1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
// tidy-alphabetical-start
#![allow(rustc::usage_of_ty_tykind)]
#![cfg_attr(
    feature = "nightly",
    feature(associated_type_defaults, never_type, rustc_attrs, negative_impls)
)]
#![cfg_attr(feature = "nightly", allow(internal_features))]
#![cfg_attr(not(bootstrap), allow(rustc::usage_of_type_ir_inherent))]
#![warn(unreachable_pub)]
// tidy-alphabetical-end

extern crate self as rustc_type_ir;

use std::fmt;
use std::hash::Hash;

#[cfg(feature = "nightly")]
use rustc_macros::{Decodable, Encodable, HashStable_NoContext};

// These modules are `pub` since they are not glob-imported.
#[macro_use]
pub mod visit;
#[cfg(feature = "nightly")]
pub mod codec;
pub mod data_structures;
pub mod elaborate;
pub mod error;
pub mod fast_reject;
pub mod fold;
#[cfg_attr(feature = "nightly", rustc_diagnostic_item = "type_ir_inherent")]
pub mod inherent;
pub mod ir_print;
pub mod lang_items;
pub mod lift;
pub mod outlives;
pub mod relate;
pub mod search_graph;
pub mod solve;

// These modules are not `pub` since they are glob-imported.
#[macro_use]
mod macros;
mod binder;
mod canonical;
mod const_kind;
mod effects;
mod flags;
mod generic_arg;
mod infer_ctxt;
mod interner;
mod opaque_ty;
mod predicate;
mod predicate_kind;
mod region_kind;
mod ty_info;
mod ty_kind;
mod upcast;

pub use binder::*;
pub use canonical::*;
#[cfg(feature = "nightly")]
pub use codec::*;
pub use const_kind::*;
pub use effects::*;
pub use flags::*;
pub use generic_arg::*;
pub use infer_ctxt::*;
pub use interner::*;
pub use opaque_ty::*;
pub use predicate::*;
pub use predicate_kind::*;
pub use region_kind::*;
pub use ty_info::*;
pub use ty_kind::*;
pub use upcast::*;
pub use AliasTyKind::*;
pub use DynKind::*;
pub use InferTy::*;
pub use RegionKind::*;
pub use TyKind::*;
pub use Variance::*;

rustc_index::newtype_index! {
    /// A [De Bruijn index][dbi] is a standard means of representing
    /// regions (and perhaps later types) in a higher-ranked setting. In
    /// particular, imagine a type like this:
    /// ```ignore (illustrative)
    ///    for<'a> fn(for<'b> fn(&'b isize, &'a isize), &'a char)
    /// // ^          ^            |          |           |
    /// // |          |            |          |           |
    /// // |          +------------+ 0        |           |
    /// // |                                  |           |
    /// // +----------------------------------+ 1         |
    /// // |                                              |
    /// // +----------------------------------------------+ 0
    /// ```
    /// In this type, there are two binders (the outer fn and the inner
    /// fn). We need to be able to determine, for any given region, which
    /// fn type it is bound by, the inner or the outer one. There are
    /// various ways you can do this, but a De Bruijn index is one of the
    /// more convenient and has some nice properties. The basic idea is to
    /// count the number of binders, inside out. Some examples should help
    /// clarify what I mean.
    ///
    /// Let's start with the reference type `&'b isize` that is the first
    /// argument to the inner function. This region `'b` is assigned a De
    /// Bruijn index of 0, meaning "the innermost binder" (in this case, a
    /// fn). The region `'a` that appears in the second argument type (`&'a
    /// isize`) would then be assigned a De Bruijn index of 1, meaning "the
    /// second-innermost binder". (These indices are written on the arrows
    /// in the diagram).
    ///
    /// What is interesting is that De Bruijn index attached to a particular
    /// variable will vary depending on where it appears. For example,
    /// the final type `&'a char` also refers to the region `'a` declared on
    /// the outermost fn. But this time, this reference is not nested within
    /// any other binders (i.e., it is not an argument to the inner fn, but
    /// rather the outer one). Therefore, in this case, it is assigned a
    /// De Bruijn index of 0, because the innermost binder in that location
    /// is the outer fn.
    ///
    /// [dbi]: https://en.wikipedia.org/wiki/De_Bruijn_index
    #[cfg_attr(feature = "nightly", derive(HashStable_NoContext))]
    #[encodable]
    #[orderable]
    #[debug_format = "DebruijnIndex({})"]
    #[gate_rustc_only]
    pub struct DebruijnIndex {
        const INNERMOST = 0;
    }
}

