx.def_path_str(trait_def_id)).or_default().push(assoc_item.name);
names_len += 1;
let violations =
dyn_compatibility_violations_for_assoc_item(tcx, trait_def_id, *assoc_item);
if !violations.is_empty() {
report_dyn_incompatibility(tcx, *span, None, trait_def_id, &violations).emit();
dyn_compatibility_violations = true;
}
}
}
if dyn_compatibility_violations {
return;
}
// related to issue #91997, turbofishes added only when in an expr or pat
let mut in_expr_or_pat = false;
if let ([], [bound]) = (&potential_assoc_types[..], &trait_bounds) {
let grandparent = tcx.parent_hir_node(tcx.parent_hir_id(bound.trait_ref.hir_ref_id));
in_expr_or_pat = match grandparent {
hir::Node::Expr(_) | hir::Node::Pat(_) => true,
_ => false,
};
match bound.trait_ref.path.segments {
// FIXME: `trait_ref.path.span` can point to a full path with multiple
// segments, even though `trait_ref.path.segments` is of length `1`. Work
// around that bug here, even though it should be fixed elsewhere.
// This would otherwise cause an invalid suggestion. For an example, look at
// `tests/ui/issues/issue-28344.rs` where instead of the following:
//
// error[E0191]: the value of the associated type `Output`
// (from trait `std::ops::BitXor`) must be specified
// --> $DIR/issue-28344.rs:4:17
// |
// LL | let x: u8 = BitXor::bitor(0 as u8, 0 as u8);
// | ^^^^^^ help: specify the associated type:
// | `BitXor<Output = Type>`
//
// we would output:
//
// error[E0191]: the value of the associated type `Output`
// (from trait `std::ops::BitXor`) must be specified
// --> $DIR/issue-28344.rs:4:17
// |
// LL | let x: u8 = BitXor::bitor(0 as u8, 0 as u8);
// | ^^^^^^^^^^^^^ help: specify the associated type:
// | `BitXor::bitor<Output = Type>`
[segment] if segment.args.is_none() => {
trait_bound_spans = vec![segment.ident.span];
associated_types = associated_types
.into_values()
.map(|items| (segment.ident.span, items))
.collect();
}
_ => {}
}
}
// We get all the associated items that _are_ set,
// so that we can check if any of their names match one of the ones we are missing.
// This would mean that they are shadowing the associated type we are missing,
// and we can then use their span to indicate this to the user.
let bound_names = trait_bounds
.iter()
.filter_map(|poly_trait_ref| {
let path = poly_trait_ref.trait_ref.path.segments.last()?;
let args = path.args?;
Some(args.constraints.iter().filter_map(|constraint| {
let ident = constraint.ident;
let trait_def = path.res.def_id();
let assoc_item = tcx.associated_items(trait_def).find_by_name_and_kind(
tcx,
ident,
ty::AssocKind::Type,
trait_def,
);
Some((ident.name, assoc_item?))
}))
})
.flatten()
.collect::<UnordMap<Symbol, &ty::AssocItem>>();
let mut names = names
.into_iter()
.map(|(trait_, mut assocs)| {
assocs.sort();
format!("{} in `{trait_}`", match &assocs[..] {
[] => String::new(),
[only] => format!("`{only}`"),
[assocs @ .., last] => format!(
"{} and `{last}`",
assocs.iter().map(|a| format!("`{a}`")).collect::<Vec<_>>().join(", ")
),
})
})
.collect::<Vec<String>>();
names.sort();
let names = names.join(", ");
trait_bound_spans.sort();
let mut err = struct_span_code_err!(
self.dcx(),
trait_bound_spans,
E0191,
"the value of the associated type{} {} must be specified",
pluralize!(names_len),
names,
);
let mut suggestions = vec![];
let mut types_count = 0;
let mut where_constraints = vec![];
let mut already_has_generics_args_suggestion = false;
for (span, assoc_items) in &associated_types {
let mut names: UnordMap<_, usize> = Default::default();
for item in assoc_items {
types_count += 1;
*names.entry(item.name).or_insert(0) += 1;
}
let mut dupes = false;
let mut shadows = false;
for item in assoc_items {
let prefix = if names[&item.name] > 1 {
let trait_def_id = item.container_id(tcx);
dupes = true;
format!("{}::", tcx.def_path_str(trait_def_id))
} else if bound_names.get(&item.name).is_some_and(|x| x != &item) {
let trait_def_id = item.container_id(tcx);
shadows = true;
format!("{}::", tcx.def_path_str(trait_def_id))
} else {
String::new()
};
let mut is_shadowed = false;
if let Some(assoc_item) = bound_names.get(&item.name)
&& assoc_item != &item
{
is_shadowed = true;
let rename_message =
if assoc_item.def_id.is_local() { ", consider renaming it" } else { "" };
err.span_label(
tcx.def_span(assoc_item.def_id),
format!("`{}{}` shadowed here{}", prefix, item.name, rename_message),
);
}
let rename_message = if is_shadowed { ", consider renaming it" } else { "" };
if let Some(sp) = tcx.hir().span_if_local(item.def_id) {
err.span_label(
sp,
format!("`{}{}` defined here{}", prefix, item.name, rename_message),
);
}
}
if potential_assoc_types.len() == assoc_items.len() {
// When the amount of missing associated types equals the number of
// extra type arguments present. A suggesting to replace the generic args with
// associated types is already emitted.
