1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
#![feature(fmt_helpers_for_derive)]
#![feature(min_specialization)]
#![feature(rustc_attrs)]
#![deny(rustc::untranslatable_diagnostic)]
#![deny(rustc::diagnostic_outside_of_impl)]

#[macro_use]
extern crate bitflags;
#[macro_use]
extern crate rustc_macros;

use rustc_data_structures::stable_hasher::{HashStable, StableHasher};
use rustc_data_structures::unify::{EqUnifyValue, UnifyKey};
use smallvec::SmallVec;
use std::fmt;
use std::fmt::Debug;
use std::hash::Hash;
use std::mem::discriminant;

pub mod codec;
pub mod sty;

pub use codec::*;
pub use sty::*;

/// Needed so we can use #[derive(HashStable_Generic)]
pub trait HashStableContext {}

pub trait Interner {
    type AdtDef: Clone + Debug + Hash + PartialEq + Eq + PartialOrd + Ord;
    type SubstsRef: Clone + Debug + Hash + PartialEq + Eq + PartialOrd + Ord;
    type DefId: Clone + Debug + Hash + PartialEq + Eq + PartialOrd + Ord;
    type Ty: Clone + Debug + Hash + PartialEq + Eq + PartialOrd + Ord;
    type Const: Clone + Debug + Hash + PartialEq + Eq + PartialOrd + Ord;
    type Region: Clone + Debug + Hash + PartialEq + Eq + PartialOrd + Ord;
    type TypeAndMut: Clone + Debug + Hash + PartialEq + Eq + PartialOrd + Ord;
    type Mutability: Clone + Debug + Hash + PartialEq + Eq + PartialOrd + Ord;
    type Movability: Clone + Debug + Hash + PartialEq + Eq + PartialOrd + Ord;
    type PolyFnSig: Clone + Debug + Hash + PartialEq + Eq + PartialOrd + Ord;
    type ListBinderExistentialPredicate: Clone + Debug + Hash + PartialEq + Eq + PartialOrd + Ord;
    type BinderListTy: Clone + Debug + Hash + PartialEq + Eq + PartialOrd + Ord;
    type ListTy: Clone + Debug + Hash + PartialEq + Eq + PartialOrd + Ord;
    type ProjectionTy: Clone + Debug + Hash + PartialEq + Eq + PartialOrd + Ord;
    type ParamTy: Clone + Debug + Hash + PartialEq + Eq + PartialOrd + Ord;
    type BoundTy: Clone + Debug + Hash + PartialEq + Eq + PartialOrd + Ord;
    type PlaceholderType: Clone + Debug + Hash + PartialEq + Eq + PartialOrd + Ord;
    type InferTy: Clone + Debug + Hash + PartialEq + Eq + PartialOrd + Ord;
    type ErrorGuaranteed: Clone + Debug + Hash + PartialEq + Eq + PartialOrd + Ord;
    type PredicateKind: Clone + Debug + Hash + PartialEq + Eq;
    type AllocId: Clone + Debug + Hash + PartialEq + Eq + PartialOrd + Ord;

    type EarlyBoundRegion: Clone + Debug + Hash + PartialEq + Eq + PartialOrd + Ord;
    type BoundRegion: Clone + Debug + Hash + PartialEq + Eq + PartialOrd + Ord;
    type FreeRegion: Clone + Debug + Hash + PartialEq + Eq + PartialOrd + Ord;
    type RegionVid: Clone + Debug + Hash + PartialEq + Eq + PartialOrd + Ord;
    type PlaceholderRegion: Clone + Debug + Hash + PartialEq + Eq + PartialOrd + Ord;
}

pub trait InternAs<T: ?Sized, R> {
    type Output;
    fn intern_with<F>(self, f: F) -> Self::Output
    where
        F: FnOnce(&[T]) -> R;
}

