rustc_type_ir/fast_reject.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
use std::fmt::Debug;
use std::hash::Hash;
use std::iter;
use std::marker::PhantomData;
use rustc_ast_ir::Mutability;
#[cfg(feature = "nightly")]
use rustc_data_structures::fingerprint::Fingerprint;
#[cfg(feature = "nightly")]
use rustc_data_structures::stable_hasher::{HashStable, StableHasher, ToStableHashKey};
#[cfg(feature = "nightly")]
use rustc_macros::{HashStable_NoContext, TyDecodable, TyEncodable};
use crate::inherent::*;
use crate::visit::TypeVisitableExt as _;
use crate::{self as ty, Interner};
/// See `simplify_type`.
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "nightly", derive(TyEncodable, TyDecodable, HashStable_NoContext))]
pub enum SimplifiedType<DefId> {
Bool,
Char,
Int(ty::IntTy),
Uint(ty::UintTy),
Float(ty::FloatTy),
Adt(DefId),
Foreign(DefId),
Str,
Array,
Slice,
Ref(Mutability),
Ptr(Mutability),
Never,
Tuple(usize),
/// A trait object, all of whose components are markers
/// (e.g., `dyn Send + Sync`).
MarkerTraitObject,
Trait(DefId),
Closure(DefId),
Coroutine(DefId),
CoroutineWitness(DefId),
Function(usize),
Placeholder,
Error,
}
#[cfg(feature = "nightly")]
impl<HCX: Clone, DefId: HashStable<HCX>> ToStableHashKey<HCX> for SimplifiedType<DefId> {
type KeyType = Fingerprint;
#[inline]
fn to_stable_hash_key(&self, hcx: &HCX) -> Fingerprint {
let mut hasher = StableHasher::new();
let mut hcx: HCX = hcx.clone();
self.hash_stable(&mut hcx, &mut hasher);
hasher.finish()
}
}
/// Generic parameters are pretty much just bound variables, e.g.
/// the type of `fn foo<'a, T>(x: &'a T) -> u32 { ... }` can be thought of as
/// `for<'a, T> fn(&'a T) -> u32`.
///
/// Typecheck of `foo` has to succeed for all possible generic arguments, so
/// during typeck, we have to treat its generic parameters as if they
/// were placeholders.
///
/// But when calling `foo` we only have to provide a specific generic argument.
/// In that case the generic parameters are instantiated with inference variables.
/// As we use `simplify_type` before that instantiation happens, we just treat
/// generic parameters as if they were inference variables in that case.
#[derive(PartialEq, Eq, Debug, Clone, Copy)]
pub enum TreatParams {
/// Treat parameters as infer vars. This is the correct mode for caching
/// an impl's type for lookup.
InstantiateWithInfer,
/// Treat parameters as placeholders in the given environment. This is the
/// correct mode for *lookup*, as during candidate selection.
///
/// This also treats projections with inference variables as infer vars
/// since they could be further normalized.
AsRigid,
}
/// Tries to simplify a type by only returning the outermost injective¹ layer, if one exists.
///
/// **This function should only be used if you need to store or retrieve the type from some
/// hashmap. If you want to quickly decide whether two types may unify, use the [DeepRejectCtxt]
/// instead.**
///
/// The idea is to get something simple that we can use to quickly decide if two types could unify,
/// for example during method lookup. If this function returns `Some(x)` it can only unify with
/// types for which this method returns either `Some(x)` as well or `None`.
///
/// A special case here are parameters and projections, which are only injective
/// if they are treated as placeholders.
///
/// For example when storing impls based on their simplified self type, we treat
/// generic parameters as if they were inference variables. We must not simplify them here,
/// as they can unify with any other type.
///
/// With projections we have to be even more careful, as treating them as placeholders
/// is only correct if they are fully normalized.
