rustdoc/clean/
mod.rs

1//! This module defines the primary IR[^1] used in rustdoc together with the procedures that
2//! transform rustc data types into it.
3//!
4//! This IR — commonly referred to as the *cleaned AST* — is modeled after the [AST][ast].
5//!
6//! There are two kinds of transformation — *cleaning* — procedures:
7//!
8//! 1. Cleans [HIR][hir] types. Used for user-written code and inlined local re-exports
9//!    both found in the local crate.
10//! 2. Cleans [`rustc_middle::ty`] types. Used for inlined cross-crate re-exports and anything
11//!    output by the trait solver (e.g., when synthesizing blanket and auto-trait impls).
12//!    They usually have `ty` or `middle` in their name.
13//!
14//! Their name is prefixed by `clean_`.
15//!
16//! Both the HIR and the `rustc_middle::ty` IR are quite removed from the source code.
17//! The cleaned AST on the other hand is closer to it which simplifies the rendering process.
18//! Furthermore, operating on a single IR instead of two avoids duplicating efforts down the line.
19//!
20//! This IR is consumed by both the HTML and the JSON backend.
21//!
22//! [^1]: Intermediate representation.
23
24mod auto_trait;
25mod blanket_impl;
26pub(crate) mod cfg;
27pub(crate) mod inline;
28mod render_macro_matchers;
29mod simplify;
30pub(crate) mod types;
31pub(crate) mod utils;
32
33use std::borrow::Cow;
34use std::collections::BTreeMap;
35use std::mem;
36
37use rustc_data_structures::fx::{FxHashMap, FxHashSet, FxIndexMap, FxIndexSet, IndexEntry};
38use rustc_data_structures::thin_vec::ThinVec;
39use rustc_errors::codes::*;
40use rustc_errors::{FatalError, struct_span_code_err};
41use rustc_hir::attrs::{AttributeKind, DocAttribute, DocInline};
42use rustc_hir::def::{CtorKind, DefKind, MacroKinds, Res};
43use rustc_hir::def_id::{DefId, DefIdMap, DefIdSet, LOCAL_CRATE, LocalDefId};
44use rustc_hir::{LangItem, PredicateOrigin, find_attr};
45use rustc_hir_analysis::hir_ty_lowering::FeedConstTy;
46use rustc_hir_analysis::{lower_const_arg_for_rustdoc, lower_ty};
47use rustc_middle::metadata::Reexport;
48use rustc_middle::middle::resolve_bound_vars as rbv;
49use rustc_middle::ty::{self, AdtKind, GenericArgsRef, Ty, TyCtxt, TypeVisitableExt, TypingMode};
50use rustc_middle::{bug, span_bug};
51use rustc_span::ExpnKind;
52use rustc_span::hygiene::{AstPass, MacroKind};
53use rustc_span::symbol::{Ident, Symbol, kw, sym};
54use rustc_trait_selection::traits::wf::object_region_bounds;
55use tracing::{debug, instrument};
56use utils::*;
57use {rustc_ast as ast, rustc_hir as hir};
58
59pub(crate) use self::cfg::{CfgInfo, extract_cfg_from_attrs};
60pub(crate) use self::types::*;
61pub(crate) use self::utils::{krate, register_res, synthesize_auto_trait_and_blanket_impls};
62use crate::core::DocContext;
63use crate::formats::item_type::ItemType;
64use crate::visit_ast::Module as DocModule;
65
66pub(crate) fn clean_doc_module<'tcx>(doc: &DocModule<'tcx>, cx: &mut DocContext<'tcx>) -> Item {
67    let mut items: Vec<Item> = vec![];
68    let mut inserted = FxHashSet::default();
69    items.extend(doc.foreigns.iter().map(|(item, renamed, import_id)| {
70        let item = clean_maybe_renamed_foreign_item(cx, item, *renamed, *import_id);
71        if let Some(name) = item.name
72            && (cx.document_hidden() || !item.is_doc_hidden())
73        {
74            inserted.insert((item.type_(), name));
75        }
76        item
77    }));
78    items.extend(doc.mods.iter().filter_map(|x| {
79        if !inserted.insert((ItemType::Module, x.name)) {
80            return None;
81        }
82        let item = clean_doc_module(x, cx);
83        if !cx.document_hidden() && item.is_doc_hidden() {
84            // Hidden modules are stripped at a later stage.
85            // If a hidden module has the same name as a visible one, we want
86            // to keep both of them around.
87            inserted.remove(&(ItemType::Module, x.name));
88        }
89        Some(item)
90    }));
91
92    // Split up glob imports from all other items.
93    //
94    // This covers the case where somebody does an import which should pull in an item,
95    // but there's already an item with the same namespace and same name. Rust gives
96    // priority to the not-imported one, so we should, too.
97    items.extend(doc.items.values().flat_map(|(item, renamed, import_ids)| {
98        // First, lower everything other than glob imports.
99        if matches!(item.kind, hir::ItemKind::Use(_, hir::UseKind::Glob)) {
100            return Vec::new();
101        }
102        let v = clean_maybe_renamed_item(cx, item, *renamed, import_ids);
103        for item in &v {
104            if let Some(name) = item.name
105                && (cx.document_hidden() || !item.is_doc_hidden())
106            {
107                inserted.insert((item.type_(), name));
108            }
109        }
110        v
111    }));
112    items.extend(doc.inlined_foreigns.iter().flat_map(|((_, renamed), (res, local_import_id))| {
113        let Some(def_id) = res.opt_def_id() else { return Vec::new() };
114        let name = renamed.unwrap_or_else(|| cx.tcx.item_name(def_id));
115        let import = cx.tcx.hir_expect_item(*local_import_id);
116        match import.kind {
117            hir::ItemKind::Use(path, kind) => {
118                let hir::UsePath { segments, span, .. } = *path;
119                let path = hir::Path { segments, res: *res, span };
120                clean_use_statement_inner(
121                    import,
122                    Some(name),
123                    &path,
124                    kind,
125                    cx,
126                    &mut Default::default(),
127                )
128            }
129            _ => unreachable!(),
130        }
131    }));
132    items.extend(doc.items.values().flat_map(|(item, renamed, _)| {
133        // Now we actually lower the imports, skipping everything else.
134        if let hir::ItemKind::Use(path, hir::UseKind::Glob) = item.kind {
135            clean_use_statement(item, *renamed, path, hir::UseKind::Glob, cx, &mut inserted)
136        } else {
137            // skip everything else
138            Vec::new()
139        }
140    }));
141
142    // determine if we should display the inner contents or
143    // the outer `mod` item for the source code.
144
145    let span = Span::new({
146        let where_outer = doc.where_outer(cx.tcx);
147        let sm = cx.sess().source_map();
148        let outer = sm.lookup_char_pos(where_outer.lo());
149        let inner = sm.lookup_char_pos(doc.where_inner.lo());
150        if outer.file.start_pos == inner.file.start_pos {
151            // mod foo { ... }
152            where_outer
153        } else {
154            // mod foo; (and a separate SourceFile for the contents)
155            doc.where_inner
156        }
157    });
158
159    let kind = ModuleItem(Module { items, span });
160    generate_item_with_correct_attrs(
161        cx,
162        kind,
163        doc.def_id.to_def_id(),
164        doc.name,
165        doc.import_id.as_slice(),
166        doc.renamed,
167    )
168}
169
170fn is_glob_import(tcx: TyCtxt<'_>, import_id: LocalDefId) -> bool {
171    if let hir::Node::Item(item) = tcx.hir_node_by_def_id(import_id)
172        && let hir::ItemKind::Use(_, use_kind) = item.kind
173    {
174        use_kind == hir::UseKind::Glob
175    } else {
176        false
177    }
178}
179
180fn generate_item_with_correct_attrs(
181    cx: &mut DocContext<'_>,
182    kind: ItemKind,
183    def_id: DefId,
184    name: Symbol,
185    import_ids: &[LocalDefId],
186    renamed: Option<Symbol>,
187) -> Item {
188    let target_attrs = inline::load_attrs(cx, def_id);
189    let attrs = if !import_ids.is_empty() {
190        let mut attrs = Vec::with_capacity(import_ids.len());
191        let mut is_inline = false;
192
193        for import_id in import_ids.iter().copied() {
194            // glob reexports are treated the same as `#[doc(inline)]` items.
195            //
196            // For glob re-exports the item may or may not exist to be re-exported (potentially the
197            // cfgs on the path up until the glob can be removed, and only cfgs on the globbed item
198            // itself matter), for non-inlined re-exports see #85043.