impl<I, T, R, E> InternAs<T, R> for I
where
    E: InternIteratorElement<T, R>,
    I: Iterator<Item = E>,
{
    type Output = E::Output;
    fn intern_with<F>(self, f: F) -> Self::Output
    where
        F: FnOnce(&[T]) -> R,
    {
        E::intern_with(self, f)
    }
}

pub trait InternIteratorElement<T, R>: Sized {
    type Output;
    fn intern_with<I: Iterator<Item = Self>, F: FnOnce(&[T]) -> R>(iter: I, f: F) -> Self::Output;
}

impl<T, R> InternIteratorElement<T, R> for T {
    type Output = R;
    fn intern_with<I: Iterator<Item = Self>, F: FnOnce(&[T]) -> R>(
        mut iter: I,
        f: F,
    ) -> Self::Output {
        // This code is hot enough that it's worth specializing for the most
        // common length lists, to avoid the overhead of `SmallVec` creation.
        // Lengths 0, 1, and 2 typically account for ~95% of cases. If
        // `size_hint` is incorrect a panic will occur via an `unwrap` or an
        // `assert`.
        match iter.size_hint() {
            (0, Some(0)) => {
                assert!(iter.next().is_none());
                f(&[])
            }
            (1, Some(1)) => {
                let t0 = iter.next().unwrap();
                assert!(iter.next().is_none());
                f(&[t0])
            }
            (2, Some(2)) => {
                let t0 = iter.next().unwrap();
                let t1 = iter.next().unwrap();
                assert!(iter.next().is_none());
                f(&[t0, t1])
            }
            _ => f(&iter.collect::<SmallVec<[_; 8]>>()),
        }
    }
}

impl<'a, T, R> InternIteratorElement<T, R> for &'a T
where
    T: Clone + 'a,
{
    type Output = R;
    fn intern_with<I: Iterator<Item = Self>, F: FnOnce(&[T]) -> R>(iter: I, f: F) -> Self::Output {
        // This code isn't hot.
        f(&iter.cloned().collect::<SmallVec<[_; 8]>>())
    }
}

impl<T, R, E> InternIteratorElement<T, R> for Result<T, E> {
    type Output = Result<R, E>;
    fn intern_with<I: Iterator<Item = Self>, F: FnOnce(&[T]) -> R>(
        mut iter: I,
        f: F,
    ) -> Self::Output {
        // This code is hot enough that it's worth specializing for the most
        // common length lists, to avoid the overhead of `SmallVec` creation.
        // Lengths 0, 1, and 2 typically account for ~95% of cases. If
        // `size_hint` is incorrect a panic will occur via an `unwrap` or an
        // `assert`, unless a failure happens first, in which case the result
        // will be an error anyway.
        Ok(match iter.size_hint() {
            (0, Some(0)) => {
                assert!(iter.next().is_none());
                f(&[])
            }
            (1, Some(1)) => {
                let t0 = iter.next().unwrap()?;
                assert!(iter.next().is_none());
                f(&[t0])
            }
            (2, Some(2)) => {
                let t0 = iter.next().unwrap()?;
                let t1 = iter.next().unwrap()?;
                assert!(iter.next().is_none());
                f(&[t0, t1])
            }
            _ => f(&iter.collect::<Result<SmallVec<[_; 8]>, _>>()?),
        })
    }
}

bitflags! {
    /// Flags that we track on types. These flags are propagated upwards
    /// through the type during type construction, so that we can quickly check
    /// whether the type has various kinds of types in it without recursing
    /// over the type itself.
    pub struct TypeFlags: u32 {
        // Does this have parameters? Used to determine whether substitution is
        // required.
        /// Does this have `Param`?
        const HAS_TY_PARAM                = 1 << 0;
        /// Does this have `ReEarlyBound`?
        const HAS_RE_PARAM                = 1 << 1;
        /// Does this have `ConstKind::Param`?
        const HAS_CT_PARAM                = 1 << 2;

        const NEEDS_SUBST                 = TypeFlags::HAS_TY_PARAM.bits
                                          | TypeFlags::HAS_RE_PARAM.bits
                                          | TypeFlags::HAS_CT_PARAM.bits;