already_has_generics_args_suggestion = true;
} else if let (Ok(snippet), false, false) =
(tcx.sess.source_map().span_to_snippet(*span), dupes, shadows)
{
let types: Vec<_> =
assoc_items.iter().map(|item| format!("{} = Type", item.name)).collect();
let code = if snippet.ends_with('>') {
// The user wrote `Trait<'a>` or similar and we don't have a type we can
// suggest, but at least we can clue them to the correct syntax
// `Trait<'a, Item = Type>` while accounting for the `<'a>` in the
// suggestion.
format!("{}, {}>", &snippet[..snippet.len() - 1], types.join(", "))
} else if in_expr_or_pat {
// The user wrote `Iterator`, so we don't have a type we can suggest, but at
// least we can clue them to the correct syntax `Iterator::<Item = Type>`.
format!("{}::<{}>", snippet, types.join(", "))
} else {
// The user wrote `Iterator`, so we don't have a type we can suggest, but at
// least we can clue them to the correct syntax `Iterator<Item = Type>`.
format!("{}<{}>", snippet, types.join(", "))
};
suggestions.push((*span, code));
} else if dupes {
where_constraints.push(*span);
}
}
let where_msg = "consider introducing a new type parameter, adding `where` constraints \
using the fully-qualified path to the associated types";
if !where_constraints.is_empty() && suggestions.is_empty() {
// If there are duplicates associated type names and a single trait bound do not
// use structured suggestion, it means that there are multiple supertraits with
// the same associated type name.
err.help(where_msg);
}
if suggestions.len() != 1 || already_has_generics_args_suggestion {
// We don't need this label if there's an inline suggestion, show otherwise.
for (span, assoc_items) in &associated_types {
let mut names: FxIndexMap<_, usize> = FxIndexMap::default();
for item in assoc_items {
types_count += 1;
*names.entry(item.name).or_insert(0) += 1;
}
let mut label = vec![];
for item in assoc_items {
let postfix = if names[&item.name] > 1 {
let trait_def_id = item.container_id(tcx);
format!(" (from trait `{}`)", tcx.def_path_str(trait_def_id))
} else {
String::new()
};
label.push(format!("`{}`{}", item.name, postfix));
}
if !label.is_empty() {
err.span_label(
*span,
format!(
"associated type{} {} must be specified",
pluralize!(label.len()),
label.join(", "),
),
);
}
}
}
suggestions.sort_by_key(|&(span, _)| span);
// There are cases where one bound points to a span within another bound's span, like when
// you have code like the following (#115019), so we skip providing a suggestion in those
// cases to avoid having a malformed suggestion.
