rustc_target/callconv/mod.rs
1use std::{fmt, iter};
2
3use rustc_abi::{
4 AddressSpace, Align, BackendRepr, CanonAbi, ExternAbi, HasDataLayout, Primitive, Reg, RegKind,
5 Scalar, Size, TyAbiInterface, TyAndLayout,
6};
7use rustc_macros::HashStable_Generic;
8
9pub use crate::spec::AbiMap;
10use crate::spec::{HasTargetSpec, HasWasmCAbiOpt, HasX86AbiOpt, WasmCAbi};
11
12mod aarch64;
13mod amdgpu;
14mod arm;
15mod avr;
16mod bpf;
17mod csky;
18mod hexagon;
19mod loongarch;
20mod m68k;
21mod mips;
22mod mips64;
23mod msp430;
24mod nvptx64;
25mod powerpc;
26mod powerpc64;
27mod riscv;
28mod s390x;
29mod sparc;
30mod sparc64;
31mod wasm;
32mod x86;
33mod x86_64;
34mod x86_win32;
35mod x86_win64;
36mod xtensa;
37
38#[derive(Clone, PartialEq, Eq, Hash, Debug, HashStable_Generic)]
39pub enum PassMode {
40 /// Ignore the argument.
41 ///
42 /// The argument is a ZST.
43 Ignore,
44 /// Pass the argument directly.
45 ///
46 /// The argument has a layout abi of `Scalar` or `Vector`.
47 /// Unfortunately due to past mistakes, in rare cases on wasm, it can also be `Aggregate`.
48 /// This is bad since it leaks LLVM implementation details into the ABI.
49 /// (Also see <https://github.com/rust-lang/rust/issues/115666>.)
50 Direct(ArgAttributes),
51 /// Pass a pair's elements directly in two arguments.
52 ///
53 /// The argument has a layout abi of `ScalarPair`.
54 Pair(ArgAttributes, ArgAttributes),
55 /// Pass the argument after casting it. See the `CastTarget` docs for details.
56 ///
57 /// `pad_i32` indicates if a `Reg::i32()` dummy argument is emitted before the real argument.
58 Cast { pad_i32: bool, cast: Box<CastTarget> },
59 /// Pass the argument indirectly via a hidden pointer.
60 ///
61 /// The `meta_attrs` value, if any, is for the metadata (vtable or length) of an unsized
62 /// argument. (This is the only mode that supports unsized arguments.)
63 ///
64 /// `on_stack` defines that the value should be passed at a fixed stack offset in accordance to
65 /// the ABI rather than passed using a pointer. This corresponds to the `byval` LLVM argument
66 /// attribute. The `byval` argument will use a byte array with the same size as the Rust type
67 /// (which ensures that padding is preserved and that we do not rely on LLVM's struct layout),
68 /// and will use the alignment specified in `attrs.pointee_align` (if `Some`) or the type's
69 /// alignment (if `None`). This means that the alignment will not always
70 /// match the Rust type's alignment; see documentation of `pass_by_stack_offset` for more info.
71 ///
72 /// `on_stack` cannot be true for unsized arguments, i.e., when `meta_attrs` is `Some`.
73 Indirect { attrs: ArgAttributes, meta_attrs: Option<ArgAttributes>, on_stack: bool },
74}
75
76impl PassMode {
77 /// Checks if these two `PassMode` are equal enough to be considered "the same for all
78 /// function call ABIs". However, the `Layout` can also impact ABI decisions,
79 /// so that needs to be compared as well!
80 pub fn eq_abi(&self, other: &Self) -> bool {
81 match (self, other) {
82 (PassMode::Ignore, PassMode::Ignore) => true,
83 (PassMode::Direct(a1), PassMode::Direct(a2)) => a1.eq_abi(a2),
84 (PassMode::Pair(a1, b1), PassMode::Pair(a2, b2)) => a1.eq_abi(a2) && b1.eq_abi(b2),
85 (
86 PassMode::Cast { cast: c1, pad_i32: pad1 },
87 PassMode::Cast { cast: c2, pad_i32: pad2 },
88 ) => c1.eq_abi(c2) && pad1 == pad2,
89 (
90 PassMode::Indirect { attrs: a1, meta_attrs: None, on_stack: s1 },
91 PassMode::Indirect { attrs: a2, meta_attrs: None, on_stack: s2 },
92 ) => a1.eq_abi(a2) && s1 == s2,
93 (
94 PassMode::Indirect { attrs: a1, meta_attrs: Some(e1), on_stack: s1 },
95 PassMode::Indirect { attrs: a2, meta_attrs: Some(e2), on_stack: s2 },
96 ) => a1.eq_abi(a2) && e1.eq_abi(e2) && s1 == s2,
97 _ => false,
98 }
99 }
100}
101
102// Hack to disable non_upper_case_globals only for the bitflags! and not for the rest
103// of this module
104pub use attr_impl::ArgAttribute;
105
106#[allow(non_upper_case_globals)]
107#[allow(unused)]
108mod attr_impl {
109 use rustc_macros::HashStable_Generic;
110
111 // The subset of llvm::Attribute needed for arguments, packed into a bitfield.
