1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
use smallvec::SmallVec;
use std::fmt::Debug;
use std::hash::Hash;

use crate::visit::{Flags, TypeSuperVisitable, TypeVisitable};
use crate::{
    BoundVar, BoundVars, CanonicalVarInfo, ConstKind, DebruijnIndex, DebugWithInfcx, RegionKind,
    TyKind, UniverseIndex,
};

pub trait Interner: Sized {
    type DefId: Copy + Debug + Hash + Ord;
    type AdtDef: Copy + Debug + Hash + Ord;

    type GenericArgs: Copy
        + DebugWithInfcx<Self>
        + Hash
        + Ord
        + IntoIterator<Item = Self::GenericArg>;
    type GenericArg: Copy + DebugWithInfcx<Self> + Hash + Ord;
    type Term: Copy + Debug + Hash + Ord;

    type Binder<T: TypeVisitable<Self>>: BoundVars<Self> + TypeSuperVisitable<Self>;
    type BoundVars: IntoIterator<Item = Self::BoundVar>;
    type BoundVar;

    type CanonicalVars: Copy + Debug + Hash + Eq + IntoIterator<Item = CanonicalVarInfo<Self>>;

    // Kinds of tys
    type Ty: Copy
        + DebugWithInfcx<Self>
        + Hash
        + Ord
        + Into<Self::GenericArg>
        + IntoKind<Kind = TyKind<Self>>
        + TypeSuperVisitable<Self>
        + Flags;
    type Tys: Copy + Debug + Hash + Ord + IntoIterator<Item = Self::Ty>;
    type AliasTy: Copy + DebugWithInfcx<Self> + Hash + Ord;
    type ParamTy: Copy + Debug + Hash + Ord;
    type BoundTy: Copy + Debug + Hash + Ord;
    type PlaceholderTy: Copy + Debug + Hash + Ord + PlaceholderLike;

    // Things stored inside of tys
    type ErrorGuaranteed: Copy + Debug + Hash + Ord;
    type BoundExistentialPredicates: Copy + DebugWithInfcx<Self> + Hash + Ord;
    type PolyFnSig: Copy + DebugWithInfcx<Self> + Hash + Ord;
    type AllocId: Copy + Debug + Hash + Ord;

    // Kinds of consts
    type Const: Copy
        + DebugWithInfcx<Self>
        + Hash
        + Ord
        + Into<Self::GenericArg>
        + IntoKind<Kind = ConstKind<Self>>
        + ConstTy<Self>
        + TypeSuperVisitable<Self>
        + Flags;
    type AliasConst: Copy + DebugWithInfcx<Self> + Hash + Ord;
    type PlaceholderConst: Copy + Debug + Hash + Ord + PlaceholderLike;
    type ParamConst: Copy + Debug + Hash + Ord;
    type BoundConst: Copy + Debug + Hash + Ord;
    type ValueConst: Copy + Debug + Hash + Ord;
    type ExprConst: Copy + DebugWithInfcx<Self> + Hash + Ord;

    // Kinds of regions
    type Region: Copy
        + DebugWithInfcx<Self>
        + Hash
        + Ord
        + Into<Self::GenericArg>
        + IntoKind<Kind = RegionKind<Self>>
        + Flags;
    type EarlyParamRegion: Copy + Debug + Hash + Ord;
    type LateParamRegion: Copy + Debug + Hash + Ord;
    type BoundRegion: Copy + Debug + Hash + Ord;
    type InferRegion: Copy + DebugWithInfcx<Self> + Hash + Ord;
    type PlaceholderRegion: Copy + Debug + Hash + Ord + PlaceholderLike;

    // Predicates
    type Predicate: Copy + Debug + Hash + Eq + TypeSuperVisitable<Self> + Flags;
    type TraitPredicate: Copy + Debug + Hash + Eq;
    type RegionOutlivesPredicate: Copy + Debug + Hash + Eq;
    type TypeOutlivesPredicate: Copy + Debug + Hash + Eq;
    type ProjectionPredicate: Copy + Debug + Hash + Eq;
    type NormalizesTo: Copy + Debug + Hash + Eq;
    type SubtypePredicate: Copy + Debug + Hash + Eq;
    type CoercePredicate: Copy + Debug + Hash + Eq;
    type ClosureKind: Copy + Debug + Hash + Eq;

    fn mk_canonical_var_infos(self, infos: &[CanonicalVarInfo<Self>]) -> Self::CanonicalVars;

