1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
use rustc_data_structures::fx::FxIndexMap;
use rustc_errors::ErrorGuaranteed;
use rustc_hir::def::DefKind;
use rustc_hir::def_id::LocalDefId;
use rustc_hir::OpaqueTyOrigin;
use rustc_infer::infer::TyCtxtInferExt as _;
use rustc_infer::infer::{InferCtxt, NllRegionVariableOrigin};
use rustc_infer::traits::{Obligation, ObligationCause};
use rustc_macros::extension;
use rustc_middle::ty::visit::TypeVisitableExt;
use rustc_middle::ty::{self, OpaqueHiddenType, OpaqueTypeKey, Ty, TyCtxt, TypeFoldable};
use rustc_middle::ty::{GenericArgKind, GenericArgs};
use rustc_span::Span;
use rustc_trait_selection::traits::error_reporting::TypeErrCtxtExt as _;
use rustc_trait_selection::traits::ObligationCtxt;

use crate::session_diagnostics::LifetimeMismatchOpaqueParam;
use crate::session_diagnostics::NonGenericOpaqueTypeParam;
use crate::universal_regions::RegionClassification;

use super::RegionInferenceContext;

impl<'tcx> RegionInferenceContext<'tcx> {
    /// Resolve any opaque types that were encountered while borrow checking
    /// this item. This is then used to get the type in the `type_of` query.
    ///
    /// For example consider `fn f<'a>(x: &'a i32) -> impl Sized + 'a { x }`.
    /// This is lowered to give HIR something like
    ///
    /// type f<'a>::_Return<'_x> = impl Sized + '_x;
    /// fn f<'a>(x: &'a i32) -> f<'a>::_Return<'a> { x }
    ///
    /// When checking the return type record the type from the return and the
    /// type used in the return value. In this case they might be `_Return<'1>`
    /// and `&'2 i32` respectively.
    ///
    /// Once we to this method, we have completed region inference and want to
    /// call `infer_opaque_definition_from_instantiation` to get the inferred
    /// type of `_Return<'_x>`. `infer_opaque_definition_from_instantiation`
    /// compares lifetimes directly, so we need to map the inference variables
    /// back to concrete lifetimes: `'static`, `ReEarlyParam` or `ReLateParam`.
    ///
    /// First we map the regions in the the generic parameters `_Return<'1>` to
    /// their `external_name` giving `_Return<'a>`. This step is a bit involved.
    /// See the [rustc-dev-guide chapter] for more info.
    ///
    /// Then we map all the lifetimes in the concrete type to an equal
    /// universal region that occurs in the opaque type's args, in this case
    /// this would result in `&'a i32`. We only consider regions in the args
    /// in case there is an equal region that does not. For example, this should
    /// be allowed:
    /// `fn f<'a: 'b, 'b: 'a>(x: *mut &'b i32) -> impl Sized + 'a { x }`
    ///
    /// This will then allow `infer_opaque_definition_from_instantiation` to
    /// determine that `_Return<'_x> = &'_x i32`.
    ///
    /// There's a slight complication around closures. Given
    /// `fn f<'a: 'a>() { || {} }` the closure's type is something like
    /// `f::<'a>::{{closure}}`. The region parameter from f is essentially
    /// ignored by type checking so ends up being inferred to an empty region.
    /// Calling `universal_upper_bound` for such a region gives `fr_fn_body`,
    /// which has no `external_name` in which case we use `'{erased}` as the
    /// region to pass to `infer_opaque_definition_from_instantiation`.
    ///
    /// [rustc-dev-guide chapter]:
    /// https://rustc-dev-guide.rust-lang.org/opaque-types-region-infer-restrictions.html
    #[instrument(level = "debug", skip(self, infcx), ret)]
    pub(crate) fn infer_opaque_types(
        &self,
        infcx: &InferCtxt<'tcx>,
        opaque_ty_decls: FxIndexMap<OpaqueTypeKey<'tcx>, OpaqueHiddenType<'tcx>>,
    ) -> FxIndexMap<LocalDefId, OpaqueHiddenType<'tcx>> {
        let mut result: FxIndexMap<LocalDefId, OpaqueHiddenType<'tcx>> = FxIndexMap::default();
        let mut decls_modulo_regions: FxIndexMap<OpaqueTypeKey<'tcx>, (OpaqueTypeKey<'tcx>, Span)> =
            FxIndexMap::default();

