rustc_target/callconv/
mod.rs

1use std::{fmt, iter};
2
3use rustc_abi::{
4    AddressSpace, Align, BackendRepr, CanonAbi, ExternAbi, HasDataLayout, Primitive, Reg, RegKind,
5    Scalar, Size, TyAbiInterface, TyAndLayout,
6};
7use rustc_macros::HashStable_Generic;
8
9pub use crate::spec::AbiMap;
10use crate::spec::{HasTargetSpec, HasWasmCAbiOpt, HasX86AbiOpt, WasmCAbi};
11
12mod aarch64;
13mod amdgpu;
14mod arm;
15mod avr;
16mod bpf;
17mod csky;
18mod hexagon;
19mod loongarch;
20mod m68k;
21mod mips;
22mod mips64;
23mod msp430;
24mod nvptx64;
25mod powerpc;
26mod powerpc64;
27mod riscv;
28mod s390x;
29mod sparc;
30mod sparc64;
31mod wasm;
32mod x86;
33mod x86_64;
34mod x86_win32;
35mod x86_win64;
36mod xtensa;
37
38#[derive(Clone, PartialEq, Eq, Hash, Debug, HashStable_Generic)]
39pub enum PassMode {
40    /// Ignore the argument.
41    ///
42    /// The argument is a ZST.
43    Ignore,
44    /// Pass the argument directly.
45    ///
46    /// The argument has a layout abi of `Scalar` or `Vector`.
47    /// Unfortunately due to past mistakes, in rare cases on wasm, it can also be `Aggregate`.
48    /// This is bad since it leaks LLVM implementation details into the ABI.
49    /// (Also see <https://github.com/rust-lang/rust/issues/115666>.)
50    Direct(ArgAttributes),
51    /// Pass a pair's elements directly in two arguments.
52    ///
53    /// The argument has a layout abi of `ScalarPair`.
54    Pair(ArgAttributes, ArgAttributes),
55    /// Pass the argument after casting it. See the `CastTarget` docs for details.
56    ///
57    /// `pad_i32` indicates if a `Reg::i32()` dummy argument is emitted before the real argument.
58    Cast { pad_i32: bool, cast: Box<CastTarget> },
59    /// Pass the argument indirectly via a hidden pointer.
60    ///
61    /// The `meta_attrs` value, if any, is for the metadata (vtable or length) of an unsized
62    /// argument. (This is the only mode that supports unsized arguments.)
63    ///
64    /// `on_stack` defines that the value should be passed at a fixed stack offset in accordance to
65    /// the ABI rather than passed using a pointer. This corresponds to the `byval` LLVM argument
66    /// attribute. The `byval` argument will use a byte array with the same size as the Rust type
67    /// (which ensures that padding is preserved and that we do not rely on LLVM's struct layout),
68    /// and will use the alignment specified in `attrs.pointee_align` (if `Some`) or the type's
69    /// alignment (if `None`). This means that the alignment will not always
70    /// match the Rust type's alignment; see documentation of `pass_by_stack_offset` for more info.
71    ///
72    /// `on_stack` cannot be true for unsized arguments, i.e., when `meta_attrs` is `Some`.
73    Indirect { attrs: ArgAttributes, meta_attrs: Option<ArgAttributes>, on_stack: bool },
74}
75
76impl PassMode {
77    /// Checks if these two `PassMode` are equal enough to be considered "the same for all
78    /// function call ABIs". However, the `Layout` can also impact ABI decisions,
79    /// so that needs to be compared as well!
80    pub fn eq_abi(&self, other: &Self) -> bool {
81        match (self, other) {
82            (PassMode::Ignore, PassMode::Ignore) => true,
83            (PassMode::Direct(a1), PassMode::Direct(a2)) => a1.eq_abi(a2),
84            (PassMode::Pair(a1, b1), PassMode::Pair(a2, b2)) => a1.eq_abi(a2) && b1.eq_abi(b2),
85            (
86                PassMode::Cast { cast: c1, pad_i32: pad1 },
87                PassMode::Cast { cast: c2, pad_i32: pad2 },
88            ) => c1.eq_abi(c2) && pad1 == pad2,
89            (
90                PassMode::Indirect { attrs: a1, meta_attrs: None, on_stack: s1 },
91                PassMode::Indirect { attrs: a2, meta_attrs: None, on_stack: s2 },
92            ) => a1.eq_abi(a2) && s1 == s2,
93            (
94                PassMode::Indirect { attrs: a1, meta_attrs: Some(e1), on_stack: s1 },
95                PassMode::Indirect { attrs: a2, meta_attrs: Some(e2), on_stack: s2 },
96            ) => a1.eq_abi(a2) && e1.eq_abi(e2) && s1 == s2,
97            _ => false,
98        }
99    }
100}
101
102// Hack to disable non_upper_case_globals only for the bitflags! and not for the rest
103// of this module
104pub use attr_impl::ArgAttribute;
105
106#[allow(non_upper_case_globals)]
107#[allow(unused)]
108mod attr_impl {
109    use rustc_macros::HashStable_Generic;
110
111    // The subset of llvm::Attribute needed for arguments, packed into a bitfield.
