clippy_utils/eager_or_lazy.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
//! Utilities for evaluating whether eagerly evaluated expressions can be made lazy and vice versa.
//!
//! Things to consider:
//! - does the expression have side-effects?
//! - is the expression computationally expensive?
//!
//! See lints:
//! - unnecessary-lazy-evaluations
//! - or-fun-call
//! - option-if-let-else
use crate::consts::{ConstEvalCtxt, FullInt};
use crate::ty::{all_predicates_of, is_copy};
use crate::visitors::is_const_evaluatable;
use rustc_hir::def::{DefKind, Res};
use rustc_hir::def_id::DefId;
use rustc_hir::intravisit::{Visitor, walk_expr};
use rustc_hir::{BinOpKind, Block, Expr, ExprKind, QPath, UnOp};
use rustc_lint::LateContext;
use rustc_middle::ty;
use rustc_middle::ty::adjustment::Adjust;
use rustc_span::{Symbol, sym};
use std::{cmp, ops};
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
enum EagernessSuggestion {
// The expression is cheap and should be evaluated eagerly
Eager,
// The expression may be cheap, so don't suggested lazy evaluation; or the expression may not be safe to switch to
// eager evaluation.
NoChange,
// The expression is likely expensive and should be evaluated lazily.
Lazy,
// The expression cannot be placed into a closure.
ForceNoChange,
}
impl ops::BitOr for EagernessSuggestion {
type Output = Self;
fn bitor(self, rhs: Self) -> Self {
cmp::max(self, rhs)
}
}
impl ops::BitOrAssign for EagernessSuggestion {
fn bitor_assign(&mut self, rhs: Self) {
*self = *self | rhs;
}
}
/// Determine the eagerness of the given function call.
fn fn_eagerness(cx: &LateContext<'_>, fn_id: DefId, name: Symbol, have_one_arg: bool) -> EagernessSuggestion {
use EagernessSuggestion::{Eager, Lazy, NoChange};
let name = name.as_str();
let ty = match cx.tcx.impl_of_method(fn_id) {
Some(id) => cx.tcx.type_of(id).instantiate_identity(),
None => return Lazy,
};
if (name.starts_with("as_") || name == "len" || name == "is_empty") && have_one_arg {
if matches!(
cx.tcx.crate_name(fn_id.krate),
sym::std | sym::core | sym::alloc | sym::proc_macro
) {
Eager
} else {
NoChange
}
} else if let ty::Adt(def, subs) = ty.kind() {
// Types where the only fields are generic types (or references to) with no trait bounds other
// than marker traits.
// Due to the limited operations on these types functions should be fairly cheap.
if def.variants().iter().flat_map(|v| v.fields.iter()).any(|x| {
matches!(
cx.tcx.type_of(x.did).instantiate_identity().peel_refs().kind(),
ty::Param(_)
)
}) && all_predicates_of(cx.tcx, fn_id).all(|(pred, _)| match pred.kind().skip_binder() {
ty::ClauseKind::Trait(pred) => cx.tcx.trait_def(pred.trait_ref.def_id).is_marker,
_ => true,
}) && subs.types().all(|x| matches!(x.peel_refs().kind(), ty::Param(_)))
{
// Limit the function to either `(self) -> bool` or `(&self) -> bool`
match &**cx
.tcx
.fn_sig(fn_id)
.instantiate_identity()
.skip_binder()
.inputs_and_output
{
[arg, res] if !arg.is_mutable_ptr() && arg.peel_refs() == ty && res.is_bool() => NoChange,
_ => Lazy,
}
} else {
Lazy
}
} else {
Lazy
}
}
fn res_has_significant_drop(res: Res, cx: &LateContext<'_>, e: &Expr<'_>) -> bool {
if let Res::Def(DefKind::Ctor(..) | DefKind::Variant | DefKind::Enum | DefKind::Struct, _)
| Res::SelfCtor(_)
| Res::SelfTyAlias { .. } = res
{
cx.typeck_results()
.expr_ty(e)
.has_significant_drop(cx.tcx, cx.typing_env())
} else {
false
}
}
#[expect(clippy::too_many_lines)]
fn expr_eagerness<'tcx>(cx: &LateContext<'tcx>, e: &'tcx Expr<'_>) -> EagernessSuggestion {
struct V<'cx, 'tcx> {
cx: &'cx LateContext<'tcx>,
eagerness: EagernessSuggestion,
}
impl<'tcx> Visitor<'tcx> for V<'_, 'tcx> {
fn visit_expr(&mut self, e: &'tcx Expr<'_>) {
use EagernessSuggestion::{ForceNoChange, Lazy, NoChange};
if self.eagerness == ForceNoChange {
return;
}
// Autoderef through a user-defined `Deref` impl can have side-effects,
// so don't suggest changing it.