impl DebruijnIndex {
    /// Returns the resulting index when this value is moved into
    /// `amount` number of new binders. So, e.g., if you had
    ///
    ///    for<'a> fn(&'a x)
    ///
    /// and you wanted to change it to
    ///
    ///    for<'a> fn(for<'b> fn(&'a x))
    ///
    /// you would need to shift the index for `'a` into a new binder.
    #[inline]
    #[must_use]
    pub fn shifted_in(self, amount: u32) -> DebruijnIndex {
        DebruijnIndex::from_u32(self.as_u32() + amount)
    }

    /// Update this index in place by shifting it "in" through
    /// `amount` number of binders.
    #[inline]
    pub fn shift_in(&mut self, amount: u32) {
        *self = self.shifted_in(amount);
    }

    /// Returns the resulting index when this value is moved out from
    /// `amount` number of new binders.
    #[inline]
    #[must_use]
    pub fn shifted_out(self, amount: u32) -> DebruijnIndex {
        DebruijnIndex::from_u32(self.as_u32() - amount)
    }

    /// Update in place by shifting out from `amount` binders.
    #[inline]
    pub fn shift_out(&mut self, amount: u32) {
        *self = self.shifted_out(amount);
    }

    /// Adjusts any De Bruijn indices so as to make `to_binder` the
    /// innermost binder. That is, if we have something bound at `to_binder`,
    /// it will now be bound at INNERMOST. This is an appropriate thing to do
    /// when moving a region out from inside binders:
    ///
    /// ```ignore (illustrative)
    ///             for<'a>   fn(for<'b>   for<'c>   fn(&'a u32), _)
    /// // Binder:  D3           D2        D1            ^^
    /// ```
    ///
    /// Here, the region `'a` would have the De Bruijn index D3,
    /// because it is the bound 3 binders out. However, if we wanted
    /// to refer to that region `'a` in the second argument (the `_`),
    /// those two binders would not be in scope. In that case, we
    /// might invoke `shift_out_to_binder(D3)`. This would adjust the
    /// De Bruijn index of `'a` to D1 (the innermost binder).
    ///
    /// If we invoke `shift_out_to_binder` and the region is in fact
    /// bound by one of the binders we are shifting out of, that is an
    /// error (and should fail an assertion failure).
    #[inline]
    pub fn shifted_out_to_binder(self, to_binder: DebruijnIndex) -> Self {
        self.shifted_out(to_binder.as_u32() - INNERMOST.as_u32())
    }
}

pub fn debug_bound_var<T: std::fmt::Write>(
    fmt: &mut T,
    debruijn: DebruijnIndex,
    var: impl std::fmt::Debug,
) -> Result<(), std::fmt::Error> {
    if debruijn == INNERMOST {
        write!(fmt, "^{var:?}")
    } else {
        write!(fmt, "^{}_{:?}", debruijn.index(), var)
    }
}

#[derive(Copy, Clone, PartialEq, Eq)]
#[cfg_attr(feature = "nightly", derive(Decodable, Encodable, Hash, HashStable_NoContext))]
#[cfg_attr(feature = "nightly", rustc_pass_by_value)]
pub enum Variance {
    Covariant,     // T<A> <: T<B> iff A <: B -- e.g., function return type
    Invariant,     // T<A> <: T<B> iff B == A -- e.g., type of mutable cell
    Contravariant, // T<A> <: T<B> iff B <: A -- e.g., function param type
    Bivariant,     // T<A> <: T<B>            -- e.g., unused type parameter
}