112    #[derive(Clone, Copy, Default, Hash, PartialEq, Eq, HashStable_Generic)]
113    pub struct ArgAttribute(u8);
114    bitflags::bitflags! {
115        impl ArgAttribute: u8 {
116            const NoAlias   = 1 << 1;
117            const NoCapture = 1 << 2;
118            const NonNull   = 1 << 3;
119            const ReadOnly  = 1 << 4;
120            const InReg     = 1 << 5;
121            const NoUndef = 1 << 6;
122        }
123    }
124    rustc_data_structures::external_bitflags_debug! { ArgAttribute }
125}
126
127/// Sometimes an ABI requires small integers to be extended to a full or partial register. This enum
128/// defines if this extension should be zero-extension or sign-extension when necessary. When it is
129/// not necessary to extend the argument, this enum is ignored.
130#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug, HashStable_Generic)]
131pub enum ArgExtension {
132    None,
133    Zext,
134    Sext,
135}
136
137/// A compact representation of LLVM attributes (at least those relevant for this module)
138/// that can be manipulated without interacting with LLVM's Attribute machinery.
139#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug, HashStable_Generic)]
140pub struct ArgAttributes {
141    pub regular: ArgAttribute,
142    pub arg_ext: ArgExtension,
143    /// The minimum size of the pointee, guaranteed to be valid for the duration of the whole call
144    /// (corresponding to LLVM's dereferenceable_or_null attributes, i.e., it is okay for this to be
145    /// set on a null pointer, but all non-null pointers must be dereferenceable).
146    pub pointee_size: Size,
147    /// The minimum alignment of the pointee, if any.
148    pub pointee_align: Option<Align>,
149}
150
151impl ArgAttributes {
152    pub fn new() -> Self {
153        ArgAttributes {
154            regular: ArgAttribute::default(),
155            arg_ext: ArgExtension::None,
156            pointee_size: Size::ZERO,
157            pointee_align: None,
158        }
159    }
160
161    pub fn ext(&mut self, ext: ArgExtension) -> &mut Self {
162        assert!(
163            self.arg_ext == ArgExtension::None || self.arg_ext == ext,
164            "cannot set {:?} when {:?} is already set",
165            ext,
166            self.arg_ext
167        );
168        self.arg_ext = ext;
169        self
170    }
171
172    pub fn set(&mut self, attr: ArgAttribute) -> &mut Self {
173        self.regular |= attr;
174        self
175    }
176
177    pub fn contains(&self, attr: ArgAttribute) -> bool {
178        self.regular.contains(attr)
179    }
180
181    /// Checks if these two `ArgAttributes` are equal enough to be considered "the same for all
182    /// function call ABIs".
183    pub fn eq_abi(&self, other: &Self) -> bool {
184        // There's only one regular attribute that matters for the call ABI: InReg.
185        // Everything else is things like noalias, dereferenceable, nonnull, ...
186        // (This also applies to pointee_size, pointee_align.)
187        if self.regular.contains(ArgAttribute::InReg) != other.regular.contains(ArgAttribute::InReg)
188        {
189            return false;
190        }
191        // We also compare the sign extension mode -- this could let the callee make assumptions
192        // about bits that conceptually were not even passed.
193        if self.arg_ext != other.arg_ext {
194            return false;
195        }
196        true
197    }
198}
199
200/// An argument passed entirely registers with the
201/// same kind (e.g., HFA / HVA on PPC64 and AArch64).