        for (opaque_type_key, concrete_type) in opaque_ty_decls {
            debug!(?opaque_type_key, ?concrete_type);

            let mut arg_regions: Vec<(ty::RegionVid, ty::Region<'_>)> =
                vec![(self.universal_regions.fr_static, infcx.tcx.lifetimes.re_static)];

            let opaque_type_key =
                opaque_type_key.fold_captured_lifetime_args(infcx.tcx, |region| {
                    // Use the SCC representative instead of directly using `region`.
                    // See [rustc-dev-guide chapter] § "Strict lifetime equality".
                    let scc = self.constraint_sccs.scc(region.as_var());
                    let vid = self.scc_representatives[scc];
                    let named = match self.definitions[vid].origin {
                        // Iterate over all universal regions in a consistent order and find the
                        // *first* equal region. This makes sure that equal lifetimes will have
                        // the same name and simplifies subsequent handling.
                        // See [rustc-dev-guide chapter] § "Semantic lifetime equality".
                        NllRegionVariableOrigin::FreeRegion => self
                            .universal_regions
                            .universal_regions()
                            .filter(|&ur| {
                                // See [rustc-dev-guide chapter] § "Closure restrictions".
                                !matches!(
                                    self.universal_regions.region_classification(ur),
                                    Some(RegionClassification::External)
                                )
                            })
                            .find(|&ur| self.universal_region_relations.equal(vid, ur))
                            .map(|ur| self.definitions[ur].external_name.unwrap()),
                        NllRegionVariableOrigin::Placeholder(placeholder) => {
                            Some(ty::Region::new_placeholder(infcx.tcx, placeholder))
                        }
                        NllRegionVariableOrigin::Existential { .. } => None,
                    }
                    .unwrap_or_else(|| {
                        ty::Region::new_error_with_message(
                            infcx.tcx,
                            concrete_type.span,
                            "opaque type with non-universal region args",
                        )
                    });

                    arg_regions.push((vid, named));
                    named
                });
            debug!(?opaque_type_key, ?arg_regions);

            let concrete_type = infcx.tcx.fold_regions(concrete_type, |region, _| {
                arg_regions
                    .iter()
                    .find(|&&(arg_vid, _)| self.eval_equal(region.as_var(), arg_vid))
                    .map(|&(_, arg_named)| arg_named)
                    .unwrap_or(infcx.tcx.lifetimes.re_erased)
            });
            debug!(?concrete_type);

            let ty =
                infcx.infer_opaque_definition_from_instantiation(opaque_type_key, concrete_type);

            // Sometimes, when the hidden type is an inference variable, it can happen that
            // the hidden type becomes the opaque type itself. In this case, this was an opaque
            // usage of the opaque type and we can ignore it. This check is mirrored in typeck's
            // writeback.
            // FIXME(-Znext-solver): This should be unnecessary with the new solver.
            if let ty::Alias(ty::Opaque, alias_ty) = ty.kind()
                && alias_ty.def_id == opaque_type_key.def_id.to_def_id()
                && alias_ty.args == opaque_type_key.args
            {
                continue;
            }
            // Sometimes two opaque types are the same only after we remap the generic parameters
            // back to the opaque type definition. E.g. we may have `OpaqueType<X, Y>` mapped to `(X, Y)`
            // and `OpaqueType<Y, X>` mapped to `(Y, X)`, and those are the same, but we only know that
            // once we convert the generic parameters to those of the opaque type.
            if let Some(prev) = result.get_mut(&opaque_type_key.def_id) {
                if prev.ty != ty {
                    let guar = ty.error_reported().err().unwrap_or_else(|| {
                        let (Ok(e) | Err(e)) = prev
                            .build_mismatch_error(
                                &OpaqueHiddenType { ty, span: concrete_type.span },
                                opaque_type_key.def_id,
                                infcx.tcx,
                            )
                            .map(|d| d.emit());
                        e
                    });
                    prev.ty = Ty::new_error(infcx.tcx, guar);
                }
                // Pick a better span if there is one.
                // FIXME(oli-obk): collect multiple spans for better diagnostics down the road.
                prev.span = prev.span.substitute_dummy(concrete_type.span);
            } else {
                result.insert(
                    opaque_type_key.def_id,
                    OpaqueHiddenType { ty, span: concrete_type.span },
                );
            }

