rustc_target/callconv/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
use std::str::FromStr;
use std::{fmt, iter};
pub use rustc_abi::{Reg, RegKind};
use rustc_macros::HashStable_Generic;
use rustc_span::Symbol;
use crate::abi::{
self, AddressSpace, Align, BackendRepr, HasDataLayout, Pointer, Size, TyAbiInterface,
TyAndLayout,
};
use crate::spec::abi::Abi as SpecAbi;
use crate::spec::{self, HasTargetSpec, HasWasmCAbiOpt, HasX86AbiOpt, WasmCAbi};
mod aarch64;
mod amdgpu;
mod arm;
mod avr;
mod bpf;
mod csky;
mod hexagon;
mod loongarch;
mod m68k;
mod mips;
mod mips64;
mod msp430;
mod nvptx64;
mod powerpc;
mod powerpc64;
mod riscv;
mod s390x;
mod sparc;
mod sparc64;
mod wasm;
mod x86;
mod x86_64;
mod x86_win64;
mod xtensa;
#[derive(Clone, PartialEq, Eq, Hash, Debug, HashStable_Generic)]
pub enum PassMode {
/// Ignore the argument.
///
/// The argument is either uninhabited or a ZST.
Ignore,
/// Pass the argument directly.
///
/// The argument has a layout abi of `Scalar` or `Vector`.
/// Unfortunately due to past mistakes, in rare cases on wasm, it can also be `Aggregate`.
/// This is bad since it leaks LLVM implementation details into the ABI.
/// (Also see <https://github.com/rust-lang/rust/issues/115666>.)
Direct(ArgAttributes),
/// Pass a pair's elements directly in two arguments.
///
/// The argument has a layout abi of `ScalarPair`.
Pair(ArgAttributes, ArgAttributes),
/// Pass the argument after casting it. See the `CastTarget` docs for details.
///
/// `pad_i32` indicates if a `Reg::i32()` dummy argument is emitted before the real argument.
Cast { pad_i32: bool, cast: Box<CastTarget> },
/// Pass the argument indirectly via a hidden pointer.
///
/// The `meta_attrs` value, if any, is for the metadata (vtable or length) of an unsized
/// argument. (This is the only mode that supports unsized arguments.)
///
/// `on_stack` defines that the value should be passed at a fixed stack offset in accordance to
/// the ABI rather than passed using a pointer. This corresponds to the `byval` LLVM argument
/// attribute. The `byval` argument will use a byte array with the same size as the Rust type
/// (which ensures that padding is preserved and that we do not rely on LLVM's struct layout),
/// and will use the alignment specified in `attrs.pointee_align` (if `Some`) or the type's
/// alignment (if `None`). This means that the alignment will not always
/// match the Rust type's alignment; see documentation of `pass_by_stack_offset` for more info.
///
/// `on_stack` cannot be true for unsized arguments, i.e., when `meta_attrs` is `Some`.
Indirect { attrs: ArgAttributes, meta_attrs: Option<ArgAttributes>, on_stack: bool },
}
impl PassMode {
/// Checks if these two `PassMode` are equal enough to be considered "the same for all
/// function call ABIs". However, the `Layout` can also impact ABI decisions,
/// so that needs to be compared as well!
pub fn eq_abi(&self, other: &Self) -> bool {
match (self, other) {
(PassMode::Ignore, PassMode::Ignore) => true,
(PassMode::Direct(a1), PassMode::Direct(a2)) => a1.eq_abi(a2),
(PassMode::Pair(a1, b1), PassMode::Pair(a2, b2)) => a1.eq_abi(a2) && b1.eq_abi(b2),
(
PassMode::Cast { cast: c1, pad_i32: pad1 },
PassMode::Cast { cast: c2, pad_i32: pad2 },
) => c1.eq_abi(c2) && pad1 == pad2,
(
PassMode::Indirect { attrs: a1, meta_attrs: None, on_stack: s1 },
PassMode::Indirect { attrs: a2, meta_attrs: None, on_stack: s2 },
) => a1.eq_abi(a2) && s1 == s2,
(
PassMode::Indirect { attrs: a1, meta_attrs: Some(e1), on_stack: s1 },
PassMode::Indirect { attrs: a2, meta_attrs: Some(e2), on_stack: s2 },
) => a1.eq_abi(a2) && e1.eq_abi(e2) && s1 == s2,
_ => false,
}
}
}
// Hack to disable non_upper_case_globals only for the bitflags! and not for the rest
// of this module
pub use attr_impl::ArgAttribute;
#[allow(non_upper_case_globals)]
#[allow(unused)]
mod attr_impl {
use rustc_macros::HashStable_Generic;
// The subset of llvm::Attribute needed for arguments, packed into a bitfield.