        /// Does this have `Infer`?
        const HAS_TY_INFER                = 1 << 3;
        /// Does this have `ReVar`?
        const HAS_RE_INFER                = 1 << 4;
        /// Does this have `ConstKind::Infer`?
        const HAS_CT_INFER                = 1 << 5;

        /// Does this have inference variables? Used to determine whether
        /// inference is required.
        const NEEDS_INFER                 = TypeFlags::HAS_TY_INFER.bits
                                          | TypeFlags::HAS_RE_INFER.bits
                                          | TypeFlags::HAS_CT_INFER.bits;

        /// Does this have `Placeholder`?
        const HAS_TY_PLACEHOLDER          = 1 << 6;
        /// Does this have `RePlaceholder`?
        const HAS_RE_PLACEHOLDER          = 1 << 7;
        /// Does this have `ConstKind::Placeholder`?
        const HAS_CT_PLACEHOLDER          = 1 << 8;

        /// `true` if there are "names" of regions and so forth
        /// that are local to a particular fn/inferctxt
        const HAS_FREE_LOCAL_REGIONS      = 1 << 9;

        /// `true` if there are "names" of types and regions and so forth
        /// that are local to a particular fn
        const HAS_FREE_LOCAL_NAMES        = TypeFlags::HAS_TY_PARAM.bits
                                          | TypeFlags::HAS_CT_PARAM.bits
                                          | TypeFlags::HAS_TY_INFER.bits
                                          | TypeFlags::HAS_CT_INFER.bits
                                          | TypeFlags::HAS_TY_PLACEHOLDER.bits
                                          | TypeFlags::HAS_CT_PLACEHOLDER.bits
                                          // We consider 'freshened' types and constants
                                          // to depend on a particular fn.
                                          // The freshening process throws away information,
                                          // which can make things unsuitable for use in a global
                                          // cache. Note that there is no 'fresh lifetime' flag -
                                          // freshening replaces all lifetimes with `ReErased`,
                                          // which is different from how types/const are freshened.
                                          | TypeFlags::HAS_TY_FRESH.bits
                                          | TypeFlags::HAS_CT_FRESH.bits
                                          | TypeFlags::HAS_FREE_LOCAL_REGIONS.bits;

        /// Does this have `Projection`?
        const HAS_TY_PROJECTION           = 1 << 10;
        /// Does this have `Opaque`?
        const HAS_TY_OPAQUE               = 1 << 11;
        /// Does this have `ConstKind::Unevaluated`?
        const HAS_CT_PROJECTION           = 1 << 12;

        /// Could this type be normalized further?
        const HAS_PROJECTION              = TypeFlags::HAS_TY_PROJECTION.bits
                                          | TypeFlags::HAS_TY_OPAQUE.bits
                                          | TypeFlags::HAS_CT_PROJECTION.bits;

        /// Is an error type/const reachable?
        const HAS_ERROR                   = 1 << 13;

        /// Does this have any region that "appears free" in the type?
        /// Basically anything but `ReLateBound` and `ReErased`.
        const HAS_FREE_REGIONS            = 1 << 14;

        /// Does this have any `ReLateBound` regions? Used to check
        /// if a global bound is safe to evaluate.
        const HAS_RE_LATE_BOUND           = 1 << 15;

        /// Does this have any `ReErased` regions?
        const HAS_RE_ERASED               = 1 << 16;

        /// Does this value have parameters/placeholders/inference variables which could be
        /// replaced later, in a way that would change the results of `impl` specialization?
        const STILL_FURTHER_SPECIALIZABLE = 1 << 17;

        /// Does this value have `InferTy::FreshTy/FreshIntTy/FreshFloatTy`?
        const HAS_TY_FRESH                = 1 << 18;