            // Check that all opaque types have the same region parameters if they have the same
            // non-region parameters. This is necessary because within the new solver we perform
            // various query operations modulo regions, and thus could unsoundly select some impls
            // that don't hold.
            if !ty.references_error()
                && let Some((prev_decl_key, prev_span)) = decls_modulo_regions.insert(
                    infcx.tcx.erase_regions(opaque_type_key),
                    (opaque_type_key, concrete_type.span),
                )
                && let Some((arg1, arg2)) = std::iter::zip(
                    prev_decl_key.iter_captured_args(infcx.tcx).map(|(_, arg)| arg),
                    opaque_type_key.iter_captured_args(infcx.tcx).map(|(_, arg)| arg),
                )
                .find(|(arg1, arg2)| arg1 != arg2)
            {
                infcx.dcx().emit_err(LifetimeMismatchOpaqueParam {
                    arg: arg1,
                    prev: arg2,
                    span: prev_span,
                    prev_span: concrete_type.span,
                });
            }
        }
        result
    }

    /// Map the regions in the type to named regions. This is similar to what
    /// `infer_opaque_types` does, but can infer any universal region, not only
    /// ones from the args for the opaque type. It also doesn't double check
    /// that the regions produced are in fact equal to the named region they are
    /// replaced with. This is fine because this function is only to improve the
    /// region names in error messages.
    pub(crate) fn name_regions<T>(&self, tcx: TyCtxt<'tcx>, ty: T) -> T
    where
        T: TypeFoldable<TyCtxt<'tcx>>,
    {
        tcx.fold_regions(ty, |region, _| match *region {
            ty::ReVar(vid) => {
                let scc = self.constraint_sccs.scc(vid);

                // Special handling of higher-ranked regions.
                if !self.scc_universes[scc].is_root() {
                    match self.scc_values.placeholders_contained_in(scc).enumerate().last() {
                        // If the region contains a single placeholder then they're equal.
                        Some((0, placeholder)) => {
                            return ty::Region::new_placeholder(tcx, placeholder);
                        }

                        // Fallback: this will produce a cryptic error message.
                        _ => return region,
                    }
                }

                // Find something that we can name
                let upper_bound = self.approx_universal_upper_bound(vid);
                let upper_bound = &self.definitions[upper_bound];
                match upper_bound.external_name {
                    Some(reg) => reg,
                    None => {
                        // Nothing exact found, so we pick the first one that we find.
                        let scc = self.constraint_sccs.scc(vid);
                        for vid in self.rev_scc_graph.as_ref().unwrap().upper_bounds(scc) {
                            match self.definitions[vid].external_name {
                                None => {}
                                Some(region) if region.is_static() => {}
                                Some(region) => return region,
                            }
                        }
                        region
                    }
                }
            }
            _ => region,
        })
    }
}