#[derive(Clone, Copy, Default, Hash, PartialEq, Eq, HashStable_Generic)]
pub struct ArgAttribute(u8);
bitflags::bitflags! {
impl ArgAttribute: u8 {
const NoAlias = 1 << 1;
const NoCapture = 1 << 2;
const NonNull = 1 << 3;
const ReadOnly = 1 << 4;
const InReg = 1 << 5;
const NoUndef = 1 << 6;
}
}
rustc_data_structures::external_bitflags_debug! { ArgAttribute }
}
/// Sometimes an ABI requires small integers to be extended to a full or partial register. This enum
/// defines if this extension should be zero-extension or sign-extension when necessary. When it is
/// not necessary to extend the argument, this enum is ignored.
#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug, HashStable_Generic)]
pub enum ArgExtension {
None,
Zext,
Sext,
}
/// A compact representation of LLVM attributes (at least those relevant for this module)
/// that can be manipulated without interacting with LLVM's Attribute machinery.
#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug, HashStable_Generic)]
pub struct ArgAttributes {
pub regular: ArgAttribute,
pub arg_ext: ArgExtension,
/// The minimum size of the pointee, guaranteed to be valid for the duration of the whole call
/// (corresponding to LLVM's dereferenceable_or_null attributes, i.e., it is okay for this to be
/// set on a null pointer, but all non-null pointers must be dereferenceable).
pub pointee_size: Size,
pub pointee_align: Option<Align>,
}
impl ArgAttributes {
pub fn new() -> Self {
ArgAttributes {
regular: ArgAttribute::default(),
arg_ext: ArgExtension::None,
pointee_size: Size::ZERO,
pointee_align: None,
}
}
pub fn ext(&mut self, ext: ArgExtension) -> &mut Self {
assert!(
self.arg_ext == ArgExtension::None || self.arg_ext == ext,
"cannot set {:?} when {:?} is already set",
ext,
self.arg_ext
);
self.arg_ext = ext;
self
}
pub fn set(&mut self, attr: ArgAttribute) -> &mut Self {
self.regular |= attr;
self
}
pub fn contains(&self, attr: ArgAttribute) -> bool {
self.regular.contains(attr)
}
/// Checks if these two `ArgAttributes` are equal enough to be considered "the same for all
/// function call ABIs".
pub fn eq_abi(&self, other: &Self) -> bool {
// There's only one regular attribute that matters for the call ABI: InReg.
// Everything else is things like noalias, dereferenceable, nonnull, ...
// (This also applies to pointee_size, pointee_align.)
if self.regular.contains(ArgAttribute::InReg) != other.regular.contains(ArgAttribute::InReg)
{
return false;
}
// We also compare the sign extension mode -- this could let the callee make assumptions
// about bits that conceptually were not even passed.
if self.arg_ext != other.arg_ext {
return false;
}
true
}
}
/// An argument passed entirely registers with the
/// same kind (e.g., HFA / HVA on PPC64 and AArch64).
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, HashStable_Generic)]
pub struct Uniform {
pub unit: Reg,
/// The total size of the argument, which can be:
/// * equal to `unit.size` (one scalar/vector),
/// * a multiple of `unit.size` (an array of scalar/vectors),
/// * if `unit.kind` is `Integer`, the last element can be shorter, i.e., `{ i64, i64, i32 }`
/// for 64-bit integers with a total size of 20 bytes. When the argument is actually passed,
/// this size will be rounded up to the nearest multiple of `unit.size`.
pub total: Size,
/// Indicate that the argument is consecutive, in the sense that either all values need to be
/// passed in register, or all on the stack. If they are passed on the stack, there should be
/// no additional padding between elements.
pub is_consecutive: bool,
}
impl From<Reg> for Uniform {
fn from(unit: Reg) -> Uniform {
Uniform { unit, total: unit.size, is_consecutive: false }
}
}
impl Uniform {
pub fn align<C: HasDataLayout>(&self, cx: &C) -> Align {
self.unit.align(cx)
}
/// Pass using one or more values of the given type, without requiring them to be consecutive.