impl Variance {
    /// `a.xform(b)` combines the variance of a context with the
    /// variance of a type with the following meaning. If we are in a
    /// context with variance `a`, and we encounter a type argument in
    /// a position with variance `b`, then `a.xform(b)` is the new
    /// variance with which the argument appears.
    ///
    /// Example 1:
    /// ```ignore (illustrative)
    /// *mut Vec<i32>
    /// ```
    /// Here, the "ambient" variance starts as covariant. `*mut T` is
    /// invariant with respect to `T`, so the variance in which the
    /// `Vec<i32>` appears is `Covariant.xform(Invariant)`, which
    /// yields `Invariant`. Now, the type `Vec<T>` is covariant with
    /// respect to its type argument `T`, and hence the variance of
    /// the `i32` here is `Invariant.xform(Covariant)`, which results
    /// (again) in `Invariant`.
    ///
    /// Example 2:
    /// ```ignore (illustrative)
    /// fn(*const Vec<i32>, *mut Vec<i32)
    /// ```
    /// The ambient variance is covariant. A `fn` type is
    /// contravariant with respect to its parameters, so the variance
    /// within which both pointer types appear is
    /// `Covariant.xform(Contravariant)`, or `Contravariant`. `*const
    /// T` is covariant with respect to `T`, so the variance within
    /// which the first `Vec<i32>` appears is
    /// `Contravariant.xform(Covariant)` or `Contravariant`. The same
    /// is true for its `i32` argument. In the `*mut T` case, the
    /// variance of `Vec<i32>` is `Contravariant.xform(Invariant)`,
    /// and hence the outermost type is `Invariant` with respect to
    /// `Vec<i32>` (and its `i32` argument).
    ///
    /// Source: Figure 1 of "Taming the Wildcards:
    /// Combining Definition- and Use-Site Variance" published in PLDI'11.
    pub fn xform(self, v: Variance) -> Variance {
        match (self, v) {
            // Figure 1, column 1.
            (Variance::Covariant, Variance::Covariant) => Variance::Covariant,
            (Variance::Covariant, Variance::Contravariant) => Variance::Contravariant,
            (Variance::Covariant, Variance::Invariant) => Variance::Invariant,
            (Variance::Covariant, Variance::Bivariant) => Variance::Bivariant,

            // Figure 1, column 2.
            (Variance::Contravariant, Variance::Covariant) => Variance::Contravariant,
            (Variance::Contravariant, Variance::Contravariant) => Variance::Covariant,
            (Variance::Contravariant, Variance::Invariant) => Variance::Invariant,
            (Variance::Contravariant, Variance::Bivariant) => Variance::Bivariant,

            // Figure 1, column 3.
            (Variance::Invariant, _) => Variance::Invariant,

            // Figure 1, column 4.
            (Variance::Bivariant, _) => Variance::Bivariant,
        }
    }
}

impl fmt::Debug for Variance {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.write_str(match *self {
            Variance::Covariant => "+",
            Variance::Contravariant => "-",
            Variance::Invariant => "o",
            Variance::Bivariant => "*",
        })
    }
}

rustc_index::newtype_index! {
    /// "Universes" are used during type- and trait-checking in the
    /// presence of `for<..>` binders to control what sets of names are
    /// visible. Universes are arranged into a tree: the root universe
    /// contains names that are always visible. Each child then adds a new
    /// set of names that are visible, in addition to those of its parent.
    /// We say that the child universe "extends" the parent universe with
    /// new names.
    ///
    /// To make this more concrete, consider this program:
    ///
    /// ```ignore (illustrative)
    /// struct Foo { }
    /// fn bar<T>(x: T) {
    ///   let y: for<'a> fn(&'a u8, Foo) = ...;
    /// }
    /// ```
    ///
    /// The struct name `Foo` is in the root universe U0. But the type
    /// parameter `T`, introduced on `bar`, is in an extended universe U1
    /// -- i.e., within `bar`, we can name both `T` and `Foo`, but outside
    /// of `bar`, we cannot name `T`. Then, within the type of `y`, the
    /// region `'a` is in a universe U2 that extends U1, because we can
    /// name it inside the fn type but not outside.
    ///
    /// Universes are used to do type- and trait-checking around these
    /// "forall" binders (also called **universal quantification**). The
    /// idea is that when, in the body of `bar`, we refer to `T` as a
    /// type, we aren't referring to any type in particular, but rather a
    /// kind of "fresh" type that is distinct from all other types we have
    /// actually declared. This is called a **placeholder** type, and we
    /// use universes to talk about this. In other words, a type name in
    /// universe 0 always corresponds to some "ground" type that the user
    /// declared, but a type name in a non-zero universe is a placeholder
    /// type -- an idealized representative of "types in general" that we
    /// use for checking generic functions.
    #[cfg_attr(feature = "nightly", derive(HashStable_NoContext))]
    #[encodable]
    #[orderable]
    #[debug_format = "U{}"]
    #[gate_rustc_only]
    pub struct UniverseIndex {}
}

