rustc_target/callconv/mod.rs
1use std::{fmt, iter};
2
3use rustc_abi::{
4 AddressSpace, Align, BackendRepr, CanonAbi, ExternAbi, HasDataLayout, Primitive, Reg, RegKind,
5 Scalar, Size, TyAbiInterface, TyAndLayout,
6};
7use rustc_macros::HashStable_Generic;
8
9pub use crate::spec::AbiMap;
10use crate::spec::{HasTargetSpec, HasX86AbiOpt};
11
12mod aarch64;
13mod amdgpu;
14mod arm;
15mod avr;
16mod bpf;
17mod csky;
18mod hexagon;
19mod loongarch;
20mod m68k;
21mod mips;
22mod mips64;
23mod msp430;
24mod nvptx64;
25mod powerpc;
26mod powerpc64;
27mod riscv;
28mod s390x;
29mod sparc;
30mod sparc64;
31mod wasm;
32mod x86;
33mod x86_64;
34mod x86_win32;
35mod x86_win64;
36mod xtensa;
37
38#[derive(Clone, PartialEq, Eq, Hash, Debug, HashStable_Generic)]
39pub enum PassMode {
40 /// Ignore the argument.
41 ///
42 /// The argument is a ZST.
43 Ignore,
44 /// Pass the argument directly.
45 ///
46 /// The argument has a layout abi of `Scalar` or `Vector`.
47 /// Unfortunately due to past mistakes, in rare cases on wasm, it can also be `Aggregate`.
48 /// This is bad since it leaks LLVM implementation details into the ABI.
49 /// (Also see <https://github.com/rust-lang/rust/issues/115666>.)
50 Direct(ArgAttributes),
51 /// Pass a pair's elements directly in two arguments.
52 ///
53 /// The argument has a layout abi of `ScalarPair`.
54 Pair(ArgAttributes, ArgAttributes),
55 /// Pass the argument after casting it. See the `CastTarget` docs for details.
56 ///
57 /// `pad_i32` indicates if a `Reg::i32()` dummy argument is emitted before the real argument.
58 Cast { pad_i32: bool, cast: Box<CastTarget> },
59 /// Pass the argument indirectly via a hidden pointer.
60 ///
61 /// The `meta_attrs` value, if any, is for the metadata (vtable or length) of an unsized
62 /// argument. (This is the only mode that supports unsized arguments.)
63 ///
64 /// `on_stack` defines that the value should be passed at a fixed stack offset in accordance to
65 /// the ABI rather than passed using a pointer. This corresponds to the `byval` LLVM argument
66 /// attribute. The `byval` argument will use a byte array with the same size as the Rust type
67 /// (which ensures that padding is preserved and that we do not rely on LLVM's struct layout),
68 /// and will use the alignment specified in `attrs.pointee_align` (if `Some`) or the type's
69 /// alignment (if `None`). This means that the alignment will not always
70 /// match the Rust type's alignment; see documentation of `pass_by_stack_offset` for more info.
71 ///
72 /// `on_stack` cannot be true for unsized arguments, i.e., when `meta_attrs` is `Some`.
73 Indirect { attrs: ArgAttributes, meta_attrs: Option<ArgAttributes>, on_stack: bool },
74}
75
76impl PassMode {
77 /// Checks if these two `PassMode` are equal enough to be considered "the same for all
78 /// function call ABIs". However, the `Layout` can also impact ABI decisions,
79 /// so that needs to be compared as well!
80 pub fn eq_abi(&self, other: &Self) -> bool {
81 match (self, other) {
82 (PassMode::Ignore, PassMode::Ignore) => true,
83 (PassMode::Direct(a1), PassMode::Direct(a2)) => a1.eq_abi(a2),
84 (PassMode::Pair(a1, b1), PassMode::Pair(a2, b2)) => a1.eq_abi(a2) && b1.eq_abi(b2),
85 (
86 PassMode::Cast { cast: c1, pad_i32: pad1 },
87 PassMode::Cast { cast: c2, pad_i32: pad2 },
88 ) => c1.eq_abi(c2) && pad1 == pad2,
89 (
90 PassMode::Indirect { attrs: a1, meta_attrs: None, on_stack: s1 },
91 PassMode::Indirect { attrs: a2, meta_attrs: None, on_stack: s2 },
92 ) => a1.eq_abi(a2) && s1 == s2,
93 (
94 PassMode::Indirect { attrs: a1, meta_attrs: Some(e1), on_stack: s1 },
95 PassMode::Indirect { attrs: a2, meta_attrs: Some(e2), on_stack: s2 },
96 ) => a1.eq_abi(a2) && e1.eq_abi(e2) && s1 == s2,
97 _ => false,
98 }
99 }
100}
101
102// Hack to disable non_upper_case_globals only for the bitflags! and not for the rest
103// of this module
104pub use attr_impl::ArgAttribute;
105
106#[allow(non_upper_case_globals)]
107#[allow(unused)]
108mod attr_impl {
109 use rustc_macros::HashStable_Generic;
110
111 // The subset of llvm::Attribute needed for arguments, packed into a bitfield.