/// That is, some values may be passed in register and some on the stack.
pub fn new(unit: Reg, total: Size) -> Self {
Uniform { unit, total, is_consecutive: false }
}
/// Pass using one or more consecutive values of the given type. Either all values will be
/// passed in registers, or all on the stack.
pub fn consecutive(unit: Reg, total: Size) -> Self {
Uniform { unit, total, is_consecutive: true }
}
}
/// Describes the type used for `PassMode::Cast`.
///
/// Passing arguments in this mode works as follows: the registers in the `prefix` (the ones that
/// are `Some`) get laid out one after the other (using `repr(C)` layout rules). Then the
/// `rest.unit` register type gets repeated often enough to cover `rest.size`. This describes the
/// actual type used for the call; the Rust type of the argument is then transmuted to this ABI type
/// (and all data in the padding between the registers is dropped).
#[derive(Clone, PartialEq, Eq, Hash, Debug, HashStable_Generic)]
pub struct CastTarget {
pub prefix: [Option<Reg>; 8],
pub rest: Uniform,
pub attrs: ArgAttributes,
}
impl From<Reg> for CastTarget {
fn from(unit: Reg) -> CastTarget {
CastTarget::from(Uniform::from(unit))
}
}
impl From<Uniform> for CastTarget {
fn from(uniform: Uniform) -> CastTarget {
CastTarget {
prefix: [None; 8],
rest: uniform,
attrs: ArgAttributes {
regular: ArgAttribute::default(),
arg_ext: ArgExtension::None,
pointee_size: Size::ZERO,
pointee_align: None,
},
}
}
}
impl CastTarget {
pub fn pair(a: Reg, b: Reg) -> CastTarget {
CastTarget {
prefix: [Some(a), None, None, None, None, None, None, None],
rest: Uniform::from(b),
attrs: ArgAttributes {
regular: ArgAttribute::default(),
arg_ext: ArgExtension::None,
pointee_size: Size::ZERO,
pointee_align: None,
},
}
}
/// When you only access the range containing valid data, you can use this unaligned size;
/// otherwise, use the safer `size` method.
pub fn unaligned_size<C: HasDataLayout>(&self, _cx: &C) -> Size {
// Prefix arguments are passed in specific designated registers
let prefix_size = self
.prefix
.iter()
.filter_map(|x| x.map(|reg| reg.size))
.fold(Size::ZERO, |acc, size| acc + size);
// Remaining arguments are passed in chunks of the unit size
let rest_size =
self.rest.unit.size * self.rest.total.bytes().div_ceil(self.rest.unit.size.bytes());
prefix_size + rest_size
}
pub fn size<C: HasDataLayout>(&self, cx: &C) -> Size {
self.unaligned_size(cx).align_to(self.align(cx))
}
pub fn align<C: HasDataLayout>(&self, cx: &C) -> Align {
self.prefix
.iter()
.filter_map(|x| x.map(|reg| reg.align(cx)))
.fold(cx.data_layout().aggregate_align.abi.max(self.rest.align(cx)), |acc, align| {
acc.max(align)
})
}
/// Checks if these two `CastTarget` are equal enough to be considered "the same for all
/// function call ABIs".
pub fn eq_abi(&self, other: &Self) -> bool {
let CastTarget { prefix: prefix_l, rest: rest_l, attrs: attrs_l } = self;
let CastTarget { prefix: prefix_r, rest: rest_r, attrs: attrs_r } = other;
prefix_l == prefix_r && rest_l == rest_r && attrs_l.eq_abi(attrs_r)
}
}
/// Information about how to pass an argument to,
/// or return a value from, a function, under some ABI.
