rustdoc/clean/
mod.rs

1//! This module defines the primary IR[^1] used in rustdoc together with the procedures that
2//! transform rustc data types into it.
3//!
4//! This IR — commonly referred to as the *cleaned AST* — is modeled after the [AST][rustc_ast].
5//!
6//! There are two kinds of transformation — *cleaning* — procedures:
7//!
8//! 1. Cleans [HIR][hir] types. Used for user-written code and inlined local re-exports
9//!    both found in the local crate.
10//! 2. Cleans [`rustc_middle::ty`] types. Used for inlined cross-crate re-exports and anything
11//!    output by the trait solver (e.g., when synthesizing blanket and auto-trait impls).
12//!    They usually have `ty` or `middle` in their name.
13//!
14//! Their name is prefixed by `clean_`.
15//!
16//! Both the HIR and the `rustc_middle::ty` IR are quite removed from the source code.
17//! The cleaned AST on the other hand is closer to it which simplifies the rendering process.
18//! Furthermore, operating on a single IR instead of two avoids duplicating efforts down the line.
19//!
20//! This IR is consumed by both the HTML and the JSON backend.
21//!
22//! [^1]: Intermediate representation.
23
24mod auto_trait;
25mod blanket_impl;
26pub(crate) mod cfg;
27pub(crate) mod inline;
28mod render_macro_matchers;
29mod simplify;
30pub(crate) mod types;
31pub(crate) mod utils;
32
33use std::borrow::Cow;
34use std::collections::BTreeMap;
35use std::mem;
36
37use rustc_data_structures::fx::{FxHashMap, FxHashSet, FxIndexMap, FxIndexSet, IndexEntry};
38use rustc_data_structures::thin_vec::ThinVec;
39use rustc_errors::codes::*;
40use rustc_errors::{FatalError, struct_span_code_err};
41use rustc_hir as hir;
42use rustc_hir::attrs::{AttributeKind, DocAttribute, DocInline};
43use rustc_hir::def::{CtorKind, DefKind, MacroKinds, Res};
44use rustc_hir::def_id::{DefId, DefIdMap, DefIdSet, LOCAL_CRATE, LocalDefId};
45use rustc_hir::{LangItem, PredicateOrigin, find_attr};
46use rustc_hir_analysis::hir_ty_lowering::FeedConstTy;
47use rustc_hir_analysis::{lower_const_arg_for_rustdoc, lower_ty};
48use rustc_middle::metadata::Reexport;
49use rustc_middle::middle::resolve_bound_vars as rbv;
50use rustc_middle::ty::{self, AdtKind, GenericArgsRef, Ty, TyCtxt, TypeVisitableExt, TypingMode};
51use rustc_middle::{bug, span_bug};
52use rustc_span::ExpnKind;
53use rustc_span::hygiene::{AstPass, MacroKind};
54use rustc_span::symbol::{Ident, Symbol, kw, sym};
55use rustc_trait_selection::traits::wf::object_region_bounds;
56use tracing::{debug, instrument};
57use utils::*;
58
59pub(crate) use self::cfg::{CfgInfo, extract_cfg_from_attrs};
60pub(crate) use self::types::*;
61pub(crate) use self::utils::{krate, register_res, synthesize_auto_trait_and_blanket_impls};
62use crate::core::DocContext;
63use crate::formats::item_type::ItemType;
64use crate::visit_ast::Module as DocModule;
65
66pub(crate) fn clean_doc_module<'tcx>(doc: &DocModule<'tcx>, cx: &mut DocContext<'tcx>) -> Item {
67    let mut items: Vec<Item> = vec![];
68    let mut inserted = FxHashSet::default();
69    items.extend(doc.foreigns.iter().map(|(item, renamed, import_id)| {
70        let item = clean_maybe_renamed_foreign_item(cx, item, *renamed, *import_id);
71        if let Some(name) = item.name
72            && (cx.document_hidden() || !item.is_doc_hidden())
73        {
74            inserted.insert((item.type_(), name));
75        }
76        item
77    }));
78    items.extend(doc.mods.iter().filter_map(|x| {
79        if !inserted.insert((ItemType::Module, x.name)) {
80            return None;
81        }
82        let item = clean_doc_module(x, cx);
83        if !cx.document_hidden() && item.is_doc_hidden() {
84            // Hidden modules are stripped at a later stage.
85            // If a hidden module has the same name as a visible one, we want
86            // to keep both of them around.
87            inserted.remove(&(ItemType::Module, x.name));
88        }
89        Some(item)
90    }));
91
92    // Split up glob imports from all other items.
93    //
94    // This covers the case where somebody does an import which should pull in an item,
95    // but there's already an item with the same namespace and same name. Rust gives
96    // priority to the not-imported one, so we should, too.
97    items.extend(doc.items.values().flat_map(|(item, renamed, import_ids)| {
98        // First, lower everything other than glob imports.
99        if matches!(item.kind, hir::ItemKind::Use(_, hir::UseKind::Glob)) {
100            return Vec::new();
101        }
102        let v = clean_maybe_renamed_item(cx, item, *renamed, import_ids);
103        for item in &v {
104            if let Some(name) = item.name
105                && (cx.document_hidden() || !item.is_doc_hidden())
106            {
107                inserted.insert((item.type_(), name));
108            }
109        }
110        v
111    }));
112    items.extend(doc.inlined_foreigns.iter().flat_map(|((_, renamed), (res, local_import_id))| {
113        let Some(def_id) = res.opt_def_id() else { return Vec::new() };
114        let name = renamed.unwrap_or_else(|| cx.tcx.item_name(def_id));
115        let import = cx.tcx.hir_expect_item(*local_import_id);
116        match import.kind {
117            hir::ItemKind::Use(path, kind) => {
118                let hir::UsePath { segments, span, .. } = *path;
119                let path = hir::Path { segments, res: *res, span };
120                clean_use_statement_inner(
121                    import,
122                    Some(name),
123                    &path,
124                    kind,
125                    cx,
126                    &mut Default::default(),
127                )
128            }
129            _ => unreachable!(),
130        }
131    }));
132    items.extend(doc.items.values().flat_map(|(item, renamed, _)| {
133        // Now we actually lower the imports, skipping everything else.
134        if let hir::ItemKind::Use(path, hir::UseKind::Glob) = item.kind {
135            clean_use_statement(item, *renamed, path, hir::UseKind::Glob, cx, &mut inserted)
136        } else {
137            // skip everything else
138            Vec::new()
139        }
140    }));
141
142    // determine if we should display the inner contents or
143    // the outer `mod` item for the source code.
144
145    let span = Span::new({
146        let where_outer = doc.where_outer(cx.tcx);
147        let sm = cx.sess().source_map();
148        let outer = sm.lookup_char_pos(where_outer.lo());
149        let inner = sm.lookup_char_pos(doc.where_inner.lo());
150        if outer.file.start_pos == inner.file.start_pos {
151            // mod foo { ... }
152            where_outer
153        } else {
154            // mod foo; (and a separate SourceFile for the contents)
155            doc.where_inner
156        }
157    });
158
159    let kind = ModuleItem(Module { items, span });
160    generate_item_with_correct_attrs(
161        cx,
162        kind,
163        doc.def_id.to_def_id(),
164        doc.name,
165        doc.import_id.as_slice(),
166        doc.renamed,
167    )
168}
169
170fn is_glob_import(tcx: TyCtxt<'_>, import_id: LocalDefId) -> bool {
171    if let hir::Node::Item(item) = tcx.hir_node_by_def_id(import_id)
172        && let hir::ItemKind::Use(_, use_kind) = item.kind
173    {
174        use_kind == hir::UseKind::Glob
175    } else {
176        false
177    }
178}
179
180fn generate_item_with_correct_attrs(
181    cx: &mut DocContext<'_>,
182    kind: ItemKind,
183    def_id: DefId,
184    name: Symbol,
185    import_ids: &[LocalDefId],
186    renamed: Option<Symbol>,
187) -> Item {
188    let target_attrs = inline::load_attrs(cx, def_id);
189    let attrs = if !import_ids.is_empty() {
190        let mut attrs = Vec::with_capacity(import_ids.len());
191        let mut is_inline = false;
192
193        for import_id in import_ids.iter().copied() {
194            // glob reexports are treated the same as `#[doc(inline)]` items.
195            //
196            // For glob re-exports the item may or may not exist to be re-exported (potentially the
197            // cfgs on the path up until the glob can be removed, and only cfgs on the globbed item
198            // itself matter), for non-inlined re-exports see #85043.
199            let import_is_inline = find_attr!(
200                inline::load_attrs(cx, import_id.to_def_id()),
201                AttributeKind::Doc(d)
202                if d.inline.first().is_some_and(|(inline, _)| *inline == DocInline::Inline)
203            ) || (is_glob_import(cx.tcx, import_id)
204                && (cx.document_hidden() || !cx.tcx.is_doc_hidden(def_id)));
205            attrs.extend(get_all_import_attributes(cx, import_id, def_id, is_inline));
206            is_inline = is_inline || import_is_inline;
207        }
208        add_without_unwanted_attributes(&mut attrs, target_attrs, is_inline, None);
209        attrs
210    } else {
211        // We only keep the item's attributes.
212        target_attrs.iter().map(|attr| (Cow::Borrowed(attr), None)).collect()
213    };
214    let attrs = Attributes::from_hir_iter(attrs.iter().map(|(attr, did)| (&**attr, *did)), false);
215
216    let name = renamed.or(Some(name));
217    let mut item = Item::from_def_id_and_attrs_and_parts(def_id, name, kind, attrs, None);
218    // FIXME (GuillaumeGomez): Should we also make `inline_stmt_id` a `Vec` instead of an `Option`?
219    item.inner.inline_stmt_id = import_ids.first().copied();
220    item
221}
222
223fn clean_generic_bound<'tcx>(
224    bound: &hir::GenericBound<'tcx>,
225    cx: &mut DocContext<'tcx>,
226) -> Option<GenericBound> {
227    Some(match bound {
228        hir::GenericBound::Outlives(lt) => GenericBound::Outlives(clean_lifetime(lt, cx)),
229        hir::GenericBound::Trait(t) => {
230            // `T: [const] Destruct` is hidden because `T: Destruct` is a no-op.
231            if let hir::BoundConstness::Maybe(_) = t.modifiers.constness
232                && cx.tcx.lang_items().destruct_trait() == Some(t.trait_ref.trait_def_id().unwrap())
233            {
234                return None;
235            }
236
237            GenericBound::TraitBound(clean_poly_trait_ref(t, cx), t.modifiers)
238        }
239        hir::GenericBound::Use(args, ..) => {
240            GenericBound::Use(args.iter().map(|arg| clean_precise_capturing_arg(arg, cx)).collect())
241        }
242    })
243}
244
245pub(crate) fn clean_trait_ref_with_constraints<'tcx>(
246    cx: &mut DocContext<'tcx>,
247    trait_ref: ty::PolyTraitRef<'tcx>,
248    constraints: ThinVec<AssocItemConstraint>,
249) -> Path {
250    let kind = ItemType::from_def_id(trait_ref.def_id(), cx.tcx);
251    if !matches!(kind, ItemType::Trait | ItemType::TraitAlias) {
252        span_bug!(cx.tcx.def_span(trait_ref.def_id()), "`TraitRef` had unexpected kind {kind:?}");
253    }
254    inline::record_extern_fqn(cx, trait_ref.def_id(), kind);
255    let path = clean_middle_path(
256        cx,
257        trait_ref.def_id(),
258        true,
259        constraints,
260        trait_ref.map_bound(|tr| tr.args),
261    );
262
263    debug!(?trait_ref);
264
265    path
266}
267
268fn clean_poly_trait_ref_with_constraints<'tcx>(
269    cx: &mut DocContext<'tcx>,
270    poly_trait_ref: ty::PolyTraitRef<'tcx>,
271    constraints: ThinVec<AssocItemConstraint>,
272) -> GenericBound {
273    GenericBound::TraitBound(
274        PolyTrait {
275            trait_: clean_trait_ref_with_constraints(cx, poly_trait_ref, constraints),
276            generic_params: clean_bound_vars(poly_trait_ref.bound_vars(), cx),
277        },
278        hir::TraitBoundModifiers::NONE,
279    )
280}
281
282fn clean_lifetime(lifetime: &hir::Lifetime, cx: &DocContext<'_>) -> Lifetime {
283    if let Some(
284        rbv::ResolvedArg::EarlyBound(did)
285        | rbv::ResolvedArg::LateBound(_, _, did)
286        | rbv::ResolvedArg::Free(_, did),
287    ) = cx.tcx.named_bound_var(lifetime.hir_id)
288        && let Some(lt) = cx.args.get(&did.to_def_id()).and_then(|arg| arg.as_lt())
289    {
290        return *lt;
291    }
292    Lifetime(lifetime.ident.name)
293}
294
295pub(crate) fn clean_precise_capturing_arg(
296    arg: &hir::PreciseCapturingArg<'_>,
297    cx: &DocContext<'_>,
298) -> PreciseCapturingArg {
299    match arg {
300        hir::PreciseCapturingArg::Lifetime(lt) => {
301            PreciseCapturingArg::Lifetime(clean_lifetime(lt, cx))
302        }
303        hir::PreciseCapturingArg::Param(param) => PreciseCapturingArg::Param(param.ident.name),
304    }
305}
306
307pub(crate) fn clean_const_item_rhs<'tcx>(
308    ct_rhs: hir::ConstItemRhs<'tcx>,
309    parent: DefId,
310) -> ConstantKind {
311    match ct_rhs {
312        hir::ConstItemRhs::Body(body) => ConstantKind::Local { def_id: parent, body },
313        hir::ConstItemRhs::TypeConst(ct) => clean_const(ct),
314    }
315}
316
317pub(crate) fn clean_const<'tcx>(constant: &hir::ConstArg<'tcx>) -> ConstantKind {
318    match &constant.kind {
319        hir::ConstArgKind::Path(qpath) => {
320            ConstantKind::Path { path: qpath_to_string(qpath).into() }
321        }
322        hir::ConstArgKind::Struct(..) => {
323            // FIXME(mgca): proper printing :3
324            ConstantKind::Path { path: "/* STRUCT EXPR */".to_string().into() }
325        }
326        hir::ConstArgKind::Anon(anon) => ConstantKind::Anonymous { body: anon.body },
327        hir::ConstArgKind::Infer(..) | hir::ConstArgKind::Error(..) => ConstantKind::Infer,
328    }
329}
330
331pub(crate) fn clean_middle_const<'tcx>(
332    constant: ty::Binder<'tcx, ty::Const<'tcx>>,
333    _cx: &mut DocContext<'tcx>,
334) -> ConstantKind {
335    // FIXME: instead of storing the stringified expression, store `self` directly instead.
336    ConstantKind::TyConst { expr: constant.skip_binder().to_string().into() }
337}
338
339pub(crate) fn clean_middle_region<'tcx>(
340    region: ty::Region<'tcx>,
341    cx: &mut DocContext<'tcx>,
342) -> Option<Lifetime> {
343    region.get_name(cx.tcx).map(Lifetime)
344}
345
346fn clean_where_predicate<'tcx>(
347    predicate: &hir::WherePredicate<'tcx>,
348    cx: &mut DocContext<'tcx>,
349) -> Option<WherePredicate> {
350    if !predicate.kind.in_where_clause() {
351        return None;
352    }
353    Some(match predicate.kind {
354        hir::WherePredicateKind::BoundPredicate(wbp) => {
355            let bound_params = wbp
356                .bound_generic_params
357                .iter()
358                .map(|param| clean_generic_param(cx, None, param))
359                .collect();
360            WherePredicate::BoundPredicate {
361                ty: clean_ty(wbp.bounded_ty, cx),
362                bounds: wbp.bounds.iter().filter_map(|x| clean_generic_bound(x, cx)).collect(),
363                bound_params,
364            }
365        }
366
367        hir::WherePredicateKind::RegionPredicate(wrp) => WherePredicate::RegionPredicate {
368            lifetime: clean_lifetime(wrp.lifetime, cx),
369            bounds: wrp.bounds.iter().filter_map(|x| clean_generic_bound(x, cx)).collect(),
370        },
371
372        // We should never actually reach this case because these predicates should've already been
373        // rejected in an earlier compiler pass. This feature isn't fully implemented (#20041).
374        hir::WherePredicateKind::EqPredicate(_) => bug!("EqPredicate"),
375    })
376}
377
378pub(crate) fn clean_predicate<'tcx>(
379    predicate: ty::Clause<'tcx>,
380    cx: &mut DocContext<'tcx>,
381) -> Option<WherePredicate> {
382    let bound_predicate = predicate.kind();
383    match bound_predicate.skip_binder() {
384        ty::ClauseKind::Trait(pred) => clean_poly_trait_predicate(bound_predicate.rebind(pred), cx),
385        ty::ClauseKind::RegionOutlives(pred) => Some(clean_region_outlives_predicate(pred, cx)),
386        ty::ClauseKind::TypeOutlives(pred) => {
387            Some(clean_type_outlives_predicate(bound_predicate.rebind(pred), cx))
388        }
389        ty::ClauseKind::Projection(pred) => {
390            Some(clean_projection_predicate(bound_predicate.rebind(pred), cx))
391        }
392        // FIXME(generic_const_exprs): should this do something?