112 #[derive(Clone, Copy, Default, Hash, PartialEq, Eq, HashStable_Generic)]
113 pub struct ArgAttribute(u8);
114 bitflags::bitflags! {
115 impl ArgAttribute: u8 {
116 const CapturesNone = 0b111;
117 const CapturesAddress = 0b110;
118 const CapturesReadOnly = 0b100;
119 const NoAlias = 1 << 3;
120 const NonNull = 1 << 4;
121 const ReadOnly = 1 << 5;
122 const InReg = 1 << 6;
123 const NoUndef = 1 << 7;
124 }
125 }
126 rustc_data_structures::external_bitflags_debug! { ArgAttribute }
127}
128
129/// Sometimes an ABI requires small integers to be extended to a full or partial register. This enum
130/// defines if this extension should be zero-extension or sign-extension when necessary. When it is
131/// not necessary to extend the argument, this enum is ignored.
132#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug, HashStable_Generic)]
133pub enum ArgExtension {
134 None,
135 Zext,
136 Sext,
137}
138
139/// A compact representation of LLVM attributes (at least those relevant for this module)
140/// that can be manipulated without interacting with LLVM's Attribute machinery.
141#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug, HashStable_Generic)]
142pub struct ArgAttributes {
143 pub regular: ArgAttribute,
144 pub arg_ext: ArgExtension,
145 /// The minimum size of the pointee, guaranteed to be valid for the duration of the whole call
146 /// (corresponding to LLVM's dereferenceable_or_null attributes, i.e., it is okay for this to be
147 /// set on a null pointer, but all non-null pointers must be dereferenceable).
148 pub pointee_size: Size,
149 /// The minimum alignment of the pointee, if any.
150 pub pointee_align: Option<Align>,
151}
152
153impl ArgAttributes {
154 pub fn new() -> Self {
155 ArgAttributes {
156 regular: ArgAttribute::default(),
157 arg_ext: ArgExtension::None,
158 pointee_size: Size::ZERO,
159 pointee_align: None,
160 }
161 }
162
163 pub fn ext(&mut self, ext: ArgExtension) -> &mut Self {
164 assert!(
165 self.arg_ext == ArgExtension::None || self.arg_ext == ext,
166 "cannot set {:?} when {:?} is already set",
167 ext,
168 self.arg_ext
169 );
170 self.arg_ext = ext;
171 self
172 }
173
174 pub fn set(&mut self, attr: ArgAttribute) -> &mut Self {
175 self.regular |= attr;
176 self
177 }
178
179 pub fn contains(&self, attr: ArgAttribute) -> bool {
180 self.regular.contains(attr)
181 }
182
183 /// Checks if these two `ArgAttributes` are equal enough to be considered "the same for all
184 /// function call ABIs".
185 pub fn eq_abi(&self, other: &Self) -> bool {
186 // There's only one regular attribute that matters for the call ABI: InReg.
187 // Everything else is things like noalias, dereferenceable, nonnull, ...
188 // (This also applies to pointee_size, pointee_align.)
189 if self.regular.contains(ArgAttribute::InReg) != other.regular.contains(ArgAttribute::InReg)
190 {
191 return false;
192 }
193 // We also compare the sign extension mode -- this could let the callee make assumptions
194 // about bits that conceptually were not even passed.
195 if self.arg_ext != other.arg_ext {
196 return false;
197 }
198 true
199 }
200}
201
202impl From<ArgAttribute> for ArgAttributes {
203 fn from(value: ArgAttribute) -> Self {
204 Self {
205 regular: value,
206 arg_ext: ArgExtension::None,
207 pointee_size: Size::ZERO,
208 pointee_align: None,
209 }
210 }
211}
212
213/// An argument passed entirely registers with the
214/// same kind (e.g., HFA / HVA on PPC64 and AArch64).