///
/// ¹ meaning that if the outermost layers are different, then the whole types are also different.
pub fn simplify_type<I: Interner>(
cx: I,
ty: I::Ty,
treat_params: TreatParams,
) -> Option<SimplifiedType<I::DefId>> {
match ty.kind() {
ty::Bool => Some(SimplifiedType::Bool),
ty::Char => Some(SimplifiedType::Char),
ty::Int(int_type) => Some(SimplifiedType::Int(int_type)),
ty::Uint(uint_type) => Some(SimplifiedType::Uint(uint_type)),
ty::Float(float_type) => Some(SimplifiedType::Float(float_type)),
ty::Adt(def, _) => Some(SimplifiedType::Adt(def.def_id())),
ty::Str => Some(SimplifiedType::Str),
ty::Array(..) => Some(SimplifiedType::Array),
ty::Slice(..) => Some(SimplifiedType::Slice),
ty::Pat(ty, ..) => simplify_type(cx, ty, treat_params),
ty::RawPtr(_, mutbl) => Some(SimplifiedType::Ptr(mutbl)),
ty::Dynamic(trait_info, ..) => match trait_info.principal_def_id() {
Some(principal_def_id) if !cx.trait_is_auto(principal_def_id) => {
Some(SimplifiedType::Trait(principal_def_id))
}
_ => Some(SimplifiedType::MarkerTraitObject),
},
ty::Ref(_, _, mutbl) => Some(SimplifiedType::Ref(mutbl)),
ty::FnDef(def_id, _) | ty::Closure(def_id, _) | ty::CoroutineClosure(def_id, _) => {
Some(SimplifiedType::Closure(def_id))
}
ty::Coroutine(def_id, _) => Some(SimplifiedType::Coroutine(def_id)),
ty::CoroutineWitness(def_id, _) => Some(SimplifiedType::CoroutineWitness(def_id)),
ty::Never => Some(SimplifiedType::Never),
ty::Tuple(tys) => Some(SimplifiedType::Tuple(tys.len())),
ty::FnPtr(sig_tys, _hdr) => {
Some(SimplifiedType::Function(sig_tys.skip_binder().inputs().len()))
}
ty::Placeholder(..) => Some(SimplifiedType::Placeholder),
ty::Param(_) => match treat_params {
TreatParams::AsRigid => Some(SimplifiedType::Placeholder),
TreatParams::InstantiateWithInfer => None,
},
ty::Alias(..) => match treat_params {
// When treating `ty::Param` as a placeholder, projections also
// don't unify with anything else as long as they are fully normalized.
// FIXME(-Znext-solver): Can remove this `if` and always simplify to `Placeholder`
// when the new solver is enabled by default.
TreatParams::AsRigid if !ty.has_non_region_infer() => Some(SimplifiedType::Placeholder),
TreatParams::AsRigid | TreatParams::InstantiateWithInfer => None,
},
ty::Foreign(def_id) => Some(SimplifiedType::Foreign(def_id)),
ty::Error(_) => Some(SimplifiedType::Error),
ty::Bound(..) | ty::Infer(_) => None,
}
}
impl<DefId> SimplifiedType<DefId> {
pub fn def(self) -> Option<DefId> {
match self {
SimplifiedType::Adt(d)
| SimplifiedType::Foreign(d)
| SimplifiedType::Trait(d)
| SimplifiedType::Closure(d)
| SimplifiedType::Coroutine(d)
| SimplifiedType::CoroutineWitness(d) => Some(d),
_ => None,
}
}
}
/// Given generic arguments, could they be unified after
/// replacing parameters with inference variables or placeholders.
/// This behavior is toggled using the const generics.
///
/// We use this to quickly reject impl/wc candidates without needing
/// to instantiate generic arguments/having to enter a probe.
///
/// We also use this function during coherence. For coherence the
/// impls only have to overlap for some value, so we treat parameters
/// on both sides like inference variables.
