rustc_hir_analysis/check/wfcheck.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414
use std::cell::LazyCell;
use std::ops::{ControlFlow, Deref};
use hir::intravisit::{self, Visitor};
use rustc_abi::ExternAbi;
use rustc_data_structures::fx::{FxHashSet, FxIndexMap, FxIndexSet};
use rustc_errors::codes::*;
use rustc_errors::{Applicability, ErrorGuaranteed, pluralize, struct_span_code_err};
use rustc_hir::ItemKind;
use rustc_hir::def::{DefKind, Res};
use rustc_hir::def_id::{DefId, LocalDefId, LocalModDefId};
use rustc_hir::lang_items::LangItem;
use rustc_infer::infer::outlives::env::OutlivesEnvironment;
use rustc_infer::infer::{self, InferCtxt, TyCtxtInferExt};
use rustc_macros::LintDiagnostic;
use rustc_middle::mir::interpret::ErrorHandled;
use rustc_middle::query::Providers;
use rustc_middle::ty::print::with_no_trimmed_paths;
use rustc_middle::ty::trait_def::TraitSpecializationKind;
use rustc_middle::ty::{
self, AdtKind, GenericArgKind, GenericArgs, GenericParamDefKind, Ty, TyCtxt, TypeFoldable,
TypeSuperVisitable, TypeVisitable, TypeVisitableExt, TypeVisitor, TypingMode, Upcast,
};
use rustc_middle::{bug, span_bug};
use rustc_session::parse::feature_err;
use rustc_span::{DUMMY_SP, Ident, Span, sym};
use rustc_trait_selection::error_reporting::InferCtxtErrorExt;
use rustc_trait_selection::regions::InferCtxtRegionExt;
use rustc_trait_selection::traits::misc::{
ConstParamTyImplementationError, type_allowed_to_implement_const_param_ty,
};
use rustc_trait_selection::traits::outlives_bounds::InferCtxtExt as _;
use rustc_trait_selection::traits::query::evaluate_obligation::InferCtxtExt as _;
use rustc_trait_selection::traits::{
self, FulfillmentError, Obligation, ObligationCause, ObligationCauseCode, ObligationCtxt,
WellFormedLoc,
};
use rustc_type_ir::TypeFlags;
use rustc_type_ir::solve::NoSolution;
use tracing::{debug, instrument};
use {rustc_ast as ast, rustc_hir as hir};
use crate::autoderef::Autoderef;
use crate::collect::CollectItemTypesVisitor;
use crate::constrained_generic_params::{Parameter, identify_constrained_generic_params};
use crate::errors::InvalidReceiverTyHint;
use crate::{errors, fluent_generated as fluent};
pub(super) struct WfCheckingCtxt<'a, 'tcx> {
pub(super) ocx: ObligationCtxt<'a, 'tcx, FulfillmentError<'tcx>>,
span: Span,
body_def_id: LocalDefId,
param_env: ty::ParamEnv<'tcx>,
}
impl<'a, 'tcx> Deref for WfCheckingCtxt<'a, 'tcx> {
type Target = ObligationCtxt<'a, 'tcx, FulfillmentError<'tcx>>;
fn deref(&self) -> &Self::Target {
&self.ocx
}
}
impl<'tcx> WfCheckingCtxt<'_, 'tcx> {
fn tcx(&self) -> TyCtxt<'tcx> {
self.ocx.infcx.tcx
}
// Convenience function to normalize during wfcheck. This performs
// `ObligationCtxt::normalize`, but provides a nice `ObligationCauseCode`.
fn normalize<T>(&self, span: Span, loc: Option<WellFormedLoc>, value: T) -> T
where
T: TypeFoldable<TyCtxt<'tcx>>,
{
self.ocx.normalize(
&ObligationCause::new(span, self.body_def_id, ObligationCauseCode::WellFormed(loc)),
self.param_env,
value,
)
}
fn register_wf_obligation(
&self,
span: Span,
loc: Option<WellFormedLoc>,
arg: ty::GenericArg<'tcx>,
) {
let cause = traits::ObligationCause::new(
span,
self.body_def_id,
ObligationCauseCode::WellFormed(loc),
);
self.ocx.register_obligation(Obligation::new(
self.tcx(),
cause,
self.param_env,
ty::Binder::dummy(ty::PredicateKind::Clause(ty::ClauseKind::WellFormed(arg))),
));
}
}
pub(super) fn enter_wf_checking_ctxt<'tcx, F>(
tcx: TyCtxt<'tcx>,
span: Span,
body_def_id: LocalDefId,
f: F,
) -> Result<(), ErrorGuaranteed>
where
F: for<'a> FnOnce(&WfCheckingCtxt<'a, 'tcx>) -> Result<(), ErrorGuaranteed>,
{
let param_env = tcx.param_env(body_def_id);
let infcx = &tcx.infer_ctxt().build(TypingMode::non_body_analysis());
let ocx = ObligationCtxt::new_with_diagnostics(infcx);
let mut wfcx = WfCheckingCtxt { ocx, span, body_def_id, param_env };
if !tcx.features().trivial_bounds() {
wfcx.check_false_global_bounds()
}
f(&mut wfcx)?;
let errors = wfcx.select_all_or_error();
if !errors.is_empty() {
return Err(infcx.err_ctxt().report_fulfillment_errors(errors));
}
let assumed_wf_types = wfcx.ocx.assumed_wf_types_and_report_errors(param_env, body_def_id)?;
debug!(?assumed_wf_types);
let infcx_compat = infcx.fork();
// We specifically want to call the non-compat version of `implied_bounds_tys`; we do this always.
let implied_bounds =
infcx.implied_bounds_tys_compat(param_env, body_def_id, &assumed_wf_types, false);
let outlives_env = OutlivesEnvironment::with_bounds(param_env, implied_bounds);
lint_redundant_lifetimes(tcx, body_def_id, &outlives_env);
let errors = infcx.resolve_regions(&outlives_env);
if errors.is_empty() {
return Ok(());
}
let is_bevy = 'is_bevy: {
// We don't want to emit this for dependents of Bevy, for now.
// See #119956
let is_bevy_paramset = |def: ty::AdtDef<'_>| {
let adt_did = with_no_trimmed_paths!(infcx.tcx.def_path_str(def.0.did));
adt_did.contains("ParamSet")
};
for ty in assumed_wf_types.iter() {
match ty.kind() {
ty::Adt(def, _) => {
if is_bevy_paramset(*def) {
break 'is_bevy true;
}
}
ty::Ref(_, ty, _) => match ty.kind() {
ty::Adt(def, _) => {
if is_bevy_paramset(*def) {
break 'is_bevy true;
}
}
_ => {}
},
_ => {}
}
}
false
};
// If we have set `no_implied_bounds_compat`, then do not attempt compatibility.
// We could also just always enter if `is_bevy`, and call `implied_bounds_tys`,
// but that does result in slightly more work when this option is set and
// just obscures what we mean here anyways. Let's just be explicit.
if is_bevy && !infcx.tcx.sess.opts.unstable_opts.no_implied_bounds_compat {
let implied_bounds =
infcx_compat.implied_bounds_tys_compat(param_env, body_def_id, &assumed_wf_types, true);
let outlives_env = OutlivesEnvironment::with_bounds(param_env, implied_bounds);
let errors_compat = infcx_compat.resolve_regions(&outlives_env);
if errors_compat.is_empty() {
Ok(())
} else {
Err(infcx_compat.err_ctxt().report_region_errors(body_def_id, &errors_compat))
}
} else {
Err(infcx.err_ctxt().report_region_errors(body_def_id, &errors))
}
}
fn check_well_formed(tcx: TyCtxt<'_>, def_id: LocalDefId) -> Result<(), ErrorGuaranteed> {
let node = tcx.hir_node_by_def_id(def_id);
let mut res = match node {
hir::Node::Crate(_) => bug!("check_well_formed cannot be applied to the crate root"),
hir::Node::Item(item) => check_item(tcx, item),
hir::Node::TraitItem(item) => check_trait_item(tcx, item),
hir::Node::ImplItem(item) => check_impl_item(tcx, item),
hir::Node::ForeignItem(item) => check_foreign_item(tcx, item),
hir::Node::OpaqueTy(_) => Ok(crate::check::check::check_item_type(tcx, def_id)),
_ => unreachable!(),
};
if let Some(generics) = node.generics() {
for param in generics.params {
res = res.and(check_param_wf(tcx, param));
}
}
res
}
/// Checks that the field types (in a struct def'n) or argument types (in an enum def'n) are
/// well-formed, meaning that they do not require any constraints not declared in the struct
/// definition itself. For example, this definition would be illegal:
///
/// ```rust
/// struct Ref<'a, T> { x: &'a T }
/// ```
///
/// because the type did not declare that `T:'a`.
///
/// We do this check as a pre-pass before checking fn bodies because if these constraints are
/// not included it frequently leads to confusing errors in fn bodies. So it's better to check
/// the types first.
#[instrument(skip(tcx), level = "debug")]
fn check_item<'tcx>(tcx: TyCtxt<'tcx>, item: &'tcx hir::Item<'tcx>) -> Result<(), ErrorGuaranteed> {
let def_id = item.owner_id.def_id;
debug!(
?item.owner_id,
item.name = ? tcx.def_path_str(def_id)
);
CollectItemTypesVisitor { tcx }.visit_item(item);
let res = match item.kind {
// Right now we check that every default trait implementation
// has an implementation of itself. Basically, a case like:
//
// impl Trait for T {}
//
// has a requirement of `T: Trait` which was required for default
// method implementations. Although this could be improved now that
// there's a better infrastructure in place for this, it's being left
// for a follow-up work.
//
// Since there's such a requirement, we need to check *just* positive
// implementations, otherwise things like:
//
// impl !Send for T {}
//
// won't be allowed unless there's an *explicit* implementation of `Send`
// for `T`
hir::ItemKind::Impl(impl_) => {
let header = tcx.impl_trait_header(def_id);
let is_auto = header
.is_some_and(|header| tcx.trait_is_auto(header.trait_ref.skip_binder().def_id));
crate::impl_wf_check::check_impl_wf(tcx, def_id)?;
let mut res = Ok(());
if let (hir::Defaultness::Default { .. }, true) = (impl_.defaultness, is_auto) {
let sp = impl_.of_trait.as_ref().map_or(item.span, |t| t.path.span);
res = Err(tcx
.dcx()
.struct_span_err(sp, "impls of auto traits cannot be default")
.with_span_labels(impl_.defaultness_span, "default because of this")
.with_span_label(sp, "auto trait")
.emit());
}
// We match on both `ty::ImplPolarity` and `ast::ImplPolarity` just to get the `!` span.
match header.map(|h| h.polarity) {
// `None` means this is an inherent impl
Some(ty::ImplPolarity::Positive) | None => {
res = res.and(check_impl(tcx, item, impl_.self_ty, &impl_.of_trait));
}
Some(ty::ImplPolarity::Negative) => {
let ast::ImplPolarity::Negative(span) = impl_.polarity else {
bug!("impl_polarity query disagrees with impl's polarity in HIR");
};
// FIXME(#27579): what amount of WF checking do we need for neg impls?
if let hir::Defaultness::Default { .. } = impl_.defaultness {
let mut spans = vec![span];
spans.extend(impl_.defaultness_span);
res = Err(struct_span_code_err!(
tcx.dcx(),
spans,
E0750,
"negative impls cannot be default impls"
)
.emit());
}
}
Some(ty::ImplPolarity::Reservation) => {
// FIXME: what amount of WF checking do we need for reservation impls?