//
// pub struct Flatten<I> {
// inner: <IntoIterator<Item: IntoIterator<Item: >>::IntoIterator as Item>::core,
// ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
// | ^^^^^^^^^^^^^^^^^^^^^
// | |
// | associated types `Item`, `IntoIter` must be specified
// associated types `Item`, `IntoIter` must be specified
// }
let overlaps = suggestions.windows(2).any(|pair| pair[0].0.overlaps(pair[1].0));
if !suggestions.is_empty() && !overlaps {
err.multipart_suggestion(
format!("specify the associated type{}", pluralize!(types_count)),
suggestions,
Applicability::HasPlaceholders,
);
if !where_constraints.is_empty() {
err.span_help(where_constraints, where_msg);
}
}
err.emit();
}
/// On ambiguous associated type, look for an associated function whose name matches the
/// extended path and, if found, emit an E0223 error with a structured suggestion.
/// e.g. for `String::from::utf8`, suggest `String::from_utf8` (#109195)
pub(crate) fn maybe_report_similar_assoc_fn(
&self,
span: Span,
qself_ty: Ty<'tcx>,
qself: &hir::Ty<'_>,
) -> Result<(), ErrorGuaranteed> {
let tcx = self.tcx();
if let Some((_, node)) = tcx.hir().parent_iter(qself.hir_id).skip(1).next()
&& let hir::Node::Expr(hir::Expr {
kind:
hir::ExprKind::Path(hir::QPath::TypeRelative(
hir::Ty {
kind:
hir::TyKind::Path(hir::QPath::TypeRelative(
_,
hir::PathSegment { ident: ident2, .. },
)),
..
},
hir::PathSegment { ident: ident3, .. },
)),
..
}) = node
&& let Some(ty_def_id) = qself_ty.ty_def_id()
&& let [inherent_impl] = tcx.inherent_impls(ty_def_id)
&& let name = format!("{ident2}_{ident3}")
&& let Some(ty::AssocItem { kind: ty::AssocKind::Fn, .. }) = tcx
.associated_items(inherent_impl)
.filter_by_name_unhygienic(Symbol::intern(&name))
.next()
{
Err(struct_span_code_err!(self.dcx(), span, E0223, "ambiguous associated type")
.with_span_suggestion_verbose(
ident2.span.to(ident3.span),
format!("there is an associated function with a similar name: `{name}`"),
name,
Applicability::MaybeIncorrect,
)
.emit())
} else {
Ok(())
}
}
pub fn report_prohibit_generics_error<'a>(
&self,
segments: impl Iterator<Item = &'a hir::PathSegment<'a>> + Clone,
args_visitors: impl Iterator<Item = &'a hir::GenericArg<'a>> + Clone,
err_extend: GenericsArgsErrExtend<'_>,
) -> ErrorGuaranteed {
#[derive(PartialEq, Eq, Hash)]
enum ProhibitGenericsArg {
Lifetime,
Type,
Const,
Infer,
}
let mut prohibit_args = FxIndexSet::default();
args_visitors.for_each(|arg| {
match arg {
hir::GenericArg::Lifetime(_) => prohibit_args.insert(ProhibitGenericsArg::Lifetime),
hir::GenericArg::Type(_) => prohibit_args.insert(ProhibitGenericsArg::Type),
hir::GenericArg::Const(_) => prohibit_args.insert(ProhibitGenericsArg::Const),
hir::GenericArg::Infer(_) => prohibit_args.insert(ProhibitGenericsArg::Infer),
};
});
let types_and_spans: Vec<_> = segments
.clone()
.flat_map(|segment| {
if segment.args().args.is_empty() {
None
} else {
Some((
match segment.res {
hir::def::Res::PrimTy(ty) => {
format!("{} `{}`", segment.res.descr(), ty.name())
}
hir::def::Res::Def(_, def_id)
if let Some(name) = self.tcx().opt_item_name(def_id) =>
{
format!("{} `{name}`", segment.res.descr())
}
hir::def::Res::Err => "this type".to_string(),
_ => segment.res.descr().to_string(),
},
segment.ident.span,
))
}
})
.collect();
let this_type = match &types_and_spans[..] {
[.., _, (last, _)] => format!(
"{} and {last}",
types_and_spans[..types_and_spans.len() - 1]
.iter()
.map(|(x, _)| x.as_str())
.intersperse(", ")
.collect::<String>()
),
[(only, _)] => only.to_string(),
[] => "this type".to_string(),
};
let arg_spans: Vec<Span> = segments
.clone()
.flat_map(|segment| segment.args().args)
.map(|arg| arg.span())
.collect();
let mut kinds = Vec::with_capacity(4);
prohibit_args.iter().for_each(|arg| match arg {
ProhibitGenericsArg::Lifetime => kinds.push("lifetime"),