199            let import_is_inline = find_attr!(
200                inline::load_attrs(cx, import_id.to_def_id()),
201                AttributeKind::Doc(d)
202                if d.inline.first().is_some_and(|(inline, _)| *inline == DocInline::Inline)
203            ) || (is_glob_import(cx.tcx, import_id)
204                && (cx.document_hidden() || !cx.tcx.is_doc_hidden(def_id)));
205            attrs.extend(get_all_import_attributes(cx, import_id, def_id, is_inline));
206            is_inline = is_inline || import_is_inline;
207        }
208        add_without_unwanted_attributes(&mut attrs, target_attrs, is_inline, None);
209        attrs
210    } else {
211        // We only keep the item's attributes.
212        target_attrs.iter().map(|attr| (Cow::Borrowed(attr), None)).collect()
213    };
214    let attrs = Attributes::from_hir_iter(attrs.iter().map(|(attr, did)| (&**attr, *did)), false);
215
216    let name = renamed.or(Some(name));
217    let mut item = Item::from_def_id_and_attrs_and_parts(def_id, name, kind, attrs, None);
218    // FIXME (GuillaumeGomez): Should we also make `inline_stmt_id` a `Vec` instead of an `Option`?
219    item.inner.inline_stmt_id = import_ids.first().copied();
220    item
221}
222
223fn clean_generic_bound<'tcx>(
224    bound: &hir::GenericBound<'tcx>,
225    cx: &mut DocContext<'tcx>,
226) -> Option<GenericBound> {
227    Some(match bound {
228        hir::GenericBound::Outlives(lt) => GenericBound::Outlives(clean_lifetime(lt, cx)),
229        hir::GenericBound::Trait(t) => {
230            // `T: [const] Destruct` is hidden because `T: Destruct` is a no-op.
231            if let hir::BoundConstness::Maybe(_) = t.modifiers.constness
232                && cx.tcx.lang_items().destruct_trait() == Some(t.trait_ref.trait_def_id().unwrap())
233            {
234                return None;
235            }
236
237            GenericBound::TraitBound(clean_poly_trait_ref(t, cx), t.modifiers)
238        }
239        hir::GenericBound::Use(args, ..) => {
240            GenericBound::Use(args.iter().map(|arg| clean_precise_capturing_arg(arg, cx)).collect())
241        }
242    })
243}
244
245pub(crate) fn clean_trait_ref_with_constraints<'tcx>(
246    cx: &mut DocContext<'tcx>,
247    trait_ref: ty::PolyTraitRef<'tcx>,
248    constraints: ThinVec<AssocItemConstraint>,
249) -> Path {
250    let kind = ItemType::from_def_id(trait_ref.def_id(), cx.tcx);
251    if !matches!(kind, ItemType::Trait | ItemType::TraitAlias) {
252        span_bug!(cx.tcx.def_span(trait_ref.def_id()), "`TraitRef` had unexpected kind {kind:?}");
253    }
254    inline::record_extern_fqn(cx, trait_ref.def_id(), kind);
255    let path = clean_middle_path(
256        cx,
257        trait_ref.def_id(),
258        true,
259        constraints,
260        trait_ref.map_bound(|tr| tr.args),
261    );
262
263    debug!(?trait_ref);
264
265    path
266}
267
268fn clean_poly_trait_ref_with_constraints<'tcx>(
269    cx: &mut DocContext<'tcx>,
270    poly_trait_ref: ty::PolyTraitRef<'tcx>,
271    constraints: ThinVec<AssocItemConstraint>,
272) -> GenericBound {
273    GenericBound::TraitBound(
274        PolyTrait {
275            trait_: clean_trait_ref_with_constraints(cx, poly_trait_ref, constraints),
276            generic_params: clean_bound_vars(poly_trait_ref.bound_vars(), cx),
277        },
278        hir::TraitBoundModifiers::NONE,
279    )
280}
281
282fn clean_lifetime(lifetime: &hir::Lifetime, cx: &DocContext<'_>) -> Lifetime {
283    if let Some(
284        rbv::ResolvedArg::EarlyBound(did)
285        | rbv::ResolvedArg::LateBound(_, _, did)
286        | rbv::ResolvedArg::Free(_, did),
287    ) = cx.tcx.named_bound_var(lifetime.hir_id)
288        && let Some(lt) = cx.args.get(&did.to_def_id()).and_then(|arg| arg.as_lt())
289    {
290        return *lt;
291    }
292    Lifetime(lifetime.ident.name)
293}
294
295pub(crate) fn clean_precise_capturing_arg(
296    arg: &hir::PreciseCapturingArg<'_>,
297    cx: &DocContext<'_>,
298) -> PreciseCapturingArg {
299    match arg {
300        hir::PreciseCapturingArg::Lifetime(lt) => {
301            PreciseCapturingArg::Lifetime(clean_lifetime(lt, cx))
302        }
303        hir::PreciseCapturingArg::Param(param) => PreciseCapturingArg::Param(param.ident.name),
304    }
305}
306
307pub(crate) fn clean_const_item_rhs<'tcx>(
308    ct_rhs: hir::ConstItemRhs<'tcx>,
309    parent: DefId,
310) -> ConstantKind {
311    match ct_rhs {
312        hir::ConstItemRhs::Body(body) => ConstantKind::Local { def_id: parent, body },
313        hir::ConstItemRhs::TypeConst(ct) => clean_const(ct),
314    }
315}
316
317pub(crate) fn clean_const<'tcx>(constant: &hir::ConstArg<'tcx>) -> ConstantKind {
318    match &constant.kind {
319        hir::ConstArgKind::Path(qpath) => {
320            ConstantKind::Path { path: qpath_to_string(qpath).into() }
321        }
322        hir::ConstArgKind::Anon(anon) => ConstantKind::Anonymous { body: anon.body },
323        hir::ConstArgKind::Infer(..) | hir::ConstArgKind::Error(..) => ConstantKind::Infer,
324    }
325}
326
327pub(crate) fn clean_middle_const<'tcx>(
328    constant: ty::Binder<'tcx, ty::Const<'tcx>>,
329    _cx: &mut DocContext<'tcx>,
330) -> ConstantKind {
331    // FIXME: instead of storing the stringified expression, store `self` directly instead.
332    ConstantKind::TyConst { expr: constant.skip_binder().to_string().into() }
333}
334
335pub(crate) fn clean_middle_region<'tcx>(
336    region: ty::Region<'tcx>,
337    cx: &mut DocContext<'tcx>,
338) -> Option<Lifetime> {
339    region.get_name(cx.tcx).map(Lifetime)
340}
341
342fn clean_where_predicate<'tcx>(
343    predicate: &hir::WherePredicate<'tcx>,
344    cx: &mut DocContext<'tcx>,
345) -> Option<WherePredicate> {
346    if !predicate.kind.in_where_clause() {
347        return None;
348    }
349    Some(match predicate.kind {
350        hir::WherePredicateKind::BoundPredicate(wbp) => {
351            let bound_params = wbp
352                .bound_generic_params
353                .iter()
354                .map(|param| clean_generic_param(cx, None, param))
355                .collect();
356            WherePredicate::BoundPredicate {
357                ty: clean_ty(wbp.bounded_ty, cx),
358                bounds: wbp.bounds.iter().filter_map(|x| clean_generic_bound(x, cx)).collect(),
359                bound_params,
360            }
361        }
362
363        hir::WherePredicateKind::RegionPredicate(wrp) => WherePredicate::RegionPredicate {
364            lifetime: clean_lifetime(wrp.lifetime, cx),
365            bounds: wrp.bounds.iter().filter_map(|x| clean_generic_bound(x, cx)).collect(),
366        },
367
368        // We should never actually reach this case because these predicates should've already been
369        // rejected in an earlier compiler pass. This feature isn't fully implemented (#20041).
370        hir::WherePredicateKind::EqPredicate(_) => bug!("EqPredicate"),
371    })
372}
373
374pub(crate) fn clean_predicate<'tcx>(
375    predicate: ty::Clause<'tcx>,
376    cx: &mut DocContext<'tcx>,
377) -> Option<WherePredicate> {
378    let bound_predicate = predicate.kind();
379    match bound_predicate.skip_binder() {
380        ty::ClauseKind::Trait(pred) => clean_poly_trait_predicate(bound_predicate.rebind(pred), cx),
381        ty::ClauseKind::RegionOutlives(pred) => Some(clean_region_outlives_predicate(pred, cx)),
382        ty::ClauseKind::TypeOutlives(pred) => {
383            Some(clean_type_outlives_predicate(bound_predicate.rebind(pred), cx))
384        }
385        ty::ClauseKind::Projection(pred) => {
386            Some(clean_projection_predicate(bound_predicate.rebind(pred), cx))
387        }
388        // FIXME(generic_const_exprs): should this do something?