112 #[derive(Clone, Copy, Default, Hash, PartialEq, Eq, HashStable_Generic)]
113 pub struct ArgAttribute(u8);
114 bitflags::bitflags! {
115 impl ArgAttribute: u8 {
116 const NoAlias = 1 << 1;
117 const NoCapture = 1 << 2;
118 const NonNull = 1 << 3;
119 const ReadOnly = 1 << 4;
120 const InReg = 1 << 5;
121 const NoUndef = 1 << 6;
122 }
123 }
124 rustc_data_structures::external_bitflags_debug! { ArgAttribute }
125}
126
127/// Sometimes an ABI requires small integers to be extended to a full or partial register. This enum
128/// defines if this extension should be zero-extension or sign-extension when necessary. When it is
129/// not necessary to extend the argument, this enum is ignored.
130#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug, HashStable_Generic)]
131pub enum ArgExtension {
132 None,
133 Zext,
134 Sext,
135}
136
137/// A compact representation of LLVM attributes (at least those relevant for this module)
138/// that can be manipulated without interacting with LLVM's Attribute machinery.
139#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug, HashStable_Generic)]
140pub struct ArgAttributes {
141 pub regular: ArgAttribute,
142 pub arg_ext: ArgExtension,
143 /// The minimum size of the pointee, guaranteed to be valid for the duration of the whole call
144 /// (corresponding to LLVM's dereferenceable_or_null attributes, i.e., it is okay for this to be
145 /// set on a null pointer, but all non-null pointers must be dereferenceable).
146 pub pointee_size: Size,
147 /// The minimum alignment of the pointee, if any.
148 pub pointee_align: Option<Align>,
149}
150
151impl ArgAttributes {
152 pub fn new() -> Self {
153 ArgAttributes {
154 regular: ArgAttribute::default(),
155 arg_ext: ArgExtension::None,
156 pointee_size: Size::ZERO,
157 pointee_align: None,
158 }
159 }
160
161 pub fn ext(&mut self, ext: ArgExtension) -> &mut Self {
162 assert!(
163 self.arg_ext == ArgExtension::None || self.arg_ext == ext,
164 "cannot set {:?} when {:?} is already set",
165 ext,
166 self.arg_ext
167 );
168 self.arg_ext = ext;
169 self
170 }
171
172 pub fn set(&mut self, attr: ArgAttribute) -> &mut Self {
173 self.regular |= attr;
174 self
175 }
176
177 pub fn contains(&self, attr: ArgAttribute) -> bool {
178 self.regular.contains(attr)
179 }
180
181 /// Checks if these two `ArgAttributes` are equal enough to be considered "the same for all
182 /// function call ABIs".
183 pub fn eq_abi(&self, other: &Self) -> bool {
184 // There's only one regular attribute that matters for the call ABI: InReg.
185 // Everything else is things like noalias, dereferenceable, nonnull, ...
186 // (This also applies to pointee_size, pointee_align.)
187 if self.regular.contains(ArgAttribute::InReg) != other.regular.contains(ArgAttribute::InReg)
188 {
189 return false;
190 }
191 // We also compare the sign extension mode -- this could let the callee make assumptions
192 // about bits that conceptually were not even passed.
193 if self.arg_ext != other.arg_ext {
194 return false;
195 }
196 true
197 }
198}
199
200/// An argument passed entirely registers with the
201/// same kind (e.g., HFA / HVA on PPC64 and AArch64).