ProhibitGenericsArg::Type => kinds.push("type"),
ProhibitGenericsArg::Const => kinds.push("const"),
ProhibitGenericsArg::Infer => kinds.push("generic"),
});
let (kind, s) = match kinds[..] {
[.., _, last] => (
format!(
"{} and {last}",
kinds[..kinds.len() - 1]
.iter()
.map(|&x| x)
.intersperse(", ")
.collect::<String>()
),
"s",
),
[only] => (only.to_string(), ""),
[] => unreachable!("expected at least one generic to prohibit"),
};
let last_span = *arg_spans.last().unwrap();
let span: MultiSpan = arg_spans.into();
let mut err = struct_span_code_err!(
self.dcx(),
span,
E0109,
"{kind} arguments are not allowed on {this_type}",
);
err.span_label(last_span, format!("{kind} argument{s} not allowed"));
for (what, span) in types_and_spans {
err.span_label(span, format!("not allowed on {what}"));
}
generics_args_err_extend(self.tcx(), segments, &mut err, err_extend);
err.emit()
}
pub fn report_trait_object_addition_traits_error(
&self,
regular_traits: &Vec<TraitAliasExpansionInfo<'_>>,
) -> ErrorGuaranteed {
let first_trait = ®ular_traits[0];
let additional_trait = ®ular_traits[1];
let mut err = struct_span_code_err!(
self.dcx(),
additional_trait.bottom().1,
E0225,
"only auto traits can be used as additional traits in a trait object"
);
additional_trait.label_with_exp_info(
&mut err,
"additional non-auto trait",
"additional use",
);
first_trait.label_with_exp_info(&mut err, "first non-auto trait", "first use");
err.help(format!(
"consider creating a new trait with all of these as supertraits and using that \
trait here instead: `trait NewTrait: {} {{}}`",
regular_traits
.iter()
// FIXME: This should `print_sugared`, but also needs to integrate projection bounds...
.map(|t| t.trait_ref().print_only_trait_path().to_string())
.collect::<Vec<_>>()
.join(" + "),
));
err.note(
"auto-traits like `Send` and `Sync` are traits that have special properties; \
for more information on them, visit \
<https://doc.rust-lang.org/reference/special-types-and-traits.html#auto-traits>",
);
err.emit()
}
pub fn report_trait_object_with_no_traits_error(
&self,
span: Span,
trait_bounds: &Vec<(Binder<'tcx, TraitRef<'tcx>>, Span)>,
) -> ErrorGuaranteed {
let tcx = self.tcx();
let trait_alias_span = trait_bounds
.iter()
.map(|&(trait_ref, _)| trait_ref.def_id())
.find(|&trait_ref| tcx.is_trait_alias(trait_ref))
.map(|trait_ref| tcx.def_span(trait_ref));
self.dcx().emit_err(TraitObjectDeclaredWithNoTraits { span, trait_alias_span })
}
}
/// Emit an error for the given associated item constraint.
pub fn prohibit_assoc_item_constraint(
cx: &dyn HirTyLowerer<'_>,
constraint: &hir::AssocItemConstraint<'_>,
segment: Option<(DefId, &hir::PathSegment<'_>, Span)>,
) -> ErrorGuaranteed {
let tcx = cx.tcx();
let mut err = cx.dcx().create_err(AssocItemConstraintsNotAllowedHere {
span: constraint.span,
fn_trait_expansion: if let Some((_, segment, span)) = segment
&& segment.args().parenthesized == hir::GenericArgsParentheses::ParenSugar
{
Some(ParenthesizedFnTraitExpansion {
span,
expanded_type: fn_trait_to_string(tcx, segment, false),
})
} else {
None
},
});
// Emit a suggestion to turn the assoc item binding into a generic arg
// if the relevant item has a generic param whose name matches the binding name;
// otherwise suggest the removal of the binding.
if let Some((def_id, segment, _)) = segment
&& segment.args().parenthesized == hir::GenericArgsParentheses::No
{
// Suggests removal of the offending binding
let suggest_removal = |e: &mut Diag<'_>| {
let constraints = segment.args().constraints;
let args = segment.args().args;
// Compute the span to remove based on the position
// of the binding. We do that as follows:
// 1. Find the index of the binding in the list of bindings
// 2. Locate the spans preceding and following the binding.