}
}
res
}
hir::ItemKind::Fn(ref sig, ..) => {
check_item_fn(tcx, def_id, item.ident, item.span, sig.decl)
}
hir::ItemKind::Static(ty, ..) => {
check_item_type(tcx, def_id, ty.span, UnsizedHandling::Forbid)
}
hir::ItemKind::Const(ty, ..) => {
check_item_type(tcx, def_id, ty.span, UnsizedHandling::Forbid)
}
hir::ItemKind::Struct(_, hir_generics) => {
let res = check_type_defn(tcx, item, false);
check_variances_for_type_defn(tcx, item, hir_generics);
res
}
hir::ItemKind::Union(_, hir_generics) => {
let res = check_type_defn(tcx, item, true);
check_variances_for_type_defn(tcx, item, hir_generics);
res
}
hir::ItemKind::Enum(_, hir_generics) => {
let res = check_type_defn(tcx, item, true);
check_variances_for_type_defn(tcx, item, hir_generics);
res
}
hir::ItemKind::Trait(..) => check_trait(tcx, item),
hir::ItemKind::TraitAlias(..) => check_trait(tcx, item),
// `ForeignItem`s are handled separately.
hir::ItemKind::ForeignMod { .. } => Ok(()),
hir::ItemKind::TyAlias(hir_ty, hir_generics) => {
if tcx.type_alias_is_lazy(item.owner_id) {
// Bounds of lazy type aliases and of eager ones that contain opaque types are respected.
// E.g: `type X = impl Trait;`, `type X = (impl Trait, Y);`.
let res = check_item_type(tcx, def_id, hir_ty.span, UnsizedHandling::Allow);
check_variances_for_type_defn(tcx, item, hir_generics);
res
} else {
Ok(())
}
}
_ => Ok(()),
};
crate::check::check::check_item_type(tcx, def_id);
res
}
fn check_foreign_item<'tcx>(
tcx: TyCtxt<'tcx>,
item: &'tcx hir::ForeignItem<'tcx>,
) -> Result<(), ErrorGuaranteed> {
let def_id = item.owner_id.def_id;
CollectItemTypesVisitor { tcx }.visit_foreign_item(item);
debug!(
?item.owner_id,
item.name = ? tcx.def_path_str(def_id)
);
match item.kind {
hir::ForeignItemKind::Fn(sig, ..) => {
check_item_fn(tcx, def_id, item.ident, item.span, sig.decl)
}
hir::ForeignItemKind::Static(ty, ..) => {
check_item_type(tcx, def_id, ty.span, UnsizedHandling::AllowIfForeignTail)
}
hir::ForeignItemKind::Type => Ok(()),
}
}
fn check_trait_item<'tcx>(
tcx: TyCtxt<'tcx>,
trait_item: &'tcx hir::TraitItem<'tcx>,
) -> Result<(), ErrorGuaranteed> {
let def_id = trait_item.owner_id.def_id;
CollectItemTypesVisitor { tcx }.visit_trait_item(trait_item);
let (method_sig, span) = match trait_item.kind {
hir::TraitItemKind::Fn(ref sig, _) => (Some(sig), trait_item.span),
hir::TraitItemKind::Type(_bounds, Some(ty)) => (None, ty.span),
_ => (None, trait_item.span),
};
check_dyn_incompatible_self_trait_by_name(tcx, trait_item);
let mut res = check_associated_item(tcx, def_id, span, method_sig);
if matches!(trait_item.kind, hir::TraitItemKind::Fn(..)) {
for &assoc_ty_def_id in tcx.associated_types_for_impl_traits_in_associated_fn(def_id) {
res = res.and(check_associated_item(
tcx,
assoc_ty_def_id.expect_local(),
tcx.def_span(assoc_ty_def_id),
None,
));
}
}
res
}
/// Require that the user writes where clauses on GATs for the implicit
/// outlives bounds involving trait parameters in trait functions and
/// lifetimes passed as GAT args. See `self-outlives-lint` test.
///
/// We use the following trait as an example throughout this function:
/// ```rust,ignore (this code fails due to this lint)
/// trait IntoIter {
/// type Iter<'a>: Iterator<Item = Self::Item<'a>>;
/// type Item<'a>;
/// fn into_iter<'a>(&'a self) -> Self::Iter<'a>;
/// }
/// ```
fn check_gat_where_clauses(tcx: TyCtxt<'_>, trait_def_id: LocalDefId) {
// Associates every GAT's def_id to a list of possibly missing bounds detected by this lint.
let mut required_bounds_by_item = FxIndexMap::default();
let associated_items = tcx.associated_items(trait_def_id);
// Loop over all GATs together, because if this lint suggests adding a where-clause bound
// to one GAT, it might then require us to an additional bound on another GAT.
// In our `IntoIter` example, we discover a missing `Self: 'a` bound on `Iter<'a>`, which
// then in a second loop adds a `Self: 'a` bound to `Item` due to the relationship between
// those GATs.
loop {
let mut should_continue = false;
for gat_item in associated_items.in_definition_order() {
let gat_def_id = gat_item.def_id.expect_local();
let gat_item = tcx.associated_item(gat_def_id);
// If this item is not an assoc ty, or has no args, then it's not a GAT
if gat_item.kind != ty::AssocKind::Type {
continue;
}
let gat_generics = tcx.generics_of(gat_def_id);
// FIXME(jackh726): we can also warn in the more general case
if gat_generics.is_own_empty() {
continue;
}
// Gather the bounds with which all other items inside of this trait constrain the GAT.
// This is calculated by taking the intersection of the bounds that each item
// constrains the GAT with individually.
let mut new_required_bounds: Option<FxIndexSet<ty::Clause<'_>>> = None;
for item in associated_items.in_definition_order() {
let item_def_id = item.def_id.expect_local();
// Skip our own GAT, since it does not constrain itself at all.
if item_def_id == gat_def_id {
continue;
}
let param_env = tcx.param_env(item_def_id);
let item_required_bounds = match tcx.associated_item(item_def_id).kind {
// In our example, this corresponds to `into_iter` method
ty::AssocKind::Fn => {
// For methods, we check the function signature's return type for any GATs
// to constrain. In the `into_iter` case, we see that the return type
// `Self::Iter<'a>` is a GAT we want to gather any potential missing bounds from.
let sig: ty::FnSig<'_> = tcx.liberate_late_bound_regions(
item_def_id.to_def_id(),
tcx.fn_sig(item_def_id).instantiate_identity(),
);
gather_gat_bounds(
tcx,
param_env,
item_def_id,
sig.inputs_and_output,
// We also assume that all of the function signature's parameter types
// are well formed.
&sig.inputs().iter().copied().collect(),
gat_def_id,
gat_generics,
)
}
// In our example, this corresponds to the `Iter` and `Item` associated types
ty::AssocKind::Type => {
// If our associated item is a GAT with missing bounds, add them to
// the param-env here. This allows this GAT to propagate missing bounds
// to other GATs.
let param_env = augment_param_env(
tcx,
param_env,
required_bounds_by_item.get(&item_def_id),
);
gather_gat_bounds(
tcx,
param_env,
item_def_id,
tcx.explicit_item_bounds(item_def_id)
.iter_identity_copied()
.collect::<Vec<_>>(),
&FxIndexSet::default(),
gat_def_id,
gat_generics,
)
}
ty::AssocKind::Const => None,
};
if let Some(item_required_bounds) = item_required_bounds {
// Take the intersection of the required bounds for this GAT, and
// the item_required_bounds which are the ones implied by just
// this item alone.
// This is why we use an Option<_>, since we need to distinguish
// the empty set of bounds from the _uninitialized_ set of bounds.
if let Some(new_required_bounds) = &mut new_required_bounds {
new_required_bounds.retain(|b| item_required_bounds.contains(b));
} else {
new_required_bounds = Some(item_required_bounds);
}
}
}
if let Some(new_required_bounds) = new_required_bounds {
let required_bounds = required_bounds_by_item.entry(gat_def_id).or_default();
if new_required_bounds.into_iter().any(|p| required_bounds.insert(p)) {
// Iterate until our required_bounds no longer change
// Since they changed here, we should continue the loop
should_continue = true;
}
}
}
// We know that this loop will eventually halt, since we only set `should_continue` if the
// `required_bounds` for this item grows. Since we are not creating any new region or type
// variables, the set of all region and type bounds that we could ever insert are limited
// by the number of unique types and regions we observe in a given item.
if !should_continue {
break;
}
}
for (gat_def_id, required_bounds) in required_bounds_by_item {
// Don't suggest adding `Self: 'a` to a GAT that can't be named
if tcx.is_impl_trait_in_trait(gat_def_id.to_def_id()) {
continue;
}
let gat_item_hir = tcx.hir().expect_trait_item(gat_def_id);
debug!(?required_bounds);
let param_env = tcx.param_env(gat_def_id);
let unsatisfied_bounds: Vec<_> = required_bounds
.into_iter()
.filter(|clause| match clause.kind().skip_binder() {
ty::ClauseKind::RegionOutlives(ty::OutlivesPredicate(a, b)) => {
!region_known_to_outlive(
tcx,
gat_def_id,
param_env,
&FxIndexSet::default(),
a,
b,
)
}
ty::ClauseKind::TypeOutlives(ty::OutlivesPredicate(a, b)) => {
!ty_known_to_outlive(tcx, gat_def_id, param_env, &FxIndexSet::default(), a, b)
}
_ => bug!("Unexpected ClauseKind"),
})
.map(|clause| clause.to_string())
.collect();
if !unsatisfied_bounds.is_empty() {
let plural = pluralize!(unsatisfied_bounds.len());
let suggestion = format!(
"{} {}",
gat_item_hir.generics.add_where_or_trailing_comma(),
unsatisfied_bounds.join(", "),
);
let bound =
if unsatisfied_bounds.len() > 1 { "these bounds are" } else { "this bound is" };
tcx.dcx()
.struct_span_err(
gat_item_hir.span,
format!("missing required bound{} on `{}`", plural, gat_item_hir.ident),
)
.with_span_suggestion(
gat_item_hir.generics.tail_span_for_predicate_suggestion(),
format!("add the required where clause{plural}"),
suggestion,
Applicability::MachineApplicable,
)
.with_note(format!(
"{bound} currently required to ensure that impls have maximum flexibility"
))
.with_note(
"we are soliciting feedback, see issue #87479 \
<https://github.com/rust-lang/rust/issues/87479> for more information",
)
.emit();
}
}
}
/// Add a new set of predicates to the caller_bounds of an existing param_env.
fn augment_param_env<'tcx>(
tcx: TyCtxt<'tcx>,
param_env: ty::ParamEnv<'tcx>,
new_predicates: Option<&FxIndexSet<ty::Clause<'tcx>>>,
) -> ty::ParamEnv<'tcx> {
let Some(new_predicates) = new_predicates else {
return param_env;
};
if new_predicates.is_empty() {
return param_env;
}
let bounds = tcx.mk_clauses_from_iter(
param_env.caller_bounds().iter().chain(new_predicates.iter().cloned()),
);
// FIXME(compiler-errors): Perhaps there is a case where we need to normalize this
// i.e. traits::normalize_param_env_or_error
ty::ParamEnv::new(bounds)
}
/// We use the following trait as an example throughout this function.