393        ty::ClauseKind::ConstEvaluatable(..)
394        | ty::ClauseKind::WellFormed(..)
395        | ty::ClauseKind::ConstArgHasType(..)
396        | ty::ClauseKind::UnstableFeature(..)
397        // FIXME(const_trait_impl): We can probably use this `HostEffect` pred to render `~const`.
398        | ty::ClauseKind::HostEffect(_) => None,
399    }
400}
401
402fn clean_poly_trait_predicate<'tcx>(
403    pred: ty::PolyTraitPredicate<'tcx>,
404    cx: &mut DocContext<'tcx>,
405) -> Option<WherePredicate> {
406    // `T: [const] Destruct` is hidden because `T: Destruct` is a no-op.
407    // FIXME(const_trait_impl) check constness
408    if Some(pred.skip_binder().def_id()) == cx.tcx.lang_items().destruct_trait() {
409        return None;
410    }
411
412    let poly_trait_ref = pred.map_bound(|pred| pred.trait_ref);
413    Some(WherePredicate::BoundPredicate {
414        ty: clean_middle_ty(poly_trait_ref.self_ty(), cx, None, None),
415        bounds: vec![clean_poly_trait_ref_with_constraints(cx, poly_trait_ref, ThinVec::new())],
416        bound_params: Vec::new(),
417    })
418}
419
420fn clean_region_outlives_predicate<'tcx>(
421    pred: ty::RegionOutlivesPredicate<'tcx>,
422    cx: &mut DocContext<'tcx>,
423) -> WherePredicate {
424    let ty::OutlivesPredicate(a, b) = pred;
425
426    WherePredicate::RegionPredicate {
427        lifetime: clean_middle_region(a, cx).expect("failed to clean lifetime"),
428        bounds: vec![GenericBound::Outlives(
429            clean_middle_region(b, cx).expect("failed to clean bounds"),
430        )],
431    }
432}
433
434fn clean_type_outlives_predicate<'tcx>(
435    pred: ty::Binder<'tcx, ty::TypeOutlivesPredicate<'tcx>>,
436    cx: &mut DocContext<'tcx>,
437) -> WherePredicate {
438    let ty::OutlivesPredicate(ty, lt) = pred.skip_binder();
439
440    WherePredicate::BoundPredicate {
441        ty: clean_middle_ty(pred.rebind(ty), cx, None, None),
442        bounds: vec![GenericBound::Outlives(
443            clean_middle_region(lt, cx).expect("failed to clean lifetimes"),
444        )],
445        bound_params: Vec::new(),
446    }
447}
448
449fn clean_middle_term<'tcx>(
450    term: ty::Binder<'tcx, ty::Term<'tcx>>,
451    cx: &mut DocContext<'tcx>,
452) -> Term {
453    match term.skip_binder().kind() {
454        ty::TermKind::Ty(ty) => Term::Type(clean_middle_ty(term.rebind(ty), cx, None, None)),
455        ty::TermKind::Const(c) => Term::Constant(clean_middle_const(term.rebind(c), cx)),
456    }
457}
458
459fn clean_hir_term<'tcx>(term: &hir::Term<'tcx>, cx: &mut DocContext<'tcx>) -> Term {
460    match term {
461        hir::Term::Ty(ty) => Term::Type(clean_ty(ty, cx)),
462        hir::Term::Const(c) => {
463            let ct = lower_const_arg_for_rustdoc(cx.tcx, c, FeedConstTy::No);
464            Term::Constant(clean_middle_const(ty::Binder::dummy(ct), cx))
465        }
466    }
467}
468
469fn clean_projection_predicate<'tcx>(
470    pred: ty::Binder<'tcx, ty::ProjectionPredicate<'tcx>>,
471    cx: &mut DocContext<'tcx>,
472) -> WherePredicate {
473    WherePredicate::EqPredicate {
474        lhs: clean_projection(pred.map_bound(|p| p.projection_term), cx, None),
475        rhs: clean_middle_term(pred.map_bound(|p| p.term), cx),
476    }
477}
478
479fn clean_projection<'tcx>(
480    proj: ty::Binder<'tcx, ty::AliasTerm<'tcx>>,
481    cx: &mut DocContext<'tcx>,
482    parent_def_id: Option<DefId>,
483) -> QPathData {
484    let trait_ = clean_trait_ref_with_constraints(
485        cx,
486        proj.map_bound(|proj| proj.trait_ref(cx.tcx)),
487        ThinVec::new(),
488    );
489    let self_type = clean_middle_ty(proj.map_bound(|proj| proj.self_ty()), cx, None, None);
490    let self_def_id = match parent_def_id {
491        Some(parent_def_id) => cx.tcx.opt_parent(parent_def_id).or(Some(parent_def_id)),
492        None => self_type.def_id(&cx.cache),
493    };
494    let should_fully_qualify = should_fully_qualify_path(self_def_id, &trait_, &self_type);
495
496    QPathData {
497        assoc: projection_to_path_segment(proj, cx),
498        self_type,
499        should_fully_qualify,
500        trait_: Some(trait_),
501    }
502}
503
504fn should_fully_qualify_path(self_def_id: Option<DefId>, trait_: &Path, self_type: &Type) -> bool {
505    !trait_.segments.is_empty()
506        && self_def_id
507            .zip(Some(trait_.def_id()))
508            .map_or(!self_type.is_self_type(), |(id, trait_)| id != trait_)
509}
510
511fn projection_to_path_segment<'tcx>(
512    proj: ty::Binder<'tcx, ty::AliasTerm<'tcx>>,
513    cx: &mut DocContext<'tcx>,
514) -> PathSegment {
515    let def_id = proj.skip_binder().def_id;
516    let generics = cx.tcx.generics_of(def_id);
517    PathSegment {
518        name: cx.tcx.item_name(def_id),
519        args: GenericArgs::AngleBracketed {
520            args: clean_middle_generic_args(
521                cx,
522                proj.map_bound(|ty| &ty.args[generics.parent_count..]),
523                false,
524                def_id,
525            ),
526            constraints: Default::default(),
527        },
528    }
529}
530
531fn clean_generic_param_def(
532    def: &ty::GenericParamDef,
533    defaults: ParamDefaults,
534    cx: &mut DocContext<'_>,
535) -> GenericParamDef {
536    let (name, kind) = match def.kind {
537        ty::GenericParamDefKind::Lifetime => {
538            (def.name, GenericParamDefKind::Lifetime { outlives: ThinVec::new() })
539        }
540        ty::GenericParamDefKind::Type { has_default, synthetic, .. } => {
541            let default = if let ParamDefaults::Yes = defaults
542                && has_default
543            {
544                Some(clean_middle_ty(
545                    ty::Binder::dummy(cx.tcx.type_of(def.def_id).instantiate_identity()),
546                    cx,
547                    Some(def.def_id),
548                    None,
549                ))
550            } else {
551                None
552            };
553            (
554                def.name,
555                GenericParamDefKind::Type {
556                    bounds: ThinVec::new(), // These are filled in from the where-clauses.
557                    default: default.map(Box::new),
558                    synthetic,
559                },
560            )
561        }
562        ty::GenericParamDefKind::Const { has_default } => (
563            def.name,
564            GenericParamDefKind::Const {
565                ty: Box::new(clean_middle_ty(
566                    ty::Binder::dummy(cx.tcx.type_of(def.def_id).instantiate_identity()),
567                    cx,
568                    Some(def.def_id),
569                    None,
570                )),
571                default: if let ParamDefaults::Yes = defaults
572                    && has_default
573                {
574                    Some(Box::new(
575                        cx.tcx.const_param_default(def.def_id).instantiate_identity().to_string(),
576                    ))
577                } else {
578                    None
579                },
580            },
581        ),
582    };
583
584    GenericParamDef { name, def_id: def.def_id, kind }
585}
586
587/// Whether to clean generic parameter defaults or not.
588enum ParamDefaults {
589    Yes,
590    No,
591}
592
593fn clean_generic_param<'tcx>(
594    cx: &mut DocContext<'tcx>,
595    generics: Option<&hir::Generics<'tcx>>,
596    param: &hir::GenericParam<'tcx>,
597) -> GenericParamDef {
598    let (name, kind) = match param.kind {
599        hir::GenericParamKind::Lifetime { .. } => {
600            let outlives = if let Some(generics) = generics {
601                generics
602                    .outlives_for_param(param.def_id)
603                    .filter(|bp| !bp.in_where_clause)
604                    .flat_map(|bp| bp.bounds)
605                    .map(|bound| match bound {
606                        hir::GenericBound::Outlives(lt) => clean_lifetime(lt, cx),
607                        _ => panic!(),
608                    })
609                    .collect()
610            } else {
611                ThinVec::new()
612            };
613            (param.name.ident().name, GenericParamDefKind::Lifetime { outlives })
614        }
615        hir::GenericParamKind::Type { ref default, synthetic } => {
616            let bounds = if let Some(generics) = generics {
617                generics
618                    .bounds_for_param(param.def_id)
619                    .filter(|bp| bp.origin != PredicateOrigin::WhereClause)
620                    .flat_map(|bp| bp.bounds)
621                    .filter_map(|x| clean_generic_bound(x, cx))
622                    .collect()
623            } else {
624                ThinVec::new()
625            };
626            (
627                param.name.ident().name,
628                GenericParamDefKind::Type {
629                    bounds,
630                    default: default.map(|t| clean_ty(t, cx)).map(Box::new),
631                    synthetic,
632                },
633            )
634        }
635        hir::GenericParamKind::Const { ty, default } => (
636            param.name.ident().name,
637            GenericParamDefKind::Const {
638                ty: Box::new(clean_ty(ty, cx)),
639                default: default.map(|ct| {
640                    Box::new(lower_const_arg_for_rustdoc(cx.tcx, ct, FeedConstTy::No).to_string())
641                }),
642            },
643        ),
644    };
645
646    GenericParamDef { name, def_id: param.def_id.to_def_id(), kind }
647}
648
649/// Synthetic type-parameters are inserted after normal ones.
650/// In order for normal parameters to be able to refer to synthetic ones,
651/// scans them first.
652fn is_impl_trait(param: &hir::GenericParam<'_>) -> bool {
653    match param.kind {
654        hir::GenericParamKind::Type { synthetic, .. } => synthetic,
655        _ => false,
656    }
657}
658
659/// This can happen for `async fn`, e.g. `async fn f<'_>(&'_ self)`.
660///
661/// See `lifetime_to_generic_param` in `rustc_ast_lowering` for more information.
662fn is_elided_lifetime(param: &hir::GenericParam<'_>) -> bool {
663    matches!(
664        param.kind,
665        hir::GenericParamKind::Lifetime { kind: hir::LifetimeParamKind::Elided(_) }
666    )
667}
668
669pub(crate) fn clean_generics<'tcx>(
670    gens: &hir::Generics<'tcx>,
671    cx: &mut DocContext<'tcx>,
672) -> Generics {
673    let impl_trait_params = gens
674        .params
675        .iter()
676        .filter(|param| is_impl_trait(param))
677        .map(|param| {
678            let param = clean_generic_param(cx, Some(gens), param);
679            match param.kind {
680                GenericParamDefKind::Lifetime { .. } => unreachable!(),
681                GenericParamDefKind::Type { ref bounds, .. } => {
682                    cx.impl_trait_bounds.insert(param.def_id.into(), bounds.to_vec());
683                }
684                GenericParamDefKind::Const { .. } => unreachable!(),
685            }
686            param
687        })
688        .collect::<Vec<_>>();
689
690    let mut bound_predicates = FxIndexMap::default();
691    let mut region_predicates = FxIndexMap::default();
692    let mut eq_predicates = ThinVec::default();
693    for pred in gens.predicates.iter().filter_map(|x| clean_where_predicate(x, cx)) {
694        match pred {
695            WherePredicate::BoundPredicate { ty, bounds, bound_params } => {
696                match bound_predicates.entry(ty) {
697                    IndexEntry::Vacant(v) => {
698                        v.insert((bounds, bound_params));
699                    }
700                    IndexEntry::Occupied(mut o) => {
701                        // we merge both bounds.
702                        for bound in bounds {
703                            if !o.get().0.contains(&bound) {
704                                o.get_mut().0.push(bound);
705                            }
706                        }
707                        for bound_param in bound_params {
708                            if !o.get().1.contains(&bound_param) {
709                                o.get_mut().1.push(bound_param);
710                            }
711                        }
712                    }
713                }
714            }
715            WherePredicate::RegionPredicate { lifetime, bounds } => {
716                match region_predicates.entry(lifetime) {
717                    IndexEntry::Vacant(v) => {
718                        v.insert(bounds);
719                    }
720                    IndexEntry::Occupied(mut o) => {
721                        // we merge both bounds.
722                        for bound in bounds {
723                            if !o.get().contains(&bound) {
724                                o.get_mut().push(bound);
725                            }
726                        }
727                    }
728                }
729            }
730            WherePredicate::EqPredicate { lhs, rhs } => {
731                eq_predicates.push(WherePredicate::EqPredicate { lhs, rhs });
732            }
733        }
734    }
735
736    let mut params = ThinVec::with_capacity(gens.params.len());
737    // In this loop, we gather the generic parameters (`<'a, B: 'a>`) and check if they have
738    // bounds in the where predicates. If so, we move their bounds into the where predicates
739    // while also preventing duplicates.
740    for p in gens.params.iter().filter(|p| !is_impl_trait(p) && !is_elided_lifetime(p)) {
741        let mut p = clean_generic_param(cx, Some(gens), p);
742        match &mut p.kind {
743            GenericParamDefKind::Lifetime { outlives } => {
744                if let Some(region_pred) = region_predicates.get_mut(&Lifetime(p.name)) {
745                    // We merge bounds in the `where` clause.
746                    for outlive in outlives.drain(..) {
747                        let outlive = GenericBound::Outlives(outlive);
748                        if !region_pred.contains(&outlive) {
749                            region_pred.push(outlive);
750                        }
751                    }
752                }
753            }
754            GenericParamDefKind::Type { bounds, synthetic: false, .. } => {
755                if let Some(bound_pred) = bound_predicates.get_mut(&Type::Generic(p.name)) {
756                    // We merge bounds in the `where` clause.
757                    for bound in bounds.drain(..) {
758                        if !bound_pred.0.contains(&bound) {
759                            bound_pred.0.push(bound);
760                        }
761                    }
762                }
763            }
764            GenericParamDefKind::Type { .. } | GenericParamDefKind::Const { .. } => {
765                // nothing to do here.
766            }
767        }
768        params.push(p);
769    }
770    params.extend(impl_trait_params);
771
772    Generics {
773        params,
774        where_predicates: bound_predicates
775            .into_iter()
776            .map(|(ty, (bounds, bound_params))| WherePredicate::BoundPredicate {
777                ty,
778                bounds,
779                bound_params,
780            })
781            .chain(
782                region_predicates
783                    .into_iter()
784                    .map(|(lifetime, bounds)| WherePredicate::RegionPredicate { lifetime, bounds }),
785            )
786            .chain(eq_predicates)
787            .collect(),
788    }
789}
790
791fn clean_ty_generics<'tcx>(cx: &mut DocContext<'tcx>, def_id: DefId) -> Generics {
792    clean_ty_generics_inner(cx, cx.tcx.generics_of(def_id), cx.tcx.explicit_predicates_of(def_id))
793}
794
795fn clean_ty_generics_inner<'tcx>(
796    cx: &mut DocContext<'tcx>,
797    gens: &ty::Generics,
798    preds: ty::GenericPredicates<'tcx>,
799) -> Generics {
800    // Don't populate `cx.impl_trait_bounds` before cleaning where clauses,
801    // since `clean_predicate` would consume them.