#[derive(Clone, PartialEq, Eq, Hash, HashStable_Generic)]
pub struct ArgAbi<'a, Ty> {
pub layout: TyAndLayout<'a, Ty>,
pub mode: PassMode,
}
// Needs to be a custom impl because of the bounds on the `TyAndLayout` debug impl.
impl<'a, Ty: fmt::Display> fmt::Debug for ArgAbi<'a, Ty> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let ArgAbi { layout, mode } = self;
f.debug_struct("ArgAbi").field("layout", layout).field("mode", mode).finish()
}
}
impl<'a, Ty> ArgAbi<'a, Ty> {
/// This defines the "default ABI" for that type, that is then later adjusted in `fn_abi_adjust_for_abi`.
pub fn new(
cx: &impl HasDataLayout,
layout: TyAndLayout<'a, Ty>,
scalar_attrs: impl Fn(&TyAndLayout<'a, Ty>, abi::Scalar, Size) -> ArgAttributes,
) -> Self {
let mode = match layout.backend_repr {
BackendRepr::Uninhabited => PassMode::Ignore,
BackendRepr::Scalar(scalar) => {
PassMode::Direct(scalar_attrs(&layout, scalar, Size::ZERO))
}
BackendRepr::ScalarPair(a, b) => PassMode::Pair(
scalar_attrs(&layout, a, Size::ZERO),
scalar_attrs(&layout, b, a.size(cx).align_to(b.align(cx).abi)),
),
BackendRepr::Vector { .. } => PassMode::Direct(ArgAttributes::new()),
BackendRepr::Memory { .. } => Self::indirect_pass_mode(&layout),
};
ArgAbi { layout, mode }
}
fn indirect_pass_mode(layout: &TyAndLayout<'a, Ty>) -> PassMode {
let mut attrs = ArgAttributes::new();
// For non-immediate arguments the callee gets its own copy of
// the value on the stack, so there are no aliases. It's also
// program-invisible so can't possibly capture
attrs
.set(ArgAttribute::NoAlias)
.set(ArgAttribute::NoCapture)
.set(ArgAttribute::NonNull)
.set(ArgAttribute::NoUndef);
attrs.pointee_size = layout.size;
attrs.pointee_align = Some(layout.align.abi);
let meta_attrs = layout.is_unsized().then_some(ArgAttributes::new());
PassMode::Indirect { attrs, meta_attrs, on_stack: false }
}
/// Pass this argument directly instead. Should NOT be used!
/// Only exists because of past ABI mistakes that will take time to fix
/// (see <https://github.com/rust-lang/rust/issues/115666>).
pub fn make_direct_deprecated(&mut self) {
match self.mode {
PassMode::Indirect { .. } => {
self.mode = PassMode::Direct(ArgAttributes::new());
}
PassMode::Ignore | PassMode::Direct(_) | PassMode::Pair(_, _) => {} // already direct
_ => panic!("Tried to make {:?} direct", self.mode),
}
}
/// Pass this argument indirectly, by passing a (thin or wide) pointer to the argument instead.
/// This is valid for both sized and unsized arguments.
pub fn make_indirect(&mut self) {
match self.mode {
PassMode::Direct(_) | PassMode::Pair(_, _) => {
self.mode = Self::indirect_pass_mode(&self.layout);
}
PassMode::Indirect { attrs: _, meta_attrs: _, on_stack: false } => {
// already indirect
}
_ => panic!("Tried to make {:?} indirect", self.mode),
}
}
/// Same as `make_indirect`, but for arguments that are ignored. Only needed for ABIs that pass
/// ZSTs indirectly.
pub fn make_indirect_from_ignore(&mut self) {
match self.mode {
PassMode::Ignore => {
self.mode = Self::indirect_pass_mode(&self.layout);
}
PassMode::Indirect { attrs: _, meta_attrs: _, on_stack: false } => {
// already indirect
}
_ => panic!("Tried to make {:?} indirect (expected `PassMode::Ignore`)", self.mode),
}
}
/// Pass this argument indirectly, by placing it at a fixed stack offset.
/// This corresponds to the `byval` LLVM argument attribute.
/// This is only valid for sized arguments.
///
/// `byval_align` specifies the alignment of the `byval` stack slot, which does not need to
/// correspond to the type's alignment. This will be `Some` if the target's ABI specifies that
/// stack slots used for arguments passed by-value have specific alignment requirements which
/// differ from the alignment used in other situations.