/// Specifically, let's assume that `to_check` here is the return type
/// of `into_iter`, and the GAT we are checking this for is `Iter`.
/// ```rust,ignore (this code fails due to this lint)
/// trait IntoIter {
/// type Iter<'a>: Iterator<Item = Self::Item<'a>>;
/// type Item<'a>;
/// fn into_iter<'a>(&'a self) -> Self::Iter<'a>;
/// }
/// ```
fn gather_gat_bounds<'tcx, T: TypeFoldable<TyCtxt<'tcx>>>(
tcx: TyCtxt<'tcx>,
param_env: ty::ParamEnv<'tcx>,
item_def_id: LocalDefId,
to_check: T,
wf_tys: &FxIndexSet<Ty<'tcx>>,
gat_def_id: LocalDefId,
gat_generics: &'tcx ty::Generics,
) -> Option<FxIndexSet<ty::Clause<'tcx>>> {
// The bounds we that we would require from `to_check`
let mut bounds = FxIndexSet::default();
let (regions, types) = GATArgsCollector::visit(gat_def_id.to_def_id(), to_check);
// If both regions and types are empty, then this GAT isn't in the
// set of types we are checking, and we shouldn't try to do clause analysis
// (particularly, doing so would end up with an empty set of clauses,
// since the current method would require none, and we take the
// intersection of requirements of all methods)
if types.is_empty() && regions.is_empty() {
return None;
}
for (region_a, region_a_idx) in ®ions {
// Ignore `'static` lifetimes for the purpose of this lint: it's
// because we know it outlives everything and so doesn't give meaningful
// clues. Also ignore `ReError`, to avoid knock-down errors.
if let ty::ReStatic | ty::ReError(_) = **region_a {
continue;
}
// For each region argument (e.g., `'a` in our example), check for a
// relationship to the type arguments (e.g., `Self`). If there is an
// outlives relationship (`Self: 'a`), then we want to ensure that is
// reflected in a where clause on the GAT itself.
for (ty, ty_idx) in &types {
// In our example, requires that `Self: 'a`
if ty_known_to_outlive(tcx, item_def_id, param_env, wf_tys, *ty, *region_a) {
debug!(?ty_idx, ?region_a_idx);
debug!("required clause: {ty} must outlive {region_a}");
// Translate into the generic parameters of the GAT. In
// our example, the type was `Self`, which will also be
// `Self` in the GAT.
let ty_param = gat_generics.param_at(*ty_idx, tcx);
let ty_param = Ty::new_param(tcx, ty_param.index, ty_param.name);
// Same for the region. In our example, 'a corresponds
// to the 'me parameter.
let region_param = gat_generics.param_at(*region_a_idx, tcx);
let region_param = ty::Region::new_early_param(tcx, ty::EarlyParamRegion {
index: region_param.index,
name: region_param.name,
});
// The predicate we expect to see. (In our example,
// `Self: 'me`.)
bounds.insert(
ty::ClauseKind::TypeOutlives(ty::OutlivesPredicate(ty_param, region_param))
.upcast(tcx),
);
}
}
// For each region argument (e.g., `'a` in our example), also check for a
// relationship to the other region arguments. If there is an outlives
// relationship, then we want to ensure that is reflected in the where clause
// on the GAT itself.
for (region_b, region_b_idx) in ®ions {
// Again, skip `'static` because it outlives everything. Also, we trivially
// know that a region outlives itself. Also ignore `ReError`, to avoid
// knock-down errors.
if matches!(**region_b, ty::ReStatic | ty::ReError(_)) || region_a == region_b {
continue;
}
if region_known_to_outlive(tcx, item_def_id, param_env, wf_tys, *region_a, *region_b) {
debug!(?region_a_idx, ?region_b_idx);
debug!("required clause: {region_a} must outlive {region_b}");
// Translate into the generic parameters of the GAT.
let region_a_param = gat_generics.param_at(*region_a_idx, tcx);
let region_a_param = ty::Region::new_early_param(tcx, ty::EarlyParamRegion {
index: region_a_param.index,
name: region_a_param.name,
});
// Same for the region.
let region_b_param = gat_generics.param_at(*region_b_idx, tcx);
let region_b_param = ty::Region::new_early_param(tcx, ty::EarlyParamRegion {
index: region_b_param.index,
name: region_b_param.name,
});
// The predicate we expect to see.
bounds.insert(
ty::ClauseKind::RegionOutlives(ty::OutlivesPredicate(
region_a_param,
region_b_param,
))
.upcast(tcx),
);
}
}
}
Some(bounds)
}
/// Given a known `param_env` and a set of well formed types, can we prove that
/// `ty` outlives `region`.
fn ty_known_to_outlive<'tcx>(
tcx: TyCtxt<'tcx>,
id: LocalDefId,
param_env: ty::ParamEnv<'tcx>,
wf_tys: &FxIndexSet<Ty<'tcx>>,
ty: Ty<'tcx>,
region: ty::Region<'tcx>,
) -> bool {
test_region_obligations(tcx, id, param_env, wf_tys, |infcx| {
infcx.register_region_obligation(infer::RegionObligation {
sub_region: region,
sup_type: ty,
origin: infer::RelateParamBound(DUMMY_SP, ty, None),
});
})
}
/// Given a known `param_env` and a set of well formed types, can we prove that
/// `region_a` outlives `region_b`
fn region_known_to_outlive<'tcx>(
tcx: TyCtxt<'tcx>,
id: LocalDefId,
param_env: ty::ParamEnv<'tcx>,
wf_tys: &FxIndexSet<Ty<'tcx>>,
region_a: ty::Region<'tcx>,
region_b: ty::Region<'tcx>,
) -> bool {
test_region_obligations(tcx, id, param_env, wf_tys, |infcx| {
infcx.sub_regions(infer::RelateRegionParamBound(DUMMY_SP, None), region_b, region_a);
})
}
/// Given a known `param_env` and a set of well formed types, set up an
/// `InferCtxt`, call the passed function (to e.g. set up region constraints
/// to be tested), then resolve region and return errors
fn test_region_obligations<'tcx>(
tcx: TyCtxt<'tcx>,
id: LocalDefId,
param_env: ty::ParamEnv<'tcx>,
wf_tys: &FxIndexSet<Ty<'tcx>>,
add_constraints: impl FnOnce(&InferCtxt<'tcx>),
) -> bool {
// Unfortunately, we have to use a new `InferCtxt` each call, because
// region constraints get added and solved there and we need to test each
// call individually.
let infcx = tcx.infer_ctxt().build(TypingMode::non_body_analysis());
add_constraints(&infcx);
let outlives_environment = OutlivesEnvironment::with_bounds(
param_env,
infcx.implied_bounds_tys(param_env, id, wf_tys),
);
let errors = infcx.resolve_regions(&outlives_environment);
debug!(?errors, "errors");
// If we were able to prove that the type outlives the region without
// an error, it must be because of the implied or explicit bounds...
errors.is_empty()
}
/// TypeVisitor that looks for uses of GATs like
/// `<P0 as Trait<P1..Pn>>::GAT<Pn..Pm>` and adds the arguments `P0..Pm` into
/// the two vectors, `regions` and `types` (depending on their kind). For each
/// parameter `Pi` also track the index `i`.
struct GATArgsCollector<'tcx> {
gat: DefId,
// Which region appears and which parameter index its instantiated with
regions: FxIndexSet<(ty::Region<'tcx>, usize)>,
// Which params appears and which parameter index its instantiated with
types: FxIndexSet<(Ty<'tcx>, usize)>,
}
impl<'tcx> GATArgsCollector<'tcx> {
fn visit<T: TypeFoldable<TyCtxt<'tcx>>>(
gat: DefId,
t: T,
) -> (FxIndexSet<(ty::Region<'tcx>, usize)>, FxIndexSet<(Ty<'tcx>, usize)>) {
let mut visitor =
GATArgsCollector { gat, regions: FxIndexSet::default(), types: FxIndexSet::default() };
t.visit_with(&mut visitor);
(visitor.regions, visitor.types)
}
}
impl<'tcx> TypeVisitor<TyCtxt<'tcx>> for GATArgsCollector<'tcx> {
fn visit_ty(&mut self, t: Ty<'tcx>) {
match t.kind() {
ty::Alias(ty::Projection, p) if p.def_id == self.gat => {
for (idx, arg) in p.args.iter().enumerate() {
match arg.unpack() {
GenericArgKind::Lifetime(lt) if !lt.is_bound() => {
self.regions.insert((lt, idx));
}
GenericArgKind::Type(t) => {
self.types.insert((t, idx));
}
_ => {}
}
}
}
_ => {}
}
t.super_visit_with(self)
}
}
fn could_be_self(trait_def_id: LocalDefId, ty: &hir::Ty<'_>) -> bool {
match ty.kind {
hir::TyKind::TraitObject([trait_ref], ..) => match trait_ref.trait_ref.path.segments {
[s] => s.res.opt_def_id() == Some(trait_def_id.to_def_id()),
_ => false,
},
_ => false,
}
}
/// Detect when a dyn-incompatible trait is referring to itself in one of its associated items.