802    let mut impl_trait = BTreeMap::<u32, Vec<GenericBound>>::default();
803
804    let params: ThinVec<_> = gens
805        .own_params
806        .iter()
807        .filter(|param| match param.kind {
808            ty::GenericParamDefKind::Lifetime => !param.is_anonymous_lifetime(),
809            ty::GenericParamDefKind::Type { synthetic, .. } => {
810                if param.name == kw::SelfUpper {
811                    debug_assert_eq!(param.index, 0);
812                    return false;
813                }
814                if synthetic {
815                    impl_trait.insert(param.index, vec![]);
816                    return false;
817                }
818                true
819            }
820            ty::GenericParamDefKind::Const { .. } => true,
821        })
822        .map(|param| clean_generic_param_def(param, ParamDefaults::Yes, cx))
823        .collect();
824
825    // param index -> [(trait DefId, associated type name & generics, term)]
826    let mut impl_trait_proj =
827        FxHashMap::<u32, Vec<(DefId, PathSegment, ty::Binder<'_, ty::Term<'_>>)>>::default();
828
829    let where_predicates = preds
830        .predicates
831        .iter()
832        .flat_map(|(pred, _)| {
833            let mut proj_pred = None;
834            let param_idx = {
835                let bound_p = pred.kind();
836                match bound_p.skip_binder() {
837                    ty::ClauseKind::Trait(pred) if let ty::Param(param) = pred.self_ty().kind() => {
838                        Some(param.index)
839                    }
840                    ty::ClauseKind::TypeOutlives(ty::OutlivesPredicate(ty, _reg))
841                        if let ty::Param(param) = ty.kind() =>
842                    {
843                        Some(param.index)
844                    }
845                    ty::ClauseKind::Projection(p)
846                        if let ty::Param(param) = p.projection_term.self_ty().kind() =>
847                    {
848                        proj_pred = Some(bound_p.rebind(p));
849                        Some(param.index)
850                    }
851                    _ => None,
852                }
853            };
854
855            if let Some(param_idx) = param_idx
856                && let Some(bounds) = impl_trait.get_mut(&param_idx)
857            {
858                let pred = clean_predicate(*pred, cx)?;
859
860                bounds.extend(pred.get_bounds().into_iter().flatten().cloned());
861
862                if let Some(pred) = proj_pred {
863                    let lhs = clean_projection(pred.map_bound(|p| p.projection_term), cx, None);
864                    impl_trait_proj.entry(param_idx).or_default().push((
865                        lhs.trait_.unwrap().def_id(),
866                        lhs.assoc,
867                        pred.map_bound(|p| p.term),
868                    ));
869                }
870
871                return None;
872            }
873
874            Some(pred)
875        })
876        .collect::<Vec<_>>();
877
878    for (idx, mut bounds) in impl_trait {
879        let mut has_sized = false;
880        bounds.retain(|b| {
881            if b.is_sized_bound(cx) {
882                has_sized = true;
883                false
884            } else if b.is_meta_sized_bound(cx) {
885                // FIXME(sized-hierarchy): Always skip `MetaSized` bounds so that only `?Sized`
886                // is shown and none of the new sizedness traits leak into documentation.
887                false
888            } else {
889                true
890            }
891        });
892        if !has_sized {
893            bounds.push(GenericBound::maybe_sized(cx));
894        }
895
896        // Move trait bounds to the front.
897        bounds.sort_by_key(|b| !b.is_trait_bound());
898
899        // Add back a `Sized` bound if there are no *trait* bounds remaining (incl. `?Sized`).
900        // Since all potential trait bounds are at the front we can just check the first bound.
901        if bounds.first().is_none_or(|b| !b.is_trait_bound()) {
902            bounds.insert(0, GenericBound::sized(cx));
903        }
904
905        if let Some(proj) = impl_trait_proj.remove(&idx) {
906            for (trait_did, name, rhs) in proj {
907                let rhs = clean_middle_term(rhs, cx);
908                simplify::merge_bounds(cx, &mut bounds, trait_did, name, &rhs);
909            }
910        }
911
912        cx.impl_trait_bounds.insert(idx.into(), bounds);
913    }
914
915    // Now that `cx.impl_trait_bounds` is populated, we can process
916    // remaining predicates which could contain `impl Trait`.
917    let where_predicates =
918        where_predicates.into_iter().flat_map(|p| clean_predicate(*p, cx)).collect();
919
920    let mut generics = Generics { params, where_predicates };
921    simplify::sized_bounds(cx, &mut generics);
922    generics.where_predicates = simplify::where_clauses(cx, generics.where_predicates);
923    generics
924}
925
926fn clean_ty_alias_inner_type<'tcx>(
927    ty: Ty<'tcx>,
928    cx: &mut DocContext<'tcx>,
929    ret: &mut Vec<Item>,
930) -> Option<TypeAliasInnerType> {
931    let ty::Adt(adt_def, args) = ty.kind() else {
932        return None;
933    };
934
935    if !adt_def.did().is_local() {
936        cx.with_param_env(adt_def.did(), |cx| {
937            inline::build_impls(cx, adt_def.did(), None, ret);
938        });
939    }
940
941    Some(if adt_def.is_enum() {
942        let variants: rustc_index::IndexVec<_, _> = adt_def
943            .variants()
944            .iter()
945            .map(|variant| clean_variant_def_with_args(variant, args, cx))
946            .collect();
947
948        if !adt_def.did().is_local() {
949            inline::record_extern_fqn(cx, adt_def.did(), ItemType::Enum);
950        }
951
952        TypeAliasInnerType::Enum {
953            variants,
954            is_non_exhaustive: adt_def.is_variant_list_non_exhaustive(),
955        }
956    } else {
957        let variant = adt_def
958            .variants()
959            .iter()
960            .next()
961            .unwrap_or_else(|| bug!("a struct or union should always have one variant def"));
962
963        let fields: Vec<_> =
964            clean_variant_def_with_args(variant, args, cx).kind.inner_items().cloned().collect();
965
966        if adt_def.is_struct() {
967            if !adt_def.did().is_local() {
968                inline::record_extern_fqn(cx, adt_def.did(), ItemType::Struct);
969            }
970            TypeAliasInnerType::Struct { ctor_kind: variant.ctor_kind(), fields }
971        } else {
972            if !adt_def.did().is_local() {
973                inline::record_extern_fqn(cx, adt_def.did(), ItemType::Union);
974            }
975            TypeAliasInnerType::Union { fields }
976        }
977    })
978}
979
980fn clean_proc_macro<'tcx>(
981    item: &hir::Item<'tcx>,
982    name: &mut Symbol,
983    kind: MacroKind,
984    cx: &mut DocContext<'tcx>,
985) -> ItemKind {
986    if kind != MacroKind::Derive {
987        return ProcMacroItem(ProcMacro { kind, helpers: vec![] });
988    }
989    let attrs = cx.tcx.hir_attrs(item.hir_id());
990    let Some((trait_name, helper_attrs)) = find_attr!(attrs, AttributeKind::ProcMacroDerive { trait_name, helper_attrs, ..} => (*trait_name, helper_attrs))
991    else {
992        return ProcMacroItem(ProcMacro { kind, helpers: vec![] });
993    };
994    *name = trait_name;
995    let helpers = helper_attrs.iter().copied().collect();
996
997    ProcMacroItem(ProcMacro { kind, helpers })
998}
999
1000fn clean_fn_or_proc_macro<'tcx>(
1001    item: &hir::Item<'tcx>,
1002    sig: &hir::FnSig<'tcx>,
1003    generics: &hir::Generics<'tcx>,
1004    body_id: hir::BodyId,
1005    name: &mut Symbol,
1006    cx: &mut DocContext<'tcx>,
1007) -> ItemKind {
1008    let attrs = cx.tcx.hir_attrs(item.hir_id());
1009    let macro_kind = if find_attr!(attrs, AttributeKind::ProcMacro(..)) {
1010        Some(MacroKind::Bang)
1011    } else if find_attr!(attrs, AttributeKind::ProcMacroDerive { .. }) {
1012        Some(MacroKind::Derive)
1013    } else if find_attr!(attrs, AttributeKind::ProcMacroAttribute(..)) {
1014        Some(MacroKind::Attr)
1015    } else {
1016        None
1017    };
1018
1019    match macro_kind {
1020        Some(kind) => clean_proc_macro(item, name, kind, cx),
1021        None => {
1022            let mut func = clean_function(cx, sig, generics, ParamsSrc::Body(body_id));
1023            clean_fn_decl_legacy_const_generics(&mut func, attrs);
1024            FunctionItem(func)
1025        }
1026    }
1027}
1028
1029/// This is needed to make it more "readable" when documenting functions using
1030/// `rustc_legacy_const_generics`. More information in
1031/// <https://github.com/rust-lang/rust/issues/83167>.
1032fn clean_fn_decl_legacy_const_generics(func: &mut Function, attrs: &[hir::Attribute]) {
1033    let Some(indexes) =
1034        find_attr!(attrs, AttributeKind::RustcLegacyConstGenerics{fn_indexes,..} => fn_indexes)
1035    else {
1036        return;
1037    };
1038
1039    for (pos, (index, _)) in indexes.iter().enumerate() {
1040        let GenericParamDef { name, kind, .. } = func.generics.params.remove(0);
1041        if let GenericParamDefKind::Const { ty, .. } = kind {
1042            func.decl
1043                .inputs
1044                .insert(*index, Parameter { name: Some(name), type_: *ty, is_const: true });
1045        } else {
1046            panic!("unexpected non const in position {pos}");
1047        }
1048    }
1049}
1050
1051enum ParamsSrc<'tcx> {
1052    Body(hir::BodyId),
1053    Idents(&'tcx [Option<Ident>]),
1054}
1055
1056fn clean_function<'tcx>(
1057    cx: &mut DocContext<'tcx>,
1058    sig: &hir::FnSig<'tcx>,
1059    generics: &hir::Generics<'tcx>,
1060    params: ParamsSrc<'tcx>,
1061) -> Box<Function> {
1062    let (generics, decl) = enter_impl_trait(cx, |cx| {
1063        // NOTE: Generics must be cleaned before params.
1064        let generics = clean_generics(generics, cx);
1065        let params = match params {
1066            ParamsSrc::Body(body_id) => clean_params_via_body(cx, sig.decl.inputs, body_id),
1067            // Let's not perpetuate anon params from Rust 2015; use `_` for them.
1068            ParamsSrc::Idents(idents) => clean_params(cx, sig.decl.inputs, idents, |ident| {
1069                Some(ident.map_or(kw::Underscore, |ident| ident.name))
1070            }),
1071        };
1072        let decl = clean_fn_decl_with_params(cx, sig.decl, Some(&sig.header), params);
1073        (generics, decl)
1074    });
1075    Box::new(Function { decl, generics })
1076}
1077
1078fn clean_params<'tcx>(
1079    cx: &mut DocContext<'tcx>,
1080    types: &[hir::Ty<'tcx>],
1081    idents: &[Option<Ident>],
1082    postprocess: impl Fn(Option<Ident>) -> Option<Symbol>,
1083) -> Vec<Parameter> {
1084    types
1085        .iter()
1086        .enumerate()
1087        .map(|(i, ty)| Parameter {
1088            name: postprocess(idents[i]),
1089            type_: clean_ty(ty, cx),
1090            is_const: false,
1091        })
1092        .collect()
1093}
1094
1095fn clean_params_via_body<'tcx>(
1096    cx: &mut DocContext<'tcx>,
1097    types: &[hir::Ty<'tcx>],
1098    body_id: hir::BodyId,
1099) -> Vec<Parameter> {
1100    types
1101        .iter()
1102        .zip(cx.tcx.hir_body(body_id).params)
1103        .map(|(ty, param)| Parameter {
1104            name: Some(name_from_pat(param.pat)),
1105            type_: clean_ty(ty, cx),
1106            is_const: false,
1107        })
1108        .collect()
1109}
1110
1111fn clean_fn_decl_with_params<'tcx>(
1112    cx: &mut DocContext<'tcx>,
1113    decl: &hir::FnDecl<'tcx>,
1114    header: Option<&hir::FnHeader>,
1115    params: Vec<Parameter>,
1116) -> FnDecl {
1117    let mut output = match decl.output {
1118        hir::FnRetTy::Return(typ) => clean_ty(typ, cx),
1119        hir::FnRetTy::DefaultReturn(..) => Type::Tuple(Vec::new()),
1120    };
1121    if let Some(header) = header
1122        && header.is_async()
1123    {
1124        output = output.sugared_async_return_type();
1125    }
1126    FnDecl { inputs: params, output, c_variadic: decl.c_variadic }
1127}
1128
1129fn clean_poly_fn_sig<'tcx>(
1130    cx: &mut DocContext<'tcx>,
1131    did: Option<DefId>,
1132    sig: ty::PolyFnSig<'tcx>,
1133) -> FnDecl {
1134    let mut output = clean_middle_ty(sig.output(), cx, None, None);
1135
1136    // If the return type isn't an `impl Trait`, we can safely assume that this
1137    // function isn't async without needing to execute the query `asyncness` at
1138    // all which gives us a noticeable performance boost.
1139    if let Some(did) = did
1140        && let Type::ImplTrait(_) = output
1141        && cx.tcx.asyncness(did).is_async()
1142    {
1143        output = output.sugared_async_return_type();
1144    }
1145
1146    let mut idents = did.map(|did| cx.tcx.fn_arg_idents(did)).unwrap_or_default().iter().copied();
1147
1148    // If this comes from a fn item, let's not perpetuate anon params from Rust 2015; use `_` for them.
1149    // If this comes from a fn ptr ty, we just keep params unnamed since it's more conventional stylistically.
1150    // Since the param name is not part of the semantic type, these params never bear a name unlike
1151    // in the HIR case, thus we can't perform any fancy fallback logic unlike `clean_bare_fn_ty`.
