rustc_type_ir/lib.rs
1#![cfg_attr(feature = "nightly", rustc_diagnostic_item = "type_ir")]
2// tidy-alphabetical-start
3#![allow(rustc::direct_use_of_rustc_type_ir)]
4#![allow(rustc::usage_of_ty_tykind)]
5#![allow(rustc::usage_of_type_ir_inherent)]
6#![allow(rustc::usage_of_type_ir_traits)]
7#![cfg_attr(feature = "nightly", allow(internal_features))]
8#![cfg_attr(
9 feature = "nightly",
10 feature(associated_type_defaults, never_type, rustc_attrs, negative_impls)
11)]
12// tidy-alphabetical-end
13
14extern crate self as rustc_type_ir;
15
16use std::fmt;
17use std::hash::Hash;
18
19#[cfg(feature = "nightly")]
20use rustc_macros::{Decodable, Encodable, HashStable_NoContext};
21
22// These modules are `pub` since they are not glob-imported.
23pub mod data_structures;
24pub mod elaborate;
25pub mod error;
26pub mod fast_reject;
27#[cfg_attr(feature = "nightly", rustc_diagnostic_item = "type_ir_inherent")]
28pub mod inherent;
29pub mod ir_print;
30pub mod lang_items;
31pub mod lift;
32pub mod outlives;
33pub mod relate;
34pub mod search_graph;
35pub mod solve;
36pub mod walk;
37
38// These modules are not `pub` since they are glob-imported.
39#[macro_use]
40mod macros;
41mod binder;
42mod canonical;
43mod const_kind;
44mod flags;
45mod fold;
46mod generic_arg;
47#[cfg(not(feature = "nightly"))]
48mod generic_visit;
49mod infer_ctxt;
50mod interner;
51mod opaque_ty;
52mod pattern;
53mod predicate;
54mod predicate_kind;
55mod region_kind;
56mod ty_info;
57mod ty_kind;
58mod upcast;
59mod visit;
60
61pub use AliasTyKind::*;
62pub use InferTy::*;
63pub use RegionKind::*;
64pub use TyKind::*;
65pub use Variance::*;
66pub use binder::{Placeholder, *};
67pub use canonical::*;
68pub use const_kind::*;
69pub use flags::*;
70pub use fold::*;
71pub use generic_arg::*;
72#[cfg(not(feature = "nightly"))]
73pub use generic_visit::*;
74pub use infer_ctxt::*;
75pub use interner::*;
76pub use opaque_ty::*;
77pub use pattern::*;
78pub use predicate::*;
79pub use predicate_kind::*;
80pub use region_kind::*;
81pub use rustc_ast_ir::{FloatTy, IntTy, Movability, Mutability, Pinnedness, UintTy};
82use rustc_type_ir_macros::GenericTypeVisitable;
83pub use ty_info::*;
84pub use ty_kind::*;
85pub use upcast::*;
86pub use visit::*;
87
88rustc_index::newtype_index! {
89 /// A [De Bruijn index][dbi] is a standard means of representing
90 /// regions (and perhaps later types) in a higher-ranked setting. In
91 /// particular, imagine a type like this:
92 /// ```ignore (illustrative)
93 /// for<'a> fn(for<'b> fn(&'b isize, &'a isize), &'a char)
94 /// // ^ ^ | | |
95 /// // | | | | |
96 /// // | +------------+ 0 | |
97 /// // | | |
98 /// // +----------------------------------+ 1 |
99 /// // | |
100 /// // +----------------------------------------------+ 0
101 /// ```
102 /// In this type, there are two binders (the outer fn and the inner
103 /// fn). We need to be able to determine, for any given region, which
104 /// fn type it is bound by, the inner or the outer one. There are
105 /// various ways you can do this, but a De Bruijn index is one of the
106 /// more convenient and has some nice properties. The basic idea is to
107 /// count the number of binders, inside out. Some examples should help
108 /// clarify what I mean.
109 ///
110 /// Let's start with the reference type `&'b isize` that is the first
111 /// argument to the inner function. This region `'b` is assigned a De
112 /// Bruijn index of 0, meaning "the innermost binder" (in this case, a
113 /// fn). The region `'a` that appears in the second argument type (`&'a
114 /// isize`) would then be assigned a De Bruijn index of 1, meaning "the
115 /// second-innermost binder". (These indices are written on the arrows
116 /// in the diagram).