        /// Does this value have `InferConst::Fresh`?
        const HAS_CT_FRESH                = 1 << 19;
    }
}

rustc_index::newtype_index! {
    /// A [De Bruijn index][dbi] is a standard means of representing
    /// regions (and perhaps later types) in a higher-ranked setting. In
    /// particular, imagine a type like this:
    /// ```ignore (illustrative)
    ///    for<'a> fn(for<'b> fn(&'b isize, &'a isize), &'a char)
    /// // ^          ^            |          |           |
    /// // |          |            |          |           |
    /// // |          +------------+ 0        |           |
    /// // |                                  |           |
    /// // +----------------------------------+ 1         |
    /// // |                                              |
    /// // +----------------------------------------------+ 0
    /// ```
    /// In this type, there are two binders (the outer fn and the inner
    /// fn). We need to be able to determine, for any given region, which
    /// fn type it is bound by, the inner or the outer one. There are
    /// various ways you can do this, but a De Bruijn index is one of the
    /// more convenient and has some nice properties. The basic idea is to
    /// count the number of binders, inside out. Some examples should help
    /// clarify what I mean.
    ///
    /// Let's start with the reference type `&'b isize` that is the first
    /// argument to the inner function. This region `'b` is assigned a De
    /// Bruijn index of 0, meaning "the innermost binder" (in this case, a
    /// fn). The region `'a` that appears in the second argument type (`&'a
    /// isize`) would then be assigned a De Bruijn index of 1, meaning "the
    /// second-innermost binder". (These indices are written on the arrows
    /// in the diagram).
    ///
    /// What is interesting is that De Bruijn index attached to a particular
    /// variable will vary depending on where it appears. For example,
    /// the final type `&'a char` also refers to the region `'a` declared on
    /// the outermost fn. But this time, this reference is not nested within
    /// any other binders (i.e., it is not an argument to the inner fn, but
    /// rather the outer one). Therefore, in this case, it is assigned a
    /// De Bruijn index of 0, because the innermost binder in that location
    /// is the outer fn.
    ///
    /// [dbi]: https://en.wikipedia.org/wiki/De_Bruijn_index
    #[derive(HashStable_Generic)]
    pub struct DebruijnIndex {
        DEBUG_FORMAT = "DebruijnIndex({})",
        const INNERMOST = 0,
    }
}

impl DebruijnIndex {
    /// Returns the resulting index when this value is moved into
    /// `amount` number of new binders. So, e.g., if you had
    ///
    ///    for<'a> fn(&'a x)
    ///
    /// and you wanted to change it to
    ///
    ///    for<'a> fn(for<'b> fn(&'a x))
    ///
    /// you would need to shift the index for `'a` into a new binder.
    #[inline]
    #[must_use]
    pub fn shifted_in(self, amount: u32) -> DebruijnIndex {
        DebruijnIndex::from_u32(self.as_u32() + amount)
    }

    /// Update this index in place by shifting it "in" through
    /// `amount` number of binders.
    #[inline]
    pub fn shift_in(&mut self, amount: u32) {
        *self = self.shifted_in(amount);
    }

    /// Returns the resulting index when this value is moved out from
    /// `amount` number of new binders.
    #[inline]
    #[must_use]
    pub fn shifted_out(self, amount: u32) -> DebruijnIndex {
        DebruijnIndex::from_u32(self.as_u32() - amount)
    }

    /// Update in place by shifting out from `amount` binders.
    #[inline]
    pub fn shift_out(&mut self, amount: u32) {
        *self = self.shifted_out(amount);
    }