215#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, HashStable_Generic)]
216pub struct Uniform {
217 pub unit: Reg,
218
219 /// The total size of the argument, which can be:
220 /// * equal to `unit.size` (one scalar/vector),
221 /// * a multiple of `unit.size` (an array of scalar/vectors),
222 /// * if `unit.kind` is `Integer`, the last element can be shorter, i.e., `{ i64, i64, i32 }`
223 /// for 64-bit integers with a total size of 20 bytes. When the argument is actually passed,
224 /// this size will be rounded up to the nearest multiple of `unit.size`.
225 pub total: Size,
226
227 /// Indicate that the argument is consecutive, in the sense that either all values need to be
228 /// passed in register, or all on the stack. If they are passed on the stack, there should be
229 /// no additional padding between elements.
230 pub is_consecutive: bool,
231}
232
233impl From<Reg> for Uniform {
234 fn from(unit: Reg) -> Uniform {
235 Uniform { unit, total: unit.size, is_consecutive: false }
236 }
237}
238
239impl Uniform {
240 pub fn align<C: HasDataLayout>(&self, cx: &C) -> Align {
241 self.unit.align(cx)
242 }
243
244 /// Pass using one or more values of the given type, without requiring them to be consecutive.
245 /// That is, some values may be passed in register and some on the stack.
246 pub fn new(unit: Reg, total: Size) -> Self {
247 Uniform { unit, total, is_consecutive: false }
248 }
249
250 /// Pass using one or more consecutive values of the given type. Either all values will be
251 /// passed in registers, or all on the stack.
252 pub fn consecutive(unit: Reg, total: Size) -> Self {
253 Uniform { unit, total, is_consecutive: true }
254 }
255}
256
257/// Describes the type used for `PassMode::Cast`.
258///
259/// Passing arguments in this mode works as follows: the registers in the `prefix` (the ones that
260/// are `Some`) get laid out one after the other (using `repr(C)` layout rules). Then the
261/// `rest.unit` register type gets repeated often enough to cover `rest.size`. This describes the
262/// actual type used for the call; the Rust type of the argument is then transmuted to this ABI type
263/// (and all data in the padding between the registers is dropped).
264#[derive(Clone, PartialEq, Eq, Hash, Debug, HashStable_Generic)]
265pub struct CastTarget {
266 pub prefix: [Option<Reg>; 8],
267 /// The offset of `rest` from the start of the value. Currently only implemented for a `Reg`
268 /// pair created by the `offset_pair` method.
269 pub rest_offset: Option<Size>,
270 pub rest: Uniform,
271 pub attrs: ArgAttributes,
272}
273
274impl From<Reg> for CastTarget {
275 fn from(unit: Reg) -> CastTarget {
276 CastTarget::from(Uniform::from(unit))
277 }
278}
279
280impl From<Uniform> for CastTarget {
281 fn from(uniform: Uniform) -> CastTarget {
282 Self::prefixed([None; 8], uniform)
283 }
284}
285
286impl CastTarget {
287 pub fn prefixed(prefix: [Option<Reg>; 8], rest: Uniform) -> Self {
288 Self { prefix, rest_offset: None, rest, attrs: ArgAttributes::new() }
289 }
290
291 pub fn offset_pair(a: Reg, offset_from_start: Size, b: Reg) -> Self {
292 Self {
293 prefix: [Some(a), None, None, None, None, None, None, None],
294 rest_offset: Some(offset_from_start),
295 rest: b.into(),
296 attrs: ArgAttributes::new(),
297 }
298 }
299
300 pub fn with_attrs(mut self, attrs: ArgAttributes) -> Self {
301 self.attrs = attrs;
302 self
303 }
304
305 pub fn pair(a: Reg, b: Reg) -> CastTarget {
306 Self::prefixed([Some(a), None, None, None, None, None, None, None], Uniform::from(b))
307 }
308
309 /// When you only access the range containing valid data, you can use this unaligned size;
310 /// otherwise, use the safer `size` method.