117 ///
118 /// What is interesting is that De Bruijn index attached to a particular
119 /// variable will vary depending on where it appears. For example,
120 /// the final type `&'a char` also refers to the region `'a` declared on
121 /// the outermost fn. But this time, this reference is not nested within
122 /// any other binders (i.e., it is not an argument to the inner fn, but
123 /// rather the outer one). Therefore, in this case, it is assigned a
124 /// De Bruijn index of 0, because the innermost binder in that location
125 /// is the outer fn.
126 ///
127 /// [dbi]: https://en.wikipedia.org/wiki/De_Bruijn_index
128 #[cfg_attr(feature = "nightly", derive(HashStable_NoContext))]
129 #[encodable]
130 #[orderable]
131 #[debug_format = "DebruijnIndex({})"]
132 #[gate_rustc_only]
133 pub struct DebruijnIndex {
134 const INNERMOST = 0;
135 }
136}
137
138impl DebruijnIndex {
139 /// Returns the resulting index when this value is moved into
140 /// `amount` number of new binders. So, e.g., if you had
141 ///
142 /// for<'a> fn(&'a x)
143 ///
144 /// and you wanted to change it to
145 ///
146 /// for<'a> fn(for<'b> fn(&'a x))
147 ///
148 /// you would need to shift the index for `'a` into a new binder.
149 #[inline]
150 #[must_use]
151 pub fn shifted_in(self, amount: u32) -> DebruijnIndex {
152 DebruijnIndex::from_u32(self.as_u32() + amount)
153 }
154
155 /// Update this index in place by shifting it "in" through
156 /// `amount` number of binders.
157 #[inline]
158 pub fn shift_in(&mut self, amount: u32) {
159 *self = self.shifted_in(amount);
160 }
161
162 /// Returns the resulting index when this value is moved out from
163 /// `amount` number of new binders.
164 #[inline]
165 #[must_use]
166 pub fn shifted_out(self, amount: u32) -> DebruijnIndex {
167 DebruijnIndex::from_u32(self.as_u32() - amount)
168 }
169
170 /// Update in place by shifting out from `amount` binders.
171 #[inline]
172 pub fn shift_out(&mut self, amount: u32) {
173 *self = self.shifted_out(amount);
174 }
175
176 /// Adjusts any De Bruijn indices so as to make `to_binder` the
177 /// innermost binder. That is, if we have something bound at `to_binder`,
178 /// it will now be bound at INNERMOST. This is an appropriate thing to do
179 /// when moving a region out from inside binders:
180 ///
181 /// ```ignore (illustrative)
182 /// for<'a> fn(for<'b> for<'c> fn(&'a u32), _)
183 /// // Binder: D3 D2 D1 ^^
184 /// ```
185 ///
186 /// Here, the region `'a` would have the De Bruijn index D3,
187 /// because it is the bound 3 binders out. However, if we wanted
188 /// to refer to that region `'a` in the second argument (the `_`),
189 /// those two binders would not be in scope. In that case, we
190 /// might invoke `shift_out_to_binder(D3)`. This would adjust the
191 /// De Bruijn index of `'a` to D1 (the innermost binder).
192 ///
193 /// If we invoke `shift_out_to_binder` and the region is in fact
194 /// bound by one of the binders we are shifting out of, that is an
195 /// error (and should fail an assertion failure).
196 #[inline]
197 pub fn shifted_out_to_binder(self, to_binder: DebruijnIndex) -> Self {
198 self.shifted_out(to_binder.as_u32() - INNERMOST.as_u32())
199 }
200}
201
202pub fn debug_bound_var<T: std::fmt::Write>(
203 fmt: &mut T,
204 bound_index: BoundVarIndexKind,
205 var: impl std::fmt::Debug,
206) -> Result<(), std::fmt::Error> {
207 match bound_index {
208 BoundVarIndexKind::Bound(debruijn) => {
209 if debruijn == INNERMOST {
210 write!(fmt, "^{var:?}")
211 } else {
212 write!(fmt, "^{}_{:?}", debruijn.index(), var)
213 }
214 }
215 BoundVarIndexKind::Canonical => {
216 write!(fmt, "^c_{:?}", var)
217 }
218 }
219}
220
221#[derive(Copy, Clone, PartialEq, Eq, Hash, GenericTypeVisitable)]
222#[cfg_attr(feature = "nightly", derive(Decodable, Encodable, HashStable_NoContext))]
223#[cfg_attr(feature = "nightly", rustc_pass_by_value)]
224pub enum Variance {
225 Covariant, // T<A> <: T<B> iff A <: B -- e.g., function return type
226 Invariant, // T<A> <: T<B> iff B == A -- e.g., type of mutable cell
227 Contravariant, // T<A> <: T<B> iff B <: A -- e.g., function param type
228 Bivariant, // T<A> <: T<B> -- e.g., unused type parameter
229}
230
231impl Variance {
232 /// `a.xform(b)` combines the variance of a context with the
233 /// variance of a type with the following meaning. If we are in a
234 /// context with variance `a`, and we encounter a type argument in
235 /// a position with variance `b`, then `a.xform(b)` is the new
236 /// variance with which the argument appears.