1152    let fallback = did.map(|_| kw::Underscore);
1153
1154    let params = sig
1155        .inputs()
1156        .iter()
1157        .map(|ty| Parameter {
1158            name: idents.next().flatten().map(|ident| ident.name).or(fallback),
1159            type_: clean_middle_ty(ty.map_bound(|ty| *ty), cx, None, None),
1160            is_const: false,
1161        })
1162        .collect();
1163
1164    FnDecl { inputs: params, output, c_variadic: sig.skip_binder().c_variadic }
1165}
1166
1167fn clean_trait_ref<'tcx>(trait_ref: &hir::TraitRef<'tcx>, cx: &mut DocContext<'tcx>) -> Path {
1168    let path = clean_path(trait_ref.path, cx);
1169    register_res(cx, path.res);
1170    path
1171}
1172
1173fn clean_poly_trait_ref<'tcx>(
1174    poly_trait_ref: &hir::PolyTraitRef<'tcx>,
1175    cx: &mut DocContext<'tcx>,
1176) -> PolyTrait {
1177    PolyTrait {
1178        trait_: clean_trait_ref(&poly_trait_ref.trait_ref, cx),
1179        generic_params: poly_trait_ref
1180            .bound_generic_params
1181            .iter()
1182            .filter(|p| !is_elided_lifetime(p))
1183            .map(|x| clean_generic_param(cx, None, x))
1184            .collect(),
1185    }
1186}
1187
1188fn clean_trait_item<'tcx>(trait_item: &hir::TraitItem<'tcx>, cx: &mut DocContext<'tcx>) -> Item {
1189    let local_did = trait_item.owner_id.to_def_id();
1190    cx.with_param_env(local_did, |cx| {
1191        let inner = match trait_item.kind {
1192            hir::TraitItemKind::Const(ty, Some(default)) => {
1193                ProvidedAssocConstItem(Box::new(Constant {
1194                    generics: enter_impl_trait(cx, |cx| clean_generics(trait_item.generics, cx)),
1195                    kind: clean_const_item_rhs(default, local_did),
1196                    type_: clean_ty(ty, cx),
1197                }))
1198            }
1199            hir::TraitItemKind::Const(ty, None) => {
1200                let generics = enter_impl_trait(cx, |cx| clean_generics(trait_item.generics, cx));
1201                RequiredAssocConstItem(generics, Box::new(clean_ty(ty, cx)))
1202            }
1203            hir::TraitItemKind::Fn(ref sig, hir::TraitFn::Provided(body)) => {
1204                let m = clean_function(cx, sig, trait_item.generics, ParamsSrc::Body(body));
1205                MethodItem(m, None)
1206            }
1207            hir::TraitItemKind::Fn(ref sig, hir::TraitFn::Required(idents)) => {
1208                let m = clean_function(cx, sig, trait_item.generics, ParamsSrc::Idents(idents));
1209                RequiredMethodItem(m)
1210            }
1211            hir::TraitItemKind::Type(bounds, Some(default)) => {
1212                let generics = enter_impl_trait(cx, |cx| clean_generics(trait_item.generics, cx));
1213                let bounds = bounds.iter().filter_map(|x| clean_generic_bound(x, cx)).collect();
1214                let item_type =
1215                    clean_middle_ty(ty::Binder::dummy(lower_ty(cx.tcx, default)), cx, None, None);
1216                AssocTypeItem(
1217                    Box::new(TypeAlias {
1218                        type_: clean_ty(default, cx),
1219                        generics,
1220                        inner_type: None,
1221                        item_type: Some(item_type),
1222                    }),
1223                    bounds,
1224                )
1225            }
1226            hir::TraitItemKind::Type(bounds, None) => {
1227                let generics = enter_impl_trait(cx, |cx| clean_generics(trait_item.generics, cx));
1228                let bounds = bounds.iter().filter_map(|x| clean_generic_bound(x, cx)).collect();
1229                RequiredAssocTypeItem(generics, bounds)
1230            }
1231        };
1232        Item::from_def_id_and_parts(local_did, Some(trait_item.ident.name), inner, cx)
1233    })
1234}
1235
1236pub(crate) fn clean_impl_item<'tcx>(
1237    impl_: &hir::ImplItem<'tcx>,
1238    cx: &mut DocContext<'tcx>,
1239) -> Item {
1240    let local_did = impl_.owner_id.to_def_id();
1241    cx.with_param_env(local_did, |cx| {
1242        let inner = match impl_.kind {
1243            hir::ImplItemKind::Const(ty, expr) => ImplAssocConstItem(Box::new(Constant {
1244                generics: clean_generics(impl_.generics, cx),
1245                kind: clean_const_item_rhs(expr, local_did),
1246                type_: clean_ty(ty, cx),
1247            })),
1248            hir::ImplItemKind::Fn(ref sig, body) => {
1249                let m = clean_function(cx, sig, impl_.generics, ParamsSrc::Body(body));
1250                let defaultness = match impl_.impl_kind {
1251                    hir::ImplItemImplKind::Inherent { .. } => hir::Defaultness::Final,
1252                    hir::ImplItemImplKind::Trait { defaultness, .. } => defaultness,
1253                };
1254                MethodItem(m, Some(defaultness))
1255            }
1256            hir::ImplItemKind::Type(hir_ty) => {
1257                let type_ = clean_ty(hir_ty, cx);
1258                let generics = clean_generics(impl_.generics, cx);
1259                let item_type =
1260                    clean_middle_ty(ty::Binder::dummy(lower_ty(cx.tcx, hir_ty)), cx, None, None);
1261                AssocTypeItem(
1262                    Box::new(TypeAlias {
1263                        type_,
1264                        generics,
1265                        inner_type: None,
1266                        item_type: Some(item_type),
1267                    }),
1268                    Vec::new(),
1269                )
1270            }
1271        };
1272
1273        Item::from_def_id_and_parts(local_did, Some(impl_.ident.name), inner, cx)
1274    })
1275}
1276
1277pub(crate) fn clean_middle_assoc_item(assoc_item: &ty::AssocItem, cx: &mut DocContext<'_>) -> Item {
1278    let tcx = cx.tcx;
1279    let kind = match assoc_item.kind {
1280        ty::AssocKind::Const { .. } => {
1281            let ty = clean_middle_ty(
1282                ty::Binder::dummy(tcx.type_of(assoc_item.def_id).instantiate_identity()),
1283                cx,
1284                Some(assoc_item.def_id),
1285                None,
1286            );
1287
1288            let mut generics = clean_ty_generics(cx, assoc_item.def_id);
1289            simplify::move_bounds_to_generic_parameters(&mut generics);
1290
1291            match assoc_item.container {
1292                ty::AssocContainer::InherentImpl | ty::AssocContainer::TraitImpl(_) => {
1293                    ImplAssocConstItem(Box::new(Constant {
1294                        generics,
1295                        kind: ConstantKind::Extern { def_id: assoc_item.def_id },
1296                        type_: ty,
1297                    }))
1298                }
1299                ty::AssocContainer::Trait => {
1300                    if tcx.defaultness(assoc_item.def_id).has_value() {
1301                        ProvidedAssocConstItem(Box::new(Constant {
1302                            generics,
1303                            kind: ConstantKind::Extern { def_id: assoc_item.def_id },
1304                            type_: ty,
1305                        }))
1306                    } else {
1307                        RequiredAssocConstItem(generics, Box::new(ty))
1308                    }
1309                }
1310            }
1311        }
1312        ty::AssocKind::Fn { has_self, .. } => {
1313            let mut item = inline::build_function(cx, assoc_item.def_id);
1314
1315            if has_self {
1316                let self_ty = match assoc_item.container {
1317                    ty::AssocContainer::InherentImpl | ty::AssocContainer::TraitImpl(_) => {
1318                        tcx.type_of(assoc_item.container_id(tcx)).instantiate_identity()
1319                    }
1320                    ty::AssocContainer::Trait => tcx.types.self_param,
1321                };
1322                let self_param_ty =
1323                    tcx.fn_sig(assoc_item.def_id).instantiate_identity().input(0).skip_binder();
1324                if self_param_ty == self_ty {
1325                    item.decl.inputs[0].type_ = SelfTy;
1326                } else if let ty::Ref(_, ty, _) = *self_param_ty.kind()
1327                    && ty == self_ty
1328                {
1329                    match item.decl.inputs[0].type_ {
1330                        BorrowedRef { ref mut type_, .. } => **type_ = SelfTy,
1331                        _ => unreachable!(),
1332                    }
1333                }
1334            }
1335
1336            let provided = match assoc_item.container {
1337                ty::AssocContainer::InherentImpl | ty::AssocContainer::TraitImpl(_) => true,
1338                ty::AssocContainer::Trait => assoc_item.defaultness(tcx).has_value(),
1339            };
1340            if provided {
1341                let defaultness = match assoc_item.container {
1342                    ty::AssocContainer::TraitImpl(_) => Some(assoc_item.defaultness(tcx)),
1343                    ty::AssocContainer::InherentImpl | ty::AssocContainer::Trait => None,
1344                };
1345                MethodItem(item, defaultness)
1346            } else {
1347                RequiredMethodItem(item)
1348            }
1349        }
1350        ty::AssocKind::Type { .. } => {
1351            let my_name = assoc_item.name();
1352
1353            fn param_eq_arg(param: &GenericParamDef, arg: &GenericArg) -> bool {
1354                match (&param.kind, arg) {
1355                    (GenericParamDefKind::Type { .. }, GenericArg::Type(Type::Generic(ty)))
1356                        if *ty == param.name =>
1357                    {
1358                        true
1359                    }
1360                    (GenericParamDefKind::Lifetime { .. }, GenericArg::Lifetime(Lifetime(lt)))
1361                        if *lt == param.name =>
1362                    {
1363                        true
1364                    }
1365                    (GenericParamDefKind::Const { .. }, GenericArg::Const(c)) => match &**c {
1366                        ConstantKind::TyConst { expr } => **expr == *param.name.as_str(),
1367                        _ => false,
1368                    },
1369                    _ => false,
1370                }
1371            }
1372
1373            let mut predicates = tcx.explicit_predicates_of(assoc_item.def_id).predicates;
1374            if let ty::AssocContainer::Trait = assoc_item.container {
1375                let bounds = tcx.explicit_item_bounds(assoc_item.def_id).iter_identity_copied();
1376                predicates = tcx.arena.alloc_from_iter(bounds.chain(predicates.iter().copied()));
1377            }
1378            let mut generics = clean_ty_generics_inner(
1379                cx,
1380                tcx.generics_of(assoc_item.def_id),
1381                ty::GenericPredicates { parent: None, predicates },
1382            );
1383            simplify::move_bounds_to_generic_parameters(&mut generics);
1384
1385            if let ty::AssocContainer::Trait = assoc_item.container {
1386                // Move bounds that are (likely) directly attached to the associated type
1387                // from the where-clause to the associated type.
1388                // There is no guarantee that this is what the user actually wrote but we have
1389                // no way of knowing.
1390                let mut bounds: Vec<GenericBound> = Vec::new();
1391                generics.where_predicates.retain_mut(|pred| match *pred {
1392                    WherePredicate::BoundPredicate {
1393                        ty:
1394                            QPath(box QPathData {
1395                                ref assoc,
1396                                ref self_type,
1397                                trait_: Some(ref trait_),
1398                                ..
1399                            }),
1400                        bounds: ref mut pred_bounds,
1401                        ..
1402                    } => {
1403                        if assoc.name != my_name {
1404                            return true;
1405                        }
1406                        if trait_.def_id() != assoc_item.container_id(tcx) {
1407                            return true;
1408                        }
1409                        if *self_type != SelfTy {
1410                            return true;
1411                        }
1412                        match &assoc.args {
1413                            GenericArgs::AngleBracketed { args, constraints } => {
1414                                if !constraints.is_empty()
1415                                    || generics
1416                                        .params
1417                                        .iter()
1418                                        .zip(args.iter())
1419                                        .any(|(param, arg)| !param_eq_arg(param, arg))
1420                                {
1421                                    return true;
1422                                }
1423                            }
1424                            GenericArgs::Parenthesized { .. } => {
1425                                // The only time this happens is if we're inside the rustdoc for Fn(),
1426                                // which only has one associated type, which is not a GAT, so whatever.
1427                            }
1428                            GenericArgs::ReturnTypeNotation => {
1429                                // Never move these.
1430                            }
1431                        }
1432                        bounds.extend(mem::take(pred_bounds));
1433                        false
1434                    }
1435                    _ => true,
1436                });
1437
1438                bounds.retain(|b| {
1439                    // FIXME(sized-hierarchy): Always skip `MetaSized` bounds so that only `?Sized`
1440                    // is shown and none of the new sizedness traits leak into documentation.
1441                    !b.is_meta_sized_bound(cx)
1442                });
1443
1444                // Our Sized/?Sized bound didn't get handled when creating the generics
1445                // because we didn't actually get our whole set of bounds until just now
1446                // (some of them may have come from the trait). If we do have a sized
1447                // bound, we remove it, and if we don't then we add the `?Sized` bound
1448                // at the end.
1449                match bounds.iter().position(|b| b.is_sized_bound(cx)) {
1450                    Some(i) => {
1451                        bounds.remove(i);
1452                    }
1453                    None => bounds.push(GenericBound::maybe_sized(cx)),
1454                }
1455
1456                if tcx.defaultness(assoc_item.def_id).has_value() {
1457                    AssocTypeItem(
1458                        Box::new(TypeAlias {
1459                            type_: clean_middle_ty(
1460                                ty::Binder::dummy(
1461                                    tcx.type_of(assoc_item.def_id).instantiate_identity(),
1462                                ),
1463                                cx,
1464                                Some(assoc_item.def_id),
1465                                None,
1466                            ),
1467                            generics,
1468                            inner_type: None,
1469                            item_type: None,
1470                        }),
1471                        bounds,
1472                    )
1473                } else {
1474                    RequiredAssocTypeItem(generics, bounds)
1475                }
1476            } else {
1477                AssocTypeItem(
1478                    Box::new(TypeAlias {
1479                        type_: clean_middle_ty(
1480                            ty::Binder::dummy(
1481                                tcx.type_of(assoc_item.def_id).instantiate_identity(),
1482                            ),
1483                            cx,
1484                            Some(assoc_item.def_id),
1485                            None,
1486                        ),
1487                        generics,
1488                        inner_type: None,
1489                        item_type: None,
1490                    }),
1491                    // Associated types inside trait or inherent impls are not allowed to have
1492                    // item bounds. Thus we don't attempt to move any bounds there.
1493                    Vec::new(),
1494                )
1495            }
1496        }
1497    };
1498
1499    Item::from_def_id_and_parts(assoc_item.def_id, Some(assoc_item.name()), kind, cx)
1500}
1501
1502fn first_non_private_clean_path<'tcx>(
1503    cx: &mut DocContext<'tcx>,
1504    path: &hir::Path<'tcx>,
1505    new_path_segments: &'tcx [hir::PathSegment<'tcx>],
1506    new_path_span: rustc_span::Span,
1507) -> Path {
1508    let new_hir_path =
1509        hir::Path { segments: new_path_segments, res: path.res, span: new_path_span };
1510    let mut new_clean_path = clean_path(&new_hir_path, cx);
1511    // In here we need to play with the path data one last time to provide it the
1512    // missing `args` and `res` of the final `Path` we get, which, since it comes
1513    // from a re-export, doesn't have the generics that were originally there, so
1514    // we add them by hand.
1515    if let Some(path_last) = path.segments.last().as_ref()
1516        && let Some(new_path_last) = new_clean_path.segments[..].last_mut()
1517        && let Some(path_last_args) = path_last.args.as_ref()
1518        && path_last.args.is_some()
1519    {
1520        assert!(new_path_last.args.is_empty());
1521        new_path_last.args = clean_generic_args(path_last_args, cx);
1522    }
1523    new_clean_path
1524}
1525
1526/// The goal of this function is to return the first `Path` which is not private (ie not private
1527/// or `doc(hidden)`). If it's not possible, it'll return the "end type".
1528///
1529/// If the path is not a re-export or is public, it'll return `None`.
1530fn first_non_private<'tcx>(
1531    cx: &mut DocContext<'tcx>,
1532    hir_id: hir::HirId,
1533    path: &hir::Path<'tcx>,
1534) -> Option<Path> {
1535    let target_def_id = path.res.opt_def_id()?;
1536    let (parent_def_id, ident) = match &path.segments {
1537        [] => return None,
1538        // Relative paths are available in the same scope as the owner.
1539        [leaf] => (cx.tcx.local_parent(hir_id.owner.def_id), leaf.ident),
1540        // So are self paths.
1541        [parent, leaf] if parent.ident.name == kw::SelfLower => {
1542            (cx.tcx.local_parent(hir_id.owner.def_id), leaf.ident)
1543        }
1544        // Crate paths are not. We start from the crate root.
1545        [parent, leaf] if matches!(parent.ident.name, kw::Crate | kw::PathRoot) => {
1546            (LOCAL_CRATE.as_def_id().as_local()?, leaf.ident)
1547        }
1548        [parent, leaf] if parent.ident.name == kw::Super => {
1549            let parent_mod = cx.tcx.parent_module(hir_id);
1550            if let Some(super_parent) = cx.tcx.opt_local_parent(parent_mod.to_local_def_id()) {
1551                (super_parent, leaf.ident)
1552            } else {
1553                // If we can't find the parent of the parent, then the parent is already the crate.
1554                (LOCAL_CRATE.as_def_id().as_local()?, leaf.ident)
1555            }
1556        }
1557        // Absolute paths are not. We start from the parent of the item.
1558        [.., parent, leaf] => (parent.res.opt_def_id()?.as_local()?, leaf.ident),
1559    };
1560    // First we try to get the `DefId` of the item.
1561    for child in
1562        cx.tcx.module_children_local(parent_def_id).iter().filter(move |c| c.ident == ident)
1563    {
1564        if let Res::Def(DefKind::Ctor(..), _) | Res::SelfCtor(..) = child.res {
1565            continue;
1566        }
1567
1568        if let Some(def_id) = child.res.opt_def_id()
1569            && target_def_id == def_id
1570        {
1571            let mut last_path_res = None;
1572            'reexps: for reexp in child.reexport_chain.iter() {
1573                if let Some(use_def_id) = reexp.id()
1574                    && let Some(local_use_def_id) = use_def_id.as_local()
1575                    && let hir::Node::Item(item) = cx.tcx.hir_node_by_def_id(local_use_def_id)
1576                    && let hir::ItemKind::Use(path, hir::UseKind::Single(_)) = item.kind
1577                {
1578                    for res in path.res.present_items() {
1579                        if let Res::Def(DefKind::Ctor(..), _) | Res::SelfCtor(..) = res {
1580                            continue;
1581                        }
1582                        if (cx.document_hidden() ||
1583                            !cx.tcx.is_doc_hidden(use_def_id)) &&
1584                            // We never check for "cx.document_private()"
1585                            // because if a re-export is not fully public, it's never
1586                            // documented.
1587                            cx.tcx.local_visibility(local_use_def_id).is_public()
1588                        {
1589                            break 'reexps;
1590                        }
1591                        last_path_res = Some((path, res));
1592                        continue 'reexps;
1593                    }
1594                }
1595            }
1596            if !child.reexport_chain.is_empty() {
1597                // So in here, we use the data we gathered from iterating the reexports. If
1598                // `last_path_res` is set, it can mean two things:
1599                //
1600                // 1. We found a public reexport.
1601                // 2. We didn't find a public reexport so it's the "end type" path.
1602                if let Some((new_path, _)) = last_path_res {
1603                    return Some(first_non_private_clean_path(
1604                        cx,
1605                        path,
1606                        new_path.segments,
1607                        new_path.span,
1608                    ));
1609                }
1610                // If `last_path_res` is `None`, it can mean two things:
1611                //
1612                // 1. The re-export is public, no need to change anything, just use the path as is.
1613                // 2. Nothing was found, so let's just return the original path.
1614                return None;
1615            }
1616        }
1617    }
1618    None
1619}
1620
1621fn clean_qpath<'tcx>(hir_ty: &hir::Ty<'tcx>, cx: &mut DocContext<'tcx>) -> Type {
1622    let hir::Ty { hir_id, span, ref kind } = *hir_ty;
1623    let hir::TyKind::Path(qpath) = kind else { unreachable!() };
1624
1625    match qpath {
1626        hir::QPath::Resolved(None, path) => {
1627            if let Res::Def(DefKind::TyParam, did) = path.res {
1628                if let Some(new_ty) = cx.args.get(&did).and_then(|p| p.as_ty()).cloned() {
1629                    return new_ty;
1630                }
1631                if let Some(bounds) = cx.impl_trait_bounds.remove(&did.into()) {
1632                    return ImplTrait(bounds);
1633                }
1634            }
1635
1636            if let Some(expanded) = maybe_expand_private_type_alias(cx, path) {
1637                expanded
1638            } else {
1639                // First we check if it's a private re-export.