///
/// In such cases, suggest using `Self` instead.
fn check_dyn_incompatible_self_trait_by_name(tcx: TyCtxt<'_>, item: &hir::TraitItem<'_>) {
let (trait_name, trait_def_id) =
match tcx.hir_node_by_def_id(tcx.hir().get_parent_item(item.hir_id()).def_id) {
hir::Node::Item(item) => match item.kind {
hir::ItemKind::Trait(..) => (item.ident, item.owner_id),
_ => return,
},
_ => return,
};
let mut trait_should_be_self = vec![];
match &item.kind {
hir::TraitItemKind::Const(ty, _) | hir::TraitItemKind::Type(_, Some(ty))
if could_be_self(trait_def_id.def_id, ty) =>
{
trait_should_be_self.push(ty.span)
}
hir::TraitItemKind::Fn(sig, _) => {
for ty in sig.decl.inputs {
if could_be_self(trait_def_id.def_id, ty) {
trait_should_be_self.push(ty.span);
}
}
match sig.decl.output {
hir::FnRetTy::Return(ty) if could_be_self(trait_def_id.def_id, ty) => {
trait_should_be_self.push(ty.span);
}
_ => {}
}
}
_ => {}
}
if !trait_should_be_self.is_empty() {
if tcx.is_dyn_compatible(trait_def_id) {
return;
}
let sugg = trait_should_be_self.iter().map(|span| (*span, "Self".to_string())).collect();
tcx.dcx()
.struct_span_err(
trait_should_be_self,
"associated item referring to unboxed trait object for its own trait",
)
.with_span_label(trait_name.span, "in this trait")
.with_multipart_suggestion(
"you might have meant to use `Self` to refer to the implementing type",
sugg,
Applicability::MachineApplicable,
)
.emit();
}
}
fn check_impl_item<'tcx>(
tcx: TyCtxt<'tcx>,
impl_item: &'tcx hir::ImplItem<'tcx>,
) -> Result<(), ErrorGuaranteed> {
CollectItemTypesVisitor { tcx }.visit_impl_item(impl_item);
let (method_sig, span) = match impl_item.kind {
hir::ImplItemKind::Fn(ref sig, _) => (Some(sig), impl_item.span),
// Constrain binding and overflow error spans to `<Ty>` in `type foo = <Ty>`.
hir::ImplItemKind::Type(ty) if ty.span != DUMMY_SP => (None, ty.span),
_ => (None, impl_item.span),
};
check_associated_item(tcx, impl_item.owner_id.def_id, span, method_sig)
}
fn check_param_wf(tcx: TyCtxt<'_>, param: &hir::GenericParam<'_>) -> Result<(), ErrorGuaranteed> {
match param.kind {
// We currently only check wf of const params here.
hir::GenericParamKind::Lifetime { .. } | hir::GenericParamKind::Type { .. } => Ok(()),
// Const parameters are well formed if their type is structural match.
hir::GenericParamKind::Const { ty: hir_ty, default: _, synthetic: _ } => {
let ty = tcx.type_of(param.def_id).instantiate_identity();
if tcx.features().unsized_const_params() {
enter_wf_checking_ctxt(tcx, hir_ty.span, param.def_id, |wfcx| {
wfcx.register_bound(
ObligationCause::new(
hir_ty.span,
param.def_id,
ObligationCauseCode::ConstParam(ty),
),
wfcx.param_env,
ty,
tcx.require_lang_item(LangItem::UnsizedConstParamTy, Some(hir_ty.span)),
);
Ok(())
})
} else if tcx.features().adt_const_params() {
enter_wf_checking_ctxt(tcx, hir_ty.span, param.def_id, |wfcx| {
wfcx.register_bound(
ObligationCause::new(
hir_ty.span,
param.def_id,
ObligationCauseCode::ConstParam(ty),
),
wfcx.param_env,
ty,
tcx.require_lang_item(LangItem::ConstParamTy, Some(hir_ty.span)),
);
Ok(())
})
} else {
let mut diag = match ty.kind() {
ty::Bool | ty::Char | ty::Int(_) | ty::Uint(_) | ty::Error(_) => return Ok(()),
ty::FnPtr(..) => tcx.dcx().struct_span_err(
hir_ty.span,
"using function pointers as const generic parameters is forbidden",
),
ty::RawPtr(_, _) => tcx.dcx().struct_span_err(
hir_ty.span,
"using raw pointers as const generic parameters is forbidden",
),
_ => {
// Avoid showing "{type error}" to users. See #118179.
ty.error_reported()?;
tcx.dcx().struct_span_err(
hir_ty.span,
format!(
"`{ty}` is forbidden as the type of a const generic parameter",
),
)
}
};
diag.note("the only supported types are integers, `bool`, and `char`");
let cause = ObligationCause::misc(hir_ty.span, param.def_id);
let adt_const_params_feature_string =
" more complex and user defined types".to_string();
let may_suggest_feature = match type_allowed_to_implement_const_param_ty(
tcx,
tcx.param_env(param.def_id),
ty,
LangItem::ConstParamTy,
cause,
) {
// Can never implement `ConstParamTy`, don't suggest anything.
Err(
ConstParamTyImplementationError::NotAnAdtOrBuiltinAllowed
| ConstParamTyImplementationError::InvalidInnerTyOfBuiltinTy(..),
) => None,
Err(ConstParamTyImplementationError::UnsizedConstParamsFeatureRequired) => {
Some(vec![
(adt_const_params_feature_string, sym::adt_const_params),
(
" references to implement the `ConstParamTy` trait".into(),
sym::unsized_const_params,
),
])
}
// May be able to implement `ConstParamTy`. Only emit the feature help
// if the type is local, since the user may be able to fix the local type.
Err(ConstParamTyImplementationError::InfrigingFields(..)) => {
fn ty_is_local(ty: Ty<'_>) -> bool {
match ty.kind() {
ty::Adt(adt_def, ..) => adt_def.did().is_local(),
// Arrays and slices use the inner type's `ConstParamTy`.
ty::Array(ty, ..) => ty_is_local(*ty),
ty::Slice(ty) => ty_is_local(*ty),
// `&` references use the inner type's `ConstParamTy`.
// `&mut` are not supported.
ty::Ref(_, ty, ast::Mutability::Not) => ty_is_local(*ty),
// Say that a tuple is local if any of its components are local.
// This is not strictly correct, but it's likely that the user can fix the local component.
ty::Tuple(tys) => tys.iter().any(|ty| ty_is_local(ty)),
_ => false,
}
}
ty_is_local(ty).then_some(vec![(
adt_const_params_feature_string,
sym::adt_const_params,
)])
}
// Implements `ConstParamTy`, suggest adding the feature to enable.
Ok(..) => Some(vec![(adt_const_params_feature_string, sym::adt_const_params)]),
};
if let Some(features) = may_suggest_feature {
tcx.disabled_nightly_features(&mut diag, Some(param.hir_id), features);
}
Err(diag.emit())
}
}
}
}
#[instrument(level = "debug", skip(tcx, span, sig_if_method))]
fn check_associated_item(
tcx: TyCtxt<'_>,
item_id: LocalDefId,
span: Span,
sig_if_method: Option<&hir::FnSig<'_>>,
) -> Result<(), ErrorGuaranteed> {
let loc = Some(WellFormedLoc::Ty(item_id));
enter_wf_checking_ctxt(tcx, span, item_id, |wfcx| {
let item = tcx.associated_item(item_id);
// Avoid bogus "type annotations needed `Foo: Bar`" errors on `impl Bar for Foo` in case
// other `Foo` impls are incoherent.
tcx.ensure()
.coherent_trait(tcx.parent(item.trait_item_def_id.unwrap_or(item_id.into())))?;
let self_ty = match item.container {
ty::AssocItemContainer::Trait => tcx.types.self_param,
ty::AssocItemContainer::Impl => {
tcx.type_of(item.container_id(tcx)).instantiate_identity()
}
};
match item.kind {
ty::AssocKind::Const => {
let ty = tcx.type_of(item.def_id).instantiate_identity();
let ty = wfcx.normalize(span, Some(WellFormedLoc::Ty(item_id)), ty);
wfcx.register_wf_obligation(span, loc, ty.into());
Ok(())
}
ty::AssocKind::Fn => {
let sig = tcx.fn_sig(item.def_id).instantiate_identity();
let hir_sig = sig_if_method.expect("bad signature for method");
check_fn_or_method(
wfcx,
item.ident(tcx).span,
sig,
hir_sig.decl,
item.def_id.expect_local(),
);
check_method_receiver(wfcx, hir_sig, item, self_ty)
}
ty::AssocKind::Type => {
if let ty::AssocItemContainer::Trait = item.container {
check_associated_type_bounds(wfcx, item, span)
}
if item.defaultness(tcx).has_value() {
let ty = tcx.type_of(item.def_id).instantiate_identity();
let ty = wfcx.normalize(span, Some(WellFormedLoc::Ty(item_id)), ty);
wfcx.register_wf_obligation(span, loc, ty.into());
}
Ok(())
}
}
})
}
/// In a type definition, we check that to ensure that the types of the fields are well-formed.
fn check_type_defn<'tcx>(
tcx: TyCtxt<'tcx>,
item: &hir::Item<'tcx>,
all_sized: bool,
) -> Result<(), ErrorGuaranteed> {
let _ = tcx.representability(item.owner_id.def_id);
let adt_def = tcx.adt_def(item.owner_id);
enter_wf_checking_ctxt(tcx, item.span, item.owner_id.def_id, |wfcx| {
let variants = adt_def.variants();
let packed = adt_def.repr().packed();
for variant in variants.iter() {
// All field types must be well-formed.
for field in &variant.fields {
if let Some(def_id) = field.value
&& let Some(_ty) = tcx.type_of(def_id).no_bound_vars()
{
// FIXME(generic_const_exprs, default_field_values): this is a hack and needs to
// be refactored to check the instantiate-ability of the code better.
if let Some(def_id) = def_id.as_local()
&& let hir::Node::AnonConst(anon) = tcx.hir_node_by_def_id(def_id)
&& let expr = &tcx.hir().body(anon.body).value
&& let hir::ExprKind::Path(hir::QPath::Resolved(None, path)) = expr.kind
&& let Res::Def(DefKind::ConstParam, _def_id) = path.res
{
// Do not evaluate bare `const` params, as those would ICE and are only
// usable if `#![feature(generic_const_exprs)]` is enabled.
} else {
// Evaluate the constant proactively, to emit an error if the constant has
// an unconditional error. We only do so if the const has no type params.
let _ = tcx.const_eval_poly(def_id.into());
}
}
let field_id = field.did.expect_local();
let hir::FieldDef { ty: hir_ty, .. } =
tcx.hir_node_by_def_id(field_id).expect_field();
let ty = wfcx.normalize(
hir_ty.span,
None,
tcx.type_of(field.did).instantiate_identity(),
);
wfcx.register_wf_obligation(
hir_ty.span,
Some(WellFormedLoc::Ty(field_id)),
ty.into(),
)
}
// For DST, or when drop needs to copy things around, all
// intermediate types must be sized.
let needs_drop_copy = || {
packed && {
let ty = tcx.type_of(variant.tail().did).instantiate_identity();
let ty = tcx.erase_regions(ty);
assert!(!ty.has_infer());
ty.needs_drop(tcx, wfcx.infcx.typing_env(wfcx.param_env))
}
};
// All fields (except for possibly the last) should be sized.
let all_sized = all_sized || variant.fields.is_empty() || needs_drop_copy();
let unsized_len = if all_sized { 0 } else { 1 };
for (idx, field) in
variant.fields.raw[..variant.fields.len() - unsized_len].iter().enumerate()
{
let last = idx == variant.fields.len() - 1;
let field_id = field.did.expect_local();
let hir::FieldDef { ty: hir_ty, .. } =
tcx.hir_node_by_def_id(field_id).expect_field();
let ty = wfcx.normalize(
hir_ty.span,
None,
tcx.type_of(field.did).instantiate_identity(),
);
wfcx.register_bound(
traits::ObligationCause::new(
hir_ty.span,
wfcx.body_def_id,
ObligationCauseCode::FieldSized {
adt_kind: match &item.kind {
ItemKind::Struct(..) => AdtKind::Struct,
ItemKind::Union(..) => AdtKind::Union,
ItemKind::Enum(..) => AdtKind::Enum,
kind => span_bug!(
item.span,
"should be wfchecking an ADT, got {kind:?}"
),
},
span: hir_ty.span,
last,
},
),
wfcx.param_env,
ty,
tcx.require_lang_item(LangItem::Sized, None),
);
}
// Explicit `enum` discriminant values must const-evaluate successfully.