impl UniverseIndex {
    pub const ROOT: UniverseIndex = UniverseIndex::ZERO;

    /// Returns the "next" universe index in order -- this new index
    /// is considered to extend all previous universes. This
    /// corresponds to entering a `forall` quantifier. So, for
    /// example, suppose we have this type in universe `U`:
    ///
    /// ```ignore (illustrative)
    /// for<'a> fn(&'a u32)
    /// ```
    ///
    /// Once we "enter" into this `for<'a>` quantifier, we are in a
    /// new universe that extends `U` -- in this new universe, we can
    /// name the region `'a`, but that region was not nameable from
    /// `U` because it was not in scope there.
    pub fn next_universe(self) -> UniverseIndex {
        UniverseIndex::from_u32(self.as_u32().checked_add(1).unwrap())
    }

    /// Returns `true` if `self` can name a name from `other` -- in other words,
    /// if the set of names in `self` is a superset of those in
    /// `other` (`self >= other`).
    pub fn can_name(self, other: UniverseIndex) -> bool {
        self >= other
    }

    /// Returns `true` if `self` cannot name some names from `other` -- in other
    /// words, if the set of names in `self` is a strict subset of
    /// those in `other` (`self < other`).
    pub fn cannot_name(self, other: UniverseIndex) -> bool {
        self < other
    }

    /// Returns `true` if `self` is the root universe, otherwise false.
    pub fn is_root(self) -> bool {
        self == Self::ROOT
    }
}

impl Default for UniverseIndex {
    fn default() -> Self {
        Self::ROOT
    }
}

rustc_index::newtype_index! {
    #[cfg_attr(feature = "nightly", derive(HashStable_NoContext))]
    #[encodable]
    #[orderable]
    #[debug_format = "{}"]
    #[gate_rustc_only]
    pub struct BoundVar {}
}

impl<I: Interner> inherent::BoundVarLike<I> for BoundVar {
    fn var(self) -> BoundVar {
        self
    }

    fn assert_eq(self, _var: I::BoundVarKind) {
        unreachable!("FIXME: We really should have a separate `BoundConst` for consts")
    }
}

/// Represents the various closure traits in the language. This
/// will determine the type of the environment (`self`, in the
/// desugaring) argument that the closure expects.
///
/// You can get the environment type of a closure using
/// `tcx.closure_env_ty()`.
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)]
#[cfg_attr(feature = "nightly", derive(Encodable, Decodable, HashStable_NoContext))]
pub enum ClosureKind {
    Fn,
    FnMut,
    FnOnce,
}

impl ClosureKind {
    /// This is the initial value used when doing upvar inference.
    pub const LATTICE_BOTTOM: ClosureKind = ClosureKind::Fn;

    pub const fn as_str(self) -> &'static str {
        match self {
            ClosureKind::Fn => "Fn",
            ClosureKind::FnMut => "FnMut",
            ClosureKind::FnOnce => "FnOnce",
        }
    }

    /// Returns `true` if a type that impls this closure kind
    /// must also implement `other`.
    #[rustfmt::skip]
    pub fn extends(self, other: ClosureKind) -> bool {
        use ClosureKind::*;
        match (self, other) {
              (Fn, Fn | FnMut | FnOnce)
            | (FnMut,   FnMut | FnOnce)
            | (FnOnce,          FnOnce) => true,
            _ => false,
        }
    }
}

impl fmt::Display for ClosureKind {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        self.as_str().fmt(f)
    }
}