389        ty::ClauseKind::ConstEvaluatable(..)
390        | ty::ClauseKind::WellFormed(..)
391        | ty::ClauseKind::ConstArgHasType(..)
392        | ty::ClauseKind::UnstableFeature(..)
393        // FIXME(const_trait_impl): We can probably use this `HostEffect` pred to render `~const`.
394        | ty::ClauseKind::HostEffect(_) => None,
395    }
396}
397
398fn clean_poly_trait_predicate<'tcx>(
399    pred: ty::PolyTraitPredicate<'tcx>,
400    cx: &mut DocContext<'tcx>,
401) -> Option<WherePredicate> {
402    // `T: [const] Destruct` is hidden because `T: Destruct` is a no-op.
403    // FIXME(const_trait_impl) check constness
404    if Some(pred.skip_binder().def_id()) == cx.tcx.lang_items().destruct_trait() {
405        return None;
406    }
407
408    let poly_trait_ref = pred.map_bound(|pred| pred.trait_ref);
409    Some(WherePredicate::BoundPredicate {
410        ty: clean_middle_ty(poly_trait_ref.self_ty(), cx, None, None),
411        bounds: vec![clean_poly_trait_ref_with_constraints(cx, poly_trait_ref, ThinVec::new())],
412        bound_params: Vec::new(),
413    })
414}
415
416fn clean_region_outlives_predicate<'tcx>(
417    pred: ty::RegionOutlivesPredicate<'tcx>,
418    cx: &mut DocContext<'tcx>,
419) -> WherePredicate {
420    let ty::OutlivesPredicate(a, b) = pred;
421
422    WherePredicate::RegionPredicate {
423        lifetime: clean_middle_region(a, cx).expect("failed to clean lifetime"),
424        bounds: vec![GenericBound::Outlives(
425            clean_middle_region(b, cx).expect("failed to clean bounds"),
426        )],
427    }
428}
429
430fn clean_type_outlives_predicate<'tcx>(
431    pred: ty::Binder<'tcx, ty::TypeOutlivesPredicate<'tcx>>,
432    cx: &mut DocContext<'tcx>,
433) -> WherePredicate {
434    let ty::OutlivesPredicate(ty, lt) = pred.skip_binder();
435
436    WherePredicate::BoundPredicate {
437        ty: clean_middle_ty(pred.rebind(ty), cx, None, None),
438        bounds: vec![GenericBound::Outlives(
439            clean_middle_region(lt, cx).expect("failed to clean lifetimes"),
440        )],
441        bound_params: Vec::new(),
442    }
443}
444
445fn clean_middle_term<'tcx>(
446    term: ty::Binder<'tcx, ty::Term<'tcx>>,
447    cx: &mut DocContext<'tcx>,
448) -> Term {
449    match term.skip_binder().kind() {
450        ty::TermKind::Ty(ty) => Term::Type(clean_middle_ty(term.rebind(ty), cx, None, None)),
451        ty::TermKind::Const(c) => Term::Constant(clean_middle_const(term.rebind(c), cx)),
452    }
453}
454
455fn clean_hir_term<'tcx>(term: &hir::Term<'tcx>, cx: &mut DocContext<'tcx>) -> Term {
456    match term {
457        hir::Term::Ty(ty) => Term::Type(clean_ty(ty, cx)),
458        hir::Term::Const(c) => {
459            let ct = lower_const_arg_for_rustdoc(cx.tcx, c, FeedConstTy::No);
460            Term::Constant(clean_middle_const(ty::Binder::dummy(ct), cx))
461        }
462    }
463}
464
465fn clean_projection_predicate<'tcx>(
466    pred: ty::Binder<'tcx, ty::ProjectionPredicate<'tcx>>,
467    cx: &mut DocContext<'tcx>,
468) -> WherePredicate {
469    WherePredicate::EqPredicate {
470        lhs: clean_projection(pred.map_bound(|p| p.projection_term), cx, None),
471        rhs: clean_middle_term(pred.map_bound(|p| p.term), cx),
472    }
473}
474
475fn clean_projection<'tcx>(
476    proj: ty::Binder<'tcx, ty::AliasTerm<'tcx>>,
477    cx: &mut DocContext<'tcx>,
478    parent_def_id: Option<DefId>,
479) -> QPathData {
480    let trait_ = clean_trait_ref_with_constraints(
481        cx,
482        proj.map_bound(|proj| proj.trait_ref(cx.tcx)),
483        ThinVec::new(),
484    );
485    let self_type = clean_middle_ty(proj.map_bound(|proj| proj.self_ty()), cx, None, None);
486    let self_def_id = match parent_def_id {
487        Some(parent_def_id) => cx.tcx.opt_parent(parent_def_id).or(Some(parent_def_id)),
488        None => self_type.def_id(&cx.cache),
489    };
490    let should_fully_qualify = should_fully_qualify_path(self_def_id, &trait_, &self_type);
491
492    QPathData {
493        assoc: projection_to_path_segment(proj, cx),
494        self_type,
495        should_fully_qualify,
496        trait_: Some(trait_),
497    }
498}
499
500fn should_fully_qualify_path(self_def_id: Option<DefId>, trait_: &Path, self_type: &Type) -> bool {
501    !trait_.segments.is_empty()
502        && self_def_id
503            .zip(Some(trait_.def_id()))
504            .map_or(!self_type.is_self_type(), |(id, trait_)| id != trait_)
505}
506
507fn projection_to_path_segment<'tcx>(
508    proj: ty::Binder<'tcx, ty::AliasTerm<'tcx>>,
509    cx: &mut DocContext<'tcx>,
510) -> PathSegment {
511    let def_id = proj.skip_binder().def_id;
512    let generics = cx.tcx.generics_of(def_id);
513    PathSegment {
514        name: cx.tcx.item_name(def_id),
515        args: GenericArgs::AngleBracketed {
516            args: clean_middle_generic_args(
517                cx,
518                proj.map_bound(|ty| &ty.args[generics.parent_count..]),
519                false,
520                def_id,
521            ),
522            constraints: Default::default(),
523        },
524    }
525}
526
527fn clean_generic_param_def(
528    def: &ty::GenericParamDef,
529    defaults: ParamDefaults,
530    cx: &mut DocContext<'_>,
531) -> GenericParamDef {
532    let (name, kind) = match def.kind {
533        ty::GenericParamDefKind::Lifetime => {
534            (def.name, GenericParamDefKind::Lifetime { outlives: ThinVec::new() })
535        }
536        ty::GenericParamDefKind::Type { has_default, synthetic, .. } => {
537            let default = if let ParamDefaults::Yes = defaults
538                && has_default
539            {
540                Some(clean_middle_ty(
541                    ty::Binder::dummy(cx.tcx.type_of(def.def_id).instantiate_identity()),
542                    cx,
543                    Some(def.def_id),
544                    None,
545                ))
546            } else {
547                None
548            };
549            (
550                def.name,
551                GenericParamDefKind::Type {
552                    bounds: ThinVec::new(), // These are filled in from the where-clauses.
553                    default: default.map(Box::new),
554                    synthetic,
555                },
556            )
557        }
558        ty::GenericParamDefKind::Const { has_default } => (
559            def.name,
560            GenericParamDefKind::Const {
561                ty: Box::new(clean_middle_ty(
562                    ty::Binder::dummy(cx.tcx.type_of(def.def_id).instantiate_identity()),
563                    cx,
564                    Some(def.def_id),
565                    None,
566                )),
567                default: if let ParamDefaults::Yes = defaults
568                    && has_default
569                {
570                    Some(Box::new(
571                        cx.tcx.const_param_default(def.def_id).instantiate_identity().to_string(),
572                    ))
573                } else {
574                    None
575                },
576            },
577        ),
578    };
579
580    GenericParamDef { name, def_id: def.def_id, kind }
581}
582
583/// Whether to clean generic parameter defaults or not.