202#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, HashStable_Generic)]
203pub struct Uniform {
204    pub unit: Reg,
205
206    /// The total size of the argument, which can be:
207    /// * equal to `unit.size` (one scalar/vector),
208    /// * a multiple of `unit.size` (an array of scalar/vectors),
209    /// * if `unit.kind` is `Integer`, the last element can be shorter, i.e., `{ i64, i64, i32 }`
210    ///   for 64-bit integers with a total size of 20 bytes. When the argument is actually passed,
211    ///   this size will be rounded up to the nearest multiple of `unit.size`.
212    pub total: Size,
213
214    /// Indicate that the argument is consecutive, in the sense that either all values need to be
215    /// passed in register, or all on the stack. If they are passed on the stack, there should be
216    /// no additional padding between elements.
217    pub is_consecutive: bool,
218}
219
220impl From<Reg> for Uniform {
221    fn from(unit: Reg) -> Uniform {
222        Uniform { unit, total: unit.size, is_consecutive: false }
223    }
224}
225
226impl Uniform {
227    pub fn align<C: HasDataLayout>(&self, cx: &C) -> Align {
228        self.unit.align(cx)
229    }
230
231    /// Pass using one or more values of the given type, without requiring them to be consecutive.
232    /// That is, some values may be passed in register and some on the stack.
233    pub fn new(unit: Reg, total: Size) -> Self {
234        Uniform { unit, total, is_consecutive: false }
235    }
236
237    /// Pass using one or more consecutive values of the given type. Either all values will be
238    /// passed in registers, or all on the stack.
239    pub fn consecutive(unit: Reg, total: Size) -> Self {
240        Uniform { unit, total, is_consecutive: true }
241    }
242}
243
244/// Describes the type used for `PassMode::Cast`.
245///
246/// Passing arguments in this mode works as follows: the registers in the `prefix` (the ones that
247/// are `Some`) get laid out one after the other (using `repr(C)` layout rules). Then the
248/// `rest.unit` register type gets repeated often enough to cover `rest.size`. This describes the
249/// actual type used for the call; the Rust type of the argument is then transmuted to this ABI type
250/// (and all data in the padding between the registers is dropped).
251#[derive(Clone, PartialEq, Eq, Hash, Debug, HashStable_Generic)]
252pub struct CastTarget {
253    pub prefix: [Option<Reg>; 8],
254    pub rest: Uniform,
255    pub attrs: ArgAttributes,
256}
257
258impl From<Reg> for CastTarget {
259    fn from(unit: Reg) -> CastTarget {
260        CastTarget::from(Uniform::from(unit))
261    }
262}
263
264impl From<Uniform> for CastTarget {
265    fn from(uniform: Uniform) -> CastTarget {
266        CastTarget {
267            prefix: [None; 8],
268            rest: uniform,
269            attrs: ArgAttributes {
270                regular: ArgAttribute::default(),
271                arg_ext: ArgExtension::None,
272                pointee_size: Size::ZERO,
273                pointee_align: None,
274            },
275        }
276    }
277}
278
279impl CastTarget {
280    pub fn pair(a: Reg, b: Reg) -> CastTarget {
281        CastTarget {
282            prefix: [Some(a), None, None, None, None, None, None, None],
283            rest: Uniform::from(b),
284            attrs: ArgAttributes {
285                regular: ArgAttribute::default(),
286                arg_ext: ArgExtension::None,
287                pointee_size: Size::ZERO,
288                pointee_align: None,
289            },
290        }
291    }
292
293    /// When you only access the range containing valid data, you can use this unaligned size;
294    /// otherwise, use the safer `size` method.
295    pub fn unaligned_size<C: HasDataLayout>(&self, _cx: &C) -> Size {
296        // Prefix arguments are passed in specific designated registers
297        let prefix_size = self
298            .prefix
299            .iter()
300            .filter_map(|x| x.map(|reg| reg.size))
301            .fold(Size::ZERO, |acc, size| acc + size);
302        // Remaining arguments are passed in chunks of the unit size
303        let rest_size =
304            self.rest.unit.size * self.rest.total.bytes().div_ceil(self.rest.unit.size.bytes());
305
306        prefix_size + rest_size
307    }
308
309    pub fn size<C: HasDataLayout>(&self, cx: &C) -> Size {
310        self.unaligned_size(cx).align_to(self.align(cx))
311    }
312
313    pub fn align<C: HasDataLayout>(&self, cx: &C) -> Align {
314        self.prefix
315            .iter()
316            .filter_map(|x| x.map(|reg| reg.align(cx)))
317            .fold(cx.data_layout().aggregate_align.abi.max(self.rest.align(cx)), |acc, align| {
318                acc.max(align)
319            })
320    }
321
322    /// Checks if these two `CastTarget` are equal enough to be considered "the same for all
323    /// function call ABIs".