#[derive(Debug, Clone, Copy)]
pub struct DeepRejectCtxt<
I: Interner,
const INSTANTIATE_LHS_WITH_INFER: bool,
const INSTANTIATE_RHS_WITH_INFER: bool,
> {
_interner: PhantomData<I>,
}
impl<I: Interner> DeepRejectCtxt<I, false, false> {
/// Treat parameters in both the lhs and the rhs as rigid.
pub fn relate_rigid_rigid(_interner: I) -> DeepRejectCtxt<I, false, false> {
DeepRejectCtxt { _interner: PhantomData }
}
}
impl<I: Interner> DeepRejectCtxt<I, true, true> {
/// Treat parameters in both the lhs and the rhs as infer vars.
pub fn relate_infer_infer(_interner: I) -> DeepRejectCtxt<I, true, true> {
DeepRejectCtxt { _interner: PhantomData }
}
}
impl<I: Interner> DeepRejectCtxt<I, false, true> {
/// Treat parameters in the lhs as rigid, and in rhs as infer vars.
pub fn relate_rigid_infer(_interner: I) -> DeepRejectCtxt<I, false, true> {
DeepRejectCtxt { _interner: PhantomData }
}
}
impl<I: Interner, const INSTANTIATE_LHS_WITH_INFER: bool, const INSTANTIATE_RHS_WITH_INFER: bool>
DeepRejectCtxt<I, INSTANTIATE_LHS_WITH_INFER, INSTANTIATE_RHS_WITH_INFER>
{
// Quite arbitrary. Large enough to only affect a very tiny amount of impls/crates
// and small enough to prevent hangs.
const STARTING_DEPTH: usize = 8;
pub fn args_may_unify(
self,
obligation_args: I::GenericArgs,
impl_args: I::GenericArgs,
) -> bool {
self.args_may_unify_inner(obligation_args, impl_args, Self::STARTING_DEPTH)
}
pub fn types_may_unify(self, lhs: I::Ty, rhs: I::Ty) -> bool {
self.types_may_unify_inner(lhs, rhs, Self::STARTING_DEPTH)
}
fn args_may_unify_inner(
self,
obligation_args: I::GenericArgs,
impl_args: I::GenericArgs,
depth: usize,
) -> bool {
// No need to decrement the depth here as this function is only
// recursively reachable via `types_may_unify_inner` which already
// increments the depth for us.
iter::zip(obligation_args.iter(), impl_args.iter()).all(|(obl, imp)| {
match (obl.kind(), imp.kind()) {
// We don't fast reject based on regions.
(ty::GenericArgKind::Lifetime(_), ty::GenericArgKind::Lifetime(_)) => true,
(ty::GenericArgKind::Type(obl), ty::GenericArgKind::Type(imp)) => {
self.types_may_unify_inner(obl, imp, depth)
}
(ty::GenericArgKind::Const(obl), ty::GenericArgKind::Const(imp)) => {
self.consts_may_unify_inner(obl, imp)
}
_ => panic!("kind mismatch: {obl:?} {imp:?}"),
}
})
}
fn types_may_unify_inner(self, lhs: I::Ty, rhs: I::Ty, depth: usize) -> bool {
match rhs.kind() {
// Start by checking whether the `rhs` type may unify with
// pretty much everything. Just return `true` in that case.
ty::Param(_) => {
if INSTANTIATE_RHS_WITH_INFER {
return true;
}
}
ty::Error(_) | ty::Alias(..) | ty::Bound(..) => return true,
ty::Infer(var) => return self.var_and_ty_may_unify(var, lhs),
// These types only unify with inference variables or their own
// variant.
ty::Bool
| ty::Char
| ty::Int(_)
| ty::Uint(_)
| ty::Float(_)
| ty::Adt(..)
| ty::Str
| ty::Array(..)
| ty::Slice(..)
| ty::RawPtr(..)
| ty::Dynamic(..)
| ty::Pat(..)
| ty::Ref(..)
| ty::Never
| ty::Tuple(..)
| ty::FnDef(..)
| ty::FnPtr(..)
| ty::Closure(..)
| ty::CoroutineClosure(..)
| ty::Coroutine(..)
| ty::CoroutineWitness(..)
| ty::Foreign(_)
| ty::Placeholder(_) => {}
};
// The type system needs to support exponentially large types
// as long as they are self-similar. While most other folders
// use caching to handle them, this folder exists purely as a
// perf optimization and is incredibly hot. In pretty much all
// uses checking the cache is slower than simply recursing, so
// we instead just add an arbitrary depth cutoff.