1640                let path = if let Some(path) = first_non_private(cx, hir_id, path) {
1641                    path
1642                } else {
1643                    clean_path(path, cx)
1644                };
1645                resolve_type(cx, path)
1646            }
1647        }
1648        hir::QPath::Resolved(Some(qself), p) => {
1649            // Try to normalize `<X as Y>::T` to a type
1650            let ty = lower_ty(cx.tcx, hir_ty);
1651            // `hir_to_ty` can return projection types with escaping vars for GATs, e.g. `<() as Trait>::Gat<'_>`
1652            if !ty.has_escaping_bound_vars()
1653                && let Some(normalized_value) = normalize(cx, ty::Binder::dummy(ty))
1654            {
1655                return clean_middle_ty(normalized_value, cx, None, None);
1656            }
1657
1658            let trait_segments = &p.segments[..p.segments.len() - 1];
1659            let trait_def = cx.tcx.parent(p.res.def_id());
1660            let trait_ = self::Path {
1661                res: Res::Def(DefKind::Trait, trait_def),
1662                segments: trait_segments.iter().map(|x| clean_path_segment(x, cx)).collect(),
1663            };
1664            register_res(cx, trait_.res);
1665            let self_def_id = DefId::local(qself.hir_id.owner.def_id.local_def_index);
1666            let self_type = clean_ty(qself, cx);
1667            let should_fully_qualify =
1668                should_fully_qualify_path(Some(self_def_id), &trait_, &self_type);
1669            Type::QPath(Box::new(QPathData {
1670                assoc: clean_path_segment(p.segments.last().expect("segments were empty"), cx),
1671                should_fully_qualify,
1672                self_type,
1673                trait_: Some(trait_),
1674            }))
1675        }
1676        hir::QPath::TypeRelative(qself, segment) => {
1677            let ty = lower_ty(cx.tcx, hir_ty);
1678            let self_type = clean_ty(qself, cx);
1679
1680            let (trait_, should_fully_qualify) = match ty.kind() {
1681                ty::Alias(ty::Projection, proj) => {
1682                    let res = Res::Def(DefKind::Trait, proj.trait_ref(cx.tcx).def_id);
1683                    let trait_ = clean_path(&hir::Path { span, res, segments: &[] }, cx);
1684                    register_res(cx, trait_.res);
1685                    let self_def_id = res.opt_def_id();
1686                    let should_fully_qualify =
1687                        should_fully_qualify_path(self_def_id, &trait_, &self_type);
1688
1689                    (Some(trait_), should_fully_qualify)
1690                }
1691                ty::Alias(ty::Inherent, _) => (None, false),
1692                // Rustdoc handles `ty::Error`s by turning them into `Type::Infer`s.
1693                ty::Error(_) => return Type::Infer,
1694                _ => bug!("clean: expected associated type, found `{ty:?}`"),
1695            };
1696
1697            Type::QPath(Box::new(QPathData {
1698                assoc: clean_path_segment(segment, cx),
1699                should_fully_qualify,
1700                self_type,
1701                trait_,
1702            }))
1703        }
1704    }
1705}
1706
1707fn maybe_expand_private_type_alias<'tcx>(
1708    cx: &mut DocContext<'tcx>,
1709    path: &hir::Path<'tcx>,
1710) -> Option<Type> {
1711    let Res::Def(DefKind::TyAlias, def_id) = path.res else { return None };
1712    // Substitute private type aliases
1713    let def_id = def_id.as_local()?;
1714    let alias = if !cx.cache.effective_visibilities.is_exported(cx.tcx, def_id.to_def_id())
1715        && !cx.current_type_aliases.contains_key(&def_id.to_def_id())
1716    {
1717        &cx.tcx.hir_expect_item(def_id).kind
1718    } else {
1719        return None;
1720    };
1721    let hir::ItemKind::TyAlias(_, generics, ty) = alias else { return None };
1722
1723    let final_seg = &path.segments.last().expect("segments were empty");
1724    let mut args = DefIdMap::default();
1725    let generic_args = final_seg.args();
1726
1727    let mut indices: hir::GenericParamCount = Default::default();
1728    for param in generics.params.iter() {
1729        match param.kind {
1730            hir::GenericParamKind::Lifetime { .. } => {
1731                let mut j = 0;
1732                let lifetime = generic_args.args.iter().find_map(|arg| match arg {
1733                    hir::GenericArg::Lifetime(lt) => {
1734                        if indices.lifetimes == j {
1735                            return Some(lt);
1736                        }
1737                        j += 1;
1738                        None
1739                    }
1740                    _ => None,
1741                });
1742                if let Some(lt) = lifetime {
1743                    let lt = if !lt.is_anonymous() {
1744                        clean_lifetime(lt, cx)
1745                    } else {
1746                        Lifetime::elided()
1747                    };
1748                    args.insert(param.def_id.to_def_id(), GenericArg::Lifetime(lt));
1749                }
1750                indices.lifetimes += 1;
1751            }
1752            hir::GenericParamKind::Type { ref default, .. } => {
1753                let mut j = 0;
1754                let type_ = generic_args.args.iter().find_map(|arg| match arg {
1755                    hir::GenericArg::Type(ty) => {
1756                        if indices.types == j {
1757                            return Some(ty.as_unambig_ty());
1758                        }
1759                        j += 1;
1760                        None
1761                    }
1762                    _ => None,
1763                });
1764                if let Some(ty) = type_.or(*default) {
1765                    args.insert(param.def_id.to_def_id(), GenericArg::Type(clean_ty(ty, cx)));
1766                }
1767                indices.types += 1;
1768            }
1769            // FIXME(#82852): Instantiate const parameters.
1770            hir::GenericParamKind::Const { .. } => {}
1771        }
1772    }
1773
1774    Some(cx.enter_alias(args, def_id.to_def_id(), |cx| {
1775        cx.with_param_env(def_id.to_def_id(), |cx| clean_ty(ty, cx))
1776    }))
1777}
1778
1779pub(crate) fn clean_ty<'tcx>(ty: &hir::Ty<'tcx>, cx: &mut DocContext<'tcx>) -> Type {
1780    use rustc_hir::*;
1781
1782    match ty.kind {
1783        TyKind::Never => Primitive(PrimitiveType::Never),
1784        TyKind::Ptr(ref m) => RawPointer(m.mutbl, Box::new(clean_ty(m.ty, cx))),
1785        TyKind::Ref(l, ref m) => {
1786            let lifetime = if l.is_anonymous() { None } else { Some(clean_lifetime(l, cx)) };
1787            BorrowedRef { lifetime, mutability: m.mutbl, type_: Box::new(clean_ty(m.ty, cx)) }
1788        }
1789        TyKind::Slice(ty) => Slice(Box::new(clean_ty(ty, cx))),
1790        TyKind::Pat(ty, pat) => Type::Pat(Box::new(clean_ty(ty, cx)), format!("{pat:?}").into()),
1791        TyKind::Array(ty, const_arg) => {
1792            // NOTE(min_const_generics): We can't use `const_eval_poly` for constants
1793            // as we currently do not supply the parent generics to anonymous constants
1794            // but do allow `ConstKind::Param`.
1795            //
1796            // `const_eval_poly` tries to first substitute generic parameters which
1797            // results in an ICE while manually constructing the constant and using `eval`
1798            // does nothing for `ConstKind::Param`.
1799            let length = match const_arg.kind {
1800                hir::ConstArgKind::Infer(..) | hir::ConstArgKind::Error(..) => "_".to_string(),
1801                hir::ConstArgKind::Anon(hir::AnonConst { def_id, .. }) => {
1802                    let ct = lower_const_arg_for_rustdoc(cx.tcx, const_arg, FeedConstTy::No);
1803                    let typing_env = ty::TypingEnv::post_analysis(cx.tcx, *def_id);
1804                    let ct = cx.tcx.normalize_erasing_regions(typing_env, ct);
1805                    print_const(cx, ct)
1806                }
1807                hir::ConstArgKind::Struct(..) | hir::ConstArgKind::Path(..) => {
1808                    let ct = lower_const_arg_for_rustdoc(cx.tcx, const_arg, FeedConstTy::No);
1809                    print_const(cx, ct)
1810                }
1811            };
1812            Array(Box::new(clean_ty(ty, cx)), length.into())
1813        }
1814        TyKind::Tup(tys) => Tuple(tys.iter().map(|ty| clean_ty(ty, cx)).collect()),
1815        TyKind::OpaqueDef(ty) => {
1816            ImplTrait(ty.bounds.iter().filter_map(|x| clean_generic_bound(x, cx)).collect())
1817        }
1818        TyKind::Path(_) => clean_qpath(ty, cx),
1819        TyKind::TraitObject(bounds, lifetime) => {
1820            let bounds = bounds.iter().map(|bound| clean_poly_trait_ref(bound, cx)).collect();
1821            let lifetime = if !lifetime.is_elided() {
1822                Some(clean_lifetime(lifetime.pointer(), cx))
1823            } else {
1824                None
1825            };
1826            DynTrait(bounds, lifetime)
1827        }
1828        TyKind::FnPtr(barefn) => BareFunction(Box::new(clean_bare_fn_ty(barefn, cx))),
1829        TyKind::UnsafeBinder(unsafe_binder_ty) => {
1830            UnsafeBinder(Box::new(clean_unsafe_binder_ty(unsafe_binder_ty, cx)))
1831        }
1832        // Rustdoc handles `TyKind::Err`s by turning them into `Type::Infer`s.
1833        TyKind::Infer(())
1834        | TyKind::Err(_)
1835        | TyKind::InferDelegation(..)
1836        | TyKind::TraitAscription(_) => Infer,
1837    }
1838}
1839
1840/// Returns `None` if the type could not be normalized
1841fn normalize<'tcx>(
1842    cx: &DocContext<'tcx>,
1843    ty: ty::Binder<'tcx, Ty<'tcx>>,
1844) -> Option<ty::Binder<'tcx, Ty<'tcx>>> {
1845    // HACK: low-churn fix for #79459 while we wait for a trait normalization fix
1846    if !cx.tcx.sess.opts.unstable_opts.normalize_docs {
1847        return None;
1848    }
1849
1850    use rustc_middle::traits::ObligationCause;
1851    use rustc_trait_selection::infer::TyCtxtInferExt;
1852    use rustc_trait_selection::traits::query::normalize::QueryNormalizeExt;
1853
1854    // Try to normalize `<X as Y>::T` to a type
1855    let infcx = cx.tcx.infer_ctxt().build(TypingMode::non_body_analysis());
1856    let normalized = infcx
1857        .at(&ObligationCause::dummy(), cx.param_env)
1858        .query_normalize(ty)
1859        .map(|resolved| infcx.resolve_vars_if_possible(resolved.value));
1860    match normalized {
1861        Ok(normalized_value) => {
1862            debug!("normalized {ty:?} to {normalized_value:?}");
1863            Some(normalized_value)
1864        }
1865        Err(err) => {
1866            debug!("failed to normalize {ty:?}: {err:?}");
1867            None
1868        }
1869    }
1870}
1871
1872fn clean_trait_object_lifetime_bound<'tcx>(
1873    region: ty::Region<'tcx>,
1874    container: Option<ContainerTy<'_, 'tcx>>,
1875    preds: &'tcx ty::List<ty::PolyExistentialPredicate<'tcx>>,
1876    tcx: TyCtxt<'tcx>,
1877) -> Option<Lifetime> {
1878    if can_elide_trait_object_lifetime_bound(region, container, preds, tcx) {
1879        return None;
1880    }
1881
1882    // Since there is a semantic difference between an implicitly elided (i.e. "defaulted") object
1883    // lifetime and an explicitly elided object lifetime (`'_`), we intentionally don't hide the
1884    // latter contrary to `clean_middle_region`.
1885    match region.kind() {
1886        ty::ReStatic => Some(Lifetime::statik()),
1887        ty::ReEarlyParam(region) => Some(Lifetime(region.name)),
1888        ty::ReBound(_, ty::BoundRegion { kind: ty::BoundRegionKind::Named(def_id), .. }) => {
1889            Some(Lifetime(tcx.item_name(def_id)))
1890        }
1891        ty::ReBound(..)
1892        | ty::ReLateParam(_)
1893        | ty::ReVar(_)
1894        | ty::RePlaceholder(_)
1895        | ty::ReErased
1896        | ty::ReError(_) => None,
1897    }
1898}
1899
1900fn can_elide_trait_object_lifetime_bound<'tcx>(
1901    region: ty::Region<'tcx>,
1902    container: Option<ContainerTy<'_, 'tcx>>,
1903    preds: &'tcx ty::List<ty::PolyExistentialPredicate<'tcx>>,
1904    tcx: TyCtxt<'tcx>,
1905) -> bool {
1906    // Below we quote extracts from https://doc.rust-lang.org/stable/reference/lifetime-elision.html#default-trait-object-lifetimes
1907
1908    // > If the trait object is used as a type argument of a generic type then the containing type is
1909    // > first used to try to infer a bound.
1910    let default = container
1911        .map_or(ObjectLifetimeDefault::Empty, |container| container.object_lifetime_default(tcx));
1912
1913    // > If there is a unique bound from the containing type then that is the default
1914    // If there is a default object lifetime and the given region is lexically equal to it, elide it.
1915    match default {
1916        ObjectLifetimeDefault::Static => return region.kind() == ty::ReStatic,
1917        // FIXME(fmease): Don't compare lexically but respect de Bruijn indices etc. to handle shadowing correctly.
1918        ObjectLifetimeDefault::Arg(default) => {
1919            return region.get_name(tcx) == default.get_name(tcx);
1920        }
1921        // > If there is more than one bound from the containing type then an explicit bound must be specified
1922        // Due to ambiguity there is no default trait-object lifetime and thus elision is impossible.
1923        // Don't elide the lifetime.
1924        ObjectLifetimeDefault::Ambiguous => return false,
1925        // There is no meaningful bound. Further processing is needed...
1926        ObjectLifetimeDefault::Empty => {}
1927    }
1928
1929    // > If neither of those rules apply, then the bounds on the trait are used:
1930    match *object_region_bounds(tcx, preds) {
1931        // > If the trait has no lifetime bounds, then the lifetime is inferred in expressions
1932        // > and is 'static outside of expressions.
1933        // FIXME: If we are in an expression context (i.e. fn bodies and const exprs) then the default is
1934        // `'_` and not `'static`. Only if we are in a non-expression one, the default is `'static`.
1935        // Note however that at the time of this writing it should be fine to disregard this subtlety
1936        // as we neither render const exprs faithfully anyway (hiding them in some places or using `_` instead)
1937        // nor show the contents of fn bodies.
1938        [] => region.kind() == ty::ReStatic,
1939        // > If the trait is defined with a single lifetime bound then that bound is used.
1940        // > If 'static is used for any lifetime bound then 'static is used.
1941        // FIXME(fmease): Don't compare lexically but respect de Bruijn indices etc. to handle shadowing correctly.
1942        [object_region] => object_region.get_name(tcx) == region.get_name(tcx),
1943        // There are several distinct trait regions and none are `'static`.
1944        // Due to ambiguity there is no default trait-object lifetime and thus elision is impossible.
1945        // Don't elide the lifetime.
1946        _ => false,
1947    }
1948}
1949
1950#[derive(Debug)]
1951pub(crate) enum ContainerTy<'a, 'tcx> {
1952    Ref(ty::Region<'tcx>),
1953    Regular {
1954        ty: DefId,
1955        /// The arguments *have* to contain an arg for the self type if the corresponding generics
1956        /// contain a self type.
1957        args: ty::Binder<'tcx, &'a [ty::GenericArg<'tcx>]>,
1958        arg: usize,
1959    },
1960}
1961
1962impl<'tcx> ContainerTy<'_, 'tcx> {
1963    fn object_lifetime_default(self, tcx: TyCtxt<'tcx>) -> ObjectLifetimeDefault<'tcx> {
1964        match self {
1965            Self::Ref(region) => ObjectLifetimeDefault::Arg(region),
1966            Self::Regular { ty: container, args, arg: index } => {
1967                let (DefKind::Struct
1968                | DefKind::Union
1969                | DefKind::Enum
1970                | DefKind::TyAlias
1971                | DefKind::Trait) = tcx.def_kind(container)
1972                else {
1973                    return ObjectLifetimeDefault::Empty;
1974                };
1975
1976                let generics = tcx.generics_of(container);
1977                debug_assert_eq!(generics.parent_count, 0);
1978
1979                let param = generics.own_params[index].def_id;
1980                let default = tcx.object_lifetime_default(param);
1981                match default {
1982                    rbv::ObjectLifetimeDefault::Param(lifetime) => {
1983                        // The index is relative to the parent generics but since we don't have any,
1984                        // we don't need to translate it.