///
/// If `None`, the type's alignment is used.
///
/// If the resulting alignment differs from the type's alignment,
/// the argument will be copied to an alloca with sufficient alignment,
/// either in the caller (if the type's alignment is lower than the byval alignment)
/// or in the callee (if the type's alignment is higher than the byval alignment),
/// to ensure that Rust code never sees an underaligned pointer.
pub fn pass_by_stack_offset(&mut self, byval_align: Option<Align>) {
assert!(!self.layout.is_unsized(), "used byval ABI for unsized layout");
self.make_indirect();
match self.mode {
PassMode::Indirect { ref mut attrs, meta_attrs: _, ref mut on_stack } => {
*on_stack = true;
// Some platforms, like 32-bit x86, change the alignment of the type when passing
// `byval`. Account for that.
if let Some(byval_align) = byval_align {
// On all targets with byval align this is currently true, so let's assert it.
debug_assert!(byval_align >= Align::from_bytes(4).unwrap());
attrs.pointee_align = Some(byval_align);
}
}
_ => unreachable!(),
}
}
pub fn extend_integer_width_to(&mut self, bits: u64) {
// Only integers have signedness
if let BackendRepr::Scalar(scalar) = self.layout.backend_repr {
if let abi::Int(i, signed) = scalar.primitive() {
if i.size().bits() < bits {
if let PassMode::Direct(ref mut attrs) = self.mode {
if signed {
attrs.ext(ArgExtension::Sext)
} else {
attrs.ext(ArgExtension::Zext)
};
}
}
}
}
}
pub fn cast_to<T: Into<CastTarget>>(&mut self, target: T) {
self.mode = PassMode::Cast { cast: Box::new(target.into()), pad_i32: false };
}
pub fn cast_to_and_pad_i32<T: Into<CastTarget>>(&mut self, target: T, pad_i32: bool) {
self.mode = PassMode::Cast { cast: Box::new(target.into()), pad_i32 };
}
pub fn is_indirect(&self) -> bool {
matches!(self.mode, PassMode::Indirect { .. })
}
pub fn is_sized_indirect(&self) -> bool {
matches!(self.mode, PassMode::Indirect { attrs: _, meta_attrs: None, on_stack: _ })
}
pub fn is_unsized_indirect(&self) -> bool {
matches!(self.mode, PassMode::Indirect { attrs: _, meta_attrs: Some(_), on_stack: _ })
}
pub fn is_ignore(&self) -> bool {
matches!(self.mode, PassMode::Ignore)
}
/// Checks if these two `ArgAbi` are equal enough to be considered "the same for all
/// function call ABIs".
pub fn eq_abi(&self, other: &Self) -> bool
where
Ty: PartialEq,
{
// Ideally we'd just compare the `mode`, but that is not enough -- for some modes LLVM will look
// at the type.
self.layout.eq_abi(&other.layout) && self.mode.eq_abi(&other.mode) && {
// `fn_arg_sanity_check` accepts `PassMode::Direct` for some aggregates.
// That elevates any type difference to an ABI difference since we just use the
// full Rust type as the LLVM argument/return type.
if matches!(self.mode, PassMode::Direct(..))
&& matches!(self.layout.backend_repr, BackendRepr::Memory { .. })
{
// For aggregates in `Direct` mode to be compatible, the types need to be equal.
self.layout.ty == other.layout.ty
} else {
true
}
}
}
}
#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug, HashStable_Generic)]
pub enum Conv {
// General language calling conventions, for which every target
// should have its own backend (e.g. LLVM) support.
C,
Rust,
Cold,
PreserveMost,
PreserveAll,
// Target-specific calling conventions.
ArmAapcs,
CCmseNonSecureCall,
CCmseNonSecureEntry,
Msp430Intr,
PtxKernel,
X86Fastcall,
X86Intr,
X86Stdcall,
X86ThisCall,
X86VectorCall,
X86_64SysV,
X86_64Win64,
AvrInterrupt,
AvrNonBlockingInterrupt,
RiscvInterrupt { kind: RiscvInterruptKind },
}
#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug, HashStable_Generic)]
pub enum RiscvInterruptKind {
Machine,
Supervisor,
}
impl RiscvInterruptKind {
pub fn as_str(&self) -> &'static str {
match self {
Self::Machine => "machine",
Self::Supervisor => "supervisor",
}
}
}
/// Metadata describing how the arguments to a native function
/// should be passed in order to respect the native ABI.