237 ///
238 /// Example 1:
239 /// ```ignore (illustrative)
240 /// *mut Vec<i32>
241 /// ```
242 /// Here, the "ambient" variance starts as covariant. `*mut T` is
243 /// invariant with respect to `T`, so the variance in which the
244 /// `Vec<i32>` appears is `Covariant.xform(Invariant)`, which
245 /// yields `Invariant`. Now, the type `Vec<T>` is covariant with
246 /// respect to its type argument `T`, and hence the variance of
247 /// the `i32` here is `Invariant.xform(Covariant)`, which results
248 /// (again) in `Invariant`.
249 ///
250 /// Example 2:
251 /// ```ignore (illustrative)
252 /// fn(*const Vec<i32>, *mut Vec<i32)
253 /// ```
254 /// The ambient variance is covariant. A `fn` type is
255 /// contravariant with respect to its parameters, so the variance
256 /// within which both pointer types appear is
257 /// `Covariant.xform(Contravariant)`, or `Contravariant`. `*const
258 /// T` is covariant with respect to `T`, so the variance within
259 /// which the first `Vec<i32>` appears is
260 /// `Contravariant.xform(Covariant)` or `Contravariant`. The same
261 /// is true for its `i32` argument. In the `*mut T` case, the
262 /// variance of `Vec<i32>` is `Contravariant.xform(Invariant)`,
263 /// and hence the outermost type is `Invariant` with respect to
264 /// `Vec<i32>` (and its `i32` argument).
265 ///
266 /// Source: Figure 1 of "Taming the Wildcards:
267 /// Combining Definition- and Use-Site Variance" published in PLDI'11.
268 pub fn xform(self, v: Variance) -> Variance {
269 match (self, v) {
270 // Figure 1, column 1.
271 (Variance::Covariant, Variance::Covariant) => Variance::Covariant,
272 (Variance::Covariant, Variance::Contravariant) => Variance::Contravariant,
273 (Variance::Covariant, Variance::Invariant) => Variance::Invariant,
274 (Variance::Covariant, Variance::Bivariant) => Variance::Bivariant,
275
276 // Figure 1, column 2.
277 (Variance::Contravariant, Variance::Covariant) => Variance::Contravariant,
278 (Variance::Contravariant, Variance::Contravariant) => Variance::Covariant,
279 (Variance::Contravariant, Variance::Invariant) => Variance::Invariant,
280 (Variance::Contravariant, Variance::Bivariant) => Variance::Bivariant,
281
282 // Figure 1, column 3.
283 (Variance::Invariant, _) => Variance::Invariant,
284
285 // Figure 1, column 4.
286 (Variance::Bivariant, _) => Variance::Bivariant,
287 }
288 }
289}
290
291impl fmt::Debug for Variance {
292 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
293 f.write_str(match *self {
294 Variance::Covariant => "+",
295 Variance::Contravariant => "-",
296 Variance::Invariant => "o",
297 Variance::Bivariant => "*",
298 })
299 }
300}
301
302rustc_index::newtype_index! {
303 /// "Universes" are used during type- and trait-checking in the
304 /// presence of `for<..>` binders to control what sets of names are
305 /// visible. Universes are arranged into a tree: the root universe
306 /// contains names that are always visible. Each child then adds a new
307 /// set of names that are visible, in addition to those of its parent.
308 /// We say that the child universe "extends" the parent universe with
309 /// new names.
310 ///
311 /// To make this more concrete, consider this program:
312 ///
313 /// ```ignore (illustrative)
314 /// struct Foo { }
315 /// fn bar<T>(x: T) {
316 /// let y: for<'a> fn(&'a u8, Foo) = ...;
317 /// }
318 /// ```
319 ///
320 /// The struct name `Foo` is in the root universe U0. But the type
321 /// parameter `T`, introduced on `bar`, is in an extended universe U1
322 /// -- i.e., within `bar`, we can name both `T` and `Foo`, but outside
323 /// of `bar`, we cannot name `T`. Then, within the type of `y`, the
324 /// region `'a` is in a universe U2 that extends U1, because we can
325 /// name it inside the fn type but not outside.