if let ty::VariantDiscr::Explicit(discr_def_id) = variant.discr {
match tcx.const_eval_poly(discr_def_id) {
Ok(_) => {}
Err(ErrorHandled::Reported(..)) => {}
Err(ErrorHandled::TooGeneric(sp)) => {
span_bug!(sp, "enum variant discr was too generic to eval")
}
}
}
}
check_where_clauses(wfcx, item.span, item.owner_id.def_id);
Ok(())
})
}
#[instrument(skip(tcx, item))]
fn check_trait(tcx: TyCtxt<'_>, item: &hir::Item<'_>) -> Result<(), ErrorGuaranteed> {
debug!(?item.owner_id);
let def_id = item.owner_id.def_id;
let trait_def = tcx.trait_def(def_id);
if trait_def.is_marker
|| matches!(trait_def.specialization_kind, TraitSpecializationKind::Marker)
{
for associated_def_id in &*tcx.associated_item_def_ids(def_id) {
struct_span_code_err!(
tcx.dcx(),
tcx.def_span(*associated_def_id),
E0714,
"marker traits cannot have associated items",
)
.emit();
}
}
let res = enter_wf_checking_ctxt(tcx, item.span, def_id, |wfcx| {
check_where_clauses(wfcx, item.span, def_id);
Ok(())
});
// Only check traits, don't check trait aliases
if let hir::ItemKind::Trait(..) = item.kind {
check_gat_where_clauses(tcx, item.owner_id.def_id);
}
res
}
/// Checks all associated type defaults of trait `trait_def_id`.
///
/// Assuming the defaults are used, check that all predicates (bounds on the
/// assoc type and where clauses on the trait) hold.
fn check_associated_type_bounds(wfcx: &WfCheckingCtxt<'_, '_>, item: ty::AssocItem, span: Span) {
let bounds = wfcx.tcx().explicit_item_bounds(item.def_id);
debug!("check_associated_type_bounds: bounds={:?}", bounds);
let wf_obligations = bounds.iter_identity_copied().flat_map(|(bound, bound_span)| {
let normalized_bound = wfcx.normalize(span, None, bound);
traits::wf::clause_obligations(
wfcx.infcx,
wfcx.param_env,
wfcx.body_def_id,
normalized_bound,
bound_span,
)
});
wfcx.register_obligations(wf_obligations);
}
fn check_item_fn(
tcx: TyCtxt<'_>,
def_id: LocalDefId,
ident: Ident,
span: Span,
decl: &hir::FnDecl<'_>,
) -> Result<(), ErrorGuaranteed> {
enter_wf_checking_ctxt(tcx, span, def_id, |wfcx| {
let sig = tcx.fn_sig(def_id).instantiate_identity();
check_fn_or_method(wfcx, ident.span, sig, decl, def_id);
Ok(())
})
}
enum UnsizedHandling {
Forbid,
Allow,
AllowIfForeignTail,
}
fn check_item_type(
tcx: TyCtxt<'_>,
item_id: LocalDefId,
ty_span: Span,
unsized_handling: UnsizedHandling,
) -> Result<(), ErrorGuaranteed> {
debug!("check_item_type: {:?}", item_id);
enter_wf_checking_ctxt(tcx, ty_span, item_id, |wfcx| {
let ty = tcx.type_of(item_id).instantiate_identity();
let item_ty = wfcx.normalize(ty_span, Some(WellFormedLoc::Ty(item_id)), ty);
let forbid_unsized = match unsized_handling {
UnsizedHandling::Forbid => true,
UnsizedHandling::Allow => false,
UnsizedHandling::AllowIfForeignTail => {
let tail =
tcx.struct_tail_for_codegen(item_ty, wfcx.infcx.typing_env(wfcx.param_env));
!matches!(tail.kind(), ty::Foreign(_))
}
};
wfcx.register_wf_obligation(ty_span, Some(WellFormedLoc::Ty(item_id)), item_ty.into());
if forbid_unsized {
wfcx.register_bound(
traits::ObligationCause::new(
ty_span,
wfcx.body_def_id,
ObligationCauseCode::WellFormed(None),
),
wfcx.param_env,
item_ty,
tcx.require_lang_item(LangItem::Sized, None),
);
}
// Ensure that the end result is `Sync` in a non-thread local `static`.
let should_check_for_sync = tcx.static_mutability(item_id.to_def_id())
== Some(hir::Mutability::Not)
&& !tcx.is_foreign_item(item_id.to_def_id())
&& !tcx.is_thread_local_static(item_id.to_def_id());
if should_check_for_sync {
wfcx.register_bound(
traits::ObligationCause::new(
ty_span,
wfcx.body_def_id,
ObligationCauseCode::SharedStatic,
),
wfcx.param_env,
item_ty,
tcx.require_lang_item(LangItem::Sync, Some(ty_span)),
);
}
Ok(())
})
}
#[instrument(level = "debug", skip(tcx, hir_self_ty, hir_trait_ref))]
fn check_impl<'tcx>(
tcx: TyCtxt<'tcx>,
item: &'tcx hir::Item<'tcx>,
hir_self_ty: &hir::Ty<'_>,
hir_trait_ref: &Option<hir::TraitRef<'_>>,
) -> Result<(), ErrorGuaranteed> {
enter_wf_checking_ctxt(tcx, item.span, item.owner_id.def_id, |wfcx| {
match hir_trait_ref {
Some(hir_trait_ref) => {
// `#[rustc_reservation_impl]` impls are not real impls and
// therefore don't need to be WF (the trait's `Self: Trait` predicate
// won't hold).
let trait_ref = tcx.impl_trait_ref(item.owner_id).unwrap().instantiate_identity();
// Avoid bogus "type annotations needed `Foo: Bar`" errors on `impl Bar for Foo` in case
// other `Foo` impls are incoherent.
tcx.ensure().coherent_trait(trait_ref.def_id)?;
let trait_span = hir_trait_ref.path.span;
let trait_ref = wfcx.normalize(
trait_span,
Some(WellFormedLoc::Ty(item.hir_id().expect_owner().def_id)),
trait_ref,
);
let trait_pred =
ty::TraitPredicate { trait_ref, polarity: ty::PredicatePolarity::Positive };
let mut obligations = traits::wf::trait_obligations(
wfcx.infcx,
wfcx.param_env,
wfcx.body_def_id,
trait_pred,
trait_span,
item,
);
for obligation in &mut obligations {
if obligation.cause.span != trait_span {
// We already have a better span.
continue;
}
if let Some(pred) = obligation.predicate.as_trait_clause()
&& pred.skip_binder().self_ty() == trait_ref.self_ty()
{
obligation.cause.span = hir_self_ty.span;
}
if let Some(pred) = obligation.predicate.as_projection_clause()
&& pred.skip_binder().self_ty() == trait_ref.self_ty()
{
obligation.cause.span = hir_self_ty.span;
}
}
// Ensure that the `~const` where clauses of the trait hold for the impl.
if tcx.is_conditionally_const(item.owner_id.def_id) {
for (bound, _) in
tcx.const_conditions(trait_ref.def_id).instantiate(tcx, trait_ref.args)
{
let bound = wfcx.normalize(
item.span,
Some(WellFormedLoc::Ty(item.hir_id().expect_owner().def_id)),
bound,
);
wfcx.register_obligation(Obligation::new(
tcx,
ObligationCause::new(
hir_self_ty.span,
wfcx.body_def_id,
ObligationCauseCode::WellFormed(None),
),
wfcx.param_env,
bound.to_host_effect_clause(tcx, ty::BoundConstness::Maybe),
))
}
}
debug!(?obligations);
wfcx.register_obligations(obligations);
}
None => {
let self_ty = tcx.type_of(item.owner_id).instantiate_identity();
let self_ty = wfcx.normalize(
item.span,
Some(WellFormedLoc::Ty(item.hir_id().expect_owner().def_id)),
self_ty,
);
wfcx.register_wf_obligation(
hir_self_ty.span,
Some(WellFormedLoc::Ty(item.hir_id().expect_owner().def_id)),
self_ty.into(),
);
}
}
check_where_clauses(wfcx, item.span, item.owner_id.def_id);
Ok(())
})
}
/// Checks where-clauses and inline bounds that are declared on `def_id`.
#[instrument(level = "debug", skip(wfcx))]
fn check_where_clauses<'tcx>(wfcx: &WfCheckingCtxt<'_, 'tcx>, span: Span, def_id: LocalDefId) {
let infcx = wfcx.infcx;
let tcx = wfcx.tcx();
let predicates = tcx.predicates_of(def_id.to_def_id());
let generics = tcx.generics_of(def_id);
// Check that concrete defaults are well-formed. See test `type-check-defaults.rs`.
// For example, this forbids the declaration:
//
// struct Foo<T = Vec<[u32]>> { .. }
//
// Here, the default `Vec<[u32]>` is not WF because `[u32]: Sized` does not hold.
for param in &generics.own_params {
if let Some(default) = param.default_value(tcx).map(ty::EarlyBinder::instantiate_identity) {
// Ignore dependent defaults -- that is, where the default of one type
// parameter includes another (e.g., `<T, U = T>`). In those cases, we can't
// be sure if it will error or not as user might always specify the other.
// FIXME(generic_const_exprs): This is incorrect when dealing with unused const params.
// E.g: `struct Foo<const N: usize, const M: usize = { 1 - 2 }>;`. Here, we should
// eagerly error but we don't as we have `ConstKind::Unevaluated(.., [N, M])`.
if !default.has_param() {
wfcx.register_wf_obligation(
tcx.def_span(param.def_id),
matches!(param.kind, GenericParamDefKind::Type { .. })
.then(|| WellFormedLoc::Ty(param.def_id.expect_local())),
default,
);
}
}
}
// Check that trait predicates are WF when params are instantiated with their defaults.
// We don't want to overly constrain the predicates that may be written but we want to
// catch cases where a default my never be applied such as `struct Foo<T: Copy = String>`.
// Therefore we check if a predicate which contains a single type param
// with a concrete default is WF with that default instantiated.
// For more examples see tests `defaults-well-formedness.rs` and `type-check-defaults.rs`.
//
// First we build the defaulted generic parameters.
let args = GenericArgs::for_item(tcx, def_id.to_def_id(), |param, _| {
if param.index >= generics.parent_count as u32
// If the param has a default, ...
&& let Some(default) = param.default_value(tcx).map(ty::EarlyBinder::instantiate_identity)
// ... and it's not a dependent default, ...