if self
.cx
.typeck_results()
.expr_adjustments(e)
.iter()
.any(|adj| matches!(adj.kind, Adjust::Deref(Some(_))))
{
self.eagerness |= NoChange;
return;
}
match e.kind {
ExprKind::Call(
&Expr {
kind: ExprKind::Path(ref path),
hir_id,
..
},
args,
) => match self.cx.qpath_res(path, hir_id) {
res @ (Res::Def(DefKind::Ctor(..) | DefKind::Variant, _) | Res::SelfCtor(_)) => {
if res_has_significant_drop(res, self.cx, e) {
self.eagerness = ForceNoChange;
return;
}
},
Res::Def(_, id) if self.cx.tcx.is_promotable_const_fn(id) => (),
// No need to walk the arguments here, `is_const_evaluatable` already did
Res::Def(..) if is_const_evaluatable(self.cx, e) => {
self.eagerness |= NoChange;
return;
},
Res::Def(_, id) => match path {
QPath::Resolved(_, p) => {
self.eagerness |=
fn_eagerness(self.cx, id, p.segments.last().unwrap().ident.name, !args.is_empty());
},
QPath::TypeRelative(_, name) => {
self.eagerness |= fn_eagerness(self.cx, id, name.ident.name, !args.is_empty());
},
QPath::LangItem(..) => self.eagerness = Lazy,
},
_ => self.eagerness = Lazy,
},
// No need to walk the arguments here, `is_const_evaluatable` already did
ExprKind::MethodCall(..) if is_const_evaluatable(self.cx, e) => {
self.eagerness |= NoChange;
return;
},
#[expect(clippy::match_same_arms)] // arm pattern can't be merged due to `ref`, see rust#105778
ExprKind::Struct(path, ..) => {
if res_has_significant_drop(self.cx.qpath_res(path, e.hir_id), self.cx, e) {
self.eagerness = ForceNoChange;
return;
}
},
ExprKind::Path(ref path) => {
if res_has_significant_drop(self.cx.qpath_res(path, e.hir_id), self.cx, e) {
self.eagerness = ForceNoChange;
return;
}
},
ExprKind::MethodCall(name, ..) => {
self.eagerness |= self
.cx
.typeck_results()
.type_dependent_def_id(e.hir_id)
.map_or(Lazy, |id| fn_eagerness(self.cx, id, name.ident.name, true));
},
ExprKind::Index(_, e, _) => {
let ty = self.cx.typeck_results().expr_ty_adjusted(e);
if is_copy(self.cx, ty) && !ty.is_ref() {
self.eagerness |= NoChange;
} else {
self.eagerness = Lazy;
}
},
// `-i32::MIN` panics with overflow checks
ExprKind::Unary(UnOp::Neg, right) if ConstEvalCtxt::new(self.cx).eval(right).is_none() => {
self.eagerness |= NoChange;
},
// Custom `Deref` impl might have side effects
ExprKind::Unary(UnOp::Deref, e)
if self.cx.typeck_results().expr_ty(e).builtin_deref(true).is_none() =>
{
self.eagerness |= NoChange;
},
// Dereferences should be cheap, but dereferencing a raw pointer earlier may not be safe.
ExprKind::Unary(UnOp::Deref, e) if !self.cx.typeck_results().expr_ty(e).is_unsafe_ptr() => (),
ExprKind::Unary(UnOp::Deref, _) => self.eagerness |= NoChange,
ExprKind::Unary(_, e)
if matches!(
self.cx.typeck_results().expr_ty(e).kind(),
ty::Bool | ty::Int(_) | ty::Uint(_),
) => {},
// `>>` and `<<` panic when the right-hand side is greater than or equal to the number of bits in the
// type of the left-hand side, or is negative.