584enum ParamDefaults {
585    Yes,
586    No,
587}
588
589fn clean_generic_param<'tcx>(
590    cx: &mut DocContext<'tcx>,
591    generics: Option<&hir::Generics<'tcx>>,
592    param: &hir::GenericParam<'tcx>,
593) -> GenericParamDef {
594    let (name, kind) = match param.kind {
595        hir::GenericParamKind::Lifetime { .. } => {
596            let outlives = if let Some(generics) = generics {
597                generics
598                    .outlives_for_param(param.def_id)
599                    .filter(|bp| !bp.in_where_clause)
600                    .flat_map(|bp| bp.bounds)
601                    .map(|bound| match bound {
602                        hir::GenericBound::Outlives(lt) => clean_lifetime(lt, cx),
603                        _ => panic!(),
604                    })
605                    .collect()
606            } else {
607                ThinVec::new()
608            };
609            (param.name.ident().name, GenericParamDefKind::Lifetime { outlives })
610        }
611        hir::GenericParamKind::Type { ref default, synthetic } => {
612            let bounds = if let Some(generics) = generics {
613                generics
614                    .bounds_for_param(param.def_id)
615                    .filter(|bp| bp.origin != PredicateOrigin::WhereClause)
616                    .flat_map(|bp| bp.bounds)
617                    .filter_map(|x| clean_generic_bound(x, cx))
618                    .collect()
619            } else {
620                ThinVec::new()
621            };
622            (
623                param.name.ident().name,
624                GenericParamDefKind::Type {
625                    bounds,
626                    default: default.map(|t| clean_ty(t, cx)).map(Box::new),
627                    synthetic,
628                },
629            )
630        }
631        hir::GenericParamKind::Const { ty, default } => (
632            param.name.ident().name,
633            GenericParamDefKind::Const {
634                ty: Box::new(clean_ty(ty, cx)),
635                default: default.map(|ct| {
636                    Box::new(lower_const_arg_for_rustdoc(cx.tcx, ct, FeedConstTy::No).to_string())
637                }),
638            },
639        ),
640    };
641
642    GenericParamDef { name, def_id: param.def_id.to_def_id(), kind }
643}
644
645/// Synthetic type-parameters are inserted after normal ones.
646/// In order for normal parameters to be able to refer to synthetic ones,
647/// scans them first.
648fn is_impl_trait(param: &hir::GenericParam<'_>) -> bool {
649    match param.kind {
650        hir::GenericParamKind::Type { synthetic, .. } => synthetic,
651        _ => false,
652    }
653}
654
655/// This can happen for `async fn`, e.g. `async fn f<'_>(&'_ self)`.
656///
657/// See `lifetime_to_generic_param` in `rustc_ast_lowering` for more information.
658fn is_elided_lifetime(param: &hir::GenericParam<'_>) -> bool {
659    matches!(
660        param.kind,
661        hir::GenericParamKind::Lifetime { kind: hir::LifetimeParamKind::Elided(_) }
662    )
663}
664
665pub(crate) fn clean_generics<'tcx>(
666    gens: &hir::Generics<'tcx>,
667    cx: &mut DocContext<'tcx>,
668) -> Generics {
669    let impl_trait_params = gens
670        .params
671        .iter()
672        .filter(|param| is_impl_trait(param))
673        .map(|param| {
674            let param = clean_generic_param(cx, Some(gens), param);
675            match param.kind {
676                GenericParamDefKind::Lifetime { .. } => unreachable!(),
677                GenericParamDefKind::Type { ref bounds, .. } => {
678                    cx.impl_trait_bounds.insert(param.def_id.into(), bounds.to_vec());
679                }
680                GenericParamDefKind::Const { .. } => unreachable!(),
681            }
682            param
683        })
684        .collect::<Vec<_>>();
685
686    let mut bound_predicates = FxIndexMap::default();
687    let mut region_predicates = FxIndexMap::default();
688    let mut eq_predicates = ThinVec::default();
689    for pred in gens.predicates.iter().filter_map(|x| clean_where_predicate(x, cx)) {
690        match pred {
691            WherePredicate::BoundPredicate { ty, bounds, bound_params } => {
692                match bound_predicates.entry(ty) {
693                    IndexEntry::Vacant(v) => {
694                        v.insert((bounds, bound_params));
695                    }
696                    IndexEntry::Occupied(mut o) => {
697                        // we merge both bounds.
698                        for bound in bounds {
699                            if !o.get().0.contains(&bound) {
700                                o.get_mut().0.push(bound);
701                            }
702                        }
703                        for bound_param in bound_params {
704                            if !o.get().1.contains(&bound_param) {
705                                o.get_mut().1.push(bound_param);
706                            }
707                        }
708                    }
709                }
710            }
711            WherePredicate::RegionPredicate { lifetime, bounds } => {
712                match region_predicates.entry(lifetime) {
713                    IndexEntry::Vacant(v) => {
714                        v.insert(bounds);
715                    }
716                    IndexEntry::Occupied(mut o) => {
717                        // we merge both bounds.
718                        for bound in bounds {
719                            if !o.get().contains(&bound) {
720                                o.get_mut().push(bound);
721                            }
722                        }
723                    }
724                }
725            }
726            WherePredicate::EqPredicate { lhs, rhs } => {
727                eq_predicates.push(WherePredicate::EqPredicate { lhs, rhs });
728            }
729        }
730    }
731
732    let mut params = ThinVec::with_capacity(gens.params.len());
733    // In this loop, we gather the generic parameters (`<'a, B: 'a>`) and check if they have
734    // bounds in the where predicates. If so, we move their bounds into the where predicates
735    // while also preventing duplicates.
736    for p in gens.params.iter().filter(|p| !is_impl_trait(p) && !is_elided_lifetime(p)) {
737        let mut p = clean_generic_param(cx, Some(gens), p);
738        match &mut p.kind {
739            GenericParamDefKind::Lifetime { outlives } => {
740                if let Some(region_pred) = region_predicates.get_mut(&Lifetime(p.name)) {
741                    // We merge bounds in the `where` clause.
742                    for outlive in outlives.drain(..) {
743                        let outlive = GenericBound::Outlives(outlive);
744                        if !region_pred.contains(&outlive) {
745                            region_pred.push(outlive);
746                        }
747                    }
748                }
749            }
750            GenericParamDefKind::Type { bounds, synthetic: false, .. } => {
751                if let Some(bound_pred) = bound_predicates.get_mut(&Type::Generic(p.name)) {
752                    // We merge bounds in the `where` clause.
753                    for bound in bounds.drain(..) {
754                        if !bound_pred.0.contains(&bound) {
755                            bound_pred.0.push(bound);
756                        }
757                    }
758                }
759            }
760            GenericParamDefKind::Type { .. } | GenericParamDefKind::Const { .. } => {
761                // nothing to do here.
762            }
763        }
764        params.push(p);
765    }
766    params.extend(impl_trait_params);
767
768    Generics {
769        params,
770        where_predicates: bound_predicates
771            .into_iter()
772            .map(|(ty, (bounds, bound_params))| WherePredicate::BoundPredicate {
773                ty,
774                bounds,
775                bound_params,
776            })
777            .chain(
778                region_predicates
779                    .into_iter()
780                    .map(|(lifetime, bounds)| WherePredicate::RegionPredicate { lifetime, bounds }),
781            )
782            .chain(eq_predicates)
783            .collect(),
784    }
785}
786
787fn clean_ty_generics<'tcx>(cx: &mut DocContext<'tcx>, def_id: DefId) -> Generics {
788    clean_ty_generics_inner(cx, cx.tcx.generics_of(def_id), cx.tcx.explicit_predicates_of(def_id))
789}
790
791fn clean_ty_generics_inner<'tcx>(
792    cx: &mut DocContext<'tcx>,
793    gens: &ty::Generics,
794    preds: ty::GenericPredicates<'tcx>,
795) -> Generics {
796    // Don't populate `cx.impl_trait_bounds` before cleaning where clauses,
797    // since `clean_predicate` would consume them.