&& !default.has_param()
{
// ... then instantiate it with the default.
return default;
}
tcx.mk_param_from_def(param)
});
// Now we build the instantiated predicates.
let default_obligations = predicates
.predicates
.iter()
.flat_map(|&(pred, sp)| {
#[derive(Default)]
struct CountParams {
params: FxHashSet<u32>,
}
impl<'tcx> ty::visit::TypeVisitor<TyCtxt<'tcx>> for CountParams {
type Result = ControlFlow<()>;
fn visit_ty(&mut self, t: Ty<'tcx>) -> Self::Result {
if let ty::Param(param) = t.kind() {
self.params.insert(param.index);
}
t.super_visit_with(self)
}
fn visit_region(&mut self, _: ty::Region<'tcx>) -> Self::Result {
ControlFlow::Break(())
}
fn visit_const(&mut self, c: ty::Const<'tcx>) -> Self::Result {
if let ty::ConstKind::Param(param) = c.kind() {
self.params.insert(param.index);
}
c.super_visit_with(self)
}
}
let mut param_count = CountParams::default();
let has_region = pred.visit_with(&mut param_count).is_break();
let instantiated_pred = ty::EarlyBinder::bind(pred).instantiate(tcx, args);
// Don't check non-defaulted params, dependent defaults (including lifetimes)
// or preds with multiple params.
if instantiated_pred.has_non_region_param()
|| param_count.params.len() > 1
|| has_region
{
None
} else if predicates.predicates.iter().any(|&(p, _)| p == instantiated_pred) {
// Avoid duplication of predicates that contain no parameters, for example.
None
} else {
Some((instantiated_pred, sp))
}
})
.map(|(pred, sp)| {
// Convert each of those into an obligation. So if you have
// something like `struct Foo<T: Copy = String>`, we would
// take that predicate `T: Copy`, instantiated with `String: Copy`
// (actually that happens in the previous `flat_map` call),
// and then try to prove it (in this case, we'll fail).
//
// Note the subtle difference from how we handle `predicates`
// below: there, we are not trying to prove those predicates
// to be *true* but merely *well-formed*.
let pred = wfcx.normalize(sp, None, pred);
let cause = traits::ObligationCause::new(
sp,
wfcx.body_def_id,
ObligationCauseCode::WhereClause(def_id.to_def_id(), DUMMY_SP),
);
Obligation::new(tcx, cause, wfcx.param_env, pred)
});
let predicates = predicates.instantiate_identity(tcx);
let predicates = wfcx.normalize(span, None, predicates);
debug!(?predicates.predicates);
assert_eq!(predicates.predicates.len(), predicates.spans.len());
let wf_obligations = predicates.into_iter().flat_map(|(p, sp)| {
traits::wf::clause_obligations(infcx, wfcx.param_env, wfcx.body_def_id, p, sp)
});
let obligations: Vec<_> = wf_obligations.chain(default_obligations).collect();
wfcx.register_obligations(obligations);
}
#[instrument(level = "debug", skip(wfcx, span, hir_decl))]
fn check_fn_or_method<'tcx>(
wfcx: &WfCheckingCtxt<'_, 'tcx>,
span: Span,
sig: ty::PolyFnSig<'tcx>,
hir_decl: &hir::FnDecl<'_>,
def_id: LocalDefId,
) {
let tcx = wfcx.tcx();
let mut sig = tcx.liberate_late_bound_regions(def_id.to_def_id(), sig);
// Normalize the input and output types one at a time, using a different
// `WellFormedLoc` for each. We cannot call `normalize_associated_types`
// on the entire `FnSig`, since this would use the same `WellFormedLoc`
// for each type, preventing the HIR wf check from generating
// a nice error message.
let arg_span =
|idx| hir_decl.inputs.get(idx).map_or(hir_decl.output.span(), |arg: &hir::Ty<'_>| arg.span);
sig.inputs_and_output =
tcx.mk_type_list_from_iter(sig.inputs_and_output.iter().enumerate().map(|(idx, ty)| {
wfcx.normalize(
arg_span(idx),
Some(WellFormedLoc::Param {
function: def_id,
// Note that the `param_idx` of the output type is
// one greater than the index of the last input type.
param_idx: idx,
}),
ty,
)
}));
for (idx, ty) in sig.inputs_and_output.iter().enumerate() {
wfcx.register_wf_obligation(
arg_span(idx),
Some(WellFormedLoc::Param { function: def_id, param_idx: idx }),
ty.into(),
);
}
check_where_clauses(wfcx, span, def_id);
if sig.abi == ExternAbi::RustCall {
let span = tcx.def_span(def_id);
let has_implicit_self = hir_decl.implicit_self != hir::ImplicitSelfKind::None;
let mut inputs = sig.inputs().iter().skip(if has_implicit_self { 1 } else { 0 });
// Check that the argument is a tuple and is sized
if let Some(ty) = inputs.next() {
wfcx.register_bound(
ObligationCause::new(span, wfcx.body_def_id, ObligationCauseCode::RustCall),
wfcx.param_env,
*ty,
tcx.require_lang_item(hir::LangItem::Tuple, Some(span)),
);
wfcx.register_bound(
ObligationCause::new(span, wfcx.body_def_id, ObligationCauseCode::RustCall),
wfcx.param_env,
*ty,
tcx.require_lang_item(hir::LangItem::Sized, Some(span)),
);
} else {
tcx.dcx().span_err(
hir_decl.inputs.last().map_or(span, |input| input.span),
"functions with the \"rust-call\" ABI must take a single non-self tuple argument",
);
}
// No more inputs other than the `self` type and the tuple type
if inputs.next().is_some() {
tcx.dcx().span_err(
hir_decl.inputs.last().map_or(span, |input| input.span),
"functions with the \"rust-call\" ABI must take a single non-self tuple argument",
);
}
}
}
/// The `arbitrary_self_types_pointers` feature implies `arbitrary_self_types`.
#[derive(Clone, Copy, PartialEq)]
enum ArbitrarySelfTypesLevel {
Basic, // just arbitrary_self_types
WithPointers, // both arbitrary_self_types and arbitrary_self_types_pointers
}
#[instrument(level = "debug", skip(wfcx))]
fn check_method_receiver<'tcx>(
wfcx: &WfCheckingCtxt<'_, 'tcx>,
fn_sig: &hir::FnSig<'_>,
method: ty::AssocItem,
self_ty: Ty<'tcx>,
) -> Result<(), ErrorGuaranteed> {
let tcx = wfcx.tcx();
if !method.fn_has_self_parameter {
return Ok(());
}
let span = fn_sig.decl.inputs[0].span;
let sig = tcx.fn_sig(method.def_id).instantiate_identity();
let sig = tcx.liberate_late_bound_regions(method.def_id, sig);
let sig = wfcx.normalize(span, None, sig);
debug!("check_method_receiver: sig={:?}", sig);
let self_ty = wfcx.normalize(span, None, self_ty);
let receiver_ty = sig.inputs()[0];
let receiver_ty = wfcx.normalize(span, None, receiver_ty);
// If the receiver already has errors reported, consider it valid to avoid
// unnecessary errors (#58712).
if receiver_ty.references_error() {
return Ok(());
}
let arbitrary_self_types_level = if tcx.features().arbitrary_self_types_pointers() {
Some(ArbitrarySelfTypesLevel::WithPointers)
} else if tcx.features().arbitrary_self_types() {
Some(ArbitrarySelfTypesLevel::Basic)
} else {
None
};
let generics = tcx.generics_of(method.def_id);
let receiver_validity =
receiver_is_valid(wfcx, span, receiver_ty, self_ty, arbitrary_self_types_level, generics);
if let Err(receiver_validity_err) = receiver_validity {
return Err(match arbitrary_self_types_level {
// Wherever possible, emit a message advising folks that the features
// `arbitrary_self_types` or `arbitrary_self_types_pointers` might
// have helped.
None if receiver_is_valid(
wfcx,
span,
receiver_ty,
self_ty,
Some(ArbitrarySelfTypesLevel::Basic),
generics,
)
.is_ok() =>
{
// Report error; would have worked with `arbitrary_self_types`.
feature_err(
&tcx.sess,
sym::arbitrary_self_types,
span,
format!(
"`{receiver_ty}` cannot be used as the type of `self` without \
the `arbitrary_self_types` feature",
),
)
.with_help(fluent::hir_analysis_invalid_receiver_ty_help)
.emit()
}
None | Some(ArbitrarySelfTypesLevel::Basic)
if receiver_is_valid(
wfcx,
span,
receiver_ty,
self_ty,
Some(ArbitrarySelfTypesLevel::WithPointers),
generics,
)
.is_ok() =>
{
// Report error; would have worked with `arbitrary_self_types_pointers`.
feature_err(
&tcx.sess,
sym::arbitrary_self_types_pointers,
span,
format!(
"`{receiver_ty}` cannot be used as the type of `self` without \
the `arbitrary_self_types_pointers` feature",
),
)
.with_help(fluent::hir_analysis_invalid_receiver_ty_help)
.emit()
}
_ =>
// Report error; would not have worked with `arbitrary_self_types[_pointers]`.
{
match receiver_validity_err {
ReceiverValidityError::DoesNotDeref if arbitrary_self_types_level.is_some() => {
let hint = match receiver_ty
.builtin_deref(false)
.unwrap_or(receiver_ty)
.ty_adt_def()
.and_then(|adt_def| tcx.get_diagnostic_name(adt_def.did()))
{
Some(sym::RcWeak | sym::ArcWeak) => Some(InvalidReceiverTyHint::Weak),
Some(sym::NonNull) => Some(InvalidReceiverTyHint::NonNull),
_ => None,
};
tcx.dcx().emit_err(errors::InvalidReceiverTy { span, receiver_ty, hint })
}
ReceiverValidityError::DoesNotDeref => {
tcx.dcx().emit_err(errors::InvalidReceiverTyNoArbitrarySelfTypes {
span,
receiver_ty,
})
}
ReceiverValidityError::MethodGenericParamUsed => {
tcx.dcx().emit_err(errors::InvalidGenericReceiverTy { span, receiver_ty })
}
}
}
});
}
Ok(())
}
/// Error cases which may be returned from `receiver_is_valid`. These error
/// cases are generated in this function as they may be unearthed as we explore
/// the `autoderef` chain, but they're converted to diagnostics in the caller.
enum ReceiverValidityError {
/// The self type does not get to the receiver type by following the
/// autoderef chain.
DoesNotDeref,
/// A type was found which is a method type parameter, and that's not allowed.
MethodGenericParamUsed,
}
/// Confirms that a type is not a type parameter referring to one of the
/// method's type params.
fn confirm_type_is_not_a_method_generic_param(
ty: Ty<'_>,
method_generics: &ty::Generics,
) -> Result<(), ReceiverValidityError> {
if let ty::Param(param) = ty.kind() {
if (param.index as usize) >= method_generics.parent_count {
return Err(ReceiverValidityError::MethodGenericParamUsed);
}
}
Ok(())
}
/// Returns whether `receiver_ty` would be considered a valid receiver type for `self_ty`. If
/// `arbitrary_self_types` is enabled, `receiver_ty` must transitively deref to `self_ty`, possibly
/// through a `*const/mut T` raw pointer if `arbitrary_self_types_pointers` is also enabled.