202#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, HashStable_Generic)]
203pub struct Uniform {
204 pub unit: Reg,
205
206 /// The total size of the argument, which can be:
207 /// * equal to `unit.size` (one scalar/vector),
208 /// * a multiple of `unit.size` (an array of scalar/vectors),
209 /// * if `unit.kind` is `Integer`, the last element can be shorter, i.e., `{ i64, i64, i32 }`
210 /// for 64-bit integers with a total size of 20 bytes. When the argument is actually passed,
211 /// this size will be rounded up to the nearest multiple of `unit.size`.
212 pub total: Size,
213
214 /// Indicate that the argument is consecutive, in the sense that either all values need to be
215 /// passed in register, or all on the stack. If they are passed on the stack, there should be
216 /// no additional padding between elements.
217 pub is_consecutive: bool,
218}
219
220impl From<Reg> for Uniform {
221 fn from(unit: Reg) -> Uniform {
222 Uniform { unit, total: unit.size, is_consecutive: false }
223 }
224}
225
226impl Uniform {
227 pub fn align<C: HasDataLayout>(&self, cx: &C) -> Align {
228 self.unit.align(cx)
229 }
230
231 /// Pass using one or more values of the given type, without requiring them to be consecutive.
232 /// That is, some values may be passed in register and some on the stack.
233 pub fn new(unit: Reg, total: Size) -> Self {
234 Uniform { unit, total, is_consecutive: false }
235 }
236
237 /// Pass using one or more consecutive values of the given type. Either all values will be
238 /// passed in registers, or all on the stack.
239 pub fn consecutive(unit: Reg, total: Size) -> Self {
240 Uniform { unit, total, is_consecutive: true }
241 }
242}
243
244/// Describes the type used for `PassMode::Cast`.
245///
246/// Passing arguments in this mode works as follows: the registers in the `prefix` (the ones that
247/// are `Some`) get laid out one after the other (using `repr(C)` layout rules). Then the
248/// `rest.unit` register type gets repeated often enough to cover `rest.size`. This describes the
249/// actual type used for the call; the Rust type of the argument is then transmuted to this ABI type
250/// (and all data in the padding between the registers is dropped).
251#[derive(Clone, PartialEq, Eq, Hash, Debug, HashStable_Generic)]
252pub struct CastTarget {
253 pub prefix: [Option<Reg>; 8],
254 pub rest: Uniform,
255 pub attrs: ArgAttributes,
256}
257
258impl From<Reg> for CastTarget {
259 fn from(unit: Reg) -> CastTarget {
260 CastTarget::from(Uniform::from(unit))
261 }
262}
263
264impl From<Uniform> for CastTarget {
265 fn from(uniform: Uniform) -> CastTarget {
266 CastTarget {
267 prefix: [None; 8],
268 rest: uniform,
269 attrs: ArgAttributes {
270 regular: ArgAttribute::default(),
271 arg_ext: ArgExtension::None,
272 pointee_size: Size::ZERO,
273 pointee_align: None,
274 },
275 }
276 }
277}
278
279impl CastTarget {
280 pub fn pair(a: Reg, b: Reg) -> CastTarget {
281 CastTarget {
282 prefix: [Some(a), None, None, None, None, None, None, None],
283 rest: Uniform::from(b),
284 attrs: ArgAttributes {
285 regular: ArgAttribute::default(),
286 arg_ext: ArgExtension::None,
287 pointee_size: Size::ZERO,
288 pointee_align: None,
289 },
290 }
291 }
292
293 /// When you only access the range containing valid data, you can use this unaligned size;
294 /// otherwise, use the safer `size` method.
295 pub fn unaligned_size<C: HasDataLayout>(&self, _cx: &C) -> Size {
296 // Prefix arguments are passed in specific designated registers
297 let prefix_size = self
298 .prefix
299 .iter()
300 .filter_map(|x| x.map(|reg| reg.size))
301 .fold(Size::ZERO, |acc, size| acc + size);
302 // Remaining arguments are passed in chunks of the unit size
303 let rest_size =
304 self.rest.unit.size * self.rest.total.bytes().div_ceil(self.rest.unit.size.bytes());
305
306 prefix_size + rest_size
307 }
308
309 pub fn size<C: HasDataLayout>(&self, cx: &C) -> Size {
310 self.unaligned_size(cx).align_to(self.align(cx))
311 }
312
313 pub fn align<C: HasDataLayout>(&self, cx: &C) -> Align {
314 self.prefix
315 .iter()
316 .filter_map(|x| x.map(|reg| reg.align(cx)))
317 .fold(cx.data_layout().aggregate_align.abi.max(self.rest.align(cx)), |acc, align| {
318 acc.max(align)
319 })
320 }
321
322 /// Checks if these two `CastTarget` are equal enough to be considered "the same for all
323 /// function call ABIs".