798    let mut impl_trait = BTreeMap::<u32, Vec<GenericBound>>::default();
799
800    let params: ThinVec<_> = gens
801        .own_params
802        .iter()
803        .filter(|param| match param.kind {
804            ty::GenericParamDefKind::Lifetime => !param.is_anonymous_lifetime(),
805            ty::GenericParamDefKind::Type { synthetic, .. } => {
806                if param.name == kw::SelfUpper {
807                    debug_assert_eq!(param.index, 0);
808                    return false;
809                }
810                if synthetic {
811                    impl_trait.insert(param.index, vec![]);
812                    return false;
813                }
814                true
815            }
816            ty::GenericParamDefKind::Const { .. } => true,
817        })
818        .map(|param| clean_generic_param_def(param, ParamDefaults::Yes, cx))
819        .collect();
820
821    // param index -> [(trait DefId, associated type name & generics, term)]
822    let mut impl_trait_proj =
823        FxHashMap::<u32, Vec<(DefId, PathSegment, ty::Binder<'_, ty::Term<'_>>)>>::default();
824
825    let where_predicates = preds
826        .predicates
827        .iter()
828        .flat_map(|(pred, _)| {
829            let mut proj_pred = None;
830            let param_idx = {
831                let bound_p = pred.kind();
832                match bound_p.skip_binder() {
833                    ty::ClauseKind::Trait(pred) if let ty::Param(param) = pred.self_ty().kind() => {
834                        Some(param.index)
835                    }
836                    ty::ClauseKind::TypeOutlives(ty::OutlivesPredicate(ty, _reg))
837                        if let ty::Param(param) = ty.kind() =>
838                    {
839                        Some(param.index)
840                    }
841                    ty::ClauseKind::Projection(p)
842                        if let ty::Param(param) = p.projection_term.self_ty().kind() =>
843                    {
844                        proj_pred = Some(bound_p.rebind(p));
845                        Some(param.index)
846                    }
847                    _ => None,
848                }
849            };
850
851            if let Some(param_idx) = param_idx
852                && let Some(bounds) = impl_trait.get_mut(&param_idx)
853            {
854                let pred = clean_predicate(*pred, cx)?;
855
856                bounds.extend(pred.get_bounds().into_iter().flatten().cloned());
857
858                if let Some(pred) = proj_pred {
859                    let lhs = clean_projection(pred.map_bound(|p| p.projection_term), cx, None);
860                    impl_trait_proj.entry(param_idx).or_default().push((
861                        lhs.trait_.unwrap().def_id(),
862                        lhs.assoc,
863                        pred.map_bound(|p| p.term),
864                    ));
865                }
866
867                return None;
868            }
869
870            Some(pred)
871        })
872        .collect::<Vec<_>>();
873
874    for (idx, mut bounds) in impl_trait {
875        let mut has_sized = false;
876        bounds.retain(|b| {
877            if b.is_sized_bound(cx) {
878                has_sized = true;
879                false
880            } else if b.is_meta_sized_bound(cx) {
881                // FIXME(sized-hierarchy): Always skip `MetaSized` bounds so that only `?Sized`
882                // is shown and none of the new sizedness traits leak into documentation.
883                false
884            } else {
885                true
886            }
887        });
888        if !has_sized {
889            bounds.push(GenericBound::maybe_sized(cx));
890        }
891
892        // Move trait bounds to the front.
893        bounds.sort_by_key(|b| !b.is_trait_bound());
894
895        // Add back a `Sized` bound if there are no *trait* bounds remaining (incl. `?Sized`).
896        // Since all potential trait bounds are at the front we can just check the first bound.
897        if bounds.first().is_none_or(|b| !b.is_trait_bound()) {
898            bounds.insert(0, GenericBound::sized(cx));
899        }
900
901        if let Some(proj) = impl_trait_proj.remove(&idx) {
902            for (trait_did, name, rhs) in proj {
903                let rhs = clean_middle_term(rhs, cx);
904                simplify::merge_bounds(cx, &mut bounds, trait_did, name, &rhs);
905            }
906        }
907
908        cx.impl_trait_bounds.insert(idx.into(), bounds);
909    }
910
911    // Now that `cx.impl_trait_bounds` is populated, we can process
912    // remaining predicates which could contain `impl Trait`.
913    let where_predicates =
914        where_predicates.into_iter().flat_map(|p| clean_predicate(*p, cx)).collect();
915
916    let mut generics = Generics { params, where_predicates };
917    simplify::sized_bounds(cx, &mut generics);
918    generics.where_predicates = simplify::where_clauses(cx, generics.where_predicates);
919    generics
920}
921
922fn clean_ty_alias_inner_type<'tcx>(
923    ty: Ty<'tcx>,
924    cx: &mut DocContext<'tcx>,
925    ret: &mut Vec<Item>,
926) -> Option<TypeAliasInnerType> {
927    let ty::Adt(adt_def, args) = ty.kind() else {
928        return None;
929    };
930
931    if !adt_def.did().is_local() {
932        cx.with_param_env(adt_def.did(), |cx| {
933            inline::build_impls(cx, adt_def.did(), None, ret);
934        });
935    }
936
937    Some(if adt_def.is_enum() {
938        let variants: rustc_index::IndexVec<_, _> = adt_def
939            .variants()
940            .iter()
941            .map(|variant| clean_variant_def_with_args(variant, args, cx))
942            .collect();
943
944        if !adt_def.did().is_local() {
945            inline::record_extern_fqn(cx, adt_def.did(), ItemType::Enum);
946        }
947
948        TypeAliasInnerType::Enum {
949            variants,
950            is_non_exhaustive: adt_def.is_variant_list_non_exhaustive(),
951        }
952    } else {
953        let variant = adt_def
954            .variants()
955            .iter()
956            .next()
957            .unwrap_or_else(|| bug!("a struct or union should always have one variant def"));
958
959        let fields: Vec<_> =
960            clean_variant_def_with_args(variant, args, cx).kind.inner_items().cloned().collect();
961
962        if adt_def.is_struct() {
963            if !adt_def.did().is_local() {
964                inline::record_extern_fqn(cx, adt_def.did(), ItemType::Struct);
965            }
966            TypeAliasInnerType::Struct { ctor_kind: variant.ctor_kind(), fields }
967        } else {
968            if !adt_def.did().is_local() {
969                inline::record_extern_fqn(cx, adt_def.did(), ItemType::Union);
970            }
971            TypeAliasInnerType::Union { fields }
972        }
973    })
974}
975
976fn clean_proc_macro<'tcx>(
977    item: &hir::Item<'tcx>,
978    name: &mut Symbol,
979    kind: MacroKind,
980    cx: &mut DocContext<'tcx>,
981) -> ItemKind {
982    if kind != MacroKind::Derive {
983        return ProcMacroItem(ProcMacro { kind, helpers: vec![] });
984    }
985    let attrs = cx.tcx.hir_attrs(item.hir_id());
986    let Some((trait_name, helper_attrs)) = find_attr!(attrs, AttributeKind::ProcMacroDerive { trait_name, helper_attrs, ..} => (*trait_name, helper_attrs))
987    else {
988        return ProcMacroItem(ProcMacro { kind, helpers: vec![] });
989    };
990    *name = trait_name;
991    let helpers = helper_attrs.iter().copied().collect();
992
993    ProcMacroItem(ProcMacro { kind, helpers })
994}
995
996fn clean_fn_or_proc_macro<'tcx>(
997    item: &hir::Item<'tcx>,
998    sig: &hir::FnSig<'tcx>,
999    generics: &hir::Generics<'tcx>,
1000    body_id: hir::BodyId,
1001    name: &mut Symbol,
1002    cx: &mut DocContext<'tcx>,
1003) -> ItemKind {
1004    let attrs = cx.tcx.hir_attrs(item.hir_id());
1005    let macro_kind = if find_attr!(attrs, AttributeKind::ProcMacro(..)) {
1006        Some(MacroKind::Bang)
1007    } else if find_attr!(attrs, AttributeKind::ProcMacroDerive { .. }) {
1008        Some(MacroKind::Derive)
1009    } else if find_attr!(attrs, AttributeKind::ProcMacroAttribute(..)) {
1010        Some(MacroKind::Attr)
1011    } else {
1012        None
1013    };
1014
1015    match macro_kind {
1016        Some(kind) => clean_proc_macro(item, name, kind, cx),
1017        None => {
1018            let mut func = clean_function(cx, sig, generics, ParamsSrc::Body(body_id));
1019            clean_fn_decl_legacy_const_generics(&mut func, attrs);
1020            FunctionItem(func)
1021        }
1022    }
1023}
1024
1025/// This is needed to make it more "readable" when documenting functions using
1026/// `rustc_legacy_const_generics`. More information in
1027/// <https://github.com/rust-lang/rust/issues/83167>.
1028fn clean_fn_decl_legacy_const_generics(func: &mut Function, attrs: &[hir::Attribute]) {
1029    for meta_item_list in attrs
1030        .iter()
1031        .filter(|a| a.has_name(sym::rustc_legacy_const_generics))
1032        .filter_map(|a| a.meta_item_list())
1033    {
1034        for (pos, literal) in meta_item_list.iter().filter_map(|meta| meta.lit()).enumerate() {
1035            match literal.kind {
1036                ast::LitKind::Int(a, _) => {
1037                    let GenericParamDef { name, kind, .. } = func.generics.params.remove(0);
1038                    if let GenericParamDefKind::Const { ty, .. } = kind {
1039                        func.decl.inputs.insert(
1040                            a.get() as _,
1041                            Parameter { name: Some(name), type_: *ty, is_const: true },
1042                        );
1043                    } else {
1044                        panic!("unexpected non const in position {pos}");
1045                    }
1046                }
1047                _ => panic!("invalid arg index"),
1048            }
1049        }
1050    }
1051}
1052
1053enum ParamsSrc<'tcx> {
1054    Body(hir::BodyId),
1055    Idents(&'tcx [Option<Ident>]),
1056}
1057
1058fn clean_function<'tcx>(
1059    cx: &mut DocContext<'tcx>,
1060    sig: &hir::FnSig<'tcx>,
1061    generics: &hir::Generics<'tcx>,
1062    params: ParamsSrc<'tcx>,
1063) -> Box<Function> {
1064    let (generics, decl) = enter_impl_trait(cx, |cx| {
1065        // NOTE: Generics must be cleaned before params.