/// If neither feature is enabled, the requirements are more strict: `receiver_ty` must implement
/// `Receiver` and directly implement `Deref<Target = self_ty>`.
///
/// N.B., there are cases this function returns `true` but causes an error to be emitted,
/// particularly when `receiver_ty` derefs to a type that is the same as `self_ty` but has the
/// wrong lifetime. Be careful of this if you are calling this function speculatively.
fn receiver_is_valid<'tcx>(
wfcx: &WfCheckingCtxt<'_, 'tcx>,
span: Span,
receiver_ty: Ty<'tcx>,
self_ty: Ty<'tcx>,
arbitrary_self_types_enabled: Option<ArbitrarySelfTypesLevel>,
method_generics: &ty::Generics,
) -> Result<(), ReceiverValidityError> {
let infcx = wfcx.infcx;
let tcx = wfcx.tcx();
let cause =
ObligationCause::new(span, wfcx.body_def_id, traits::ObligationCauseCode::MethodReceiver);
// Special case `receiver == self_ty`, which doesn't necessarily require the `Receiver` lang item.
if let Ok(()) = wfcx.infcx.commit_if_ok(|_| {
let ocx = ObligationCtxt::new(wfcx.infcx);
ocx.eq(&cause, wfcx.param_env, self_ty, receiver_ty)?;
if ocx.select_all_or_error().is_empty() { Ok(()) } else { Err(NoSolution) }
}) {
return Ok(());
}
confirm_type_is_not_a_method_generic_param(receiver_ty, method_generics)?;
let mut autoderef = Autoderef::new(infcx, wfcx.param_env, wfcx.body_def_id, span, receiver_ty);
// The `arbitrary_self_types` feature allows custom smart pointer
// types to be method receivers, as identified by following the Receiver<Target=T>
// chain.
if arbitrary_self_types_enabled.is_some() {
autoderef = autoderef.use_receiver_trait();
}
// The `arbitrary_self_types_pointers` feature allows raw pointer receivers like `self: *const Self`.
if arbitrary_self_types_enabled == Some(ArbitrarySelfTypesLevel::WithPointers) {
autoderef = autoderef.include_raw_pointers();
}
// Keep dereferencing `receiver_ty` until we get to `self_ty`.
while let Some((potential_self_ty, _)) = autoderef.next() {
debug!(
"receiver_is_valid: potential self type `{:?}` to match `{:?}`",
potential_self_ty, self_ty
);
confirm_type_is_not_a_method_generic_param(potential_self_ty, method_generics)?;
// Check if the self type unifies. If it does, then commit the result
// since it may have region side-effects.
if let Ok(()) = wfcx.infcx.commit_if_ok(|_| {
let ocx = ObligationCtxt::new(wfcx.infcx);
ocx.eq(&cause, wfcx.param_env, self_ty, potential_self_ty)?;
if ocx.select_all_or_error().is_empty() { Ok(()) } else { Err(NoSolution) }
}) {
wfcx.register_obligations(autoderef.into_obligations());
return Ok(());
}
// Without `feature(arbitrary_self_types)`, we require that each step in the
// deref chain implement `LegacyReceiver`.
if arbitrary_self_types_enabled.is_none() {
let legacy_receiver_trait_def_id =
tcx.require_lang_item(LangItem::LegacyReceiver, Some(span));
if !legacy_receiver_is_implemented(
wfcx,
legacy_receiver_trait_def_id,
cause.clone(),
potential_self_ty,
) {
// We cannot proceed.
break;
}
// Register the bound, in case it has any region side-effects.
wfcx.register_bound(
cause.clone(),
wfcx.param_env,
potential_self_ty,
legacy_receiver_trait_def_id,
);
}
}
debug!("receiver_is_valid: type `{:?}` does not deref to `{:?}`", receiver_ty, self_ty);
Err(ReceiverValidityError::DoesNotDeref)
}
fn legacy_receiver_is_implemented<'tcx>(
wfcx: &WfCheckingCtxt<'_, 'tcx>,
legacy_receiver_trait_def_id: DefId,
cause: ObligationCause<'tcx>,
receiver_ty: Ty<'tcx>,
) -> bool {
let tcx = wfcx.tcx();
let trait_ref = ty::TraitRef::new(tcx, legacy_receiver_trait_def_id, [receiver_ty]);
let obligation = Obligation::new(tcx, cause, wfcx.param_env, trait_ref);
if wfcx.infcx.predicate_must_hold_modulo_regions(&obligation) {
true
} else {
debug!(
"receiver_is_implemented: type `{:?}` does not implement `LegacyReceiver` trait",
receiver_ty
);
false
}
}
fn check_variances_for_type_defn<'tcx>(
tcx: TyCtxt<'tcx>,
item: &'tcx hir::Item<'tcx>,
hir_generics: &hir::Generics<'tcx>,
) {
match item.kind {
ItemKind::Enum(..) | ItemKind::Struct(..) | ItemKind::Union(..) => {
// Ok
}
ItemKind::TyAlias(..) => {
assert!(
tcx.type_alias_is_lazy(item.owner_id),
"should not be computing variance of non-weak type alias"
);
}
kind => span_bug!(item.span, "cannot compute the variances of {kind:?}"),
}
let ty_predicates = tcx.predicates_of(item.owner_id);
assert_eq!(ty_predicates.parent, None);
let variances = tcx.variances_of(item.owner_id);
let mut constrained_parameters: FxHashSet<_> = variances
.iter()
.enumerate()
.filter(|&(_, &variance)| variance != ty::Bivariant)
.map(|(index, _)| Parameter(index as u32))
.collect();
identify_constrained_generic_params(tcx, ty_predicates, None, &mut constrained_parameters);
// Lazily calculated because it is only needed in case of an error.
let explicitly_bounded_params = LazyCell::new(|| {
let icx = crate::collect::ItemCtxt::new(tcx, item.owner_id.def_id);
hir_generics
.predicates
.iter()
.filter_map(|predicate| match predicate.kind {
hir::WherePredicateKind::BoundPredicate(predicate) => {
match icx.lower_ty(predicate.bounded_ty).kind() {
ty::Param(data) => Some(Parameter(data.index)),
_ => None,
}
}
_ => None,
})
.collect::<FxHashSet<_>>()
});
let ty_generics = tcx.generics_of(item.owner_id);
for (index, _) in variances.iter().enumerate() {
let parameter = Parameter(index as u32);
if constrained_parameters.contains(¶meter) {
continue;
}
let ty_param = &ty_generics.own_params[index];
let hir_param = &hir_generics.params[index];
if ty_param.def_id != hir_param.def_id.into() {
// Valid programs always have lifetimes before types in the generic parameter list.
// ty_generics are normalized to be in this required order, and variances are built
// from ty generics, not from hir generics. but we need hir generics to get
// a span out.
//
// If they aren't in the same order, then the user has written invalid code, and already
// got an error about it (or I'm wrong about this).
tcx.dcx().span_delayed_bug(
hir_param.span,
"hir generics and ty generics in different order",
);
continue;
}
// Look for `ErrorGuaranteed` deeply within this type.
if let ControlFlow::Break(ErrorGuaranteed { .. }) = tcx
.type_of(item.owner_id)
.instantiate_identity()
.visit_with(&mut HasErrorDeep { tcx, seen: Default::default() })
{
continue;
}
match hir_param.name {
hir::ParamName::Error => {}
_ => {
let has_explicit_bounds = explicitly_bounded_params.contains(¶meter);
report_bivariance(tcx, hir_param, has_explicit_bounds, item);
}
}
}
}
/// Look for `ErrorGuaranteed` deeply within structs' (unsubstituted) fields.
struct HasErrorDeep<'tcx> {
tcx: TyCtxt<'tcx>,
seen: FxHashSet<DefId>,
}
impl<'tcx> TypeVisitor<TyCtxt<'tcx>> for HasErrorDeep<'tcx> {
type Result = ControlFlow<ErrorGuaranteed>;
fn visit_ty(&mut self, ty: Ty<'tcx>) -> Self::Result {
match *ty.kind() {
ty::Adt(def, _) => {
if self.seen.insert(def.did()) {
for field in def.all_fields() {
self.tcx.type_of(field.did).instantiate_identity().visit_with(self)?;
}
}
}
ty::Error(guar) => return ControlFlow::Break(guar),
_ => {}
}
ty.super_visit_with(self)
}
fn visit_region(&mut self, r: ty::Region<'tcx>) -> Self::Result {
if let Err(guar) = r.error_reported() {
ControlFlow::Break(guar)
} else {
ControlFlow::Continue(())
}
}
fn visit_const(&mut self, c: ty::Const<'tcx>) -> Self::Result {
if let Err(guar) = c.error_reported() {
ControlFlow::Break(guar)
} else {
ControlFlow::Continue(())
}
}
}
fn report_bivariance<'tcx>(
tcx: TyCtxt<'tcx>,
param: &'tcx hir::GenericParam<'tcx>,
has_explicit_bounds: bool,
item: &'tcx hir::Item<'tcx>,
) -> ErrorGuaranteed {
let param_name = param.name.ident();
let help = match item.kind {
ItemKind::Enum(..) | ItemKind::Struct(..) | ItemKind::Union(..) => {
if let Some(def_id) = tcx.lang_items().phantom_data() {
errors::UnusedGenericParameterHelp::Adt {
param_name,
phantom_data: tcx.def_path_str(def_id),
}
} else {
errors::UnusedGenericParameterHelp::AdtNoPhantomData { param_name }
}
}
ItemKind::TyAlias(..) => errors::UnusedGenericParameterHelp::TyAlias { param_name },
item_kind => bug!("report_bivariance: unexpected item kind: {item_kind:?}"),
};
let mut usage_spans = vec![];
intravisit::walk_item(
&mut CollectUsageSpans { spans: &mut usage_spans, param_def_id: param.def_id.to_def_id() },
item,
);
if !usage_spans.is_empty() {
// First, check if the ADT/LTA is (probably) cyclical. We say probably here, since we're
// not actually looking into substitutions, just walking through fields / the "RHS".
// We don't recurse into the hidden types of opaques or anything else fancy.
let item_def_id = item.owner_id.to_def_id();
let is_probably_cyclical =
IsProbablyCyclical { tcx, item_def_id, seen: Default::default() }
.visit_def(item_def_id)
.is_break();
// If the ADT/LTA is cyclical, then if at least one usage of the type parameter or
// the `Self` alias is present in the, then it's probably a cyclical struct/ type
// alias, and we should call those parameter usages recursive rather than just saying
// they're unused...