324 pub fn eq_abi(&self, other: &Self) -> bool {
325 let CastTarget { prefix: prefix_l, rest: rest_l, attrs: attrs_l } = self;
326 let CastTarget { prefix: prefix_r, rest: rest_r, attrs: attrs_r } = other;
327 prefix_l == prefix_r && rest_l == rest_r && attrs_l.eq_abi(attrs_r)
328 }
329}
330
331/// Information about how to pass an argument to,
332/// or return a value from, a function, under some ABI.
333#[derive(Clone, PartialEq, Eq, Hash, HashStable_Generic)]
334pub struct ArgAbi<'a, Ty> {
335 pub layout: TyAndLayout<'a, Ty>,
336 pub mode: PassMode,
337}
338
339// Needs to be a custom impl because of the bounds on the `TyAndLayout` debug impl.
340impl<'a, Ty: fmt::Display> fmt::Debug for ArgAbi<'a, Ty> {
341 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
342 let ArgAbi { layout, mode } = self;
343 f.debug_struct("ArgAbi").field("layout", layout).field("mode", mode).finish()
344 }
345}
346
347impl<'a, Ty> ArgAbi<'a, Ty> {
348 /// This defines the "default ABI" for that type, that is then later adjusted in `fn_abi_adjust_for_abi`.
349 pub fn new(
350 cx: &impl HasDataLayout,
351 layout: TyAndLayout<'a, Ty>,
352 scalar_attrs: impl Fn(&TyAndLayout<'a, Ty>, Scalar, Size) -> ArgAttributes,
353 ) -> Self {
354 let mode = match layout.backend_repr {
355 BackendRepr::Scalar(scalar) => {
356 PassMode::Direct(scalar_attrs(&layout, scalar, Size::ZERO))
357 }
358 BackendRepr::ScalarPair(a, b) => PassMode::Pair(
359 scalar_attrs(&layout, a, Size::ZERO),
360 scalar_attrs(&layout, b, a.size(cx).align_to(b.align(cx).abi)),
361 ),
362 BackendRepr::SimdVector { .. } => PassMode::Direct(ArgAttributes::new()),
363 BackendRepr::Memory { .. } => Self::indirect_pass_mode(&layout),
364 };
365 ArgAbi { layout, mode }
366 }
367
368 fn indirect_pass_mode(layout: &TyAndLayout<'a, Ty>) -> PassMode {
369 let mut attrs = ArgAttributes::new();
370
371 // For non-immediate arguments the callee gets its own copy of
372 // the value on the stack, so there are no aliases. It's also
373 // program-invisible so can't possibly capture
374 attrs
375 .set(ArgAttribute::NoAlias)
376 .set(ArgAttribute::NoCapture)
377 .set(ArgAttribute::NonNull)
378 .set(ArgAttribute::NoUndef);
379 attrs.pointee_size = layout.size;
380 attrs.pointee_align = Some(layout.align.abi);
381
382 let meta_attrs = layout.is_unsized().then_some(ArgAttributes::new());
383
384 PassMode::Indirect { attrs, meta_attrs, on_stack: false }
385 }
386
387 /// Pass this argument directly instead. Should NOT be used!
388 /// Only exists because of past ABI mistakes that will take time to fix
389 /// (see <https://github.com/rust-lang/rust/issues/115666>).
390 #[track_caller]
391 pub fn make_direct_deprecated(&mut self) {
392 match self.mode {
393 PassMode::Indirect { .. } => {
394 self.mode = PassMode::Direct(ArgAttributes::new());
395 }
396 PassMode::Ignore | PassMode::Direct(_) | PassMode::Pair(_, _) => {} // already direct
397 _ => panic!("Tried to make {:?} direct", self.mode),
398 }
399 }
400
401 /// Pass this argument indirectly, by passing a (thin or wide) pointer to the argument instead.
402 /// This is valid for both sized and unsized arguments.
403 #[track_caller]
404 pub fn make_indirect(&mut self) {
405 match self.mode {
406 PassMode::Direct(_) | PassMode::Pair(_, _) => {
407 self.mode = Self::indirect_pass_mode(&self.layout);
408 }
409 PassMode::Indirect { attrs: _, meta_attrs: _, on_stack: false } => {
410 // already indirect
411 }
412 _ => panic!("Tried to make {:?} indirect", self.mode),
413 }
414 }
415
416 /// Same as `make_indirect`, but for arguments that are ignored. Only needed for ABIs that pass
417 /// ZSTs indirectly.