1066        let generics = clean_generics(generics, cx);
1067        let params = match params {
1068            ParamsSrc::Body(body_id) => clean_params_via_body(cx, sig.decl.inputs, body_id),
1069            // Let's not perpetuate anon params from Rust 2015; use `_` for them.
1070            ParamsSrc::Idents(idents) => clean_params(cx, sig.decl.inputs, idents, |ident| {
1071                Some(ident.map_or(kw::Underscore, |ident| ident.name))
1072            }),
1073        };
1074        let decl = clean_fn_decl_with_params(cx, sig.decl, Some(&sig.header), params);
1075        (generics, decl)
1076    });
1077    Box::new(Function { decl, generics })
1078}
1079
1080fn clean_params<'tcx>(
1081    cx: &mut DocContext<'tcx>,
1082    types: &[hir::Ty<'tcx>],
1083    idents: &[Option<Ident>],
1084    postprocess: impl Fn(Option<Ident>) -> Option<Symbol>,
1085) -> Vec<Parameter> {
1086    types
1087        .iter()
1088        .enumerate()
1089        .map(|(i, ty)| Parameter {
1090            name: postprocess(idents[i]),
1091            type_: clean_ty(ty, cx),
1092            is_const: false,
1093        })
1094        .collect()
1095}
1096
1097fn clean_params_via_body<'tcx>(
1098    cx: &mut DocContext<'tcx>,
1099    types: &[hir::Ty<'tcx>],
1100    body_id: hir::BodyId,
1101) -> Vec<Parameter> {
1102    types
1103        .iter()
1104        .zip(cx.tcx.hir_body(body_id).params)
1105        .map(|(ty, param)| Parameter {
1106            name: Some(name_from_pat(param.pat)),
1107            type_: clean_ty(ty, cx),
1108            is_const: false,
1109        })
1110        .collect()
1111}
1112
1113fn clean_fn_decl_with_params<'tcx>(
1114    cx: &mut DocContext<'tcx>,
1115    decl: &hir::FnDecl<'tcx>,
1116    header: Option<&hir::FnHeader>,
1117    params: Vec<Parameter>,
1118) -> FnDecl {
1119    let mut output = match decl.output {
1120        hir::FnRetTy::Return(typ) => clean_ty(typ, cx),
1121        hir::FnRetTy::DefaultReturn(..) => Type::Tuple(Vec::new()),
1122    };
1123    if let Some(header) = header
1124        && header.is_async()
1125    {
1126        output = output.sugared_async_return_type();
1127    }
1128    FnDecl { inputs: params, output, c_variadic: decl.c_variadic }
1129}
1130
1131fn clean_poly_fn_sig<'tcx>(
1132    cx: &mut DocContext<'tcx>,
1133    did: Option<DefId>,
1134    sig: ty::PolyFnSig<'tcx>,
1135) -> FnDecl {
1136    let mut output = clean_middle_ty(sig.output(), cx, None, None);
1137
1138    // If the return type isn't an `impl Trait`, we can safely assume that this
1139    // function isn't async without needing to execute the query `asyncness` at
1140    // all which gives us a noticeable performance boost.
1141    if let Some(did) = did
1142        && let Type::ImplTrait(_) = output
1143        && cx.tcx.asyncness(did).is_async()
1144    {
1145        output = output.sugared_async_return_type();
1146    }
1147
1148    let mut idents = did.map(|did| cx.tcx.fn_arg_idents(did)).unwrap_or_default().iter().copied();
1149
1150    // If this comes from a fn item, let's not perpetuate anon params from Rust 2015; use `_` for them.
1151    // If this comes from a fn ptr ty, we just keep params unnamed since it's more conventional stylistically.
1152    // Since the param name is not part of the semantic type, these params never bear a name unlike
1153    // in the HIR case, thus we can't perform any fancy fallback logic unlike `clean_bare_fn_ty`.
1154    let fallback = did.map(|_| kw::Underscore);
1155
1156    let params = sig
1157        .inputs()
1158        .iter()
1159        .map(|ty| Parameter {
1160            name: idents.next().flatten().map(|ident| ident.name).or(fallback),
1161            type_: clean_middle_ty(ty.map_bound(|ty| *ty), cx, None, None),
1162            is_const: false,
1163        })
1164        .collect();
1165
1166    FnDecl { inputs: params, output, c_variadic: sig.skip_binder().c_variadic }
1167}
1168
1169fn clean_trait_ref<'tcx>(trait_ref: &hir::TraitRef<'tcx>, cx: &mut DocContext<'tcx>) -> Path {
1170    let path = clean_path(trait_ref.path, cx);
1171    register_res(cx, path.res);
1172    path
1173}
1174
1175fn clean_poly_trait_ref<'tcx>(
1176    poly_trait_ref: &hir::PolyTraitRef<'tcx>,
1177    cx: &mut DocContext<'tcx>,
1178) -> PolyTrait {
1179    PolyTrait {
1180        trait_: clean_trait_ref(&poly_trait_ref.trait_ref, cx),
1181        generic_params: poly_trait_ref
1182            .bound_generic_params
1183            .iter()
1184            .filter(|p| !is_elided_lifetime(p))
1185            .map(|x| clean_generic_param(cx, None, x))
1186            .collect(),
1187    }
1188}
1189
1190fn clean_trait_item<'tcx>(trait_item: &hir::TraitItem<'tcx>, cx: &mut DocContext<'tcx>) -> Item {
1191    let local_did = trait_item.owner_id.to_def_id();
1192    cx.with_param_env(local_did, |cx| {
1193        let inner = match trait_item.kind {
1194            hir::TraitItemKind::Const(ty, Some(default)) => {
1195                ProvidedAssocConstItem(Box::new(Constant {
1196                    generics: enter_impl_trait(cx, |cx| clean_generics(trait_item.generics, cx)),
1197                    kind: clean_const_item_rhs(default, local_did),
1198                    type_: clean_ty(ty, cx),
1199                }))
1200            }
1201            hir::TraitItemKind::Const(ty, None) => {
1202                let generics = enter_impl_trait(cx, |cx| clean_generics(trait_item.generics, cx));
1203                RequiredAssocConstItem(generics, Box::new(clean_ty(ty, cx)))
1204            }
1205            hir::TraitItemKind::Fn(ref sig, hir::TraitFn::Provided(body)) => {
1206                let m = clean_function(cx, sig, trait_item.generics, ParamsSrc::Body(body));
1207                MethodItem(m, None)
1208            }
1209            hir::TraitItemKind::Fn(ref sig, hir::TraitFn::Required(idents)) => {
1210                let m = clean_function(cx, sig, trait_item.generics, ParamsSrc::Idents(idents));
1211                RequiredMethodItem(m)
1212            }
1213            hir::TraitItemKind::Type(bounds, Some(default)) => {
1214                let generics = enter_impl_trait(cx, |cx| clean_generics(trait_item.generics, cx));
1215                let bounds = bounds.iter().filter_map(|x| clean_generic_bound(x, cx)).collect();
1216                let item_type =
1217                    clean_middle_ty(ty::Binder::dummy(lower_ty(cx.tcx, default)), cx, None, None);
1218                AssocTypeItem(
1219                    Box::new(TypeAlias {
1220                        type_: clean_ty(default, cx),
1221                        generics,
1222                        inner_type: None,
1223                        item_type: Some(item_type),
1224                    }),
1225                    bounds,
1226                )
1227            }
1228            hir::TraitItemKind::Type(bounds, None) => {
1229                let generics = enter_impl_trait(cx, |cx| clean_generics(trait_item.generics, cx));
1230                let bounds = bounds.iter().filter_map(|x| clean_generic_bound(x, cx)).collect();
1231                RequiredAssocTypeItem(generics, bounds)
1232            }
1233        };
1234        Item::from_def_id_and_parts(local_did, Some(trait_item.ident.name), inner, cx)
1235    })
1236}
1237
1238pub(crate) fn clean_impl_item<'tcx>(
1239    impl_: &hir::ImplItem<'tcx>,
1240    cx: &mut DocContext<'tcx>,
1241) -> Item {
1242    let local_did = impl_.owner_id.to_def_id();
1243    cx.with_param_env(local_did, |cx| {
1244        let inner = match impl_.kind {
1245            hir::ImplItemKind::Const(ty, expr) => ImplAssocConstItem(Box::new(Constant {
1246                generics: clean_generics(impl_.generics, cx),
1247                kind: clean_const_item_rhs(expr, local_did),
1248                type_: clean_ty(ty, cx),
1249            })),
1250            hir::ImplItemKind::Fn(ref sig, body) => {
1251                let m = clean_function(cx, sig, impl_.generics, ParamsSrc::Body(body));
1252                let defaultness = match impl_.impl_kind {
1253                    hir::ImplItemImplKind::Inherent { .. } => hir::Defaultness::Final,
1254                    hir::ImplItemImplKind::Trait { defaultness, .. } => defaultness,
1255                };
1256                MethodItem(m, Some(defaultness))
1257            }
1258            hir::ImplItemKind::Type(hir_ty) => {
1259                let type_ = clean_ty(hir_ty, cx);
1260                let generics = clean_generics(impl_.generics, cx);
1261                let item_type =
1262                    clean_middle_ty(ty::Binder::dummy(lower_ty(cx.tcx, hir_ty)), cx, None, None);
1263                AssocTypeItem(
1264                    Box::new(TypeAlias {
1265                        type_,
1266                        generics,
1267                        inner_type: None,
1268                        item_type: Some(item_type),
1269                    }),
1270                    Vec::new(),
1271                )