1985                        let index = generics.param_def_id_to_index[&lifetime];
1986                        let arg = args.skip_binder()[index as usize].expect_region();
1987                        ObjectLifetimeDefault::Arg(arg)
1988                    }
1989                    rbv::ObjectLifetimeDefault::Empty => ObjectLifetimeDefault::Empty,
1990                    rbv::ObjectLifetimeDefault::Static => ObjectLifetimeDefault::Static,
1991                    rbv::ObjectLifetimeDefault::Ambiguous => ObjectLifetimeDefault::Ambiguous,
1992                }
1993            }
1994        }
1995    }
1996}
1997
1998#[derive(Debug, Clone, Copy)]
1999pub(crate) enum ObjectLifetimeDefault<'tcx> {
2000    Empty,
2001    Static,
2002    Ambiguous,
2003    Arg(ty::Region<'tcx>),
2004}
2005
2006#[instrument(level = "trace", skip(cx), ret)]
2007pub(crate) fn clean_middle_ty<'tcx>(
2008    bound_ty: ty::Binder<'tcx, Ty<'tcx>>,
2009    cx: &mut DocContext<'tcx>,
2010    parent_def_id: Option<DefId>,
2011    container: Option<ContainerTy<'_, 'tcx>>,
2012) -> Type {
2013    let bound_ty = normalize(cx, bound_ty).unwrap_or(bound_ty);
2014    match *bound_ty.skip_binder().kind() {
2015        ty::Never => Primitive(PrimitiveType::Never),
2016        ty::Bool => Primitive(PrimitiveType::Bool),
2017        ty::Char => Primitive(PrimitiveType::Char),
2018        ty::Int(int_ty) => Primitive(int_ty.into()),
2019        ty::Uint(uint_ty) => Primitive(uint_ty.into()),
2020        ty::Float(float_ty) => Primitive(float_ty.into()),
2021        ty::Str => Primitive(PrimitiveType::Str),
2022        ty::Slice(ty) => Slice(Box::new(clean_middle_ty(bound_ty.rebind(ty), cx, None, None))),
2023        ty::Pat(ty, pat) => Type::Pat(
2024            Box::new(clean_middle_ty(bound_ty.rebind(ty), cx, None, None)),
2025            format!("{pat:?}").into_boxed_str(),
2026        ),
2027        ty::Array(ty, n) => {
2028            let n = cx.tcx.normalize_erasing_regions(cx.typing_env(), n);
2029            let n = print_const(cx, n);
2030            Array(Box::new(clean_middle_ty(bound_ty.rebind(ty), cx, None, None)), n.into())
2031        }
2032        ty::RawPtr(ty, mutbl) => {
2033            RawPointer(mutbl, Box::new(clean_middle_ty(bound_ty.rebind(ty), cx, None, None)))
2034        }
2035        ty::Ref(r, ty, mutbl) => BorrowedRef {
2036            lifetime: clean_middle_region(r, cx),
2037            mutability: mutbl,
2038            type_: Box::new(clean_middle_ty(
2039                bound_ty.rebind(ty),
2040                cx,
2041                None,
2042                Some(ContainerTy::Ref(r)),
2043            )),
2044        },
2045        ty::FnDef(..) | ty::FnPtr(..) => {
2046            // FIXME: should we merge the outer and inner binders somehow?
2047            let sig = bound_ty.skip_binder().fn_sig(cx.tcx);
2048            let decl = clean_poly_fn_sig(cx, None, sig);
2049            let generic_params = clean_bound_vars(sig.bound_vars(), cx);
2050
2051            BareFunction(Box::new(BareFunctionDecl {
2052                safety: sig.safety(),
2053                generic_params,
2054                decl,
2055                abi: sig.abi(),
2056            }))
2057        }
2058        ty::UnsafeBinder(inner) => {
2059            let generic_params = clean_bound_vars(inner.bound_vars(), cx);
2060            let ty = clean_middle_ty(inner.into(), cx, None, None);
2061            UnsafeBinder(Box::new(UnsafeBinderTy { generic_params, ty }))
2062        }
2063        ty::Adt(def, args) => {
2064            let did = def.did();
2065            let kind = match def.adt_kind() {
2066                AdtKind::Struct => ItemType::Struct,
2067                AdtKind::Union => ItemType::Union,
2068                AdtKind::Enum => ItemType::Enum,
2069            };
2070            inline::record_extern_fqn(cx, did, kind);
2071            let path = clean_middle_path(cx, did, false, ThinVec::new(), bound_ty.rebind(args));
2072            Type::Path { path }
2073        }
2074        ty::Foreign(did) => {
2075            inline::record_extern_fqn(cx, did, ItemType::ForeignType);
2076            let path = clean_middle_path(
2077                cx,
2078                did,
2079                false,
2080                ThinVec::new(),
2081                ty::Binder::dummy(ty::GenericArgs::empty()),
2082            );
2083            Type::Path { path }
2084        }
2085        ty::Dynamic(obj, reg) => {
2086            // HACK: pick the first `did` as the `did` of the trait object. Someone
2087            // might want to implement "native" support for marker-trait-only
2088            // trait objects.
2089            let mut dids = obj.auto_traits();
2090            let did = obj
2091                .principal_def_id()
2092                .or_else(|| dids.next())
2093                .unwrap_or_else(|| panic!("found trait object `{bound_ty:?}` with no traits?"));
2094            let args = match obj.principal() {
2095                Some(principal) => principal.map_bound(|p| p.args),
2096                // marker traits have no args.
2097                _ => ty::Binder::dummy(ty::GenericArgs::empty()),
2098            };
2099
2100            inline::record_extern_fqn(cx, did, ItemType::Trait);
2101
2102            let lifetime = clean_trait_object_lifetime_bound(reg, container, obj, cx.tcx);
2103
2104            let mut bounds = dids
2105                .map(|did| {
2106                    let empty = ty::Binder::dummy(ty::GenericArgs::empty());
2107                    let path = clean_middle_path(cx, did, false, ThinVec::new(), empty);
2108                    inline::record_extern_fqn(cx, did, ItemType::Trait);
2109                    PolyTrait { trait_: path, generic_params: Vec::new() }
2110                })
2111                .collect::<Vec<_>>();
2112
2113            let constraints = obj
2114                .projection_bounds()
2115                .map(|pb| AssocItemConstraint {
2116                    assoc: projection_to_path_segment(
2117                        pb.map_bound(|pb| {
2118                            pb.with_self_ty(cx.tcx, cx.tcx.types.trait_object_dummy_self)
2119                                .projection_term
2120                        }),
2121                        cx,
2122                    ),
2123                    kind: AssocItemConstraintKind::Equality {
2124                        term: clean_middle_term(pb.map_bound(|pb| pb.term), cx),
2125                    },
2126                })
2127                .collect();
2128
2129            let late_bound_regions: FxIndexSet<_> = obj
2130                .iter()
2131                .flat_map(|pred| pred.bound_vars())
2132                .filter_map(|var| match var {
2133                    ty::BoundVariableKind::Region(ty::BoundRegionKind::Named(def_id)) => {
2134                        let name = cx.tcx.item_name(def_id);
2135                        if name != kw::UnderscoreLifetime {
2136                            Some(GenericParamDef::lifetime(def_id, name))
2137                        } else {
2138                            None
2139                        }
2140                    }
2141                    _ => None,
2142                })
2143                .collect();
2144            let late_bound_regions = late_bound_regions.into_iter().collect();
2145
2146            let path = clean_middle_path(cx, did, false, constraints, args);
2147            bounds.insert(0, PolyTrait { trait_: path, generic_params: late_bound_regions });
2148
2149            DynTrait(bounds, lifetime)
2150        }
2151        ty::Tuple(t) => {
2152            Tuple(t.iter().map(|t| clean_middle_ty(bound_ty.rebind(t), cx, None, None)).collect())
2153        }
2154
2155        ty::Alias(ty::Projection, alias_ty @ ty::AliasTy { def_id, args, .. }) => {
2156            if cx.tcx.is_impl_trait_in_trait(def_id) {
2157                clean_middle_opaque_bounds(cx, def_id, args)
2158            } else {
2159                Type::QPath(Box::new(clean_projection(
2160                    bound_ty.rebind(alias_ty.into()),
2161                    cx,
2162                    parent_def_id,
2163                )))
2164            }
2165        }
2166
2167        ty::Alias(ty::Inherent, alias_ty @ ty::AliasTy { def_id, .. }) => {
2168            let alias_ty = bound_ty.rebind(alias_ty);
2169            let self_type = clean_middle_ty(alias_ty.map_bound(|ty| ty.self_ty()), cx, None, None);
2170
2171            Type::QPath(Box::new(QPathData {
2172                assoc: PathSegment {
2173                    name: cx.tcx.item_name(def_id),
2174                    args: GenericArgs::AngleBracketed {
2175                        args: clean_middle_generic_args(
2176                            cx,
2177                            alias_ty.map_bound(|ty| ty.args.as_slice()),
2178                            true,
2179                            def_id,
2180                        ),
2181                        constraints: Default::default(),
2182                    },
2183                },
2184                should_fully_qualify: false,
2185                self_type,
2186                trait_: None,
2187            }))
2188        }
2189
2190        ty::Alias(ty::Free, ty::AliasTy { def_id, args, .. }) => {
2191            if cx.tcx.features().lazy_type_alias() {
2192                // Free type alias `data` represents the `type X` in `type X = Y`. If we need `Y`,
2193                // we need to use `type_of`.
2194                let path =
2195                    clean_middle_path(cx, def_id, false, ThinVec::new(), bound_ty.rebind(args));
2196                Type::Path { path }
2197            } else {
2198                let ty = cx.tcx.type_of(def_id).instantiate(cx.tcx, args);
2199                clean_middle_ty(bound_ty.rebind(ty), cx, None, None)
2200            }
2201        }
2202
2203        ty::Param(ref p) => {
2204            if let Some(bounds) = cx.impl_trait_bounds.remove(&p.index.into()) {
2205                ImplTrait(bounds)
2206            } else if p.name == kw::SelfUpper {
2207                SelfTy
2208            } else {
2209                Generic(p.name)
2210            }
2211        }
2212
2213        ty::Bound(_, ref ty) => match ty.kind {
2214            ty::BoundTyKind::Param(def_id) => Generic(cx.tcx.item_name(def_id)),
2215            ty::BoundTyKind::Anon => panic!("unexpected anonymous bound type variable"),
2216        },
2217
2218        ty::Alias(ty::Opaque, ty::AliasTy { def_id, args, .. }) => {
2219            // If it's already in the same alias, don't get an infinite loop.
2220            if cx.current_type_aliases.contains_key(&def_id) {
2221                let path =
2222                    clean_middle_path(cx, def_id, false, ThinVec::new(), bound_ty.rebind(args));
2223                Type::Path { path }
2224            } else {
2225                *cx.current_type_aliases.entry(def_id).or_insert(0) += 1;
2226                // Grab the "TraitA + TraitB" from `impl TraitA + TraitB`,
2227                // by looking up the bounds associated with the def_id.
2228                let ty = clean_middle_opaque_bounds(cx, def_id, args);
2229                if let Some(count) = cx.current_type_aliases.get_mut(&def_id) {
2230                    *count -= 1;
2231                    if *count == 0 {
2232                        cx.current_type_aliases.remove(&def_id);
2233                    }
2234                }
2235                ty
2236            }
2237        }
2238
2239        ty::Closure(..) => panic!("Closure"),
2240        ty::CoroutineClosure(..) => panic!("CoroutineClosure"),
2241        ty::Coroutine(..) => panic!("Coroutine"),
2242        ty::Placeholder(..) => panic!("Placeholder"),
2243        ty::CoroutineWitness(..) => panic!("CoroutineWitness"),
2244        ty::Infer(..) => panic!("Infer"),
2245
2246        ty::Error(_) => FatalError.raise(),
2247    }
2248}
2249
2250fn clean_middle_opaque_bounds<'tcx>(
2251    cx: &mut DocContext<'tcx>,
2252    impl_trait_def_id: DefId,
2253    args: ty::GenericArgsRef<'tcx>,
2254) -> Type {
2255    let mut has_sized = false;
2256
2257    let bounds: Vec<_> = cx
2258        .tcx
2259        .explicit_item_bounds(impl_trait_def_id)
2260        .iter_instantiated_copied(cx.tcx, args)
2261        .collect();
2262
2263    let mut bounds = bounds
2264        .iter()
2265        .filter_map(|(bound, _)| {
2266            let bound_predicate = bound.kind();
2267            let trait_ref = match bound_predicate.skip_binder() {
2268                ty::ClauseKind::Trait(tr) => bound_predicate.rebind(tr.trait_ref),
2269                ty::ClauseKind::TypeOutlives(ty::OutlivesPredicate(_ty, reg)) => {
2270                    return clean_middle_region(reg, cx).map(GenericBound::Outlives);
2271                }
2272                _ => return None,
2273            };
2274
2275            // FIXME(sized-hierarchy): Always skip `MetaSized` bounds so that only `?Sized`
2276            // is shown and none of the new sizedness traits leak into documentation.
2277            if cx.tcx.is_lang_item(trait_ref.def_id(), LangItem::MetaSized) {
2278                return None;
2279            }
2280
2281            if let Some(sized) = cx.tcx.lang_items().sized_trait()
2282                && trait_ref.def_id() == sized
2283            {
2284                has_sized = true;
2285                return None;
2286            }
2287
2288            let bindings: ThinVec<_> = bounds
2289                .iter()
2290                .filter_map(|(bound, _)| {
2291                    let bound = bound.kind();
2292                    if let ty::ClauseKind::Projection(proj_pred) = bound.skip_binder()
2293                        && proj_pred.projection_term.trait_ref(cx.tcx) == trait_ref.skip_binder()
2294                    {
2295                        return Some(AssocItemConstraint {
2296                            assoc: projection_to_path_segment(
2297                                bound.rebind(proj_pred.projection_term),
2298                                cx,
2299                            ),
2300                            kind: AssocItemConstraintKind::Equality {
2301                                term: clean_middle_term(bound.rebind(proj_pred.term), cx),
2302                            },
2303                        });
2304                    }
2305                    None
2306                })
2307                .collect();
2308
2309            Some(clean_poly_trait_ref_with_constraints(cx, trait_ref, bindings))
2310        })
2311        .collect::<Vec<_>>();
2312
2313    if !has_sized {
2314        bounds.push(GenericBound::maybe_sized(cx));
2315    }
2316
2317    // Move trait bounds to the front.
2318    bounds.sort_by_key(|b| !b.is_trait_bound());
2319
2320    // Add back a `Sized` bound if there are no *trait* bounds remaining (incl. `?Sized`).
2321    // Since all potential trait bounds are at the front we can just check the first bound.