326 ///
327 /// Universes are used to do type- and trait-checking around these
328 /// "forall" binders (also called **universal quantification**). The
329 /// idea is that when, in the body of `bar`, we refer to `T` as a
330 /// type, we aren't referring to any type in particular, but rather a
331 /// kind of "fresh" type that is distinct from all other types we have
332 /// actually declared. This is called a **placeholder** type, and we
333 /// use universes to talk about this. In other words, a type name in
334 /// universe 0 always corresponds to some "ground" type that the user
335 /// declared, but a type name in a non-zero universe is a placeholder
336 /// type -- an idealized representative of "types in general" that we
337 /// use for checking generic functions.
338 #[cfg_attr(feature = "nightly", derive(HashStable_NoContext))]
339 #[encodable]
340 #[orderable]
341 #[debug_format = "U{}"]
342 #[gate_rustc_only]
343 pub struct UniverseIndex {}
344}
345
346impl UniverseIndex {
347 pub const ROOT: UniverseIndex = UniverseIndex::ZERO;
348
349 /// Returns the "next" universe index in order -- this new index
350 /// is considered to extend all previous universes. This
351 /// corresponds to entering a `forall` quantifier. So, for
352 /// example, suppose we have this type in universe `U`:
353 ///
354 /// ```ignore (illustrative)
355 /// for<'a> fn(&'a u32)
356 /// ```
357 ///
358 /// Once we "enter" into this `for<'a>` quantifier, we are in a
359 /// new universe that extends `U` -- in this new universe, we can
360 /// name the region `'a`, but that region was not nameable from
361 /// `U` because it was not in scope there.
362 pub fn next_universe(self) -> UniverseIndex {
363 UniverseIndex::from_u32(self.as_u32().checked_add(1).unwrap())
364 }
365
366 /// Returns `true` if `self` can name a name from `other` -- in other words,
367 /// if the set of names in `self` is a superset of those in
368 /// `other` (`self >= other`).
369 pub fn can_name(self, other: UniverseIndex) -> bool {
370 self >= other
371 }
372
373 /// Returns `true` if `self` cannot name some names from `other` -- in other
374 /// words, if the set of names in `self` is a strict subset of
375 /// those in `other` (`self < other`).
376 pub fn cannot_name(self, other: UniverseIndex) -> bool {
377 self < other
378 }
379
380 /// Returns `true` if `self` is the root universe, otherwise false.
381 pub fn is_root(self) -> bool {
382 self == Self::ROOT
383 }
384}
385
386impl Default for UniverseIndex {
387 fn default() -> Self {
388 Self::ROOT
389 }
390}
391
392rustc_index::newtype_index! {
393 #[cfg_attr(feature = "nightly", derive(HashStable_NoContext))]
394 #[encodable]
395 #[orderable]
396 #[debug_format = "{}"]
397 #[gate_rustc_only]
398 pub struct BoundVar {}
399}
400
401/// Represents the various closure traits in the language. This
402/// will determine the type of the environment (`self`, in the
403/// desugaring) argument that the closure expects.
404///
405/// You can get the environment type of a closure using
406/// `tcx.closure_env_ty()`.
407#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)]
408#[cfg_attr(feature = "nightly", derive(Encodable, Decodable, HashStable_NoContext))]
409pub enum ClosureKind {
410 Fn,
411 FnMut,
412 FnOnce,
413}
414
415impl ClosureKind {
416 /// This is the initial value used when doing upvar inference.
417 pub const LATTICE_BOTTOM: ClosureKind = ClosureKind::Fn;
418
419 pub const fn as_str(self) -> &'static str {
420 match self {
421 ClosureKind::Fn => "Fn",
422 ClosureKind::FnMut => "FnMut",
423 ClosureKind::FnOnce => "FnOnce",
424 }
425 }
426
427 /// Returns `true` if a type that impls this closure kind
428 /// must also implement `other`.
429 #[rustfmt::skip]
430 pub fn extends(self, other: ClosureKind) -> bool {
431 use ClosureKind::*;
432 match (self, other) {
433 (Fn, Fn | FnMut | FnOnce)
434 | (FnMut, FnMut | FnOnce)
435 | (FnOnce, FnOnce) => true,
436 _ => false,
437 }
438 }
439}
440
441impl fmt::Display for ClosureKind {
442 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
443 self.as_str().fmt(f)
444 }
445}