418 #[track_caller]
419 pub fn make_indirect_from_ignore(&mut self) {
420 match self.mode {
421 PassMode::Ignore => {
422 self.mode = Self::indirect_pass_mode(&self.layout);
423 }
424 PassMode::Indirect { attrs: _, meta_attrs: _, on_stack: false } => {
425 // already indirect
426 }
427 _ => panic!("Tried to make {:?} indirect (expected `PassMode::Ignore`)", self.mode),
428 }
429 }
430
431 /// Pass this argument indirectly, by placing it at a fixed stack offset.
432 /// This corresponds to the `byval` LLVM argument attribute.
433 /// This is only valid for sized arguments.
434 ///
435 /// `byval_align` specifies the alignment of the `byval` stack slot, which does not need to
436 /// correspond to the type's alignment. This will be `Some` if the target's ABI specifies that
437 /// stack slots used for arguments passed by-value have specific alignment requirements which
438 /// differ from the alignment used in other situations.
439 ///
440 /// If `None`, the type's alignment is used.
441 ///
442 /// If the resulting alignment differs from the type's alignment,
443 /// the argument will be copied to an alloca with sufficient alignment,
444 /// either in the caller (if the type's alignment is lower than the byval alignment)
445 /// or in the callee (if the type's alignment is higher than the byval alignment),
446 /// to ensure that Rust code never sees an underaligned pointer.
447 pub fn pass_by_stack_offset(&mut self, byval_align: Option<Align>) {
448 assert!(!self.layout.is_unsized(), "used byval ABI for unsized layout");
449 self.make_indirect();
450 match self.mode {
451 PassMode::Indirect { ref mut attrs, meta_attrs: _, ref mut on_stack } => {
452 *on_stack = true;
453
454 // Some platforms, like 32-bit x86, change the alignment of the type when passing
455 // `byval`. Account for that.
456 if let Some(byval_align) = byval_align {
457 // On all targets with byval align this is currently true, so let's assert it.
458 debug_assert!(byval_align >= Align::from_bytes(4).unwrap());
459 attrs.pointee_align = Some(byval_align);
460 }
461 }
462 _ => unreachable!(),
463 }
464 }
465
466 pub fn extend_integer_width_to(&mut self, bits: u64) {
467 // Only integers have signedness
468 if let BackendRepr::Scalar(scalar) = self.layout.backend_repr {
469 if let Primitive::Int(i, signed) = scalar.primitive() {
470 if i.size().bits() < bits {
471 if let PassMode::Direct(ref mut attrs) = self.mode {
472 if signed {
473 attrs.ext(ArgExtension::Sext)
474 } else {
475 attrs.ext(ArgExtension::Zext)
476 };
477 }
478 }
479 }
480 }
481 }
482
483 pub fn cast_to<T: Into<CastTarget>>(&mut self, target: T) {
484 self.mode = PassMode::Cast { cast: Box::new(target.into()), pad_i32: false };
485 }
486
487 pub fn cast_to_and_pad_i32<T: Into<CastTarget>>(&mut self, target: T, pad_i32: bool) {
488 self.mode = PassMode::Cast { cast: Box::new(target.into()), pad_i32 };
489 }
490
491 pub fn is_indirect(&self) -> bool {
492 matches!(self.mode, PassMode::Indirect { .. })
493 }
494
495 pub fn is_sized_indirect(&self) -> bool {
496 matches!(self.mode, PassMode::Indirect { attrs: _, meta_attrs: None, on_stack: _ })
497 }
498
499 pub fn is_unsized_indirect(&self) -> bool {
500 matches!(self.mode, PassMode::Indirect { attrs: _, meta_attrs: Some(_), on_stack: _ })
501 }
502
503 pub fn is_ignore(&self) -> bool {
504 matches!(self.mode, PassMode::Ignore)
505 }
506
507 /// Checks if these two `ArgAbi` are equal enough to be considered "the same for all
508 /// function call ABIs".
509 pub fn eq_abi(&self, other: &Self) -> bool
510 where
511 Ty: PartialEq,
512 {
513 // Ideally we'd just compare the `mode`, but that is not enough -- for some modes LLVM will look
514 // at the type.