///
/// The signature represented by this type may not match the MIR function signature.
/// Certain attributes, like `#[track_caller]` can introduce additional arguments, which are present in [`FnAbi`], but not in `FnSig`.
/// While this difference is rarely relevant, it should still be kept in mind.
///
/// I will do my best to describe this structure, but these
/// comments are reverse-engineered and may be inaccurate. -NDM
#[derive(Clone, PartialEq, Eq, Hash, HashStable_Generic)]
pub struct FnAbi<'a, Ty> {
/// The type, layout, and information about how each argument is passed.
pub args: Box<[ArgAbi<'a, Ty>]>,
/// The layout, type, and the way a value is returned from this function.
pub ret: ArgAbi<'a, Ty>,
/// Marks this function as variadic (accepting a variable number of arguments).
pub c_variadic: bool,
/// The count of non-variadic arguments.
///
/// Should only be different from args.len() when c_variadic is true.
/// This can be used to know whether an argument is variadic or not.
pub fixed_count: u32,
/// The calling convention of this function.
pub conv: Conv,
/// Indicates if an unwind may happen across a call to this function.
pub can_unwind: bool,
}
// Needs to be a custom impl because of the bounds on the `TyAndLayout` debug impl.
impl<'a, Ty: fmt::Display> fmt::Debug for FnAbi<'a, Ty> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let FnAbi { args, ret, c_variadic, fixed_count, conv, can_unwind } = self;
f.debug_struct("FnAbi")
.field("args", args)
.field("ret", ret)
.field("c_variadic", c_variadic)
.field("fixed_count", fixed_count)
.field("conv", conv)
.field("can_unwind", can_unwind)
.finish()
}
}
/// Error produced by attempting to adjust a `FnAbi`, for a "foreign" ABI.
#[derive(Copy, Clone, Debug, HashStable_Generic)]
pub enum AdjustForForeignAbiError {
/// Target architecture doesn't support "foreign" (i.e. non-Rust) ABIs.
Unsupported { arch: Symbol, abi: spec::abi::Abi },
}
impl<'a, Ty> FnAbi<'a, Ty> {
pub fn adjust_for_foreign_abi<C>(
&mut self,
cx: &C,
abi: spec::abi::Abi,
) -> Result<(), AdjustForForeignAbiError>
where
Ty: TyAbiInterface<'a, C> + Copy,
C: HasDataLayout + HasTargetSpec + HasWasmCAbiOpt + HasX86AbiOpt,
{
if abi == spec::abi::Abi::X86Interrupt {
if let Some(arg) = self.args.first_mut() {
arg.pass_by_stack_offset(None);
}
return Ok(());
}
let spec = cx.target_spec();
match &spec.arch[..] {
"x86" => {
let (flavor, regparm) = match abi {
spec::abi::Abi::Fastcall { .. } | spec::abi::Abi::Vectorcall { .. } => {
(x86::Flavor::FastcallOrVectorcall, None)
}
spec::abi::Abi::C { .. }
| spec::abi::Abi::Cdecl { .. }
| spec::abi::Abi::Stdcall { .. } => {
(x86::Flavor::General, cx.x86_abi_opt().regparm)
}
_ => (x86::Flavor::General, None),
};
let reg_struct_return = cx.x86_abi_opt().reg_struct_return;
let opts = x86::X86Options { flavor, regparm, reg_struct_return };
x86::compute_abi_info(cx, self, opts);
}
"x86_64" => match abi {
spec::abi::Abi::SysV64 { .. } => x86_64::compute_abi_info(cx, self),
spec::abi::Abi::Win64 { .. } => x86_win64::compute_abi_info(cx, self),
_ => {
if cx.target_spec().is_like_windows {
x86_win64::compute_abi_info(cx, self)
} else {
x86_64::compute_abi_info(cx, self)
}
}
},
"aarch64" | "arm64ec" => {
let kind = if cx.target_spec().is_like_osx {
aarch64::AbiKind::DarwinPCS
} else if cx.target_spec().is_like_windows {
aarch64::AbiKind::Win64
} else {
aarch64::AbiKind::AAPCS
};
aarch64::compute_abi_info(cx, self, kind)
}
"amdgpu" => amdgpu::compute_abi_info(cx, self),