// If it's the first binding the preceding span would be
// that of the last arg
// 3. Using this information work out whether the span
// to remove will start from the end of the preceding span,
// the start of the next span or will simply be the
// span encomassing everything within the generics brackets
let Some(index) = constraints.iter().position(|b| b.hir_id == constraint.hir_id) else {
bug!("a type binding exists but its HIR ID not found in generics");
};
let preceding_span = if index > 0 {
Some(constraints[index - 1].span)
} else {
args.last().map(|a| a.span())
};
let next_span = constraints.get(index + 1).map(|constraint| constraint.span);
let removal_span = match (preceding_span, next_span) {
(Some(prec), _) => constraint.span.with_lo(prec.hi()),
(None, Some(next)) => constraint.span.with_hi(next.lo()),
(None, None) => {
let Some(generics_span) = segment.args().span_ext() else {
bug!("a type binding exists but generic span is empty");
};
generics_span
}
};
// Now emit the suggestion
e.span_suggestion_verbose(
removal_span,
format!("consider removing this associated item {}", constraint.kind.descr()),
"",
Applicability::MaybeIncorrect,
);
};
// Suggest replacing the associated item binding with a generic argument.
// i.e., replacing `<..., T = A, ...>` with `<..., A, ...>`.
let suggest_direct_use = |e: &mut Diag<'_>, sp: Span| {
if let Ok(snippet) = tcx.sess.source_map().span_to_snippet(sp) {
e.span_suggestion_verbose(
constraint.span,
format!("to use `{snippet}` as a generic argument specify it directly"),
snippet,
Applicability::MaybeIncorrect,
);
}
};
// Check if the type has a generic param with the same name
// as the assoc type name in the associated item binding.
let generics = tcx.generics_of(def_id);
let matching_param = generics.own_params.iter().find(|p| p.name == constraint.ident.name);
// Now emit the appropriate suggestion
if let Some(matching_param) = matching_param {
match (constraint.kind, &matching_param.kind) {
(
hir::AssocItemConstraintKind::Equality { term: hir::Term::Ty(ty) },
GenericParamDefKind::Type { .. },
) => suggest_direct_use(&mut err, ty.span),
(
hir::AssocItemConstraintKind::Equality { term: hir::Term::Const(c) },
GenericParamDefKind::Const { .. },
) => {
suggest_direct_use(&mut err, c.span());
}
(hir::AssocItemConstraintKind::Bound { bounds }, _) => {
// Suggest `impl<T: Bound> Trait<T> for Foo` when finding
// `impl Trait<T: Bound> for Foo`
// Get the parent impl block based on the binding we have
// and the trait DefId
let impl_block = tcx
.hir()
.parent_iter(constraint.hir_id)
.find_map(|(_, node)| node.impl_block_of_trait(def_id));
let type_with_constraints =
tcx.sess.source_map().span_to_snippet(constraint.span);
if let Some(impl_block) = impl_block
&& let Ok(type_with_constraints) = type_with_constraints
{
// Filter out the lifetime parameters because
// they should be declared before the type parameter
let lifetimes: String = bounds
.iter()
.filter_map(|bound| {
if let hir::GenericBound::Outlives(lifetime) = bound {
Some(format!("{lifetime}, "))
} else {
None
}
})
.collect();
// Figure out a span and suggestion string based on
// whether there are any existing parameters
let param_decl = if let Some(param_span) =
impl_block.generics.span_for_param_suggestion()
{
(param_span, format!(", {lifetimes}{type_with_constraints}"))
} else {
(
impl_block.generics.span.shrink_to_lo(),
format!("<{lifetimes}{type_with_constraints}>"),
)
};
let suggestions = vec![
param_decl,