324    pub fn eq_abi(&self, other: &Self) -> bool {
325        let CastTarget { prefix: prefix_l, rest: rest_l, attrs: attrs_l } = self;
326        let CastTarget { prefix: prefix_r, rest: rest_r, attrs: attrs_r } = other;
327        prefix_l == prefix_r && rest_l == rest_r && attrs_l.eq_abi(attrs_r)
328    }
329}
330
331/// Information about how to pass an argument to,
332/// or return a value from, a function, under some ABI.
333#[derive(Clone, PartialEq, Eq, Hash, HashStable_Generic)]
334pub struct ArgAbi<'a, Ty> {
335    pub layout: TyAndLayout<'a, Ty>,
336    pub mode: PassMode,
337}
338
339// Needs to be a custom impl because of the bounds on the `TyAndLayout` debug impl.
340impl<'a, Ty: fmt::Display> fmt::Debug for ArgAbi<'a, Ty> {
341    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
342        let ArgAbi { layout, mode } = self;
343        f.debug_struct("ArgAbi").field("layout", layout).field("mode", mode).finish()
344    }
345}
346
347impl<'a, Ty> ArgAbi<'a, Ty> {
348    /// This defines the "default ABI" for that type, that is then later adjusted in `fn_abi_adjust_for_abi`.
349    pub fn new(
350        cx: &impl HasDataLayout,
351        layout: TyAndLayout<'a, Ty>,
352        scalar_attrs: impl Fn(&TyAndLayout<'a, Ty>, Scalar, Size) -> ArgAttributes,
353    ) -> Self {
354        let mode = match layout.backend_repr {
355            BackendRepr::Scalar(scalar) => {
356                PassMode::Direct(scalar_attrs(&layout, scalar, Size::ZERO))
357            }
358            BackendRepr::ScalarPair(a, b) => PassMode::Pair(
359                scalar_attrs(&layout, a, Size::ZERO),
360                scalar_attrs(&layout, b, a.size(cx).align_to(b.align(cx).abi)),
361            ),
362            BackendRepr::SimdVector { .. } => PassMode::Direct(ArgAttributes::new()),
363            BackendRepr::Memory { .. } => Self::indirect_pass_mode(&layout),
364        };
365        ArgAbi { layout, mode }
366    }
367
368    fn indirect_pass_mode(layout: &TyAndLayout<'a, Ty>) -> PassMode {
369        let mut attrs = ArgAttributes::new();
370
371        // For non-immediate arguments the callee gets its own copy of
372        // the value on the stack, so there are no aliases. It's also
373        // program-invisible so can't possibly capture
374        attrs
375            .set(ArgAttribute::NoAlias)
376            .set(ArgAttribute::NoCapture)
377            .set(ArgAttribute::NonNull)
378            .set(ArgAttribute::NoUndef);
379        attrs.pointee_size = layout.size;
380        attrs.pointee_align = Some(layout.align.abi);
381
382        let meta_attrs = layout.is_unsized().then_some(ArgAttributes::new());
383
384        PassMode::Indirect { attrs, meta_attrs, on_stack: false }
385    }
386
387    /// Pass this argument directly instead. Should NOT be used!
388    /// Only exists because of past ABI mistakes that will take time to fix
389    /// (see <https://github.com/rust-lang/rust/issues/115666>).
390    #[track_caller]
391    pub fn make_direct_deprecated(&mut self) {
392        match self.mode {
393            PassMode::Indirect { .. } => {
394                self.mode = PassMode::Direct(ArgAttributes::new());
395            }
396            PassMode::Ignore | PassMode::Direct(_) | PassMode::Pair(_, _) => {} // already direct
397            _ => panic!("Tried to make {:?} direct", self.mode),
398        }
399    }
400
401    /// Pass this argument indirectly, by passing a (thin or wide) pointer to the argument instead.
402    /// This is valid for both sized and unsized arguments.
403    #[track_caller]
404    pub fn make_indirect(&mut self) {
405        match self.mode {
406            PassMode::Direct(_) | PassMode::Pair(_, _) => {
407                self.mode = Self::indirect_pass_mode(&self.layout);
408            }
409            PassMode::Indirect { attrs: _, meta_attrs: _, on_stack: false } => {
410                // already indirect
411            }
412            _ => panic!("Tried to make {:?} indirect", self.mode),
413        }
414    }
415
416    /// Same as `make_indirect`, but for arguments that are ignored. Only needed for ABIs that pass
417    /// ZSTs indirectly.