"arm" => arm::compute_abi_info(cx, self),
"avr" => avr::compute_abi_info(self),
"loongarch64" => loongarch::compute_abi_info(cx, self),
"m68k" => m68k::compute_abi_info(self),
"csky" => csky::compute_abi_info(self),
"mips" | "mips32r6" => mips::compute_abi_info(cx, self),
"mips64" | "mips64r6" => mips64::compute_abi_info(cx, self),
"powerpc" => powerpc::compute_abi_info(cx, self),
"powerpc64" => powerpc64::compute_abi_info(cx, self),
"s390x" => s390x::compute_abi_info(cx, self),
"msp430" => msp430::compute_abi_info(self),
"sparc" => sparc::compute_abi_info(cx, self),
"sparc64" => sparc64::compute_abi_info(cx, self),
"nvptx64" => {
if cx.target_spec().adjust_abi(abi, self.c_variadic) == spec::abi::Abi::PtxKernel {
nvptx64::compute_ptx_kernel_abi_info(cx, self)
} else {
nvptx64::compute_abi_info(self)
}
}
"hexagon" => hexagon::compute_abi_info(self),
"xtensa" => xtensa::compute_abi_info(cx, self),
"riscv32" | "riscv64" => riscv::compute_abi_info(cx, self),
"wasm32" => {
if spec.os == "unknown" && cx.wasm_c_abi_opt() == WasmCAbi::Legacy {
wasm::compute_wasm_abi_info(self)
} else {
wasm::compute_c_abi_info(cx, self)
}
}
"wasm64" => wasm::compute_c_abi_info(cx, self),
"bpf" => bpf::compute_abi_info(self),
arch => {
return Err(AdjustForForeignAbiError::Unsupported {
arch: Symbol::intern(arch),
abi,
});
}
}
Ok(())
}
pub fn adjust_for_rust_abi<C>(&mut self, cx: &C, abi: SpecAbi)
where
Ty: TyAbiInterface<'a, C> + Copy,
C: HasDataLayout + HasTargetSpec,
{
let spec = cx.target_spec();
match &spec.arch[..] {
"x86" => x86::compute_rust_abi_info(cx, self, abi),
"riscv32" | "riscv64" => riscv::compute_rust_abi_info(cx, self, abi),
"loongarch64" => loongarch::compute_rust_abi_info(cx, self, abi),
"aarch64" => aarch64::compute_rust_abi_info(cx, self),
_ => {}
};
for (arg_idx, arg) in self
.args
.iter_mut()
.enumerate()
.map(|(idx, arg)| (Some(idx), arg))
.chain(iter::once((None, &mut self.ret)))
{
if arg.is_ignore() {
continue;
}
if arg_idx.is_none() && arg.layout.size > Pointer(AddressSpace::DATA).size(cx) * 2 {
// Return values larger than 2 registers using a return area
// pointer. LLVM and Cranelift disagree about how to return
// values that don't fit in the registers designated for return
// values. LLVM will force the entire return value to be passed
// by return area pointer, while Cranelift will look at each IR level
// return value independently and decide to pass it in a
// register or not, which would result in the return value
// being passed partially in registers and partially through a
// return area pointer.
//
// While Cranelift may need to be fixed as the LLVM behavior is
// generally more correct with respect to the surface language,
// forcing this behavior in rustc itself makes it easier for
// other backends to conform to the Rust ABI and for the C ABI
// rustc already handles this behavior anyway.
//
// In addition LLVM's decision to pass the return value in
// registers or using a return area pointer depends on how
// exactly the return type is lowered to an LLVM IR type. For
// example `Option<u128>` can be lowered as `{ i128, i128 }`
// in which case the x86_64 backend would use a return area
// pointer, or it could be passed as `{ i32, i128 }` in which
// case the x86_64 backend would pass it in registers by taking
// advantage of an LLVM ABI extension that allows using 3
// registers for the x86_64 sysv call conv rather than the
// officially specified 2 registers.