2322    if bounds.first().is_none_or(|b| !b.is_trait_bound()) {
2323        bounds.insert(0, GenericBound::sized(cx));
2324    }
2325
2326    if let Some(args) = cx.tcx.rendered_precise_capturing_args(impl_trait_def_id) {
2327        bounds.push(GenericBound::Use(
2328            args.iter()
2329                .map(|arg| match arg {
2330                    hir::PreciseCapturingArgKind::Lifetime(lt) => {
2331                        PreciseCapturingArg::Lifetime(Lifetime(*lt))
2332                    }
2333                    hir::PreciseCapturingArgKind::Param(param) => {
2334                        PreciseCapturingArg::Param(*param)
2335                    }
2336                })
2337                .collect(),
2338        ));
2339    }
2340
2341    ImplTrait(bounds)
2342}
2343
2344pub(crate) fn clean_field<'tcx>(field: &hir::FieldDef<'tcx>, cx: &mut DocContext<'tcx>) -> Item {
2345    clean_field_with_def_id(field.def_id.to_def_id(), field.ident.name, clean_ty(field.ty, cx), cx)
2346}
2347
2348pub(crate) fn clean_middle_field(field: &ty::FieldDef, cx: &mut DocContext<'_>) -> Item {
2349    clean_field_with_def_id(
2350        field.did,
2351        field.name,
2352        clean_middle_ty(
2353            ty::Binder::dummy(cx.tcx.type_of(field.did).instantiate_identity()),
2354            cx,
2355            Some(field.did),
2356            None,
2357        ),
2358        cx,
2359    )
2360}
2361
2362pub(crate) fn clean_field_with_def_id(
2363    def_id: DefId,
2364    name: Symbol,
2365    ty: Type,
2366    cx: &mut DocContext<'_>,
2367) -> Item {
2368    Item::from_def_id_and_parts(def_id, Some(name), StructFieldItem(ty), cx)
2369}
2370
2371pub(crate) fn clean_variant_def(variant: &ty::VariantDef, cx: &mut DocContext<'_>) -> Item {
2372    let discriminant = match variant.discr {
2373        ty::VariantDiscr::Explicit(def_id) => Some(Discriminant { expr: None, value: def_id }),
2374        ty::VariantDiscr::Relative(_) => None,
2375    };
2376
2377    let kind = match variant.ctor_kind() {
2378        Some(CtorKind::Const) => VariantKind::CLike,
2379        Some(CtorKind::Fn) => VariantKind::Tuple(
2380            variant.fields.iter().map(|field| clean_middle_field(field, cx)).collect(),
2381        ),
2382        None => VariantKind::Struct(VariantStruct {
2383            fields: variant.fields.iter().map(|field| clean_middle_field(field, cx)).collect(),
2384        }),
2385    };
2386
2387    Item::from_def_id_and_parts(
2388        variant.def_id,
2389        Some(variant.name),
2390        VariantItem(Variant { kind, discriminant }),
2391        cx,
2392    )
2393}
2394
2395pub(crate) fn clean_variant_def_with_args<'tcx>(
2396    variant: &ty::VariantDef,
2397    args: &GenericArgsRef<'tcx>,
2398    cx: &mut DocContext<'tcx>,
2399) -> Item {
2400    let discriminant = match variant.discr {
2401        ty::VariantDiscr::Explicit(def_id) => Some(Discriminant { expr: None, value: def_id }),
2402        ty::VariantDiscr::Relative(_) => None,
2403    };
2404
2405    use rustc_middle::traits::ObligationCause;
2406    use rustc_trait_selection::infer::TyCtxtInferExt;
2407    use rustc_trait_selection::traits::query::normalize::QueryNormalizeExt;
2408
2409    let infcx = cx.tcx.infer_ctxt().build(TypingMode::non_body_analysis());
2410    let kind = match variant.ctor_kind() {
2411        Some(CtorKind::Const) => VariantKind::CLike,
2412        Some(CtorKind::Fn) => VariantKind::Tuple(
2413            variant
2414                .fields
2415                .iter()
2416                .map(|field| {
2417                    let ty = cx.tcx.type_of(field.did).instantiate(cx.tcx, args);
2418
2419                    // normalize the type to only show concrete types
2420                    // note: we do not use try_normalize_erasing_regions since we
2421                    // do care about showing the regions
2422                    let ty = infcx
2423                        .at(&ObligationCause::dummy(), cx.param_env)
2424                        .query_normalize(ty)
2425                        .map(|normalized| normalized.value)
2426                        .unwrap_or(ty);
2427
2428                    clean_field_with_def_id(
2429                        field.did,
2430                        field.name,
2431                        clean_middle_ty(ty::Binder::dummy(ty), cx, Some(field.did), None),
2432                        cx,
2433                    )
2434                })
2435                .collect(),
2436        ),
2437        None => VariantKind::Struct(VariantStruct {
2438            fields: variant
2439                .fields
2440                .iter()
2441                .map(|field| {
2442                    let ty = cx.tcx.type_of(field.did).instantiate(cx.tcx, args);
2443
2444                    // normalize the type to only show concrete types
2445                    // note: we do not use try_normalize_erasing_regions since we
2446                    // do care about showing the regions
2447                    let ty = infcx
2448                        .at(&ObligationCause::dummy(), cx.param_env)
2449                        .query_normalize(ty)
2450                        .map(|normalized| normalized.value)
2451                        .unwrap_or(ty);
2452
2453                    clean_field_with_def_id(
2454                        field.did,
2455                        field.name,
2456                        clean_middle_ty(ty::Binder::dummy(ty), cx, Some(field.did), None),
2457                        cx,
2458                    )
2459                })
2460                .collect(),
2461        }),
2462    };
2463
2464    Item::from_def_id_and_parts(
2465        variant.def_id,
2466        Some(variant.name),
2467        VariantItem(Variant { kind, discriminant }),
2468        cx,
2469    )
2470}
2471
2472fn clean_variant_data<'tcx>(
2473    variant: &hir::VariantData<'tcx>,
2474    disr_expr: &Option<&hir::AnonConst>,
2475    cx: &mut DocContext<'tcx>,
2476) -> Variant {
2477    let discriminant = disr_expr
2478        .map(|disr| Discriminant { expr: Some(disr.body), value: disr.def_id.to_def_id() });
2479
2480    let kind = match variant {
2481        hir::VariantData::Struct { fields, .. } => VariantKind::Struct(VariantStruct {
2482            fields: fields.iter().map(|x| clean_field(x, cx)).collect(),
2483        }),
2484        hir::VariantData::Tuple(..) => {
2485            VariantKind::Tuple(variant.fields().iter().map(|x| clean_field(x, cx)).collect())
2486        }
2487        hir::VariantData::Unit(..) => VariantKind::CLike,
2488    };
2489
2490    Variant { discriminant, kind }
2491}
2492
2493fn clean_path<'tcx>(path: &hir::Path<'tcx>, cx: &mut DocContext<'tcx>) -> Path {
2494    Path {
2495        res: path.res,
2496        segments: path.segments.iter().map(|x| clean_path_segment(x, cx)).collect(),
2497    }
2498}
2499
2500fn clean_generic_args<'tcx>(
2501    generic_args: &hir::GenericArgs<'tcx>,
2502    cx: &mut DocContext<'tcx>,
2503) -> GenericArgs {
2504    match generic_args.parenthesized {
2505        hir::GenericArgsParentheses::No => {
2506            let args = generic_args
2507                .args
2508                .iter()
2509                .map(|arg| match arg {
2510                    hir::GenericArg::Lifetime(lt) if !lt.is_anonymous() => {
2511                        GenericArg::Lifetime(clean_lifetime(lt, cx))
2512                    }
2513                    hir::GenericArg::Lifetime(_) => GenericArg::Lifetime(Lifetime::elided()),
2514                    hir::GenericArg::Type(ty) => GenericArg::Type(clean_ty(ty.as_unambig_ty(), cx)),
2515                    hir::GenericArg::Const(ct) => {
2516                        GenericArg::Const(Box::new(clean_const(ct.as_unambig_ct())))
2517                    }
2518                    hir::GenericArg::Infer(_inf) => GenericArg::Infer,
2519                })
2520                .collect();
2521            let constraints = generic_args
2522                .constraints
2523                .iter()
2524                .map(|c| clean_assoc_item_constraint(c, cx))
2525                .collect::<ThinVec<_>>();
2526            GenericArgs::AngleBracketed { args, constraints }
2527        }
2528        hir::GenericArgsParentheses::ParenSugar => {
2529            let Some((inputs, output)) = generic_args.paren_sugar_inputs_output() else {
2530                bug!();
2531            };
2532            let inputs = inputs.iter().map(|x| clean_ty(x, cx)).collect();
2533            let output = match output.kind {
2534                hir::TyKind::Tup(&[]) => None,
2535                _ => Some(Box::new(clean_ty(output, cx))),
2536            };
2537            GenericArgs::Parenthesized { inputs, output }
2538        }
2539        hir::GenericArgsParentheses::ReturnTypeNotation => GenericArgs::ReturnTypeNotation,
2540    }
2541}
2542
2543fn clean_path_segment<'tcx>(
2544    path: &hir::PathSegment<'tcx>,
2545    cx: &mut DocContext<'tcx>,
2546) -> PathSegment {
2547    PathSegment { name: path.ident.name, args: clean_generic_args(path.args(), cx) }
2548}
2549
2550fn clean_bare_fn_ty<'tcx>(
2551    bare_fn: &hir::FnPtrTy<'tcx>,
2552    cx: &mut DocContext<'tcx>,
2553) -> BareFunctionDecl {
2554    let (generic_params, decl) = enter_impl_trait(cx, |cx| {
2555        // NOTE: Generics must be cleaned before params.
2556        let generic_params = bare_fn
2557            .generic_params
2558            .iter()
2559            .filter(|p| !is_elided_lifetime(p))
2560            .map(|x| clean_generic_param(cx, None, x))
2561            .collect();
2562        // Since it's more conventional stylistically, elide the name of all params called `_`
2563        // unless there's at least one interestingly named param in which case don't elide any
2564        // name since mixing named and unnamed params is less legible.
2565        let filter = |ident: Option<Ident>| {
2566            ident.map(|ident| ident.name).filter(|&ident| ident != kw::Underscore)
2567        };
2568        let fallback =
2569            bare_fn.param_idents.iter().copied().find_map(filter).map(|_| kw::Underscore);
2570        let params = clean_params(cx, bare_fn.decl.inputs, bare_fn.param_idents, |ident| {
2571            filter(ident).or(fallback)
2572        });
2573        let decl = clean_fn_decl_with_params(cx, bare_fn.decl, None, params);
2574        (generic_params, decl)
2575    });
2576    BareFunctionDecl { safety: bare_fn.safety, abi: bare_fn.abi, decl, generic_params }
2577}
2578
2579fn clean_unsafe_binder_ty<'tcx>(
2580    unsafe_binder_ty: &hir::UnsafeBinderTy<'tcx>,
2581    cx: &mut DocContext<'tcx>,
2582) -> UnsafeBinderTy {
2583    let generic_params = unsafe_binder_ty
2584        .generic_params
2585        .iter()
2586        .filter(|p| !is_elided_lifetime(p))
2587        .map(|x| clean_generic_param(cx, None, x))
2588        .collect();
2589    let ty = clean_ty(unsafe_binder_ty.inner_ty, cx);
2590    UnsafeBinderTy { generic_params, ty }
2591}
2592
2593pub(crate) fn reexport_chain(
2594    tcx: TyCtxt<'_>,
2595    import_def_id: LocalDefId,
2596    target_def_id: DefId,
2597) -> &[Reexport] {
2598    for child in tcx.module_children_local(tcx.local_parent(import_def_id)) {
2599        if child.res.opt_def_id() == Some(target_def_id)
2600            && child.reexport_chain.first().and_then(|r| r.id()) == Some(import_def_id.to_def_id())
2601        {
2602            return &child.reexport_chain;
2603        }
2604    }
2605    &[]
2606}
2607
2608/// Collect attributes from the whole import chain.
2609fn get_all_import_attributes<'hir>(
2610    cx: &mut DocContext<'hir>,
2611    import_def_id: LocalDefId,
2612    target_def_id: DefId,
2613    is_inline: bool,
2614) -> Vec<(Cow<'hir, hir::Attribute>, Option<DefId>)> {
2615    let mut attrs = Vec::new();
2616    let mut first = true;
2617    for def_id in reexport_chain(cx.tcx, import_def_id, target_def_id)
2618        .iter()
2619        .flat_map(|reexport| reexport.id())
2620    {
2621        let import_attrs = inline::load_attrs(cx, def_id);
2622        if first {
2623            // This is the "original" reexport so we get all its attributes without filtering them.
2624            attrs = import_attrs.iter().map(|attr| (Cow::Borrowed(attr), Some(def_id))).collect();
2625            first = false;
2626        // We don't add attributes of an intermediate re-export if it has `#[doc(hidden)]`.
2627        } else if cx.document_hidden() || !cx.tcx.is_doc_hidden(def_id) {
2628            add_without_unwanted_attributes(&mut attrs, import_attrs, is_inline, Some(def_id));
2629        }
2630    }
2631    attrs
2632}
2633
2634/// When inlining items, we merge their attributes (and all the reexports attributes too) with the
2635/// final reexport. For example:
2636///
2637/// ```ignore (just an example)
2638/// #[doc(hidden, cfg(feature = "foo"))]
2639/// pub struct Foo;
2640///
2641/// #[doc(cfg(feature = "bar"))]
2642/// #[doc(hidden, no_inline)]
2643/// pub use Foo as Foo1;
2644///
2645/// #[doc(inline)]
2646/// pub use Foo2 as Bar;
2647/// ```
2648///
2649/// So `Bar` at the end will have both `cfg(feature = "...")`. However, we don't want to merge all
2650/// attributes so we filter out the following ones:
2651/// * `doc(inline)`
2652/// * `doc(no_inline)`
2653/// * `doc(hidden)`
2654fn add_without_unwanted_attributes<'hir>(
2655    attrs: &mut Vec<(Cow<'hir, hir::Attribute>, Option<DefId>)>,
2656    new_attrs: &'hir [hir::Attribute],
2657    is_inline: bool,
2658    import_parent: Option<DefId>,
2659) {
2660    for attr in new_attrs {
2661        match attr {
2662            hir::Attribute::Parsed(AttributeKind::DocComment { .. }) => {
2663                attrs.push((Cow::Borrowed(attr), import_parent));
2664            }
2665            hir::Attribute::Parsed(AttributeKind::Doc(box d)) => {
2666                // Remove attributes from `normal` that should not be inherited by `use` re-export.
2667                let DocAttribute { hidden, inline, cfg, .. } = d;
2668                let mut attr = DocAttribute::default();
2669                if is_inline {
2670                    attr.cfg = cfg.clone();
2671                } else {
2672                    attr.inline = inline.clone();
2673                    attr.hidden = hidden.clone();
2674                }
2675                attrs.push((
2676                    Cow::Owned(hir::Attribute::Parsed(AttributeKind::Doc(Box::new(attr)))),
2677                    import_parent,
2678                ));
2679            }
2680            hir::Attribute::Unparsed(normal) if let [ident] = &*normal.path.segments => {
2681                if is_inline || ident.name != sym::cfg_trace {
2682                    // If it's not a `cfg()` attribute, we keep it.
2683                    attrs.push((Cow::Borrowed(attr), import_parent));
2684                }
2685            }
2686            // FIXME: make sure to exclude `#[cfg_trace]` here when it is ported to the new parsers
2687            hir::Attribute::Parsed(..) => {
2688                attrs.push((Cow::Borrowed(attr), import_parent));
2689            }
2690            _ => {}
2691        }
2692    }
2693}
2694
2695fn clean_maybe_renamed_item<'tcx>(
2696    cx: &mut DocContext<'tcx>,
2697    item: &hir::Item<'tcx>,
2698    renamed: Option<Symbol>,
2699    import_ids: &[LocalDefId],
2700) -> Vec<Item> {
2701    use hir::ItemKind;
2702    fn get_name(
2703        cx: &DocContext<'_>,
2704        item: &hir::Item<'_>,
2705        renamed: Option<Symbol>,
2706    ) -> Option<Symbol> {
2707        renamed.or_else(|| cx.tcx.hir_opt_name(item.hir_id()))
2708    }
2709
2710    let def_id = item.owner_id.to_def_id();
2711    cx.with_param_env(def_id, |cx| {
2712        // These kinds of item either don't need a `name` or accept a `None` one so we handle them
2713        // before.