#[extension(pub trait InferCtxtExt<'tcx>)]
impl<'tcx> InferCtxt<'tcx> {
    /// Given the fully resolved, instantiated type for an opaque
    /// type, i.e., the value of an inference variable like C1 or C2
    /// (*), computes the "definition type" for an opaque type
    /// definition -- that is, the inferred value of `Foo1<'x>` or
    /// `Foo2<'x>` that we would conceptually use in its definition:
    /// ```ignore (illustrative)
    /// type Foo1<'x> = impl Bar<'x> = AAA;  // <-- this type AAA
    /// type Foo2<'x> = impl Bar<'x> = BBB;  // <-- or this type BBB
    /// fn foo<'a, 'b>(..) -> (Foo1<'a>, Foo2<'b>) { .. }
    /// ```
    /// Note that these values are defined in terms of a distinct set of
    /// generic parameters (`'x` instead of `'a`) from C1 or C2. The main
    /// purpose of this function is to do that translation.
    ///
    /// (*) C1 and C2 were introduced in the comments on
    /// `register_member_constraints`. Read that comment for more context.
    ///
    /// # Parameters
    ///
    /// - `def_id`, the `impl Trait` type
    /// - `args`, the args used to instantiate this opaque type
    /// - `instantiated_ty`, the inferred type C1 -- fully resolved, lifted version of
    ///   `opaque_defn.concrete_ty`
    #[instrument(level = "debug", skip(self))]
    fn infer_opaque_definition_from_instantiation(
        &self,
        opaque_type_key: OpaqueTypeKey<'tcx>,
        instantiated_ty: OpaqueHiddenType<'tcx>,
    ) -> Ty<'tcx> {
        if let Some(e) = self.tainted_by_errors() {
            return Ty::new_error(self.tcx, e);
        }

        if let Err(guar) =
            check_opaque_type_parameter_valid(self.tcx, opaque_type_key, instantiated_ty.span)
        {
            return Ty::new_error(self.tcx, guar);
        }

        let definition_ty = instantiated_ty
            .remap_generic_params_to_declaration_params(opaque_type_key, self.tcx, false)
            .ty;

        // `definition_ty` does not live in of the current inference context,
        // so lets make sure that we don't accidentally misuse our current `infcx`.
        match check_opaque_type_well_formed(
            self.tcx,
            self.next_trait_solver(),
            opaque_type_key.def_id,
            instantiated_ty.span,
            definition_ty,
        ) {
            Ok(hidden_ty) => hidden_ty,
            Err(guar) => Ty::new_error(self.tcx, guar),
        }
    }
}

/// This logic duplicates most of `check_opaque_meets_bounds`.
/// FIXME(oli-obk): Also do region checks here and then consider removing
/// `check_opaque_meets_bounds` entirely.
fn check_opaque_type_well_formed<'tcx>(
    tcx: TyCtxt<'tcx>,
    next_trait_solver: bool,
    def_id: LocalDefId,
    definition_span: Span,
    definition_ty: Ty<'tcx>,
) -> Result<Ty<'tcx>, ErrorGuaranteed> {
    // Only check this for TAIT. RPIT already supports `tests/ui/impl-trait/nested-return-type2.rs`
    // on stable and we'd break that.
    let opaque_ty_hir = tcx.hir().expect_item(def_id);
    let OpaqueTyOrigin::TyAlias { .. } = opaque_ty_hir.expect_opaque_ty().origin else {
        return Ok(definition_ty);
    };
    let param_env = tcx.param_env(def_id);

    let mut parent_def_id = def_id;
    while tcx.def_kind(parent_def_id) == DefKind::OpaqueTy {
        parent_def_id = tcx.local_parent(parent_def_id);
    }

    // FIXME(-Znext-solver): We probably should use `&[]` instead of
    // and prepopulate this `InferCtxt` with known opaque values, rather than
    // allowing opaque types to be defined and checking them after the fact.
    let infcx = tcx
        .infer_ctxt()
        .with_next_trait_solver(next_trait_solver)
        .with_opaque_type_inference(parent_def_id)
        .build();
    let ocx = ObligationCtxt::new(&infcx);
    let identity_args = GenericArgs::identity_for_item(tcx, def_id);