    /// Adjusts any De Bruijn indices so as to make `to_binder` the
    /// innermost binder. That is, if we have something bound at `to_binder`,
    /// it will now be bound at INNERMOST. This is an appropriate thing to do
    /// when moving a region out from inside binders:
    ///
    /// ```ignore (illustrative)
    ///             for<'a>   fn(for<'b>   for<'c>   fn(&'a u32), _)
    /// // Binder:  D3           D2        D1            ^^
    /// ```
    ///
    /// Here, the region `'a` would have the De Bruijn index D3,
    /// because it is the bound 3 binders out. However, if we wanted
    /// to refer to that region `'a` in the second argument (the `_`),
    /// those two binders would not be in scope. In that case, we
    /// might invoke `shift_out_to_binder(D3)`. This would adjust the
    /// De Bruijn index of `'a` to D1 (the innermost binder).
    ///
    /// If we invoke `shift_out_to_binder` and the region is in fact
    /// bound by one of the binders we are shifting out of, that is an
    /// error (and should fail an assertion failure).
    #[inline]
    pub fn shifted_out_to_binder(self, to_binder: DebruijnIndex) -> Self {
        self.shifted_out(to_binder.as_u32() - INNERMOST.as_u32())
    }
}

#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
#[derive(Encodable, Decodable, HashStable_Generic)]
pub enum IntTy {
    Isize,
    I8,
    I16,
    I32,
    I64,
    I128,
}

impl IntTy {
    pub fn name_str(&self) -> &'static str {
        match *self {
            IntTy::Isize => "isize",
            IntTy::I8 => "i8",
            IntTy::I16 => "i16",
            IntTy::I32 => "i32",
            IntTy::I64 => "i64",
            IntTy::I128 => "i128",
        }
    }

    pub fn bit_width(&self) -> Option<u64> {
        Some(match *self {
            IntTy::Isize => return None,
            IntTy::I8 => 8,
            IntTy::I16 => 16,
            IntTy::I32 => 32,
            IntTy::I64 => 64,
            IntTy::I128 => 128,
        })
    }

    pub fn normalize(&self, target_width: u32) -> Self {
        match self {
            IntTy::Isize => match target_width {
                16 => IntTy::I16,
                32 => IntTy::I32,
                64 => IntTy::I64,
                _ => unreachable!(),
            },
            _ => *self,
        }
    }
}

#[derive(Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Copy, Debug)]
#[derive(Encodable, Decodable, HashStable_Generic)]
pub enum UintTy {
    Usize,
    U8,
    U16,
    U32,
    U64,
    U128,
}

impl UintTy {
    pub fn name_str(&self) -> &'static str {
        match *self {
            UintTy::Usize => "usize",
            UintTy::U8 => "u8",
            UintTy::U16 => "u16",
            UintTy::U32 => "u32",
            UintTy::U64 => "u64",
            UintTy::U128 => "u128",
        }
    }

    pub fn bit_width(&self) -> Option<u64> {
        Some(match *self {
            UintTy::Usize => return None,
            UintTy::U8 => 8,
            UintTy::U16 => 16,
            UintTy::U32 => 32,
            UintTy::U64 => 64,
            UintTy::U128 => 128,
        })
    }

    pub fn normalize(&self, target_width: u32) -> Self {
        match self {
            UintTy::Usize => match target_width {
                16 => UintTy::U16,
                32 => UintTy::U32,
                64 => UintTy::U64,
                _ => unreachable!(),
            },
            _ => *self,
        }
    }
}

#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
#[derive(Encodable, Decodable, HashStable_Generic)]
pub enum FloatTy {
    F32,
    F64,
}

impl FloatTy {
    pub fn name_str(self) -> &'static str {
        match self {
            FloatTy::F32 => "f32",
            FloatTy::F64 => "f64",
        }
    }

    pub fn bit_width(self) -> u64 {
        match self {
            FloatTy::F32 => 32,
            FloatTy::F64 => 64,
        }
    }
}

#[derive(Clone, Copy, PartialEq, Eq)]
pub enum IntVarValue {
    IntType(IntTy),
    UintType(UintTy),
}

#[derive(Clone, Copy, PartialEq, Eq)]
pub struct FloatVarValue(pub FloatTy);

rustc_index::newtype_index! {
    /// A **ty**pe **v**ariable **ID**.
    pub struct TyVid {
        DEBUG_FORMAT = "_#{}t"
    }
}