1272            }
1273        };
1274
1275        Item::from_def_id_and_parts(local_did, Some(impl_.ident.name), inner, cx)
1276    })
1277}
1278
1279pub(crate) fn clean_middle_assoc_item(assoc_item: &ty::AssocItem, cx: &mut DocContext<'_>) -> Item {
1280    let tcx = cx.tcx;
1281    let kind = match assoc_item.kind {
1282        ty::AssocKind::Const { .. } => {
1283            let ty = clean_middle_ty(
1284                ty::Binder::dummy(tcx.type_of(assoc_item.def_id).instantiate_identity()),
1285                cx,
1286                Some(assoc_item.def_id),
1287                None,
1288            );
1289
1290            let mut generics = clean_ty_generics(cx, assoc_item.def_id);
1291            simplify::move_bounds_to_generic_parameters(&mut generics);
1292
1293            match assoc_item.container {
1294                ty::AssocContainer::InherentImpl | ty::AssocContainer::TraitImpl(_) => {
1295                    ImplAssocConstItem(Box::new(Constant {
1296                        generics,
1297                        kind: ConstantKind::Extern { def_id: assoc_item.def_id },
1298                        type_: ty,
1299                    }))
1300                }
1301                ty::AssocContainer::Trait => {
1302                    if tcx.defaultness(assoc_item.def_id).has_value() {
1303                        ProvidedAssocConstItem(Box::new(Constant {
1304                            generics,
1305                            kind: ConstantKind::Extern { def_id: assoc_item.def_id },
1306                            type_: ty,
1307                        }))
1308                    } else {
1309                        RequiredAssocConstItem(generics, Box::new(ty))
1310                    }
1311                }
1312            }
1313        }
1314        ty::AssocKind::Fn { has_self, .. } => {
1315            let mut item = inline::build_function(cx, assoc_item.def_id);
1316
1317            if has_self {
1318                let self_ty = match assoc_item.container {
1319                    ty::AssocContainer::InherentImpl | ty::AssocContainer::TraitImpl(_) => {
1320                        tcx.type_of(assoc_item.container_id(tcx)).instantiate_identity()
1321                    }
1322                    ty::AssocContainer::Trait => tcx.types.self_param,
1323                };
1324                let self_param_ty =
1325                    tcx.fn_sig(assoc_item.def_id).instantiate_identity().input(0).skip_binder();
1326                if self_param_ty == self_ty {
1327                    item.decl.inputs[0].type_ = SelfTy;
1328                } else if let ty::Ref(_, ty, _) = *self_param_ty.kind()
1329                    && ty == self_ty
1330                {
1331                    match item.decl.inputs[0].type_ {
1332                        BorrowedRef { ref mut type_, .. } => **type_ = SelfTy,
1333                        _ => unreachable!(),
1334                    }
1335                }
1336            }
1337
1338            let provided = match assoc_item.container {
1339                ty::AssocContainer::InherentImpl | ty::AssocContainer::TraitImpl(_) => true,
1340                ty::AssocContainer::Trait => assoc_item.defaultness(tcx).has_value(),
1341            };
1342            if provided {
1343                let defaultness = match assoc_item.container {
1344                    ty::AssocContainer::TraitImpl(_) => Some(assoc_item.defaultness(tcx)),
1345                    ty::AssocContainer::InherentImpl | ty::AssocContainer::Trait => None,
1346                };
1347                MethodItem(item, defaultness)
1348            } else {
1349                RequiredMethodItem(item)
1350            }
1351        }
1352        ty::AssocKind::Type { .. } => {
1353            let my_name = assoc_item.name();
1354
1355            fn param_eq_arg(param: &GenericParamDef, arg: &GenericArg) -> bool {
1356                match (&param.kind, arg) {
1357                    (GenericParamDefKind::Type { .. }, GenericArg::Type(Type::Generic(ty)))
1358                        if *ty == param.name =>
1359                    {
1360                        true
1361                    }
1362                    (GenericParamDefKind::Lifetime { .. }, GenericArg::Lifetime(Lifetime(lt)))
1363                        if *lt == param.name =>
1364                    {
1365                        true
1366                    }
1367                    (GenericParamDefKind::Const { .. }, GenericArg::Const(c)) => match &**c {
1368                        ConstantKind::TyConst { expr } => **expr == *param.name.as_str(),
1369                        _ => false,
1370                    },
1371                    _ => false,
1372                }
1373            }
1374
1375            let mut predicates = tcx.explicit_predicates_of(assoc_item.def_id).predicates;
1376            if let ty::AssocContainer::Trait = assoc_item.container {
1377                let bounds = tcx.explicit_item_bounds(assoc_item.def_id).iter_identity_copied();
1378                predicates = tcx.arena.alloc_from_iter(bounds.chain(predicates.iter().copied()));
1379            }
1380            let mut generics = clean_ty_generics_inner(
1381                cx,
1382                tcx.generics_of(assoc_item.def_id),
1383                ty::GenericPredicates { parent: None, predicates },
1384            );
1385            simplify::move_bounds_to_generic_parameters(&mut generics);
1386
1387            if let ty::AssocContainer::Trait = assoc_item.container {
1388                // Move bounds that are (likely) directly attached to the associated type
1389                // from the where-clause to the associated type.
1390                // There is no guarantee that this is what the user actually wrote but we have
1391                // no way of knowing.
1392                let mut bounds: Vec<GenericBound> = Vec::new();
1393                generics.where_predicates.retain_mut(|pred| match *pred {
1394                    WherePredicate::BoundPredicate {
1395                        ty:
1396                            QPath(box QPathData {
1397                                ref assoc,
1398                                ref self_type,
1399                                trait_: Some(ref trait_),
1400                                ..
1401                            }),
1402                        bounds: ref mut pred_bounds,
1403                        ..
1404                    } => {
1405                        if assoc.name != my_name {
1406                            return true;
1407                        }
1408                        if trait_.def_id() != assoc_item.container_id(tcx) {
1409                            return true;
1410                        }
1411                        if *self_type != SelfTy {
1412                            return true;
1413                        }
1414                        match &assoc.args {
1415                            GenericArgs::AngleBracketed { args, constraints } => {
1416                                if !constraints.is_empty()
1417                                    || generics
1418                                        .params
1419                                        .iter()
1420                                        .zip(args.iter())
1421                                        .any(|(param, arg)| !param_eq_arg(param, arg))
1422                                {
1423                                    return true;
1424                                }
1425                            }
1426                            GenericArgs::Parenthesized { .. } => {
1427                                // The only time this happens is if we're inside the rustdoc for Fn(),
1428                                // which only has one associated type, which is not a GAT, so whatever.
1429                            }
1430                            GenericArgs::ReturnTypeNotation => {
1431                                // Never move these.
1432                            }
1433                        }
1434                        bounds.extend(mem::take(pred_bounds));
1435                        false
1436                    }
1437                    _ => true,
1438                });
1439
1440                bounds.retain(|b| {
1441                    // FIXME(sized-hierarchy): Always skip `MetaSized` bounds so that only `?Sized`
1442                    // is shown and none of the new sizedness traits leak into documentation.
1443                    !b.is_meta_sized_bound(cx)
1444                });
1445
1446                // Our Sized/?Sized bound didn't get handled when creating the generics
1447                // because we didn't actually get our whole set of bounds until just now
1448                // (some of them may have come from the trait). If we do have a sized
1449                // bound, we remove it, and if we don't then we add the `?Sized` bound
1450                // at the end.