(constraint.span.with_lo(constraint.ident.span.hi()), String::new()),
];
err.multipart_suggestion_verbose(
"declare the type parameter right after the `impl` keyword",
suggestions,
Applicability::MaybeIncorrect,
);
}
}
_ => suggest_removal(&mut err),
}
} else {
suggest_removal(&mut err);
}
}
err.emit()
}
pub(crate) fn fn_trait_to_string(
tcx: TyCtxt<'_>,
trait_segment: &hir::PathSegment<'_>,
parenthesized: bool,
) -> String {
let args = trait_segment
.args
.and_then(|args| args.args.first())
.and_then(|arg| match arg {
hir::GenericArg::Type(ty) => match ty.kind {
hir::TyKind::Tup(t) => t
.iter()
.map(|e| tcx.sess.source_map().span_to_snippet(e.span))
.collect::<Result<Vec<_>, _>>()
.map(|a| a.join(", ")),
_ => tcx.sess.source_map().span_to_snippet(ty.span),
}
.map(|s| {
// `is_empty()` checks to see if the type is the unit tuple, if so we don't want a comma
if parenthesized || s.is_empty() { format!("({s})") } else { format!("({s},)") }
})
.ok(),
_ => None,
})
.unwrap_or_else(|| "()".to_string());
let ret = trait_segment
.args()
.constraints
.iter()
.find_map(|c| {
if c.ident.name == sym::Output
&& let Some(ty) = c.ty()
&& ty.span != tcx.hir().span(trait_segment.hir_id)
{
tcx.sess.source_map().span_to_snippet(ty.span).ok()
} else {
None
}
})
.unwrap_or_else(|| "()".to_string());
if parenthesized {
format!("{}{} -> {}", trait_segment.ident, args, ret)
} else {
format!("{}<{}, Output={}>", trait_segment.ident, args, ret)
}
}
/// Used for generics args error extend.
pub enum GenericsArgsErrExtend<'tcx> {
EnumVariant {
qself: &'tcx hir::Ty<'tcx>,
assoc_segment: &'tcx hir::PathSegment<'tcx>,
adt_def: AdtDef<'tcx>,
},
OpaqueTy,
PrimTy(hir::PrimTy),
SelfTyAlias {
def_id: DefId,
span: Span,
},
SelfTyParam(Span),
Param(DefId),
DefVariant,
None,
}
fn generics_args_err_extend<'a>(
tcx: TyCtxt<'_>,
segments: impl Iterator<Item = &'a hir::PathSegment<'a>> + Clone,
err: &mut Diag<'_>,
err_extend: GenericsArgsErrExtend<'_>,
) {
match err_extend {
GenericsArgsErrExtend::EnumVariant { qself, assoc_segment, adt_def } => {
err.note("enum variants can't have type parameters");
let type_name = tcx.item_name(adt_def.did());
let msg = format!(
"you might have meant to specify type parameters on enum \
`{type_name}`"
);
let Some(args) = assoc_segment.args else {
return;
};
// Get the span of the generics args *including* the leading `::`.
// We do so by stretching args.span_ext to the left by 2. Earlier
// it was done based on the end of assoc segment but that sometimes
// led to impossible spans and caused issues like #116473
let args_span = args.span_ext.with_lo(args.span_ext.lo() - BytePos(2));
if tcx.generics_of(adt_def.did()).is_empty() {
// FIXME(estebank): we could also verify that the arguments being
// work for the `enum`, instead of just looking if it takes *any*.
err.span_suggestion_verbose(
args_span,
format!("{type_name} doesn't have generic parameters"),
"",
Applicability::MachineApplicable,
);
return;
}
let Ok(snippet) = tcx.sess.source_map().span_to_snippet(args_span) else {
err.note(msg);
return;
};
let (qself_sugg_span, is_self) =
if let hir::TyKind::Path(hir::QPath::Resolved(_, path)) = &qself.kind {
// If the path segment already has type params, we want to overwrite
// them.
match &path.segments {
// `segment` is the previous to last element on the path,
// which would normally be the `enum` itself, while the last
// `_` `PathSegment` corresponds to the variant.
[
..,
hir::PathSegment {
ident, args, res: Res::Def(DefKind::Enum, _), ..