311 pub fn unaligned_size<C: HasDataLayout>(&self, _cx: &C) -> Size {
312 // Prefix arguments are passed in specific designated registers
313 let prefix_size = if let Some(offset_from_start) = self.rest_offset {
314 offset_from_start
315 } else {
316 self.prefix
317 .iter()
318 .filter_map(|x| x.map(|reg| reg.size))
319 .fold(Size::ZERO, |acc, size| acc + size)
320 };
321 // Remaining arguments are passed in chunks of the unit size
322 let rest_size =
323 self.rest.unit.size * self.rest.total.bytes().div_ceil(self.rest.unit.size.bytes());
324
325 prefix_size + rest_size
326 }
327
328 pub fn size<C: HasDataLayout>(&self, cx: &C) -> Size {
329 self.unaligned_size(cx).align_to(self.align(cx))
330 }
331
332 pub fn align<C: HasDataLayout>(&self, cx: &C) -> Align {
333 self.prefix
334 .iter()
335 .filter_map(|x| x.map(|reg| reg.align(cx)))
336 .fold(cx.data_layout().aggregate_align.max(self.rest.align(cx)), |acc, align| {
337 acc.max(align)
338 })
339 }
340
341 /// Checks if these two `CastTarget` are equal enough to be considered "the same for all
342 /// function call ABIs".
343 pub fn eq_abi(&self, other: &Self) -> bool {
344 let CastTarget {
345 prefix: prefix_l,
346 rest_offset: rest_offset_l,
347 rest: rest_l,
348 attrs: attrs_l,
349 } = self;
350 let CastTarget {
351 prefix: prefix_r,
352 rest_offset: rest_offset_r,
353 rest: rest_r,
354 attrs: attrs_r,
355 } = other;
356 prefix_l == prefix_r
357 && rest_offset_l == rest_offset_r
358 && rest_l == rest_r
359 && attrs_l.eq_abi(attrs_r)
360 }
361}
362
363/// Information about how to pass an argument to,
364/// or return a value from, a function, under some ABI.
365#[derive(Clone, PartialEq, Eq, Hash, HashStable_Generic)]
366pub struct ArgAbi<'a, Ty> {
367 pub layout: TyAndLayout<'a, Ty>,
368 pub mode: PassMode,
369}
370
371// Needs to be a custom impl because of the bounds on the `TyAndLayout` debug impl.
372impl<'a, Ty: fmt::Display> fmt::Debug for ArgAbi<'a, Ty> {
373 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
374 let ArgAbi { layout, mode } = self;
375 f.debug_struct("ArgAbi").field("layout", layout).field("mode", mode).finish()
376 }
377}
378
379impl<'a, Ty> ArgAbi<'a, Ty> {
380 /// This defines the "default ABI" for that type, that is then later adjusted in `fn_abi_adjust_for_abi`.
381 pub fn new(
382 cx: &impl HasDataLayout,
383 layout: TyAndLayout<'a, Ty>,
384 scalar_attrs: impl Fn(&TyAndLayout<'a, Ty>, Scalar, Size) -> ArgAttributes,
385 ) -> Self {
386 let mode = match layout.backend_repr {
387 BackendRepr::Scalar(scalar) => {
388 PassMode::Direct(scalar_attrs(&layout, scalar, Size::ZERO))
389 }
390 BackendRepr::ScalarPair(a, b) => PassMode::Pair(
391 scalar_attrs(&layout, a, Size::ZERO),
392 scalar_attrs(&layout, b, a.size(cx).align_to(b.align(cx).abi)),
393 ),
394 BackendRepr::SimdVector { .. } => PassMode::Direct(ArgAttributes::new()),
395 BackendRepr::Memory { .. } => Self::indirect_pass_mode(&layout),
396 };
397 ArgAbi { layout, mode }
398 }
399
400 fn indirect_pass_mode(layout: &TyAndLayout<'a, Ty>) -> PassMode {
401 let mut attrs = ArgAttributes::new();
402
403 // For non-immediate arguments the callee gets its own copy of
404 // the value on the stack, so there are no aliases. The function
405 // can capture the address of the argument, but not the provenance.
406 attrs
407 .set(ArgAttribute::NoAlias)
408 .set(ArgAttribute::CapturesAddress)
409 .set(ArgAttribute::NonNull)
410 .set(ArgAttribute::NoUndef);
411 attrs.pointee_size = layout.size;
412 attrs.pointee_align = Some(layout.align.abi);
413
414 let meta_attrs = layout.is_unsized().then_some(ArgAttributes::new());
415
416 PassMode::Indirect { attrs, meta_attrs, on_stack: false }
417 }
418
419 /// Pass this argument directly instead. Should NOT be used!
420 /// Only exists because of past ABI mistakes that will take time to fix
421 /// (see <https://github.com/rust-lang/rust/issues/115666>).
422 #[track_caller]
423 pub fn make_direct_deprecated(&mut self) {
424 match self.mode {
425 PassMode::Indirect { .. } => {
426 self.mode = PassMode::Direct(ArgAttributes::new());
427 }
428 PassMode::Ignore | PassMode::Direct(_) | PassMode::Pair(_, _) => {} // already direct
429 _ => panic!("Tried to make {:?} direct", self.mode),
430 }
431 }
432
433 /// Pass this argument indirectly, by passing a (thin or wide) pointer to the argument instead.