418    #[track_caller]
419    pub fn make_indirect_from_ignore(&mut self) {
420        match self.mode {
421            PassMode::Ignore => {
422                self.mode = Self::indirect_pass_mode(&self.layout);
423            }
424            PassMode::Indirect { attrs: _, meta_attrs: _, on_stack: false } => {
425                // already indirect
426            }
427            _ => panic!("Tried to make {:?} indirect (expected `PassMode::Ignore`)", self.mode),
428        }
429    }
430
431    /// Pass this argument indirectly, by placing it at a fixed stack offset.
432    /// This corresponds to the `byval` LLVM argument attribute.
433    /// This is only valid for sized arguments.
434    ///
435    /// `byval_align` specifies the alignment of the `byval` stack slot, which does not need to
436    /// correspond to the type's alignment. This will be `Some` if the target's ABI specifies that
437    /// stack slots used for arguments passed by-value have specific alignment requirements which
438    /// differ from the alignment used in other situations.
439    ///
440    /// If `None`, the type's alignment is used.
441    ///
442    /// If the resulting alignment differs from the type's alignment,
443    /// the argument will be copied to an alloca with sufficient alignment,
444    /// either in the caller (if the type's alignment is lower than the byval alignment)
445    /// or in the callee (if the type's alignment is higher than the byval alignment),
446    /// to ensure that Rust code never sees an underaligned pointer.
447    pub fn pass_by_stack_offset(&mut self, byval_align: Option<Align>) {
448        assert!(!self.layout.is_unsized(), "used byval ABI for unsized layout");
449        self.make_indirect();
450        match self.mode {
451            PassMode::Indirect { ref mut attrs, meta_attrs: _, ref mut on_stack } => {
452                *on_stack = true;
453
454                // Some platforms, like 32-bit x86, change the alignment of the type when passing
455                // `byval`. Account for that.
456                if let Some(byval_align) = byval_align {
457                    // On all targets with byval align this is currently true, so let's assert it.
458                    debug_assert!(byval_align >= Align::from_bytes(4).unwrap());
459                    attrs.pointee_align = Some(byval_align);
460                }
461            }
462            _ => unreachable!(),
463        }
464    }
465
466    pub fn extend_integer_width_to(&mut self, bits: u64) {
467        // Only integers have signedness
468        if let BackendRepr::Scalar(scalar) = self.layout.backend_repr {
469            if let Primitive::Int(i, signed) = scalar.primitive() {
470                if i.size().bits() < bits {
471                    if let PassMode::Direct(ref mut attrs) = self.mode {
472                        if signed {
473                            attrs.ext(ArgExtension::Sext)
474                        } else {
475                            attrs.ext(ArgExtension::Zext)
476                        };
477                    }
478                }
479            }
480        }
481    }
482
483    pub fn cast_to<T: Into<CastTarget>>(&mut self, target: T) {
484        self.mode = PassMode::Cast { cast: Box::new(target.into()), pad_i32: false };
485    }
486
487    pub fn cast_to_and_pad_i32<T: Into<CastTarget>>(&mut self, target: T, pad_i32: bool) {
488        self.mode = PassMode::Cast { cast: Box::new(target.into()), pad_i32 };
489    }
490
491    pub fn is_indirect(&self) -> bool {
492        matches!(self.mode, PassMode::Indirect { .. })
493    }
494
495    pub fn is_sized_indirect(&self) -> bool {
496        matches!(self.mode, PassMode::Indirect { attrs: _, meta_attrs: None, on_stack: _ })
497    }
498
499    pub fn is_unsized_indirect(&self) -> bool {
500        matches!(self.mode, PassMode::Indirect { attrs: _, meta_attrs: Some(_), on_stack: _ })
501    }
502
503    pub fn is_ignore(&self) -> bool {
504        matches!(self.mode, PassMode::Ignore)
505    }
506
507    /// Checks if these two `ArgAbi` are equal enough to be considered "the same for all
508    /// function call ABIs".
509    pub fn eq_abi(&self, other: &Self) -> bool
510    where
511        Ty: PartialEq,
512    {
513        // Ideally we'd just compare the `mode`, but that is not enough -- for some modes LLVM will look
514        // at the type.