    // Require that the hidden type actually fulfills all the bounds of the opaque type, even without
    // the bounds that the function supplies.
    let opaque_ty = Ty::new_opaque(tcx, def_id.to_def_id(), identity_args);
    ocx.eq(&ObligationCause::misc(definition_span, def_id), param_env, opaque_ty, definition_ty)
        .map_err(|err| {
            infcx
                .err_ctxt()
                .report_mismatched_types(
                    &ObligationCause::misc(definition_span, def_id),
                    opaque_ty,
                    definition_ty,
                    err,
                )
                .emit()
        })?;

    // Require the hidden type to be well-formed with only the generics of the opaque type.
    // Defining use functions may have more bounds than the opaque type, which is ok, as long as the
    // hidden type is well formed even without those bounds.
    let predicate = ty::Binder::dummy(ty::PredicateKind::Clause(ty::ClauseKind::WellFormed(
        definition_ty.into(),
    )));
    ocx.register_obligation(Obligation::misc(tcx, definition_span, def_id, param_env, predicate));

    // Check that all obligations are satisfied by the implementation's
    // version.
    let errors = ocx.select_all_or_error();

    // This is fishy, but we check it again in `check_opaque_meets_bounds`.
    // Remove once we can prepopulate with known hidden types.
    let _ = infcx.take_opaque_types();

    if errors.is_empty() {
        Ok(definition_ty)
    } else {
        Err(infcx.err_ctxt().report_fulfillment_errors(errors))
    }
}

/// Opaque type parameter validity check as documented in the [rustc-dev-guide chapter].
///
/// [rustc-dev-guide chapter]:
/// https://rustc-dev-guide.rust-lang.org/opaque-types-region-infer-restrictions.html
fn check_opaque_type_parameter_valid<'tcx>(
    tcx: TyCtxt<'tcx>,
    opaque_type_key: OpaqueTypeKey<'tcx>,
    span: Span,
) -> Result<(), ErrorGuaranteed> {
    let opaque_generics = tcx.generics_of(opaque_type_key.def_id);
    let opaque_env = LazyOpaqueTyEnv::new(tcx, opaque_type_key.def_id);
    let mut seen_params: FxIndexMap<_, Vec<_>> = FxIndexMap::default();

    for (i, arg) in opaque_type_key.iter_captured_args(tcx) {
        let arg_is_param = match arg.unpack() {
            GenericArgKind::Type(ty) => matches!(ty.kind(), ty::Param(_)),
            GenericArgKind::Lifetime(lt) => {
                matches!(*lt, ty::ReEarlyParam(_) | ty::ReLateParam(_))
                    || (lt.is_static() && opaque_env.param_equal_static(i))
            }
            GenericArgKind::Const(ct) => matches!(ct.kind(), ty::ConstKind::Param(_)),
        };

        if arg_is_param {
            // Register if the same lifetime appears multiple times in the generic args.
            // There is an exception when the opaque type *requires* the lifetimes to be equal.
            // See [rustc-dev-guide chapter] § "An exception to uniqueness rule".
            let seen_where = seen_params.entry(arg).or_default();
            if !seen_where.first().is_some_and(|&prev_i| opaque_env.params_equal(i, prev_i)) {
                seen_where.push(i);
            }
        } else {
            // Prevent `fn foo() -> Foo<u32>` from being defining.
            let opaque_param = opaque_generics.param_at(i, tcx);
            let kind = opaque_param.kind.descr();

            if let Err(guar) = opaque_env.param_is_error(i) {
                return Err(guar);
            }

            return Err(tcx.dcx().emit_err(NonGenericOpaqueTypeParam {
                ty: arg,
                kind,
                span,
                param_span: tcx.def_span(opaque_param.def_id),
            }));
        }
    }

    for (_, indices) in seen_params {
        if indices.len() > 1 {
            let descr = opaque_generics.param_at(indices[0], tcx).kind.descr();
            let spans: Vec<_> = indices
                .into_iter()
                .map(|i| tcx.def_span(opaque_generics.param_at(i, tcx).def_id))
                .collect();
            #[allow(rustc::diagnostic_outside_of_impl)]
            #[allow(rustc::untranslatable_diagnostic)]
            return Err(tcx
                .dcx()
                .struct_span_err(span, "non-defining opaque type use in defining scope")
                .with_span_note(spans, format!("{descr} used multiple times"))
                .emit());
        }
    }