434 /// This is valid for both sized and unsized arguments.
435 #[track_caller]
436 pub fn make_indirect(&mut self) {
437 match self.mode {
438 PassMode::Direct(_) | PassMode::Pair(_, _) => {
439 self.mode = Self::indirect_pass_mode(&self.layout);
440 }
441 PassMode::Indirect { attrs: _, meta_attrs: _, on_stack: false } => {
442 // already indirect
443 }
444 _ => panic!("Tried to make {:?} indirect", self.mode),
445 }
446 }
447
448 /// Same as `make_indirect`, but for arguments that are ignored. Only needed for ABIs that pass
449 /// ZSTs indirectly.
450 #[track_caller]
451 pub fn make_indirect_from_ignore(&mut self) {
452 match self.mode {
453 PassMode::Ignore => {
454 self.mode = Self::indirect_pass_mode(&self.layout);
455 }
456 PassMode::Indirect { attrs: _, meta_attrs: _, on_stack: false } => {
457 // already indirect
458 }
459 _ => panic!("Tried to make {:?} indirect (expected `PassMode::Ignore`)", self.mode),
460 }
461 }
462
463 /// Pass this argument indirectly, by placing it at a fixed stack offset.
464 /// This corresponds to the `byval` LLVM argument attribute.
465 /// This is only valid for sized arguments.
466 ///
467 /// `byval_align` specifies the alignment of the `byval` stack slot, which does not need to
468 /// correspond to the type's alignment. This will be `Some` if the target's ABI specifies that
469 /// stack slots used for arguments passed by-value have specific alignment requirements which
470 /// differ from the alignment used in other situations.
471 ///
472 /// If `None`, the type's alignment is used.
473 ///
474 /// If the resulting alignment differs from the type's alignment,
475 /// the argument will be copied to an alloca with sufficient alignment,
476 /// either in the caller (if the type's alignment is lower than the byval alignment)
477 /// or in the callee (if the type's alignment is higher than the byval alignment),
478 /// to ensure that Rust code never sees an underaligned pointer.
479 pub fn pass_by_stack_offset(&mut self, byval_align: Option<Align>) {
480 assert!(!self.layout.is_unsized(), "used byval ABI for unsized layout");
481 self.make_indirect();
482 match self.mode {
483 PassMode::Indirect { ref mut attrs, meta_attrs: _, ref mut on_stack } => {
484 *on_stack = true;
485
486 // Some platforms, like 32-bit x86, change the alignment of the type when passing
487 // `byval`. Account for that.
488 if let Some(byval_align) = byval_align {
489 // On all targets with byval align this is currently true, so let's assert it.
490 debug_assert!(byval_align >= Align::from_bytes(4).unwrap());
491 attrs.pointee_align = Some(byval_align);
492 }
493 }
494 _ => unreachable!(),
495 }
496 }
497
498 pub fn extend_integer_width_to(&mut self, bits: u64) {
499 // Only integers have signedness
500 if let BackendRepr::Scalar(scalar) = self.layout.backend_repr
501 && let Primitive::Int(i, signed) = scalar.primitive()
502 && i.size().bits() < bits
503 && let PassMode::Direct(ref mut attrs) = self.mode
504 {
505 if signed {
506 attrs.ext(ArgExtension::Sext)
507 } else {
508 attrs.ext(ArgExtension::Zext)
509 };
510 }
511 }
512
513 pub fn cast_to<T: Into<CastTarget>>(&mut self, target: T) {
514 self.mode = PassMode::Cast { cast: Box::new(target.into()), pad_i32: false };
515 }
516
517 pub fn cast_to_and_pad_i32<T: Into<CastTarget>>(&mut self, target: T, pad_i32: bool) {
518 self.mode = PassMode::Cast { cast: Box::new(target.into()), pad_i32 };
519 }
520
521 pub fn is_indirect(&self) -> bool {
522 matches!(self.mode, PassMode::Indirect { .. })
523 }
524
525 pub fn is_sized_indirect(&self) -> bool {
526 matches!(self.mode, PassMode::Indirect { attrs: _, meta_attrs: None, on_stack: _ })
527 }
528
529 pub fn is_unsized_indirect(&self) -> bool {
530 matches!(self.mode, PassMode::Indirect { attrs: _, meta_attrs: Some(_), on_stack: _ })
531 }
532
533 pub fn is_ignore(&self) -> bool {
534 matches!(self.mode, PassMode::Ignore)
535 }
536
537 /// Checks if these two `ArgAbi` are equal enough to be considered "the same for all
538 /// function call ABIs".