515 self.layout.eq_abi(&other.layout) && self.mode.eq_abi(&other.mode) && {
516 // `fn_arg_sanity_check` accepts `PassMode::Direct` for some aggregates.
517 // That elevates any type difference to an ABI difference since we just use the
518 // full Rust type as the LLVM argument/return type.
519 if matches!(self.mode, PassMode::Direct(..))
520 && matches!(self.layout.backend_repr, BackendRepr::Memory { .. })
521 {
522 // For aggregates in `Direct` mode to be compatible, the types need to be equal.
523 self.layout.ty == other.layout.ty
524 } else {
525 true
526 }
527 }
528 }
529}
530
531#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug, HashStable_Generic)]
532pub enum RiscvInterruptKind {
533 Machine,
534 Supervisor,
535}
536
537impl RiscvInterruptKind {
538 pub fn as_str(&self) -> &'static str {
539 match self {
540 Self::Machine => "machine",
541 Self::Supervisor => "supervisor",
542 }
543 }
544}
545
546/// Metadata describing how the arguments to a native function
547/// should be passed in order to respect the native ABI.
548///
549/// The signature represented by this type may not match the MIR function signature.
550/// Certain attributes, like `#[track_caller]` can introduce additional arguments, which are present in [`FnAbi`], but not in `FnSig`.
551/// While this difference is rarely relevant, it should still be kept in mind.
552///
553/// I will do my best to describe this structure, but these
554/// comments are reverse-engineered and may be inaccurate. -NDM
555#[derive(Clone, PartialEq, Eq, Hash, HashStable_Generic)]
556pub struct FnAbi<'a, Ty> {
557 /// The type, layout, and information about how each argument is passed.
558 pub args: Box<[ArgAbi<'a, Ty>]>,
559
560 /// The layout, type, and the way a value is returned from this function.
561 pub ret: ArgAbi<'a, Ty>,
562
563 /// Marks this function as variadic (accepting a variable number of arguments).
564 pub c_variadic: bool,
565
566 /// The count of non-variadic arguments.
567 ///
568 /// Should only be different from args.len() when c_variadic is true.
569 /// This can be used to know whether an argument is variadic or not.
570 pub fixed_count: u32,
571 /// The calling convention of this function.
572 pub conv: CanonAbi,
573 /// Indicates if an unwind may happen across a call to this function.
574 pub can_unwind: bool,
575}
576
577// Needs to be a custom impl because of the bounds on the `TyAndLayout` debug impl.
578impl<'a, Ty: fmt::Display> fmt::Debug for FnAbi<'a, Ty> {
579 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
580 let FnAbi { args, ret, c_variadic, fixed_count, conv, can_unwind } = self;
581 f.debug_struct("FnAbi")
582 .field("args", args)
583 .field("ret", ret)
584 .field("c_variadic", c_variadic)
585 .field("fixed_count", fixed_count)
586 .field("conv", conv)
587 .field("can_unwind", can_unwind)
588 .finish()
589 }
590}
591
592impl<'a, Ty> FnAbi<'a, Ty> {
593 pub fn adjust_for_foreign_abi<C>(&mut self, cx: &C, abi: ExternAbi)
594 where
595 Ty: TyAbiInterface<'a, C> + Copy,
596 C: HasDataLayout + HasTargetSpec + HasWasmCAbiOpt + HasX86AbiOpt,
597 {
598 if abi == ExternAbi::X86Interrupt {
599 if let Some(arg) = self.args.first_mut() {
600 arg.pass_by_stack_offset(None);
601 }
602 return;
603 }
604
605 let spec = cx.target_spec();
606 match &spec.arch[..] {
607 "x86" => {
608 let (flavor, regparm) = match abi {
609 ExternAbi::Fastcall { .. } | ExternAbi::Vectorcall { .. } => {