515        self.layout.eq_abi(&other.layout) && self.mode.eq_abi(&other.mode) && {
516            // `fn_arg_sanity_check` accepts `PassMode::Direct` for some aggregates.
517            // That elevates any type difference to an ABI difference since we just use the
518            // full Rust type as the LLVM argument/return type.
519            if matches!(self.mode, PassMode::Direct(..))
520                && matches!(self.layout.backend_repr, BackendRepr::Memory { .. })
521            {
522                // For aggregates in `Direct` mode to be compatible, the types need to be equal.
523                self.layout.ty == other.layout.ty
524            } else {
525                true
526            }
527        }
528    }
529}
530
531#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug, HashStable_Generic)]
532pub enum RiscvInterruptKind {
533    Machine,
534    Supervisor,
535}
536
537impl RiscvInterruptKind {
538    pub fn as_str(&self) -> &'static str {
539        match self {
540            Self::Machine => "machine",
541            Self::Supervisor => "supervisor",
542        }
543    }
544}
545
546/// Metadata describing how the arguments to a native function
547/// should be passed in order to respect the native ABI.
548///
549/// The signature represented by this type may not match the MIR function signature.
550/// Certain attributes, like `#[track_caller]` can introduce additional arguments, which are present in [`FnAbi`], but not in `FnSig`.
551/// While this difference is rarely relevant, it should still be kept in mind.
552///
553/// I will do my best to describe this structure, but these
554/// comments are reverse-engineered and may be inaccurate. -NDM
555#[derive(Clone, PartialEq, Eq, Hash, HashStable_Generic)]
556pub struct FnAbi<'a, Ty> {
557    /// The type, layout, and information about how each argument is passed.
558    pub args: Box<[ArgAbi<'a, Ty>]>,
559
560    /// The layout, type, and the way a value is returned from this function.
561    pub ret: ArgAbi<'a, Ty>,
562
563    /// Marks this function as variadic (accepting a variable number of arguments).
564    pub c_variadic: bool,
565
566    /// The count of non-variadic arguments.
567    ///
568    /// Should only be different from args.len() when c_variadic is true.
569    /// This can be used to know whether an argument is variadic or not.
570    pub fixed_count: u32,
571    /// The calling convention of this function.
572    pub conv: CanonAbi,
573    /// Indicates if an unwind may happen across a call to this function.
574    pub can_unwind: bool,
575}
576
577// Needs to be a custom impl because of the bounds on the `TyAndLayout` debug impl.
578impl<'a, Ty: fmt::Display> fmt::Debug for FnAbi<'a, Ty> {
579    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
580        let FnAbi { args, ret, c_variadic, fixed_count, conv, can_unwind } = self;
581        f.debug_struct("FnAbi")
582            .field("args", args)
583            .field("ret", ret)
584            .field("c_variadic", c_variadic)
585            .field("fixed_count", fixed_count)
586            .field("conv", conv)
587            .field("can_unwind", can_unwind)
588            .finish()
589    }
590}
591
592impl<'a, Ty> FnAbi<'a, Ty> {
593    pub fn adjust_for_foreign_abi<C>(&mut self, cx: &C, abi: ExternAbi)
594    where
595        Ty: TyAbiInterface<'a, C> + Copy,
596        C: HasDataLayout + HasTargetSpec + HasWasmCAbiOpt + HasX86AbiOpt,
597    {
598        if abi == ExternAbi::X86Interrupt {
599            if let Some(arg) = self.args.first_mut() {
600                arg.pass_by_stack_offset(None);
601            }
602            return;
603        }
604
605        let spec = cx.target_spec();
606        match &spec.arch[..] {
607            "x86" => {
608                let (flavor, regparm) = match abi {
609                    ExternAbi::Fastcall { .. } | ExternAbi::Vectorcall { .. } => {
610                        (x86::Flavor::FastcallOrVectorcall, None)
611                    }
612                    ExternAbi::C { .. } | ExternAbi::Cdecl { .. } | ExternAbi::Stdcall { .. } => {
613                        (x86::Flavor::General, cx.x86_abi_opt().regparm)
614                    }
615                    _ => (x86::Flavor::General, None),
616                };