},
_,
] => (
// We need to include the `::` in `Type::Variant::<Args>`
// to point the span to `::<Args>`, not just `<Args>`.
ident
.span
.shrink_to_hi()
.to(args.map_or(ident.span.shrink_to_hi(), |a| a.span_ext)),
false,
),
[segment] => {
(
// We need to include the `::` in `Type::Variant::<Args>`
// to point the span to `::<Args>`, not just `<Args>`.
segment.ident.span.shrink_to_hi().to(segment
.args
.map_or(segment.ident.span.shrink_to_hi(), |a| a.span_ext)),
kw::SelfUpper == segment.ident.name,
)
}
_ => {
err.note(msg);
return;
}
}
} else {
err.note(msg);
return;
};
let suggestion = vec![
if is_self {
// Account for people writing `Self::Variant::<Args>`, where
// `Self` is the enum, and suggest replacing `Self` with the
// appropriate type: `Type::<Args>::Variant`.
(qself.span, format!("{type_name}{snippet}"))
} else {
(qself_sugg_span, snippet)
},
(args_span, String::new()),
];
err.multipart_suggestion_verbose(msg, suggestion, Applicability::MaybeIncorrect);
}
GenericsArgsErrExtend::PrimTy(prim_ty) => {
let name = prim_ty.name_str();
for segment in segments {
if let Some(args) = segment.args {
err.span_suggestion_verbose(
segment.ident.span.shrink_to_hi().to(args.span_ext),
format!("primitive type `{name}` doesn't have generic parameters"),
"",
Applicability::MaybeIncorrect,
);
}
}
}
GenericsArgsErrExtend::OpaqueTy => {
err.note("`impl Trait` types can't have type parameters");
}
GenericsArgsErrExtend::DefVariant => {
err.note("enum variants can't have type parameters");
}
GenericsArgsErrExtend::Param(def_id) => {
let span = tcx.def_ident_span(def_id).unwrap();
let kind = tcx.def_descr(def_id);
let name = tcx.item_name(def_id);
err.span_note(span, format!("{kind} `{name}` defined here"));
}
GenericsArgsErrExtend::SelfTyParam(span) => {
err.span_suggestion_verbose(
span,
"the `Self` type doesn't accept type parameters",
"",
Applicability::MaybeIncorrect,
);
}
GenericsArgsErrExtend::SelfTyAlias { def_id, span } => {
let ty = tcx.at(span).type_of(def_id).instantiate_identity();
let span_of_impl = tcx.span_of_impl(def_id);
let def_id = match *ty.kind() {
ty::Adt(self_def, _) => self_def.did(),
_ => return,
};
let type_name = tcx.item_name(def_id);
let span_of_ty = tcx.def_ident_span(def_id);
let generics = tcx.generics_of(def_id).count();
let msg = format!("`Self` is of type `{ty}`");
if let (Ok(i_sp), Some(t_sp)) = (span_of_impl, span_of_ty) {
let mut span: MultiSpan = vec![t_sp].into();
span.push_span_label(
i_sp,
format!("`Self` is on type `{type_name}` in this `impl`"),
);
let mut postfix = "";
if generics == 0 {
postfix = ", which doesn't have generic parameters";
}
span.push_span_label(t_sp, format!("`Self` corresponds to this type{postfix}"));
err.span_note(span, msg);
} else {
err.note(msg);
}
for segment in segments {
if let Some(args) = segment.args
&& segment.ident.name == kw::SelfUpper
{
if generics == 0 {
// FIXME(estebank): we could also verify that the arguments being
// work for the `enum`, instead of just looking if it takes *any*.
err.span_suggestion_verbose(
segment.ident.span.shrink_to_hi().to(args.span_ext),
"the `Self` type doesn't accept type parameters",
"",
Applicability::MachineApplicable,
);
return;
} else {
err.span_suggestion_verbose(
segment.ident.span,
format!(
"the `Self` type doesn't accept type parameters, use the \
concrete type's name `{type_name}` instead if you want to \
specify its type parameters"
),
type_name,
Applicability::MaybeIncorrect,
);
}
}
}
}
_ => {}
}
}
pub(super) fn assoc_kind_str(kind: ty::AssocKind) -> &'static str {
match kind {
ty::AssocKind::Fn => "function",
ty::AssocKind::Const => "constant",
ty::AssocKind::Type => "type",
}
}