    // FIXME: We should not have all these constructors on `Interner`, but as functions on some trait.
    fn mk_bound_ty(self, debruijn: DebruijnIndex, var: BoundVar) -> Self::Ty;
    fn mk_bound_region(self, debruijn: DebruijnIndex, var: BoundVar) -> Self::Region;
    fn mk_bound_const(self, debruijn: DebruijnIndex, var: BoundVar, ty: Self::Ty) -> Self::Const;
}

/// Common capabilities of placeholder kinds
pub trait PlaceholderLike {
    fn universe(self) -> UniverseIndex;
    fn var(self) -> BoundVar;

    fn with_updated_universe(self, ui: UniverseIndex) -> Self;

    fn new(ui: UniverseIndex, var: BoundVar) -> Self;
}

pub trait IntoKind {
    type Kind;

    fn kind(self) -> Self::Kind;
}

pub trait ConstTy<I: Interner> {
    fn ty(self) -> I::Ty;
}

/// Imagine you have a function `F: FnOnce(&[T]) -> R`, plus an iterator `iter`
/// that produces `T` items. You could combine them with
/// `f(&iter.collect::<Vec<_>>())`, but this requires allocating memory for the
/// `Vec`.
///
/// This trait allows for faster implementations, intended for cases where the
/// number of items produced by the iterator is small. There is a blanket impl
/// for `T` items, but there is also a fallible impl for `Result<T, E>` items.
pub trait CollectAndApply<T, R>: Sized {
    type Output;

    /// Produce a result of type `Self::Output` from `iter`. The result will
    /// typically be produced by applying `f` on the elements produced by
    /// `iter`, though this may not happen in some impls, e.g. if an error
    /// occurred during iteration.
    fn collect_and_apply<I, F>(iter: I, f: F) -> Self::Output
    where
        I: Iterator<Item = Self>,
        F: FnOnce(&[T]) -> R;
}

/// The blanket impl that always collects all elements and applies `f`.
impl<T, R> CollectAndApply<T, R> for T {
    type Output = R;

    /// Equivalent to `f(&iter.collect::<Vec<_>>())`.
    fn collect_and_apply<I, F>(mut iter: I, f: F) -> R
    where
        I: Iterator<Item = T>,
        F: FnOnce(&[T]) -> R,
    {
        // This code is hot enough that it's worth specializing for the most
        // common length lists, to avoid the overhead of `SmallVec` creation.
        // Lengths 0, 1, and 2 typically account for ~95% of cases. If
        // `size_hint` is incorrect a panic will occur via an `unwrap` or an
        // `assert`.
        match iter.size_hint() {
            (0, Some(0)) => {
                assert!(iter.next().is_none());
                f(&[])
            }
            (1, Some(1)) => {
                let t0 = iter.next().unwrap();
                assert!(iter.next().is_none());
                f(&[t0])
            }
            (2, Some(2)) => {
                let t0 = iter.next().unwrap();
                let t1 = iter.next().unwrap();
                assert!(iter.next().is_none());
                f(&[t0, t1])
            }
            _ => f(&iter.collect::<SmallVec<[_; 8]>>()),
        }
    }
}

/// A fallible impl that will fail, without calling `f`, if there are any
/// errors during collection.
impl<T, R, E> CollectAndApply<T, R> for Result<T, E> {
    type Output = Result<R, E>;

    /// Equivalent to `Ok(f(&iter.collect::<Result<Vec<_>>>()?))`.
    fn collect_and_apply<I, F>(mut iter: I, f: F) -> Result<R, E>
    where
        I: Iterator<Item = Result<T, E>>,
        F: FnOnce(&[T]) -> R,
    {
        // This code is hot enough that it's worth specializing for the most
        // common length lists, to avoid the overhead of `SmallVec` creation.
        // Lengths 0, 1, and 2 typically account for ~95% of cases. If
        // `size_hint` is incorrect a panic will occur via an `unwrap` or an
        // `assert`, unless a failure happens first, in which case the result
        // will be an error anyway.
        Ok(match iter.size_hint() {
            (0, Some(0)) => {
                assert!(iter.next().is_none());
                f(&[])
            }
            (1, Some(1)) => {
                let t0 = iter.next().unwrap()?;
                assert!(iter.next().is_none());
                f(&[t0])
            }
            (2, Some(2)) => {
                let t0 = iter.next().unwrap()?;
                let t1 = iter.next().unwrap()?;
                assert!(iter.next().is_none());
                f(&[t0, t1])
            }
            _ => f(&iter.collect::<Result<SmallVec<[_; 8]>, _>>()?),
        })
    }
}