//
// We only decrement the depth here as the match on `rhs`
// does not recurse.
let Some(depth) = depth.checked_sub(1) else {
return true;
};
// For purely rigid types, use structural equivalence.
match lhs.kind() {
ty::Ref(_, lhs_ty, lhs_mutbl) => match rhs.kind() {
ty::Ref(_, rhs_ty, rhs_mutbl) => {
lhs_mutbl == rhs_mutbl && self.types_may_unify_inner(lhs_ty, rhs_ty, depth)
}
_ => false,
},
ty::Adt(lhs_def, lhs_args) => match rhs.kind() {
ty::Adt(rhs_def, rhs_args) => {
lhs_def == rhs_def && self.args_may_unify_inner(lhs_args, rhs_args, depth)
}
_ => false,
},
// Depending on the value of const generics, we either treat generic parameters
// like placeholders or like inference variables.
ty::Param(lhs) => {
INSTANTIATE_LHS_WITH_INFER
|| match rhs.kind() {
ty::Param(rhs) => lhs == rhs,
_ => false,
}
}
// Placeholder types don't unify with anything on their own.
ty::Placeholder(lhs) => {
matches!(rhs.kind(), ty::Placeholder(rhs) if lhs == rhs)
}
ty::Infer(var) => self.var_and_ty_may_unify(var, rhs),
// As we're walking the whole type, it may encounter projections
// inside of binders and what not, so we're just going to assume that
// projections can unify with other stuff.
//
// Looking forward to lazy normalization this is the safer strategy anyways.
ty::Alias(..) => true,
ty::Int(_)
| ty::Uint(_)
| ty::Float(_)
| ty::Str
| ty::Bool
| ty::Char
| ty::Never
| ty::Foreign(_) => lhs == rhs,
ty::Tuple(lhs) => match rhs.kind() {
ty::Tuple(rhs) => {
lhs.len() == rhs.len()
&& iter::zip(lhs.iter(), rhs.iter())
.all(|(lhs, rhs)| self.types_may_unify_inner(lhs, rhs, depth))
}
_ => false,
},
ty::Array(lhs_ty, lhs_len) => match rhs.kind() {
ty::Array(rhs_ty, rhs_len) => {
self.types_may_unify_inner(lhs_ty, rhs_ty, depth)
&& self.consts_may_unify_inner(lhs_len, rhs_len)
}
_ => false,
},
ty::RawPtr(lhs_ty, lhs_mutbl) => match rhs.kind() {
ty::RawPtr(rhs_ty, rhs_mutbl) => {
lhs_mutbl == rhs_mutbl && self.types_may_unify_inner(lhs_ty, rhs_ty, depth)
}
_ => false,
},
ty::Slice(lhs_ty) => {
matches!(rhs.kind(), ty::Slice(rhs_ty) if self.types_may_unify_inner(lhs_ty, rhs_ty, depth))
}
ty::Dynamic(lhs_preds, ..) => {
// Ideally we would walk the existential predicates here or at least
// compare their length. But considering that the relevant `Relate` impl
// actually sorts and deduplicates these, that doesn't work.