// We intentionally only check if the right-hand isn't a constant, because even if the suggestion would
// overflow with constants, the compiler emits an error for it and the programmer will have to fix it.
// Thus, we would realistically only delay the lint.
ExprKind::Binary(op, _, right)
if matches!(op.node, BinOpKind::Shl | BinOpKind::Shr)
&& ConstEvalCtxt::new(self.cx).eval(right).is_none() =>
{
self.eagerness |= NoChange;
},
ExprKind::Binary(op, left, right)
if matches!(op.node, BinOpKind::Div | BinOpKind::Rem)
&& let right_ty = self.cx.typeck_results().expr_ty(right)
&& let ecx = ConstEvalCtxt::new(self.cx)
&& let left = ecx.eval(left)
&& let right = ecx.eval(right).and_then(|c| c.int_value(self.cx.tcx, right_ty))
&& matches!(
(left, right),
// `1 / x`: x might be zero
(_, None)
// `x / -1`: x might be T::MIN
| (None, Some(FullInt::S(-1)))
) =>
{
self.eagerness |= NoChange;
},
// Similar to `>>` and `<<`, we only want to avoid linting entirely if either side is unknown and the
// compiler can't emit an error for an overflowing expression.
// Suggesting eagerness for `true.then(|| i32::MAX + 1)` is okay because the compiler will emit an
// error and it's good to have the eagerness warning up front when the user fixes the logic error.
ExprKind::Binary(op, left, right)
if matches!(op.node, BinOpKind::Add | BinOpKind::Sub | BinOpKind::Mul)
&& !self.cx.typeck_results().expr_ty(e).is_floating_point()
&& let ecx = ConstEvalCtxt::new(self.cx)
&& (ecx.eval(left).is_none() || ecx.eval(right).is_none()) =>
{
self.eagerness |= NoChange;
},
ExprKind::Binary(_, lhs, rhs)
if self.cx.typeck_results().expr_ty(lhs).is_primitive()
&& self.cx.typeck_results().expr_ty(rhs).is_primitive() => {},
// Can't be moved into a closure
ExprKind::Break(..)
| ExprKind::Continue(_)
| ExprKind::Ret(_)
| ExprKind::Become(_)
| ExprKind::InlineAsm(_)
| ExprKind::Yield(..)
| ExprKind::Err(_) => {
self.eagerness = ForceNoChange;
return;
},
// Memory allocation, custom operator, loop, or call to an unknown function
ExprKind::Unary(..) | ExprKind::Binary(..) | ExprKind::Loop(..) | ExprKind::Call(..) => {
self.eagerness = Lazy;
},
ExprKind::ConstBlock(_)
| ExprKind::Array(_)
| ExprKind::Tup(_)
| ExprKind::Lit(_)
| ExprKind::Cast(..)
| ExprKind::Type(..)
| ExprKind::DropTemps(_)
| ExprKind::Let(..)
| ExprKind::If(..)
| ExprKind::Match(..)
| ExprKind::Closure { .. }
| ExprKind::Field(..)
| ExprKind::AddrOf(..)
| ExprKind::Repeat(..)
| ExprKind::Block(Block { stmts: [], .. }, _)
| ExprKind::OffsetOf(..)
| ExprKind::UnsafeBinderCast(..) => (),
// Assignment might be to a local defined earlier, so don't eagerly evaluate.
// Blocks with multiple statements might be expensive, so don't eagerly evaluate.
// TODO: Actually check if either of these are true here.
ExprKind::Assign(..) | ExprKind::AssignOp(..) | ExprKind::Block(..) => self.eagerness |= NoChange,
}
walk_expr(self, e);
}
}
let mut v = V {
cx,
eagerness: EagernessSuggestion::Eager,
};
v.visit_expr(e);
v.eagerness
}
/// Whether the given expression should be changed to evaluate eagerly
pub fn switch_to_eager_eval<'tcx>(cx: &'_ LateContext<'tcx>, expr: &'tcx Expr<'_>) -> bool {
expr_eagerness(cx, expr) == EagernessSuggestion::Eager
}
/// Whether the given expression should be changed to evaluate lazily
pub fn switch_to_lazy_eval<'tcx>(cx: &'_ LateContext<'tcx>, expr: &'tcx Expr<'_>) -> bool {
expr_eagerness(cx, expr) == EagernessSuggestion::Lazy
}