617                let reg_struct_return = cx.x86_abi_opt().reg_struct_return;
618                let opts = x86::X86Options { flavor, regparm, reg_struct_return };
619                if spec.is_like_msvc {
620                    x86_win32::compute_abi_info(cx, self, opts);
621                } else {
622                    x86::compute_abi_info(cx, self, opts);
623                }
624            }
625            "x86_64" => match abi {
626                ExternAbi::SysV64 { .. } => x86_64::compute_abi_info(cx, self),
627                ExternAbi::Win64 { .. } | ExternAbi::Vectorcall { .. } => {
628                    x86_win64::compute_abi_info(cx, self)
629                }
630                _ => {
631                    if cx.target_spec().is_like_windows {
632                        x86_win64::compute_abi_info(cx, self)
633                    } else {
634                        x86_64::compute_abi_info(cx, self)
635                    }
636                }
637            },
638            "aarch64" | "arm64ec" => {
639                let kind = if cx.target_spec().is_like_darwin {
640                    aarch64::AbiKind::DarwinPCS
641                } else if cx.target_spec().is_like_windows {
642                    aarch64::AbiKind::Win64
643                } else {
644                    aarch64::AbiKind::AAPCS
645                };
646                aarch64::compute_abi_info(cx, self, kind)
647            }
648            "amdgpu" => amdgpu::compute_abi_info(cx, self),
649            "arm" => arm::compute_abi_info(cx, self),
650            "avr" => avr::compute_abi_info(self),
651            "loongarch32" | "loongarch64" => loongarch::compute_abi_info(cx, self),
652            "m68k" => m68k::compute_abi_info(self),
653            "csky" => csky::compute_abi_info(self),
654            "mips" | "mips32r6" => mips::compute_abi_info(cx, self),
655            "mips64" | "mips64r6" => mips64::compute_abi_info(cx, self),
656            "powerpc" => powerpc::compute_abi_info(cx, self),
657            "powerpc64" => powerpc64::compute_abi_info(cx, self),
658            "s390x" => s390x::compute_abi_info(cx, self),
659            "msp430" => msp430::compute_abi_info(self),
660            "sparc" => sparc::compute_abi_info(cx, self),
661            "sparc64" => sparc64::compute_abi_info(cx, self),
662            "nvptx64" => {
663                if abi == ExternAbi::PtxKernel || abi == ExternAbi::GpuKernel {
664                    nvptx64::compute_ptx_kernel_abi_info(cx, self)
665                } else {
666                    nvptx64::compute_abi_info(self)
667                }
668            }
669            "hexagon" => hexagon::compute_abi_info(self),
670            "xtensa" => xtensa::compute_abi_info(cx, self),
671            "riscv32" | "riscv64" => riscv::compute_abi_info(cx, self),
672            "wasm32" => {
673                if spec.os == "unknown" && matches!(cx.wasm_c_abi_opt(), WasmCAbi::Legacy { .. }) {
674                    wasm::compute_wasm_abi_info(self)
675                } else {
676                    wasm::compute_c_abi_info(cx, self)
677                }
678            }
679            "wasm64" => wasm::compute_c_abi_info(cx, self),
680            "bpf" => bpf::compute_abi_info(self),
681            arch => panic!("no lowering implemented for {arch}"),
682        }
683    }
684
685    pub fn adjust_for_rust_abi<C>(&mut self, cx: &C)
686    where
687        Ty: TyAbiInterface<'a, C> + Copy,
688        C: HasDataLayout + HasTargetSpec,
689    {
690        let spec = cx.target_spec();
691        match &*spec.arch {
692            "x86" => x86::compute_rust_abi_info(cx, self),
693            "riscv32" | "riscv64" => riscv::compute_rust_abi_info(cx, self),
694            "loongarch32" | "loongarch64" => loongarch::compute_rust_abi_info(cx, self),
695            "aarch64" => aarch64::compute_rust_abi_info(cx, self),
696            _ => {}
697        };
698
699        for (arg_idx, arg) in self
700            .args
701            .iter_mut()
702            .enumerate()
703            .map(|(idx, arg)| (Some(idx), arg))
704            .chain(iter::once((None, &mut self.ret)))
705        {
706            // If the logic above already picked a specific type to cast the argument to, leave that
707            // in place.