/// An **int**egral (`u32`, `i32`, `usize`, etc.) type **v**ariable **ID**.
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Encodable, Decodable)]
pub struct IntVid {
    pub index: u32,
}

/// An **float**ing-point (`f32` or `f64`) type **v**ariable **ID**.
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Encodable, Decodable)]
pub struct FloatVid {
    pub index: u32,
}

/// A placeholder for a type that hasn't been inferred yet.
///
/// E.g., if we have an empty array (`[]`), then we create a fresh
/// type variable for the element type since we won't know until it's
/// used what the element type is supposed to be.
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Encodable, Decodable)]
pub enum InferTy {
    /// A type variable.
    TyVar(TyVid),
    /// An integral type variable (`{integer}`).
    ///
    /// These are created when the compiler sees an integer literal like
    /// `1` that could be several different types (`u8`, `i32`, `u32`, etc.).
    /// We don't know until it's used what type it's supposed to be, so
    /// we create a fresh type variable.
    IntVar(IntVid),
    /// A floating-point type variable (`{float}`).
    ///
    /// These are created when the compiler sees an float literal like
    /// `1.0` that could be either an `f32` or an `f64`.
    /// We don't know until it's used what type it's supposed to be, so
    /// we create a fresh type variable.
    FloatVar(FloatVid),

    /// A [`FreshTy`][Self::FreshTy] is one that is generated as a replacement
    /// for an unbound type variable. This is convenient for caching etc. See
    /// `rustc_infer::infer::freshen` for more details.
    ///
    /// Compare with [`TyVar`][Self::TyVar].
    FreshTy(u32),
    /// Like [`FreshTy`][Self::FreshTy], but as a replacement for [`IntVar`][Self::IntVar].
    FreshIntTy(u32),
    /// Like [`FreshTy`][Self::FreshTy], but as a replacement for [`FloatVar`][Self::FloatVar].
    FreshFloatTy(u32),
}

/// Raw `TyVid` are used as the unification key for `sub_relations`;
/// they carry no values.
impl UnifyKey for TyVid {
    type Value = ();
    #[inline]
    fn index(&self) -> u32 {
        self.as_u32()
    }
    #[inline]
    fn from_index(i: u32) -> TyVid {
        TyVid::from_u32(i)
    }
    fn tag() -> &'static str {
        "TyVid"
    }
}

impl EqUnifyValue for IntVarValue {}

impl UnifyKey for IntVid {
    type Value = Option<IntVarValue>;
    #[inline] // make this function eligible for inlining - it is quite hot.
    fn index(&self) -> u32 {
        self.index
    }
    #[inline]
    fn from_index(i: u32) -> IntVid {
        IntVid { index: i }
    }
    fn tag() -> &'static str {
        "IntVid"
    }
}

impl EqUnifyValue for FloatVarValue {}

impl UnifyKey for FloatVid {
    type Value = Option<FloatVarValue>;
    #[inline]
    fn index(&self) -> u32 {
        self.index
    }
    #[inline]
    fn from_index(i: u32) -> FloatVid {
        FloatVid { index: i }
    }
    fn tag() -> &'static str {
        "FloatVid"
    }
}

#[derive(Copy, Clone, PartialEq, Decodable, Encodable, Hash, HashStable_Generic)]
#[rustc_pass_by_value]
pub enum Variance {
    Covariant,     // T<A> <: T<B> iff A <: B -- e.g., function return type
    Invariant,     // T<A> <: T<B> iff B == A -- e.g., type of mutable cell
    Contravariant, // T<A> <: T<B> iff B <: A -- e.g., function param type
    Bivariant,     // T<A> <: T<B>            -- e.g., unused type parameter
}