539 pub fn eq_abi(&self, other: &Self) -> bool
540 where
541 Ty: PartialEq,
542 {
543 // Ideally we'd just compare the `mode`, but that is not enough -- for some modes LLVM will look
544 // at the type.
545 self.layout.eq_abi(&other.layout) && self.mode.eq_abi(&other.mode) && {
546 // `fn_arg_sanity_check` accepts `PassMode::Direct` for some aggregates.
547 // That elevates any type difference to an ABI difference since we just use the
548 // full Rust type as the LLVM argument/return type.
549 if matches!(self.mode, PassMode::Direct(..))
550 && matches!(self.layout.backend_repr, BackendRepr::Memory { .. })
551 {
552 // For aggregates in `Direct` mode to be compatible, the types need to be equal.
553 self.layout.ty == other.layout.ty
554 } else {
555 true
556 }
557 }
558 }
559}
560
561#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug, HashStable_Generic)]
562pub enum RiscvInterruptKind {
563 Machine,
564 Supervisor,
565}
566
567impl RiscvInterruptKind {
568 pub fn as_str(&self) -> &'static str {
569 match self {
570 Self::Machine => "machine",
571 Self::Supervisor => "supervisor",
572 }
573 }
574}
575
576/// Metadata describing how the arguments to a native function
577/// should be passed in order to respect the native ABI.
578///
579/// The signature represented by this type may not match the MIR function signature.
580/// Certain attributes, like `#[track_caller]` can introduce additional arguments, which are present in [`FnAbi`], but not in `FnSig`.
581/// While this difference is rarely relevant, it should still be kept in mind.
582///
583/// I will do my best to describe this structure, but these
584/// comments are reverse-engineered and may be inaccurate. -NDM
585#[derive(Clone, PartialEq, Eq, Hash, HashStable_Generic)]
586pub struct FnAbi<'a, Ty> {
587 /// The type, layout, and information about how each argument is passed.
588 pub args: Box<[ArgAbi<'a, Ty>]>,
589
590 /// The layout, type, and the way a value is returned from this function.
591 pub ret: ArgAbi<'a, Ty>,
592
593 /// Marks this function as variadic (accepting a variable number of arguments).
594 pub c_variadic: bool,
595
596 /// The count of non-variadic arguments.
597 ///
598 /// Should only be different from args.len() when c_variadic is true.
599 /// This can be used to know whether an argument is variadic or not.
600 pub fixed_count: u32,
601 /// The calling convention of this function.
602 pub conv: CanonAbi,
603 /// Indicates if an unwind may happen across a call to this function.
604 pub can_unwind: bool,
605}
606
607// Needs to be a custom impl because of the bounds on the `TyAndLayout` debug impl.
608impl<'a, Ty: fmt::Display> fmt::Debug for FnAbi<'a, Ty> {
609 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
610 let FnAbi { args, ret, c_variadic, fixed_count, conv, can_unwind } = self;
611 f.debug_struct("FnAbi")
612 .field("args", args)
613 .field("ret", ret)
614 .field("c_variadic", c_variadic)
615 .field("fixed_count", fixed_count)
616 .field("conv", conv)
617 .field("can_unwind", can_unwind)
618 .finish()
619 }
620}
621
622impl<'a, Ty> FnAbi<'a, Ty> {
623 pub fn adjust_for_foreign_abi<C>(&mut self, cx: &C, abi: ExternAbi)
624 where
625 Ty: TyAbiInterface<'a, C> + Copy,
626 C: HasDataLayout + HasTargetSpec + HasX86AbiOpt,
627 {
628 if abi == ExternAbi::X86Interrupt {
629 if let Some(arg) = self.args.first_mut() {
630 arg.pass_by_stack_offset(None);
631 }
632 return;
633 }
634
635 let spec = cx.target_spec();