708            if matches!(arg.mode, PassMode::Ignore | PassMode::Cast { .. }) {
709                continue;
710            }
711
712            if arg_idx.is_none()
713                && arg.layout.size > Primitive::Pointer(AddressSpace::DATA).size(cx) * 2
714                && !matches!(arg.layout.backend_repr, BackendRepr::SimdVector { .. })
715            {
716                // Return values larger than 2 registers using a return area
717                // pointer. LLVM and Cranelift disagree about how to return
718                // values that don't fit in the registers designated for return
719                // values. LLVM will force the entire return value to be passed
720                // by return area pointer, while Cranelift will look at each IR level
721                // return value independently and decide to pass it in a
722                // register or not, which would result in the return value
723                // being passed partially in registers and partially through a
724                // return area pointer. For large IR-level values such as `i128`,
725                // cranelift will even split up the value into smaller chunks.
726                //
727                // While Cranelift may need to be fixed as the LLVM behavior is
728                // generally more correct with respect to the surface language,
729                // forcing this behavior in rustc itself makes it easier for
730                // other backends to conform to the Rust ABI and for the C ABI
731                // rustc already handles this behavior anyway.
732                //
733                // In addition LLVM's decision to pass the return value in
734                // registers or using a return area pointer depends on how
735                // exactly the return type is lowered to an LLVM IR type. For
736                // example `Option<u128>` can be lowered as `{ i128, i128 }`
737                // in which case the x86_64 backend would use a return area
738                // pointer, or it could be passed as `{ i32, i128 }` in which
739                // case the x86_64 backend would pass it in registers by taking
740                // advantage of an LLVM ABI extension that allows using 3
741                // registers for the x86_64 sysv call conv rather than the
742                // officially specified 2 registers.
743                //
744                // FIXME: Technically we should look at the amount of available
745                // return registers rather than guessing that there are 2
746                // registers for return values. In practice only a couple of
747                // architectures have less than 2 return registers. None of
748                // which supported by Cranelift.
749                //
750                // NOTE: This adjustment is only necessary for the Rust ABI as
751                // for other ABI's the calling convention implementations in
752                // rustc_target already ensure any return value which doesn't
753                // fit in the available amount of return registers is passed in
754                // the right way for the current target.
755                //
756                // The adjustment is not necessary nor desired for types with a vector
757                // representation; those are handled below.
758                arg.make_indirect();
759                continue;
760            }
761
762            match arg.layout.backend_repr {
763                BackendRepr::Memory { .. } => {
764                    // Compute `Aggregate` ABI.
765
766                    let is_indirect_not_on_stack =
767                        matches!(arg.mode, PassMode::Indirect { on_stack: false, .. });
768                    assert!(is_indirect_not_on_stack);
769
770                    let size = arg.layout.size;
771                    if arg.layout.is_sized()
772                        && size <= Primitive::Pointer(AddressSpace::DATA).size(cx)
773                    {
774                        // We want to pass small aggregates as immediates, but using
775                        // an LLVM aggregate type for this leads to bad optimizations,
776                        // so we pick an appropriately sized integer type instead.
777                        arg.cast_to(Reg { kind: RegKind::Integer, size });
778                    }
779                }
780
781                BackendRepr::SimdVector { .. } => {
782                    // This is a fun case! The gist of what this is doing is
783                    // that we want callers and callees to always agree on the
784                    // ABI of how they pass SIMD arguments. If we were to *not*
785                    // make these arguments indirect then they'd be immediates
786                    // in LLVM, which means that they'd used whatever the
787                    // appropriate ABI is for the callee and the caller. That
788                    // means, for example, if the caller doesn't have AVX
789                    // enabled but the callee does, then passing an AVX argument
790                    // across this boundary would cause corrupt data to show up.
791                    //
792                    // This problem is fixed by unconditionally passing SIMD
793                    // arguments through memory between callers and callees
794                    // which should get them all to agree on ABI regardless of
795                    // target feature sets. Some more information about this
796                    // issue can be found in #44367.
797                    //
798                    // We *could* do better in some cases, e.g. on x86_64 targets where SSE2 is
799                    // required. However, it turns out that that makes LLVM worse at optimizing this
800                    // code, so we pass things indirectly even there. See #139029 for more on that.
801                    if spec.simd_types_indirect {
802                        arg.make_indirect();
803                    }
804                }
805
806                _ => {}
807            }
808        }
809    }
810}
811
812// Some types are used a lot. Make sure they don't unintentionally get bigger.
813#[cfg(target_pointer_width = "64")]
814mod size_asserts {
815    use rustc_data_structures::static_assert_size;
816
817    use super::*;
818    // tidy-alphabetical-start
819    static_assert_size!(ArgAbi<'_, usize>, 56);
820    static_assert_size!(FnAbi<'_, usize>, 80);
821    // tidy-alphabetical-end
822}