impl Variance {
    /// `a.xform(b)` combines the variance of a context with the
    /// variance of a type with the following meaning. If we are in a
    /// context with variance `a`, and we encounter a type argument in
    /// a position with variance `b`, then `a.xform(b)` is the new
    /// variance with which the argument appears.
    ///
    /// Example 1:
    /// ```ignore (illustrative)
    /// *mut Vec<i32>
    /// ```
    /// Here, the "ambient" variance starts as covariant. `*mut T` is
    /// invariant with respect to `T`, so the variance in which the
    /// `Vec<i32>` appears is `Covariant.xform(Invariant)`, which
    /// yields `Invariant`. Now, the type `Vec<T>` is covariant with
    /// respect to its type argument `T`, and hence the variance of
    /// the `i32` here is `Invariant.xform(Covariant)`, which results
    /// (again) in `Invariant`.
    ///
    /// Example 2:
    /// ```ignore (illustrative)
    /// fn(*const Vec<i32>, *mut Vec<i32)
    /// ```
    /// The ambient variance is covariant. A `fn` type is
    /// contravariant with respect to its parameters, so the variance
    /// within which both pointer types appear is
    /// `Covariant.xform(Contravariant)`, or `Contravariant`. `*const
    /// T` is covariant with respect to `T`, so the variance within
    /// which the first `Vec<i32>` appears is
    /// `Contravariant.xform(Covariant)` or `Contravariant`. The same
    /// is true for its `i32` argument. In the `*mut T` case, the
    /// variance of `Vec<i32>` is `Contravariant.xform(Invariant)`,
    /// and hence the outermost type is `Invariant` with respect to
    /// `Vec<i32>` (and its `i32` argument).
    ///
    /// Source: Figure 1 of "Taming the Wildcards:
    /// Combining Definition- and Use-Site Variance" published in PLDI'11.
    pub fn xform(self, v: Variance) -> Variance {
        match (self, v) {
            // Figure 1, column 1.
            (Variance::Covariant, Variance::Covariant) => Variance::Covariant,
            (Variance::Covariant, Variance::Contravariant) => Variance::Contravariant,
            (Variance::Covariant, Variance::Invariant) => Variance::Invariant,
            (Variance::Covariant, Variance::Bivariant) => Variance::Bivariant,

            // Figure 1, column 2.
            (Variance::Contravariant, Variance::Covariant) => Variance::Contravariant,
            (Variance::Contravariant, Variance::Contravariant) => Variance::Covariant,
            (Variance::Contravariant, Variance::Invariant) => Variance::Invariant,
            (Variance::Contravariant, Variance::Bivariant) => Variance::Bivariant,

            // Figure 1, column 3.
            (Variance::Invariant, _) => Variance::Invariant,

            // Figure 1, column 4.
            (Variance::Bivariant, _) => Variance::Bivariant,
        }
    }
}

impl<CTX> HashStable<CTX> for InferTy {
    fn hash_stable(&self, ctx: &mut CTX, hasher: &mut StableHasher) {
        use InferTy::*;
        discriminant(self).hash_stable(ctx, hasher);
        match self {
            TyVar(_) | IntVar(_) | FloatVar(_) => {
                panic!("type variables should not be hashed: {self:?}")
            }
            FreshTy(v) | FreshIntTy(v) | FreshFloatTy(v) => v.hash_stable(ctx, hasher),
        }
    }
}

impl fmt::Debug for IntVarValue {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match *self {
            IntVarValue::IntType(ref v) => v.fmt(f),
            IntVarValue::UintType(ref v) => v.fmt(f),
        }
    }
}

impl fmt::Debug for FloatVarValue {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        self.0.fmt(f)
    }
}

impl fmt::Debug for IntVid {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "_#{}i", self.index)
    }
}

impl fmt::Debug for FloatVid {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "_#{}f", self.index)
    }
}

impl fmt::Debug for InferTy {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        use InferTy::*;
        match *self {
            TyVar(ref v) => v.fmt(f),
            IntVar(ref v) => v.fmt(f),
            FloatVar(ref v) => v.fmt(f),
            FreshTy(v) => write!(f, "FreshTy({:?})", v),
            FreshIntTy(v) => write!(f, "FreshIntTy({:?})", v),
            FreshFloatTy(v) => write!(f, "FreshFloatTy({:?})", v),
        }
    }
}