636 match &spec.arch[..] {
637 "x86" => {
638 let (flavor, regparm) = match abi {
639 ExternAbi::Fastcall { .. } | ExternAbi::Vectorcall { .. } => {
640 (x86::Flavor::FastcallOrVectorcall, None)
641 }
642 ExternAbi::C { .. } | ExternAbi::Cdecl { .. } | ExternAbi::Stdcall { .. } => {
643 (x86::Flavor::General, cx.x86_abi_opt().regparm)
644 }
645 _ => (x86::Flavor::General, None),
646 };
647 let reg_struct_return = cx.x86_abi_opt().reg_struct_return;
648 let opts = x86::X86Options { flavor, regparm, reg_struct_return };
649 if spec.is_like_msvc {
650 x86_win32::compute_abi_info(cx, self, opts);
651 } else {
652 x86::compute_abi_info(cx, self, opts);
653 }
654 }
655 "x86_64" => match abi {
656 ExternAbi::SysV64 { .. } => x86_64::compute_abi_info(cx, self),
657 ExternAbi::Win64 { .. } | ExternAbi::Vectorcall { .. } => {
658 x86_win64::compute_abi_info(cx, self)
659 }
660 _ => {
661 if cx.target_spec().is_like_windows {
662 x86_win64::compute_abi_info(cx, self)
663 } else {
664 x86_64::compute_abi_info(cx, self)
665 }
666 }
667 },
668 "aarch64" | "arm64ec" => {
669 let kind = if cx.target_spec().is_like_darwin {
670 aarch64::AbiKind::DarwinPCS
671 } else if cx.target_spec().is_like_windows {
672 aarch64::AbiKind::Win64
673 } else {
674 aarch64::AbiKind::AAPCS
675 };
676 aarch64::compute_abi_info(cx, self, kind)
677 }
678 "amdgpu" => amdgpu::compute_abi_info(cx, self),
679 "arm" => arm::compute_abi_info(cx, self),
680 "avr" => avr::compute_abi_info(cx, self),
681 "loongarch32" | "loongarch64" => loongarch::compute_abi_info(cx, self),
682 "m68k" => m68k::compute_abi_info(cx, self),
683 "csky" => csky::compute_abi_info(cx, self),
684 "mips" | "mips32r6" => mips::compute_abi_info(cx, self),
685 "mips64" | "mips64r6" => mips64::compute_abi_info(cx, self),
686 "powerpc" => powerpc::compute_abi_info(cx, self),
687 "powerpc64" => powerpc64::compute_abi_info(cx, self),
688 "s390x" => s390x::compute_abi_info(cx, self),
689 "msp430" => msp430::compute_abi_info(cx, self),
690 "sparc" => sparc::compute_abi_info(cx, self),
691 "sparc64" => sparc64::compute_abi_info(cx, self),
692 "nvptx64" => {
693 if abi == ExternAbi::PtxKernel || abi == ExternAbi::GpuKernel {
694 nvptx64::compute_ptx_kernel_abi_info(cx, self)
695 } else {
696 nvptx64::compute_abi_info(cx, self)
697 }
698 }
699 "hexagon" => hexagon::compute_abi_info(cx, self),
700 "xtensa" => xtensa::compute_abi_info(cx, self),
701 "riscv32" | "riscv64" => riscv::compute_abi_info(cx, self),
702 "wasm32" | "wasm64" => wasm::compute_abi_info(cx, self),
703 "bpf" => bpf::compute_abi_info(cx, self),
704 arch => panic!("no lowering implemented for {arch}"),
705 }
706 }
707
708 pub fn adjust_for_rust_abi<C>(&mut self, cx: &C)
709 where
710 Ty: TyAbiInterface<'a, C> + Copy,
711 C: HasDataLayout + HasTargetSpec,
712 {
713 let spec = cx.target_spec();
714 match &*spec.arch {
715 "x86" => x86::compute_rust_abi_info(cx, self),
716 "riscv32" | "riscv64" => riscv::compute_rust_abi_info(cx, self),
717 "loongarch32" | "loongarch64" => loongarch::compute_rust_abi_info(cx, self),
718 "aarch64" => aarch64::compute_rust_abi_info(cx, self),
719 "bpf" => bpf::compute_rust_abi_info(self),
720 _ => {}
721 };
722
723 for (arg_idx, arg) in self
724 .args
725 .iter_mut()
726 .enumerate()
727 .map(|(idx, arg)| (Some(idx), arg))
728 .chain(iter::once((None, &mut self.ret)))
729 {
730 // If the logic above already picked a specific type to cast the argument to, leave that
731 // in place.