//
// We currently report *all* of the parameter usages, since computing the exact
// subset is very involved, and the fact we're mentioning recursion at all is
// likely to guide the user in the right direction.
if is_probably_cyclical {
return tcx.dcx().emit_err(errors::RecursiveGenericParameter {
spans: usage_spans,
param_span: param.span,
param_name,
param_def_kind: tcx.def_descr(param.def_id.to_def_id()),
help,
note: (),
});
}
}
let const_param_help =
matches!(param.kind, hir::GenericParamKind::Type { .. } if !has_explicit_bounds);
let mut diag = tcx.dcx().create_err(errors::UnusedGenericParameter {
span: param.span,
param_name,
param_def_kind: tcx.def_descr(param.def_id.to_def_id()),
usage_spans,
help,
const_param_help,
});
diag.code(E0392);
diag.emit()
}
/// Detects cases where an ADT/LTA is trivially cyclical -- we want to detect this so
/// we only mention that its parameters are used cyclically if the ADT/LTA is truly
/// cyclical.
///
/// Notably, we don't consider substitutions here, so this may have false positives.
struct IsProbablyCyclical<'tcx> {
tcx: TyCtxt<'tcx>,
item_def_id: DefId,
seen: FxHashSet<DefId>,
}
impl<'tcx> IsProbablyCyclical<'tcx> {
fn visit_def(&mut self, def_id: DefId) -> ControlFlow<(), ()> {
match self.tcx.def_kind(def_id) {
DefKind::Struct | DefKind::Enum | DefKind::Union => {
self.tcx.adt_def(def_id).all_fields().try_for_each(|field| {
self.tcx.type_of(field.did).instantiate_identity().visit_with(self)
})
}
DefKind::TyAlias if self.tcx.type_alias_is_lazy(def_id) => {
self.tcx.type_of(def_id).instantiate_identity().visit_with(self)
}
_ => ControlFlow::Continue(()),
}
}
}
impl<'tcx> TypeVisitor<TyCtxt<'tcx>> for IsProbablyCyclical<'tcx> {
type Result = ControlFlow<(), ()>;
fn visit_ty(&mut self, ty: Ty<'tcx>) -> ControlFlow<(), ()> {
let def_id = match ty.kind() {
ty::Adt(adt_def, _) => Some(adt_def.did()),
ty::Alias(ty::Weak, alias_ty) => Some(alias_ty.def_id),
_ => None,
};
if let Some(def_id) = def_id {
if def_id == self.item_def_id {
return ControlFlow::Break(());
}
if self.seen.insert(def_id) {
self.visit_def(def_id)?;
}
}
ty.super_visit_with(self)
}
}
/// Collect usages of the `param_def_id` and `Res::SelfTyAlias` in the HIR.
///
/// This is used to report places where the user has used parameters in a
/// non-variance-constraining way for better bivariance errors.
struct CollectUsageSpans<'a> {
spans: &'a mut Vec<Span>,
param_def_id: DefId,
}
impl<'tcx> Visitor<'tcx> for CollectUsageSpans<'_> {
type Result = ();
fn visit_generics(&mut self, _g: &'tcx rustc_hir::Generics<'tcx>) -> Self::Result {
// Skip the generics. We only care about fields, not where clause/param bounds.
}
fn visit_ty(&mut self, t: &'tcx hir::Ty<'tcx>) -> Self::Result {
if let hir::TyKind::Path(hir::QPath::Resolved(None, qpath)) = t.kind {
if let Res::Def(DefKind::TyParam, def_id) = qpath.res
&& def_id == self.param_def_id
{
self.spans.push(t.span);
return;
} else if let Res::SelfTyAlias { .. } = qpath.res {
self.spans.push(t.span);
return;
}
}
intravisit::walk_ty(self, t);
}
}
impl<'tcx> WfCheckingCtxt<'_, 'tcx> {
/// Feature gates RFC 2056 -- trivial bounds, checking for global bounds that
/// aren't true.
#[instrument(level = "debug", skip(self))]
fn check_false_global_bounds(&mut self) {
let tcx = self.ocx.infcx.tcx;
let mut span = self.span;
let empty_env = ty::ParamEnv::empty();
let predicates_with_span = tcx.predicates_of(self.body_def_id).predicates.iter().copied();
// Check elaborated bounds.
let implied_obligations = traits::elaborate(tcx, predicates_with_span);
for (pred, obligation_span) in implied_obligations {
// We lower empty bounds like `Vec<dyn Copy>:` as
// `WellFormed(Vec<dyn Copy>)`, which will later get checked by
// regular WF checking
if let ty::ClauseKind::WellFormed(..) = pred.kind().skip_binder() {
continue;
}
// Match the existing behavior.
if pred.is_global() && !pred.has_type_flags(TypeFlags::HAS_BINDER_VARS) {
let pred = self.normalize(span, None, pred);
// only use the span of the predicate clause (#90869)
let hir_node = tcx.hir_node_by_def_id(self.body_def_id);
if let Some(hir::Generics { predicates, .. }) = hir_node.generics() {
span = predicates
.iter()
// There seems to be no better way to find out which predicate we are in
.find(|pred| pred.span.contains(obligation_span))
.map(|pred| pred.span)
.unwrap_or(obligation_span);
}
let obligation = Obligation::new(
tcx,
traits::ObligationCause::new(
span,
self.body_def_id,
ObligationCauseCode::TrivialBound,
),
empty_env,
pred,
);
self.ocx.register_obligation(obligation);
}
}
}
}
fn check_mod_type_wf(tcx: TyCtxt<'_>, module: LocalModDefId) -> Result<(), ErrorGuaranteed> {
let items = tcx.hir_module_items(module);
let mut res = items.par_items(|item| tcx.ensure().check_well_formed(item.owner_id.def_id));
res =
res.and(items.par_impl_items(|item| tcx.ensure().check_well_formed(item.owner_id.def_id)));
res =
res.and(items.par_trait_items(|item| tcx.ensure().check_well_formed(item.owner_id.def_id)));
res = res
.and(items.par_foreign_items(|item| tcx.ensure().check_well_formed(item.owner_id.def_id)));
res = res.and(items.par_opaques(|item| tcx.ensure().check_well_formed(item)));
if module == LocalModDefId::CRATE_DEF_ID {
super::entry::check_for_entry_fn(tcx);
}
res
}
fn lint_redundant_lifetimes<'tcx>(
tcx: TyCtxt<'tcx>,
owner_id: LocalDefId,
outlives_env: &OutlivesEnvironment<'tcx>,
) {
let def_kind = tcx.def_kind(owner_id);
match def_kind {
DefKind::Struct
| DefKind::Union
| DefKind::Enum
| DefKind::Trait
| DefKind::TraitAlias
| DefKind::Fn
| DefKind::Const
| DefKind::Impl { of_trait: _ } => {
// Proceed
}
DefKind::AssocFn | DefKind::AssocTy | DefKind::AssocConst => {
let parent_def_id = tcx.local_parent(owner_id);
if matches!(tcx.def_kind(parent_def_id), DefKind::Impl { of_trait: true }) {
// Don't check for redundant lifetimes for associated items of trait
// implementations, since the signature is required to be compatible
// with the trait, even if the implementation implies some lifetimes
// are redundant.
return;
}
}
DefKind::Mod
| DefKind::Variant
| DefKind::TyAlias
| DefKind::ForeignTy
| DefKind::TyParam
| DefKind::ConstParam
| DefKind::Static { .. }
| DefKind::Ctor(_, _)
| DefKind::Macro(_)
| DefKind::ExternCrate
| DefKind::Use
| DefKind::ForeignMod
| DefKind::AnonConst
| DefKind::InlineConst
| DefKind::OpaqueTy
| DefKind::Field
| DefKind::LifetimeParam
| DefKind::GlobalAsm
| DefKind::Closure
| DefKind::SyntheticCoroutineBody => return,
}
// The ordering of this lifetime map is a bit subtle.
//
// Specifically, we want to find a "candidate" lifetime that precedes a "victim" lifetime,
// where we can prove that `'candidate = 'victim`.
//
// `'static` must come first in this list because we can never replace `'static` with
// something else, but if we find some lifetime `'a` where `'a = 'static`, we want to
// suggest replacing `'a` with `'static`.
let mut lifetimes = vec![tcx.lifetimes.re_static];
lifetimes.extend(
ty::GenericArgs::identity_for_item(tcx, owner_id).iter().filter_map(|arg| arg.as_region()),
);
// If we are in a function, add its late-bound lifetimes too.
if matches!(def_kind, DefKind::Fn | DefKind::AssocFn) {
for (idx, var) in
tcx.fn_sig(owner_id).instantiate_identity().bound_vars().iter().enumerate()
{
let ty::BoundVariableKind::Region(kind) = var else { continue };
let kind = ty::LateParamRegionKind::from_bound(ty::BoundVar::from_usize(idx), kind);
lifetimes.push(ty::Region::new_late_param(tcx, owner_id.to_def_id(), kind));
}
}
lifetimes.retain(|candidate| candidate.has_name());
// Keep track of lifetimes which have already been replaced with other lifetimes.
// This makes sure that if `'a = 'b = 'c`, we don't say `'c` should be replaced by
// both `'a` and `'b`.
let mut shadowed = FxHashSet::default();
for (idx, &candidate) in lifetimes.iter().enumerate() {
// Don't suggest removing a lifetime twice. We only need to check this
// here and not up in the `victim` loop because equality is transitive,
// so if A = C and B = C, then A must = B, so it'll be shadowed too in
// A's victim loop.
if shadowed.contains(&candidate) {
continue;
}
for &victim in &lifetimes[(idx + 1)..] {
// All region parameters should have a `DefId` available as:
// - Late-bound parameters should be of the`BrNamed` variety,
// since we get these signatures straight from `hir_lowering`.
// - Early-bound parameters unconditionally have a `DefId` available.
//
// Any other regions (ReError/ReStatic/etc.) shouldn't matter, since we
// can't really suggest to remove them.
let Some(def_id) = victim.opt_param_def_id(tcx, owner_id.to_def_id()) else {
continue;
};
// Do not rename lifetimes not local to this item since they'll overlap
// with the lint running on the parent. We still want to consider parent
// lifetimes which make child lifetimes redundant, otherwise we would
// have truncated the `identity_for_item` args above.
if tcx.parent(def_id) != owner_id.to_def_id() {
continue;
}
// If `candidate <: victim` and `victim <: candidate`, then they're equal.
if outlives_env.free_region_map().sub_free_regions(tcx, candidate, victim)
&& outlives_env.free_region_map().sub_free_regions(tcx, victim, candidate)
{
shadowed.insert(victim);
tcx.emit_node_span_lint(
rustc_lint_defs::builtin::REDUNDANT_LIFETIMES,
tcx.local_def_id_to_hir_id(def_id.expect_local()),
tcx.def_span(def_id),
RedundantLifetimeArgsLint { candidate, victim },
);
}
}
}
}
#[derive(LintDiagnostic)]
#[diag(hir_analysis_redundant_lifetime_args)]
#[note]
struct RedundantLifetimeArgsLint<'tcx> {
/// The lifetime we have found to be redundant.
victim: ty::Region<'tcx>,
// The lifetime we can replace the victim with.
candidate: ty::Region<'tcx>,
}
pub fn provide(providers: &mut Providers) {
*providers = Providers { check_mod_type_wf, check_well_formed, ..*providers };
}