matches!(rhs.kind(), ty::Dynamic(rhs_preds, ..) if
lhs_preds.principal_def_id() == rhs_preds.principal_def_id()
)
}
ty::FnPtr(lhs_sig_tys, lhs_hdr) => match rhs.kind() {
ty::FnPtr(rhs_sig_tys, rhs_hdr) => {
let lhs_sig_tys = lhs_sig_tys.skip_binder().inputs_and_output;
let rhs_sig_tys = rhs_sig_tys.skip_binder().inputs_and_output;
lhs_hdr == rhs_hdr
&& lhs_sig_tys.len() == rhs_sig_tys.len()
&& iter::zip(lhs_sig_tys.iter(), rhs_sig_tys.iter())
.all(|(lhs, rhs)| self.types_may_unify_inner(lhs, rhs, depth))
}
_ => false,
},
ty::Bound(..) => true,
ty::FnDef(lhs_def_id, lhs_args) => match rhs.kind() {
ty::FnDef(rhs_def_id, rhs_args) => {
lhs_def_id == rhs_def_id && self.args_may_unify_inner(lhs_args, rhs_args, depth)
}
_ => false,
},
ty::Closure(lhs_def_id, lhs_args) => match rhs.kind() {
ty::Closure(rhs_def_id, rhs_args) => {
lhs_def_id == rhs_def_id && self.args_may_unify_inner(lhs_args, rhs_args, depth)
}
_ => false,
},
ty::CoroutineClosure(lhs_def_id, lhs_args) => match rhs.kind() {
ty::CoroutineClosure(rhs_def_id, rhs_args) => {
lhs_def_id == rhs_def_id && self.args_may_unify_inner(lhs_args, rhs_args, depth)
}
_ => false,
},
ty::Coroutine(lhs_def_id, lhs_args) => match rhs.kind() {
ty::Coroutine(rhs_def_id, rhs_args) => {
lhs_def_id == rhs_def_id && self.args_may_unify_inner(lhs_args, rhs_args, depth)
}
_ => false,
},
ty::CoroutineWitness(lhs_def_id, lhs_args) => match rhs.kind() {
ty::CoroutineWitness(rhs_def_id, rhs_args) => {
lhs_def_id == rhs_def_id && self.args_may_unify_inner(lhs_args, rhs_args, depth)
}
_ => false,
},
ty::Pat(lhs_ty, _) => {
// FIXME(pattern_types): take pattern into account
matches!(rhs.kind(), ty::Pat(rhs_ty, _) if self.types_may_unify_inner(lhs_ty, rhs_ty, depth))
}
ty::Error(..) => true,
}
}
// Unlike `types_may_unify_inner`, this does not take a depth as
// we never recurse from this function.
fn consts_may_unify_inner(self, lhs: I::Const, rhs: I::Const) -> bool {
match rhs.kind() {
ty::ConstKind::Param(_) => {
if INSTANTIATE_RHS_WITH_INFER {
return true;
}
}
ty::ConstKind::Expr(_)
| ty::ConstKind::Unevaluated(_)
| ty::ConstKind::Error(_)
| ty::ConstKind::Infer(_)
| ty::ConstKind::Bound(..) => {
return true;
}
ty::ConstKind::Value(..) | ty::ConstKind::Placeholder(_) => {}
};
match lhs.kind() {
ty::ConstKind::Value(_, lhs_val) => match rhs.kind() {
ty::ConstKind::Value(_, rhs_val) => lhs_val == rhs_val,
_ => false,
},
ty::ConstKind::Param(lhs) => {
INSTANTIATE_LHS_WITH_INFER
|| match rhs.kind() {
ty::ConstKind::Param(rhs) => lhs == rhs,
_ => false,
}
}
// Placeholder consts don't unify with anything on their own
ty::ConstKind::Placeholder(lhs) => {
matches!(rhs.kind(), ty::ConstKind::Placeholder(rhs) if lhs == rhs)
}
// As we don't necessarily eagerly evaluate constants,
// they might unify with any value.
ty::ConstKind::Expr(_) | ty::ConstKind::Unevaluated(_) | ty::ConstKind::Error(_) => {
true
}
ty::ConstKind::Infer(_) | ty::ConstKind::Bound(..) => true,
}
}
fn var_and_ty_may_unify(self, var: ty::InferTy, ty: I::Ty) -> bool {
if !ty.is_known_rigid() {
return true;
}
match var {
ty::IntVar(_) => ty.is_integral(),
ty::FloatVar(_) => ty.is_floating_point(),
_ => true,
}
}
}