732 if matches!(arg.mode, PassMode::Ignore | PassMode::Cast { .. }) {
733 continue;
734 }
735
736 if arg_idx.is_none()
737 && arg.layout.size > Primitive::Pointer(AddressSpace::ZERO).size(cx) * 2
738 && !matches!(arg.layout.backend_repr, BackendRepr::SimdVector { .. })
739 {
740 // Return values larger than 2 registers using a return area
741 // pointer. LLVM and Cranelift disagree about how to return
742 // values that don't fit in the registers designated for return
743 // values. LLVM will force the entire return value to be passed
744 // by return area pointer, while Cranelift will look at each IR level
745 // return value independently and decide to pass it in a
746 // register or not, which would result in the return value
747 // being passed partially in registers and partially through a
748 // return area pointer. For large IR-level values such as `i128`,
749 // cranelift will even split up the value into smaller chunks.
750 //
751 // While Cranelift may need to be fixed as the LLVM behavior is
752 // generally more correct with respect to the surface language,
753 // forcing this behavior in rustc itself makes it easier for
754 // other backends to conform to the Rust ABI and for the C ABI
755 // rustc already handles this behavior anyway.
756 //
757 // In addition LLVM's decision to pass the return value in
758 // registers or using a return area pointer depends on how
759 // exactly the return type is lowered to an LLVM IR type. For
760 // example `Option<u128>` can be lowered as `{ i128, i128 }`
761 // in which case the x86_64 backend would use a return area
762 // pointer, or it could be passed as `{ i32, i128 }` in which
763 // case the x86_64 backend would pass it in registers by taking
764 // advantage of an LLVM ABI extension that allows using 3
765 // registers for the x86_64 sysv call conv rather than the
766 // officially specified 2 registers.
767 //
768 // FIXME: Technically we should look at the amount of available
769 // return registers rather than guessing that there are 2
770 // registers for return values. In practice only a couple of
771 // architectures have less than 2 return registers. None of
772 // which supported by Cranelift.
773 //
774 // NOTE: This adjustment is only necessary for the Rust ABI as
775 // for other ABI's the calling convention implementations in
776 // rustc_target already ensure any return value which doesn't
777 // fit in the available amount of return registers is passed in
778 // the right way for the current target.
779 //
780 // The adjustment is not necessary nor desired for types with a vector
781 // representation; those are handled below.
782 arg.make_indirect();
783 continue;
784 }
785
786 match arg.layout.backend_repr {
787 BackendRepr::Memory { .. } => {
788 // Compute `Aggregate` ABI.
789
790 let is_indirect_not_on_stack =
791 matches!(arg.mode, PassMode::Indirect { on_stack: false, .. });
792 assert!(is_indirect_not_on_stack);
793
794 let size = arg.layout.size;
795 if arg.layout.is_sized()
796 && size <= Primitive::Pointer(AddressSpace::ZERO).size(cx)
797 {
798 // We want to pass small aggregates as immediates, but using
799 // an LLVM aggregate type for this leads to bad optimizations,
800 // so we pick an appropriately sized integer type instead.
801 arg.cast_to(Reg { kind: RegKind::Integer, size });
802 }
803 }
804
805 BackendRepr::SimdVector { .. } => {
806 // This is a fun case! The gist of what this is doing is
807 // that we want callers and callees to always agree on the
808 // ABI of how they pass SIMD arguments. If we were to *not*
809 // make these arguments indirect then they'd be immediates
810 // in LLVM, which means that they'd used whatever the
811 // appropriate ABI is for the callee and the caller. That
812 // means, for example, if the caller doesn't have AVX
813 // enabled but the callee does, then passing an AVX argument
814 // across this boundary would cause corrupt data to show up.
815 //
816 // This problem is fixed by unconditionally passing SIMD
817 // arguments through memory between callers and callees
818 // which should get them all to agree on ABI regardless of
819 // target feature sets. Some more information about this
820 // issue can be found in #44367.
821 //
822 // We *could* do better in some cases, e.g. on x86_64 targets where SSE2 is
823 // required. However, it turns out that that makes LLVM worse at optimizing this
824 // code, so we pass things indirectly even there. See #139029 for more on that.
825 if spec.simd_types_indirect {
826 arg.make_indirect();
827 }
828 }
829
830 _ => {}
831 }
832 }
833 }
834}
835
836// Some types are used a lot. Make sure they don't unintentionally get bigger.
837#[cfg(target_pointer_width = "64")]
838mod size_asserts {
839 use rustc_data_structures::static_assert_size;
840
841 use super::*;
842 // tidy-alphabetical-start
843 static_assert_size!(ArgAbi<'_, usize>, 56);
844 static_assert_size!(FnAbi<'_, usize>, 80);
845 // tidy-alphabetical-end
846}