    Ok(())
}

/// Computes if an opaque type requires a lifetime parameter to be equal to
/// another one or to the `'static` lifetime.
/// These requirements are derived from the explicit and implied bounds.
struct LazyOpaqueTyEnv<'tcx> {
    tcx: TyCtxt<'tcx>,
    def_id: LocalDefId,

    /// Equal parameters will have the same name. Computed Lazily.
    /// Example:
    ///     `type Opaque<'a: 'static, 'b: 'c, 'c: 'b> = impl Sized;`
    ///     Identity args: `['a, 'b, 'c]`
    ///     Canonical args: `['static, 'b, 'b]`
    canonical_args: std::cell::OnceCell<ty::GenericArgsRef<'tcx>>,
}

impl<'tcx> LazyOpaqueTyEnv<'tcx> {
    pub fn new(tcx: TyCtxt<'tcx>, def_id: LocalDefId) -> Self {
        Self { tcx, def_id, canonical_args: std::cell::OnceCell::new() }
    }

    pub fn param_equal_static(&self, param_index: usize) -> bool {
        self.get_canonical_args()[param_index].expect_region().is_static()
    }

    pub fn params_equal(&self, param1: usize, param2: usize) -> bool {
        let canonical_args = self.get_canonical_args();
        canonical_args[param1] == canonical_args[param2]
    }

    pub fn param_is_error(&self, param_index: usize) -> Result<(), ErrorGuaranteed> {
        self.get_canonical_args()[param_index].error_reported()
    }

    fn get_canonical_args(&self) -> ty::GenericArgsRef<'tcx> {
        use rustc_hir as hir;
        use rustc_infer::infer::outlives::env::OutlivesEnvironment;
        use rustc_trait_selection::traits::outlives_bounds::InferCtxtExt as _;

        if let Some(&canonical_args) = self.canonical_args.get() {
            return canonical_args;
        }

        let &Self { tcx, def_id, .. } = self;
        let origin = tcx.opaque_type_origin(def_id);
        let parent = match origin {
            hir::OpaqueTyOrigin::FnReturn(parent)
            | hir::OpaqueTyOrigin::AsyncFn(parent)
            | hir::OpaqueTyOrigin::TyAlias { parent, .. } => parent,
        };
        let param_env = tcx.param_env(parent);
        let args = GenericArgs::identity_for_item(tcx, parent).extend_to(
            tcx,
            def_id.to_def_id(),
            |param, _| {
                tcx.map_opaque_lifetime_to_parent_lifetime(param.def_id.expect_local()).into()
            },
        );

        let infcx = tcx.infer_ctxt().build();
        let ocx = ObligationCtxt::new(&infcx);

        let wf_tys = ocx.assumed_wf_types(param_env, parent).unwrap_or_else(|_| {
            tcx.dcx().span_delayed_bug(tcx.def_span(def_id), "error getting implied bounds");
            Default::default()
        });
        let implied_bounds = infcx.implied_bounds_tys(param_env, parent, &wf_tys);
        let outlives_env = OutlivesEnvironment::with_bounds(param_env, implied_bounds);

        let mut seen = vec![tcx.lifetimes.re_static];
        let canonical_args = tcx.fold_regions(args, |r1, _| {
            if r1.is_error() {
                r1
            } else if let Some(&r2) = seen.iter().find(|&&r2| {
                let free_regions = outlives_env.free_region_map();
                free_regions.sub_free_regions(tcx, r1, r2)
                    && free_regions.sub_free_regions(tcx, r2, r1)
            }) {
                r2
            } else {
                seen.push(r1);
                r1
            }
        });
        self.canonical_args.set(canonical_args).unwrap();
        canonical_args
    }
}