impl fmt::Debug for Variance {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.write_str(match *self {
            Variance::Covariant => "+",
            Variance::Contravariant => "-",
            Variance::Invariant => "o",
            Variance::Bivariant => "*",
        })
    }
}

impl fmt::Display for InferTy {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        use InferTy::*;
        match *self {
            TyVar(_) => write!(f, "_"),
            IntVar(_) => write!(f, "{}", "{integer}"),
            FloatVar(_) => write!(f, "{}", "{float}"),
            FreshTy(v) => write!(f, "FreshTy({})", v),
            FreshIntTy(v) => write!(f, "FreshIntTy({})", v),
            FreshFloatTy(v) => write!(f, "FreshFloatTy({})", v),
        }
    }
}

rustc_index::newtype_index! {
    /// "Universes" are used during type- and trait-checking in the
    /// presence of `for<..>` binders to control what sets of names are
    /// visible. Universes are arranged into a tree: the root universe
    /// contains names that are always visible. Each child then adds a new
    /// set of names that are visible, in addition to those of its parent.
    /// We say that the child universe "extends" the parent universe with
    /// new names.
    ///
    /// To make this more concrete, consider this program:
    ///
    /// ```ignore (illustrative)
    /// struct Foo { }
    /// fn bar<T>(x: T) {
    ///   let y: for<'a> fn(&'a u8, Foo) = ...;
    /// }
    /// ```
    ///
    /// The struct name `Foo` is in the root universe U0. But the type
    /// parameter `T`, introduced on `bar`, is in an extended universe U1
    /// -- i.e., within `bar`, we can name both `T` and `Foo`, but outside
    /// of `bar`, we cannot name `T`. Then, within the type of `y`, the
    /// region `'a` is in a universe U2 that extends U1, because we can
    /// name it inside the fn type but not outside.
    ///
    /// Universes are used to do type- and trait-checking around these
    /// "forall" binders (also called **universal quantification**). The
    /// idea is that when, in the body of `bar`, we refer to `T` as a
    /// type, we aren't referring to any type in particular, but rather a
    /// kind of "fresh" type that is distinct from all other types we have
    /// actually declared. This is called a **placeholder** type, and we
    /// use universes to talk about this. In other words, a type name in
    /// universe 0 always corresponds to some "ground" type that the user
    /// declared, but a type name in a non-zero universe is a placeholder
    /// type -- an idealized representative of "types in general" that we
    /// use for checking generic functions.
    #[derive(HashStable_Generic)]
    pub struct UniverseIndex {
        DEBUG_FORMAT = "U{}",
    }
}

impl UniverseIndex {
    pub const ROOT: UniverseIndex = UniverseIndex::from_u32(0);

    /// Returns the "next" universe index in order -- this new index
    /// is considered to extend all previous universes. This
    /// corresponds to entering a `forall` quantifier. So, for
    /// example, suppose we have this type in universe `U`:
    ///
    /// ```ignore (illustrative)
    /// for<'a> fn(&'a u32)
    /// ```
    ///
    /// Once we "enter" into this `for<'a>` quantifier, we are in a
    /// new universe that extends `U` -- in this new universe, we can
    /// name the region `'a`, but that region was not nameable from
    /// `U` because it was not in scope there.
    pub fn next_universe(self) -> UniverseIndex {
        UniverseIndex::from_u32(self.private.checked_add(1).unwrap())
    }

    /// Returns `true` if `self` can name a name from `other` -- in other words,
    /// if the set of names in `self` is a superset of those in
    /// `other` (`self >= other`).
    pub fn can_name(self, other: UniverseIndex) -> bool {
        self.private >= other.private
    }

    /// Returns `true` if `self` cannot name some names from `other` -- in other
    /// words, if the set of names in `self` is a strict subset of
    /// those in `other` (`self < other`).
    pub fn cannot_name(self, other: UniverseIndex) -> bool {
        self.private < other.private
    }
}