//
// FIXME: Technically we should look at the amount of available
// return registers rather than guessing that there are 2
// registers for return values. In practice only a couple of
// architectures have less than 2 return registers. None of
// which supported by Cranelift.
//
// NOTE: This adjustment is only necessary for the Rust ABI as
// for other ABI's the calling convention implementations in
// rustc_target already ensure any return value which doesn't
// fit in the available amount of return registers is passed in
// the right way for the current target.
arg.make_indirect();
continue;
}
match arg.layout.backend_repr {
BackendRepr::Memory { .. } => {}
// This is a fun case! The gist of what this is doing is
// that we want callers and callees to always agree on the
// ABI of how they pass SIMD arguments. If we were to *not*
// make these arguments indirect then they'd be immediates
// in LLVM, which means that they'd used whatever the
// appropriate ABI is for the callee and the caller. That
// means, for example, if the caller doesn't have AVX
// enabled but the callee does, then passing an AVX argument
// across this boundary would cause corrupt data to show up.
//
// This problem is fixed by unconditionally passing SIMD
// arguments through memory between callers and callees
// which should get them all to agree on ABI regardless of
// target feature sets. Some more information about this
// issue can be found in #44367.
//
// Note that the intrinsic ABI is exempt here as
// that's how we connect up to LLVM and it's unstable
// anyway, we control all calls to it in libstd.
BackendRepr::Vector { .. }
if abi != SpecAbi::RustIntrinsic && spec.simd_types_indirect =>
{
arg.make_indirect();
continue;
}
_ => continue,
}
// Compute `Aggregate` ABI.
let is_indirect_not_on_stack =
matches!(arg.mode, PassMode::Indirect { on_stack: false, .. });
assert!(is_indirect_not_on_stack);
let size = arg.layout.size;
if !arg.layout.is_unsized() && size <= Pointer(AddressSpace::DATA).size(cx) {
// We want to pass small aggregates as immediates, but using
// an LLVM aggregate type for this leads to bad optimizations,
// so we pick an appropriately sized integer type instead.
arg.cast_to(Reg { kind: RegKind::Integer, size });
}
}
}
}
impl FromStr for Conv {
type Err = String;
fn from_str(s: &str) -> Result<Self, Self::Err> {
match s {
"C" => Ok(Conv::C),
"Rust" => Ok(Conv::Rust),
"RustCold" => Ok(Conv::Rust),
"ArmAapcs" => Ok(Conv::ArmAapcs),
"CCmseNonSecureCall" => Ok(Conv::CCmseNonSecureCall),
"CCmseNonSecureEntry" => Ok(Conv::CCmseNonSecureEntry),
"Msp430Intr" => Ok(Conv::Msp430Intr),
"PtxKernel" => Ok(Conv::PtxKernel),
"X86Fastcall" => Ok(Conv::X86Fastcall),
"X86Intr" => Ok(Conv::X86Intr),
"X86Stdcall" => Ok(Conv::X86Stdcall),
"X86ThisCall" => Ok(Conv::X86ThisCall),
"X86VectorCall" => Ok(Conv::X86VectorCall),
"X86_64SysV" => Ok(Conv::X86_64SysV),
"X86_64Win64" => Ok(Conv::X86_64Win64),
"AvrInterrupt" => Ok(Conv::AvrInterrupt),
"AvrNonBlockingInterrupt" => Ok(Conv::AvrNonBlockingInterrupt),
"RiscvInterrupt(machine)" => {
Ok(Conv::RiscvInterrupt { kind: RiscvInterruptKind::Machine })
}
"RiscvInterrupt(supervisor)" => {
Ok(Conv::RiscvInterrupt { kind: RiscvInterruptKind::Supervisor })
}
_ => Err(format!("'{s}' is not a valid value for entry function call convention.")),
}
}
}
// Some types are used a lot. Make sure they don't unintentionally get bigger.
#[cfg(target_pointer_width = "64")]
mod size_asserts {
use rustc_data_structures::static_assert_size;
use super::*;
// tidy-alphabetical-start
static_assert_size!(ArgAbi<'_, usize>, 56);
static_assert_size!(FnAbi<'_, usize>, 80);
// tidy-alphabetical-end
}