610 (x86::Flavor::FastcallOrVectorcall, None)
611 }
612 ExternAbi::C { .. } | ExternAbi::Cdecl { .. } | ExternAbi::Stdcall { .. } => {
613 (x86::Flavor::General, cx.x86_abi_opt().regparm)
614 }
615 _ => (x86::Flavor::General, None),
616 };
617 let reg_struct_return = cx.x86_abi_opt().reg_struct_return;
618 let opts = x86::X86Options { flavor, regparm, reg_struct_return };
619 if spec.is_like_msvc {
620 x86_win32::compute_abi_info(cx, self, opts);
621 } else {
622 x86::compute_abi_info(cx, self, opts);
623 }
624 }
625 "x86_64" => match abi {
626 ExternAbi::SysV64 { .. } => x86_64::compute_abi_info(cx, self),
627 ExternAbi::Win64 { .. } | ExternAbi::Vectorcall { .. } => {
628 x86_win64::compute_abi_info(cx, self)
629 }
630 _ => {
631 if cx.target_spec().is_like_windows {
632 x86_win64::compute_abi_info(cx, self)
633 } else {
634 x86_64::compute_abi_info(cx, self)
635 }
636 }
637 },
638 "aarch64" | "arm64ec" => {
639 let kind = if cx.target_spec().is_like_darwin {
640 aarch64::AbiKind::DarwinPCS
641 } else if cx.target_spec().is_like_windows {
642 aarch64::AbiKind::Win64
643 } else {
644 aarch64::AbiKind::AAPCS
645 };
646 aarch64::compute_abi_info(cx, self, kind)
647 }
648 "amdgpu" => amdgpu::compute_abi_info(cx, self),
649 "arm" => arm::compute_abi_info(cx, self),
650 "avr" => avr::compute_abi_info(self),
651 "loongarch32" | "loongarch64" => loongarch::compute_abi_info(cx, self),
652 "m68k" => m68k::compute_abi_info(self),
653 "csky" => csky::compute_abi_info(self),
654 "mips" | "mips32r6" => mips::compute_abi_info(cx, self),
655 "mips64" | "mips64r6" => mips64::compute_abi_info(cx, self),
656 "powerpc" => powerpc::compute_abi_info(cx, self),
657 "powerpc64" => powerpc64::compute_abi_info(cx, self),
658 "s390x" => s390x::compute_abi_info(cx, self),
659 "msp430" => msp430::compute_abi_info(self),
660 "sparc" => sparc::compute_abi_info(cx, self),
661 "sparc64" => sparc64::compute_abi_info(cx, self),
662 "nvptx64" => {
663 if abi == ExternAbi::PtxKernel || abi == ExternAbi::GpuKernel {
664 nvptx64::compute_ptx_kernel_abi_info(cx, self)
665 } else {
666 nvptx64::compute_abi_info(self)
667 }
668 }
669 "hexagon" => hexagon::compute_abi_info(self),
670 "xtensa" => xtensa::compute_abi_info(cx, self),
671 "riscv32" | "riscv64" => riscv::compute_abi_info(cx, self),
672 "wasm32" => {
673 if spec.os == "unknown" && matches!(cx.wasm_c_abi_opt(), WasmCAbi::Legacy { .. }) {
674 wasm::compute_wasm_abi_info(self)
675 } else {
676 wasm::compute_c_abi_info(cx, self)
677 }
678 }
679 "wasm64" => wasm::compute_c_abi_info(cx, self),
680 "bpf" => bpf::compute_abi_info(self),
681 arch => panic!("no lowering implemented for {arch}"),
682 }
683 }
684
685 pub fn adjust_for_rust_abi<C>(&mut self, cx: &C)
686 where
687 Ty: TyAbiInterface<'a, C> + Copy,
688 C: HasDataLayout + HasTargetSpec,
689 {
690 let spec = cx.target_spec();
691 match &*spec.arch {
692 "x86" => x86::compute_rust_abi_info(cx, self),
693 "riscv32" | "riscv64" => riscv::compute_rust_abi_info(cx, self),
694 "loongarch32" | "loongarch64" => loongarch::compute_rust_abi_info(cx, self),
695 "aarch64" => aarch64::compute_rust_abi_info(cx, self),
696 _ => {}
697 };
698
699 for (arg_idx, arg) in self
700 .args
701 .iter_mut()
702 .enumerate()
703 .map(|(idx, arg)| (Some(idx), arg))
704 .chain(iter::once((None, &mut self.ret)))
705 {
706 // If the logic above already picked a specific type to cast the argument to, leave that
707 // in place.