2714        match item.kind {
2715            ItemKind::Impl(ref impl_) => return clean_impl(impl_, item.owner_id.def_id, cx),
2716            ItemKind::Use(path, kind) => {
2717                return clean_use_statement(
2718                    item,
2719                    get_name(cx, item, renamed),
2720                    path,
2721                    kind,
2722                    cx,
2723                    &mut FxHashSet::default(),
2724                );
2725            }
2726            _ => {}
2727        }
2728
2729        let mut name = get_name(cx, item, renamed).unwrap();
2730
2731        let kind = match item.kind {
2732            ItemKind::Static(mutability, _, ty, body_id) => StaticItem(Static {
2733                type_: Box::new(clean_ty(ty, cx)),
2734                mutability,
2735                expr: Some(body_id),
2736            }),
2737            ItemKind::Const(_, generics, ty, rhs) => ConstantItem(Box::new(Constant {
2738                generics: clean_generics(generics, cx),
2739                type_: clean_ty(ty, cx),
2740                kind: clean_const_item_rhs(rhs, def_id),
2741            })),
2742            ItemKind::TyAlias(_, generics, ty) => {
2743                *cx.current_type_aliases.entry(def_id).or_insert(0) += 1;
2744                let rustdoc_ty = clean_ty(ty, cx);
2745                let type_ =
2746                    clean_middle_ty(ty::Binder::dummy(lower_ty(cx.tcx, ty)), cx, None, None);
2747                let generics = clean_generics(generics, cx);
2748                if let Some(count) = cx.current_type_aliases.get_mut(&def_id) {
2749                    *count -= 1;
2750                    if *count == 0 {
2751                        cx.current_type_aliases.remove(&def_id);
2752                    }
2753                }
2754
2755                let ty = cx.tcx.type_of(def_id).instantiate_identity();
2756
2757                let mut ret = Vec::new();
2758                let inner_type = clean_ty_alias_inner_type(ty, cx, &mut ret);
2759
2760                ret.push(generate_item_with_correct_attrs(
2761                    cx,
2762                    TypeAliasItem(Box::new(TypeAlias {
2763                        generics,
2764                        inner_type,
2765                        type_: rustdoc_ty,
2766                        item_type: Some(type_),
2767                    })),
2768                    item.owner_id.def_id.to_def_id(),
2769                    name,
2770                    import_ids,
2771                    renamed,
2772                ));
2773                return ret;
2774            }
2775            ItemKind::Enum(_, generics, def) => EnumItem(Enum {
2776                variants: def.variants.iter().map(|v| clean_variant(v, cx)).collect(),
2777                generics: clean_generics(generics, cx),
2778            }),
2779            ItemKind::TraitAlias(_, _, generics, bounds) => TraitAliasItem(TraitAlias {
2780                generics: clean_generics(generics, cx),
2781                bounds: bounds.iter().filter_map(|x| clean_generic_bound(x, cx)).collect(),
2782            }),
2783            ItemKind::Union(_, generics, variant_data) => UnionItem(Union {
2784                generics: clean_generics(generics, cx),
2785                fields: variant_data.fields().iter().map(|x| clean_field(x, cx)).collect(),
2786            }),
2787            ItemKind::Struct(_, generics, variant_data) => StructItem(Struct {
2788                ctor_kind: variant_data.ctor_kind(),
2789                generics: clean_generics(generics, cx),
2790                fields: variant_data.fields().iter().map(|x| clean_field(x, cx)).collect(),
2791            }),
2792            // FIXME: handle attributes and derives that aren't proc macros, and macros with
2793            // multiple kinds
2794            ItemKind::Macro(_, macro_def, MacroKinds::BANG) => MacroItem(Macro {
2795                source: display_macro_source(cx, name, macro_def),
2796                macro_rules: macro_def.macro_rules,
2797            }),
2798            ItemKind::Macro(_, _, MacroKinds::ATTR) => {
2799                clean_proc_macro(item, &mut name, MacroKind::Attr, cx)
2800            }
2801            ItemKind::Macro(_, _, MacroKinds::DERIVE) => {
2802                clean_proc_macro(item, &mut name, MacroKind::Derive, cx)
2803            }
2804            ItemKind::Macro(_, _, _) => todo!("Handle macros with multiple kinds"),
2805            // proc macros can have a name set by attributes
2806            ItemKind::Fn { ref sig, generics, body: body_id, .. } => {
2807                clean_fn_or_proc_macro(item, sig, generics, body_id, &mut name, cx)
2808            }
2809            ItemKind::Trait(_, _, _, _, generics, bounds, item_ids) => {
2810                let items = item_ids
2811                    .iter()
2812                    .map(|&ti| clean_trait_item(cx.tcx.hir_trait_item(ti), cx))
2813                    .collect();
2814
2815                TraitItem(Box::new(Trait {
2816                    def_id,
2817                    items,
2818                    generics: clean_generics(generics, cx),
2819                    bounds: bounds.iter().filter_map(|x| clean_generic_bound(x, cx)).collect(),
2820                }))
2821            }
2822            ItemKind::ExternCrate(orig_name, _) => {
2823                return clean_extern_crate(item, name, orig_name, cx);
2824            }
2825            _ => span_bug!(item.span, "not yet converted"),
2826        };
2827
2828        vec![generate_item_with_correct_attrs(
2829            cx,
2830            kind,
2831            item.owner_id.def_id.to_def_id(),
2832            name,
2833            import_ids,
2834            renamed,
2835        )]
2836    })
2837}
2838
2839fn clean_variant<'tcx>(variant: &hir::Variant<'tcx>, cx: &mut DocContext<'tcx>) -> Item {
2840    let kind = VariantItem(clean_variant_data(&variant.data, &variant.disr_expr, cx));
2841    Item::from_def_id_and_parts(variant.def_id.to_def_id(), Some(variant.ident.name), kind, cx)
2842}
2843
2844fn clean_impl<'tcx>(
2845    impl_: &hir::Impl<'tcx>,
2846    def_id: LocalDefId,
2847    cx: &mut DocContext<'tcx>,
2848) -> Vec<Item> {
2849    let tcx = cx.tcx;
2850    let mut ret = Vec::new();
2851    let trait_ = impl_.of_trait.map(|t| clean_trait_ref(&t.trait_ref, cx));
2852    let items = impl_
2853        .items
2854        .iter()
2855        .map(|&ii| clean_impl_item(tcx.hir_impl_item(ii), cx))
2856        .collect::<Vec<_>>();
2857
2858    // If this impl block is an implementation of the Deref trait, then we
2859    // need to try inlining the target's inherent impl blocks as well.
2860    if trait_.as_ref().map(|t| t.def_id()) == tcx.lang_items().deref_trait() {
2861        build_deref_target_impls(cx, &items, &mut ret);
2862    }
2863
2864    let for_ = clean_ty(impl_.self_ty, cx);
2865    let type_alias =
2866        for_.def_id(&cx.cache).and_then(|alias_def_id: DefId| match tcx.def_kind(alias_def_id) {
2867            DefKind::TyAlias => Some(clean_middle_ty(
2868                ty::Binder::dummy(tcx.type_of(def_id).instantiate_identity()),
2869                cx,
2870                Some(def_id.to_def_id()),
2871                None,
2872            )),
2873            _ => None,
2874        });
2875    let mut make_item = |trait_: Option<Path>, for_: Type, items: Vec<Item>| {
2876        let kind = ImplItem(Box::new(Impl {
2877            safety: match impl_.of_trait {
2878                Some(of_trait) => of_trait.safety,
2879                None => hir::Safety::Safe,
2880            },
2881            generics: clean_generics(impl_.generics, cx),
2882            trait_,
2883            for_,
2884            items,
2885            polarity: if impl_.of_trait.is_some() {
2886                tcx.impl_polarity(def_id)
2887            } else {
2888                ty::ImplPolarity::Positive
2889            },
2890            kind: if utils::has_doc_flag(tcx, def_id.to_def_id(), |d| d.fake_variadic.is_some()) {
2891                ImplKind::FakeVariadic
2892            } else {
2893                ImplKind::Normal
2894            },
2895        }));
2896        Item::from_def_id_and_parts(def_id.to_def_id(), None, kind, cx)
2897    };
2898    if let Some(type_alias) = type_alias {
2899        ret.push(make_item(trait_.clone(), type_alias, items.clone()));
2900    }
2901    ret.push(make_item(trait_, for_, items));
2902    ret
2903}
2904
2905fn clean_extern_crate<'tcx>(
2906    krate: &hir::Item<'tcx>,
2907    name: Symbol,
2908    orig_name: Option<Symbol>,
2909    cx: &mut DocContext<'tcx>,
2910) -> Vec<Item> {
2911    // this is the ID of the `extern crate` statement
2912    let cnum = cx.tcx.extern_mod_stmt_cnum(krate.owner_id.def_id).unwrap_or(LOCAL_CRATE);
2913    // this is the ID of the crate itself
2914    let crate_def_id = cnum.as_def_id();
2915    let attrs = cx.tcx.hir_attrs(krate.hir_id());
2916    let ty_vis = cx.tcx.visibility(krate.owner_id);
2917    let please_inline = ty_vis.is_public()
2918        && attrs.iter().any(|a| {
2919            matches!(
2920            a,
2921            hir::Attribute::Parsed(AttributeKind::Doc(d))
2922            if d.inline.first().is_some_and(|(i, _)| *i == DocInline::Inline))
2923        })
2924        && !cx.is_json_output();
2925
2926    let krate_owner_def_id = krate.owner_id.def_id;
2927
2928    if please_inline
2929        && let Some(items) = inline::try_inline(
2930            cx,
2931            Res::Def(DefKind::Mod, crate_def_id),
2932            name,
2933            Some((attrs, Some(krate_owner_def_id))),
2934            &mut Default::default(),
2935        )
2936    {
2937        return items;
2938    }
2939
2940    vec![Item::from_def_id_and_parts(
2941        krate_owner_def_id.to_def_id(),
2942        Some(name),
2943        ExternCrateItem { src: orig_name },
2944        cx,
2945    )]
2946}
2947
2948fn clean_use_statement<'tcx>(
2949    import: &hir::Item<'tcx>,
2950    name: Option<Symbol>,
2951    path: &hir::UsePath<'tcx>,
2952    kind: hir::UseKind,
2953    cx: &mut DocContext<'tcx>,
2954    inlined_names: &mut FxHashSet<(ItemType, Symbol)>,
2955) -> Vec<Item> {
2956    let mut items = Vec::new();
2957    let hir::UsePath { segments, ref res, span } = *path;
2958    for res in res.present_items() {
2959        let path = hir::Path { segments, res, span };
2960        items.append(&mut clean_use_statement_inner(import, name, &path, kind, cx, inlined_names));
2961    }
2962    items
2963}
2964
2965fn clean_use_statement_inner<'tcx>(
2966    import: &hir::Item<'tcx>,
2967    name: Option<Symbol>,
2968    path: &hir::Path<'tcx>,
2969    kind: hir::UseKind,
2970    cx: &mut DocContext<'tcx>,
2971    inlined_names: &mut FxHashSet<(ItemType, Symbol)>,
2972) -> Vec<Item> {
2973    if should_ignore_res(path.res) {
2974        return Vec::new();
2975    }
2976    // We need this comparison because some imports (for std types for example)
2977    // are "inserted" as well but directly by the compiler and they should not be
2978    // taken into account.
2979    if import.span.ctxt().outer_expn_data().kind == ExpnKind::AstPass(AstPass::StdImports) {
2980        return Vec::new();
2981    }
2982
2983    let visibility = cx.tcx.visibility(import.owner_id);
2984    let attrs = cx.tcx.hir_attrs(import.hir_id());
2985    let inline_attr = find_attr!(
2986        attrs,
2987        AttributeKind::Doc(d) if d.inline.first().is_some_and(|(i, _)| *i == DocInline::Inline) => d
2988    )
2989    .and_then(|d| d.inline.first());
2990    let pub_underscore = visibility.is_public() && name == Some(kw::Underscore);
2991    let current_mod = cx.tcx.parent_module_from_def_id(import.owner_id.def_id);
2992    let import_def_id = import.owner_id.def_id;
2993
2994    // The parent of the module in which this import resides. This
2995    // is the same as `current_mod` if that's already the top
2996    // level module.
2997    let parent_mod = cx.tcx.parent_module_from_def_id(current_mod.to_local_def_id());
2998
2999    // This checks if the import can be seen from a higher level module.
3000    // In other words, it checks if the visibility is the equivalent of
3001    // `pub(super)` or higher. If the current module is the top level
3002    // module, there isn't really a parent module, which makes the results
3003    // meaningless. In this case, we make sure the answer is `false`.
3004    let is_visible_from_parent_mod =
3005        visibility.is_accessible_from(parent_mod, cx.tcx) && !current_mod.is_top_level_module();
3006
3007    if pub_underscore && let Some((_, inline_span)) = inline_attr {
3008        struct_span_code_err!(
3009            cx.tcx.dcx(),
3010            *inline_span,
3011            E0780,
3012            "anonymous imports cannot be inlined"
3013        )
3014        .with_span_label(import.span, "anonymous import")
3015        .emit();
3016    }
3017
3018    // We consider inlining the documentation of `pub use` statements, but we
3019    // forcefully don't inline if this is not public or if the
3020    // #[doc(no_inline)] attribute is present.
3021    // Don't inline doc(hidden) imports so they can be stripped at a later stage.
3022    let mut denied = cx.is_json_output()
3023        || !(visibility.is_public() || (cx.document_private() && is_visible_from_parent_mod))
3024        || pub_underscore
3025        || attrs.iter().any(|a| matches!(
3026            a,
3027            hir::Attribute::Parsed(AttributeKind::Doc(d))
3028            if d.hidden.is_some() || d.inline.first().is_some_and(|(i, _)| *i == DocInline::NoInline)
3029        ));
3030
3031    // Also check whether imports were asked to be inlined, in case we're trying to re-export a
3032    // crate in Rust 2018+
3033    let path = clean_path(path, cx);
3034    let inner = if kind == hir::UseKind::Glob {
3035        if !denied {
3036            let mut visited = DefIdSet::default();
3037            if let Some(items) = inline::try_inline_glob(
3038                cx,
3039                path.res,
3040                current_mod,
3041                &mut visited,
3042                inlined_names,
3043                import,
3044            ) {
3045                return items;
3046            }
3047        }
3048        Import::new_glob(resolve_use_source(cx, path), true)
3049    } else {
3050        let name = name.unwrap();
3051        if inline_attr.is_none()
3052            && let Res::Def(DefKind::Mod, did) = path.res
3053            && !did.is_local()
3054            && did.is_crate_root()
3055        {
3056            // if we're `pub use`ing an extern crate root, don't inline it unless we
3057            // were specifically asked for it
3058            denied = true;
3059        }
3060        if !denied
3061            && let Some(mut items) = inline::try_inline(
3062                cx,
3063                path.res,
3064                name,
3065                Some((attrs, Some(import_def_id))),
3066                &mut Default::default(),
3067            )
3068        {
3069            items.push(Item::from_def_id_and_parts(
3070                import_def_id.to_def_id(),
3071                None,
3072                ImportItem(Import::new_simple(name, resolve_use_source(cx, path), false)),
3073                cx,
3074            ));
3075            return items;
3076        }
3077        Import::new_simple(name, resolve_use_source(cx, path), true)
3078    };
3079
3080    vec![Item::from_def_id_and_parts(import_def_id.to_def_id(), None, ImportItem(inner), cx)]
3081}
3082
3083fn clean_maybe_renamed_foreign_item<'tcx>(
3084    cx: &mut DocContext<'tcx>,
3085    item: &hir::ForeignItem<'tcx>,
3086    renamed: Option<Symbol>,
3087    import_id: Option<LocalDefId>,
3088) -> Item {
3089    let def_id = item.owner_id.to_def_id();
3090    cx.with_param_env(def_id, |cx| {
3091        let kind = match item.kind {
3092            hir::ForeignItemKind::Fn(sig, idents, generics) => ForeignFunctionItem(
3093                clean_function(cx, &sig, generics, ParamsSrc::Idents(idents)),
3094                sig.header.safety(),
3095            ),
3096            hir::ForeignItemKind::Static(ty, mutability, safety) => ForeignStaticItem(
3097                Static { type_: Box::new(clean_ty(ty, cx)), mutability, expr: None },
3098                safety,
3099            ),
3100            hir::ForeignItemKind::Type => ForeignTypeItem,
3101        };
3102
3103        generate_item_with_correct_attrs(
3104            cx,
3105            kind,
3106            item.owner_id.def_id.to_def_id(),
3107            item.ident.name,
3108            import_id.as_slice(),
3109            renamed,
3110        )
3111    })
3112}
3113
3114fn clean_assoc_item_constraint<'tcx>(
3115    constraint: &hir::AssocItemConstraint<'tcx>,
3116    cx: &mut DocContext<'tcx>,
3117) -> AssocItemConstraint {
3118    AssocItemConstraint {
3119        assoc: PathSegment {
3120            name: constraint.ident.name,
3121            args: clean_generic_args(constraint.gen_args, cx),
3122        },
3123        kind: match constraint.kind {
3124            hir::AssocItemConstraintKind::Equality { ref term } => {
3125                AssocItemConstraintKind::Equality { term: clean_hir_term(term, cx) }
3126            }
3127            hir::AssocItemConstraintKind::Bound { bounds } => AssocItemConstraintKind::Bound {
3128                bounds: bounds.iter().filter_map(|b| clean_generic_bound(b, cx)).collect(),
3129            },
3130        },
3131    }
3132}
3133
3134fn clean_bound_vars<'tcx>(
3135    bound_vars: &ty::List<ty::BoundVariableKind>,
3136    cx: &mut DocContext<'tcx>,
3137) -> Vec<GenericParamDef> {
3138    bound_vars
3139        .into_iter()
3140        .filter_map(|var| match var {
3141            ty::BoundVariableKind::Region(ty::BoundRegionKind::Named(def_id)) => {
3142                let name = cx.tcx.item_name(def_id);
3143                if name != kw::UnderscoreLifetime {
3144                    Some(GenericParamDef::lifetime(def_id, name))
3145                } else {
3146                    None
3147                }
3148            }
3149            ty::BoundVariableKind::Ty(ty::BoundTyKind::Param(def_id)) => {
3150                let name = cx.tcx.item_name(def_id);
3151                Some(GenericParamDef {
3152                    name,
3153                    def_id,
3154                    kind: GenericParamDefKind::Type {
3155                        bounds: ThinVec::new(),
3156                        default: None,
3157                        synthetic: false,
3158                    },
3159                })
3160            }
3161            // FIXME(non_lifetime_binders): Support higher-ranked const parameters.
3162            ty::BoundVariableKind::Const => None,
3163            _ => None,
3164        })
3165        .collect()
3166}