708 if matches!(arg.mode, PassMode::Ignore | PassMode::Cast { .. }) {
709 continue;
710 }
711
712 if arg_idx.is_none()
713 && arg.layout.size > Primitive::Pointer(AddressSpace::DATA).size(cx) * 2
714 && !matches!(arg.layout.backend_repr, BackendRepr::SimdVector { .. })
715 {
716 // Return values larger than 2 registers using a return area
717 // pointer. LLVM and Cranelift disagree about how to return
718 // values that don't fit in the registers designated for return
719 // values. LLVM will force the entire return value to be passed
720 // by return area pointer, while Cranelift will look at each IR level
721 // return value independently and decide to pass it in a
722 // register or not, which would result in the return value
723 // being passed partially in registers and partially through a
724 // return area pointer. For large IR-level values such as `i128`,
725 // cranelift will even split up the value into smaller chunks.
726 //
727 // While Cranelift may need to be fixed as the LLVM behavior is
728 // generally more correct with respect to the surface language,
729 // forcing this behavior in rustc itself makes it easier for
730 // other backends to conform to the Rust ABI and for the C ABI
731 // rustc already handles this behavior anyway.
732 //
733 // In addition LLVM's decision to pass the return value in
734 // registers or using a return area pointer depends on how
735 // exactly the return type is lowered to an LLVM IR type. For
736 // example `Option<u128>` can be lowered as `{ i128, i128 }`
737 // in which case the x86_64 backend would use a return area
738 // pointer, or it could be passed as `{ i32, i128 }` in which
739 // case the x86_64 backend would pass it in registers by taking
740 // advantage of an LLVM ABI extension that allows using 3
741 // registers for the x86_64 sysv call conv rather than the
742 // officially specified 2 registers.
743 //
744 // FIXME: Technically we should look at the amount of available
745 // return registers rather than guessing that there are 2
746 // registers for return values. In practice only a couple of
747 // architectures have less than 2 return registers. None of
748 // which supported by Cranelift.
749 //
750 // NOTE: This adjustment is only necessary for the Rust ABI as
751 // for other ABI's the calling convention implementations in
752 // rustc_target already ensure any return value which doesn't
753 // fit in the available amount of return registers is passed in
754 // the right way for the current target.
755 //
756 // The adjustment is not necessary nor desired for types with a vector
757 // representation; those are handled below.
758 arg.make_indirect();
759 continue;
760 }
761
762 match arg.layout.backend_repr {
763 BackendRepr::Memory { .. } => {
764 // Compute `Aggregate` ABI.
765
766 let is_indirect_not_on_stack =
767 matches!(arg.mode, PassMode::Indirect { on_stack: false, .. });
768 assert!(is_indirect_not_on_stack);
769
770 let size = arg.layout.size;
771 if arg.layout.is_sized()
772 && size <= Primitive::Pointer(AddressSpace::DATA).size(cx)
773 {
774 // We want to pass small aggregates as immediates, but using
775 // an LLVM aggregate type for this leads to bad optimizations,
776 // so we pick an appropriately sized integer type instead.
777 arg.cast_to(Reg { kind: RegKind::Integer, size });
778 }
779 }
780
781 BackendRepr::SimdVector { .. } => {
782 // This is a fun case! The gist of what this is doing is
783 // that we want callers and callees to always agree on the
784 // ABI of how they pass SIMD arguments. If we were to *not*
785 // make these arguments indirect then they'd be immediates
786 // in LLVM, which means that they'd used whatever the
787 // appropriate ABI is for the callee and the caller. That
788 // means, for example, if the caller doesn't have AVX
789 // enabled but the callee does, then passing an AVX argument
790 // across this boundary would cause corrupt data to show up.
791 //
792 // This problem is fixed by unconditionally passing SIMD
793 // arguments through memory between callers and callees
794 // which should get them all to agree on ABI regardless of
795 // target feature sets. Some more information about this
796 // issue can be found in #44367.
797 //
798 // We *could* do better in some cases, e.g. on x86_64 targets where SSE2 is
799 // required. However, it turns out that that makes LLVM worse at optimizing this
800 // code, so we pass things indirectly even there. See #139029 for more on that.
801 if spec.simd_types_indirect {
802 arg.make_indirect();
803 }
804 }
805
806 _ => {}
807 }
808 }
809 }
810}
811
812// Some types are used a lot. Make sure they don't unintentionally get bigger.
813#[cfg(target_pointer_width = "64")]
814mod size_asserts {
815 use rustc_data_structures::static_assert_size;
816
817 use super::*;
818 // tidy-alphabetical-start
819 static_assert_size!(ArgAbi<'_, usize>, 56);
820 static_assert_size!(FnAbi<'_, usize>, 80);
821 // tidy-alphabetical-end
822}