1451                match bounds.iter().position(|b| b.is_sized_bound(cx)) {
1452                    Some(i) => {
1453                        bounds.remove(i);
1454                    }
1455                    None => bounds.push(GenericBound::maybe_sized(cx)),
1456                }
1457
1458                if tcx.defaultness(assoc_item.def_id).has_value() {
1459                    AssocTypeItem(
1460                        Box::new(TypeAlias {
1461                            type_: clean_middle_ty(
1462                                ty::Binder::dummy(
1463                                    tcx.type_of(assoc_item.def_id).instantiate_identity(),
1464                                ),
1465                                cx,
1466                                Some(assoc_item.def_id),
1467                                None,
1468                            ),
1469                            generics,
1470                            inner_type: None,
1471                            item_type: None,
1472                        }),
1473                        bounds,
1474                    )
1475                } else {
1476                    RequiredAssocTypeItem(generics, bounds)
1477                }
1478            } else {
1479                AssocTypeItem(
1480                    Box::new(TypeAlias {
1481                        type_: clean_middle_ty(
1482                            ty::Binder::dummy(
1483                                tcx.type_of(assoc_item.def_id).instantiate_identity(),
1484                            ),
1485                            cx,
1486                            Some(assoc_item.def_id),
1487                            None,
1488                        ),
1489                        generics,
1490                        inner_type: None,
1491                        item_type: None,
1492                    }),
1493                    // Associated types inside trait or inherent impls are not allowed to have
1494                    // item bounds. Thus we don't attempt to move any bounds there.
1495                    Vec::new(),
1496                )
1497            }
1498        }
1499    };
1500
1501    Item::from_def_id_and_parts(assoc_item.def_id, Some(assoc_item.name()), kind, cx)
1502}
1503
1504fn first_non_private_clean_path<'tcx>(
1505    cx: &mut DocContext<'tcx>,
1506    path: &hir::Path<'tcx>,
1507    new_path_segments: &'tcx [hir::PathSegment<'tcx>],
1508    new_path_span: rustc_span::Span,
1509) -> Path {
1510    let new_hir_path =
1511        hir::Path { segments: new_path_segments, res: path.res, span: new_path_span };
1512    let mut new_clean_path = clean_path(&new_hir_path, cx);
1513    // In here we need to play with the path data one last time to provide it the
1514    // missing `args` and `res` of the final `Path` we get, which, since it comes
1515    // from a re-export, doesn't have the generics that were originally there, so
1516    // we add them by hand.
1517    if let Some(path_last) = path.segments.last().as_ref()
1518        && let Some(new_path_last) = new_clean_path.segments[..].last_mut()
1519        && let Some(path_last_args) = path_last.args.as_ref()
1520        && path_last.args.is_some()
1521    {
1522        assert!(new_path_last.args.is_empty());
1523        new_path_last.args = clean_generic_args(path_last_args, cx);
1524    }
1525    new_clean_path
1526}
1527
1528/// The goal of this function is to return the first `Path` which is not private (ie not private
1529/// or `doc(hidden)`). If it's not possible, it'll return the "end type".
1530///
1531/// If the path is not a re-export or is public, it'll return `None`.
1532fn first_non_private<'tcx>(
1533    cx: &mut DocContext<'tcx>,
1534    hir_id: hir::HirId,
1535    path: &hir::Path<'tcx>,
1536) -> Option<Path> {
1537    let target_def_id = path.res.opt_def_id()?;
1538    let (parent_def_id, ident) = match &path.segments {
1539        [] => return None,
1540        // Relative paths are available in the same scope as the owner.
1541        [leaf] => (cx.tcx.local_parent(hir_id.owner.def_id), leaf.ident),
1542        // So are self paths.
1543        [parent, leaf] if parent.ident.name == kw::SelfLower => {
1544            (cx.tcx.local_parent(hir_id.owner.def_id), leaf.ident)
1545        }
1546        // Crate paths are not. We start from the crate root.
1547        [parent, leaf] if matches!(parent.ident.name, kw::Crate | kw::PathRoot) => {
1548            (LOCAL_CRATE.as_def_id().as_local()?, leaf.ident)
1549        }
1550        [parent, leaf] if parent.ident.name == kw::Super => {
1551            let parent_mod = cx.tcx.parent_module(hir_id);
1552            if let Some(super_parent) = cx.tcx.opt_local_parent(parent_mod.to_local_def_id()) {
1553                (super_parent, leaf.ident)
1554            } else {
1555                // If we can't find the parent of the parent, then the parent is already the crate.
1556                (LOCAL_CRATE.as_def_id().as_local()?, leaf.ident)
1557            }
1558        }
1559        // Absolute paths are not. We start from the parent of the item.
1560        [.., parent, leaf] => (parent.res.opt_def_id()?.as_local()?, leaf.ident),
1561    };
1562    // First we try to get the `DefId` of the item.
1563    for child in
1564        cx.tcx.module_children_local(parent_def_id).iter().filter(move |c| c.ident == ident)
1565    {
1566        if let Res::Def(DefKind::Ctor(..), _) | Res::SelfCtor(..) = child.res {
1567            continue;
1568        }
1569
1570        if let Some(def_id) = child.res.opt_def_id()
1571            && target_def_id == def_id
1572        {
1573            let mut last_path_res = None;
1574            'reexps: for reexp in child.reexport_chain.iter() {
1575                if let Some(use_def_id) = reexp.id()
1576                    && let Some(local_use_def_id) = use_def_id.as_local()
1577                    && let hir::Node::Item(item) = cx.tcx.hir_node_by_def_id(local_use_def_id)
1578                    && let hir::ItemKind::Use(path, hir::UseKind::Single(_)) = item.kind
1579                {
1580                    for res in path.res.present_items() {
1581                        if let Res::Def(DefKind::Ctor(..), _) | Res::SelfCtor(..) = res {
1582                            continue;
1583                        }
1584                        if (cx.document_hidden() ||
1585                            !cx.tcx.is_doc_hidden(use_def_id)) &&
1586                            // We never check for "cx.document_private()"
1587                            // because if a re-export is not fully public, it's never
1588                            // documented.
1589                            cx.tcx.local_visibility(local_use_def_id).is_public()
1590                        {
1591                            break 'reexps;
1592                        }
1593                        last_path_res = Some((path, res));
1594                        continue 'reexps;
1595                    }
1596                }
1597            }
1598            if !child.reexport_chain.is_empty() {
1599                // So in here, we use the data we gathered from iterating the reexports. If
1600                // `last_path_res` is set, it can mean two things:
1601                //
1602                // 1. We found a public reexport.
1603                // 2. We didn't find a public reexport so it's the "end type" path.
1604                if let Some((new_path, _)) = last_path_res {
1605                    return Some(first_non_private_clean_path(
1606                        cx,
1607                        path,
1608                        new_path.segments,
1609                        new_path.span,
1610                    ));
1611                }
1612                // If `last_path_res` is `None`, it can mean two things:
1613                //
1614                // 1. The re-export is public, no need to change anything, just use the path as is.
1615                // 2. Nothing was found, so let's just return the original path.
1616                return None;
1617            }
1618        }
1619    }
1620    None
1621}
1622
1623fn clean_qpath<'tcx>(hir_ty: &hir::Ty<'tcx>, cx: &mut DocContext<'tcx>) -> Type {
1624    let hir::Ty { hir_id, span, ref kind } = *hir_ty;
1625    let hir::TyKind::Path(qpath) = kind else { unreachable!() };
1626
1627    match qpath {
1628        hir::QPath::Resolved(None, path) => {
1629            if let Res::Def(DefKind::TyParam, did) = path.res {
1630                if let Some(new_ty) = cx.args.get(&did).and_then(|p| p.as_ty()).cloned() {
1631                    return new_ty;
1632                }
1633                if let Some(bounds) = cx.impl_trait_bounds.remove(&did.into()) {
1634                    return ImplTrait(bounds);
1635                }
1636            }
1637
1638            if let Some(expanded) = maybe_expand_private_type_alias(cx, path) {
1639                expanded
1640            } else {
1641                // First we check if it's a private re-export.
1642                let path = if let Some(path) = first_non_private(cx, hir_id, path) {
1643                    path
1644                } else {
1645                    clean_path(path, cx)
1646                };
1647                resolve_type(cx, path)
1648            }
1649        }
1650        hir::QPath::Resolved(Some(qself), p) => {
1651            // Try to normalize `<X as Y>::T` to a type
1652            let ty = lower_ty(cx.tcx, hir_ty);
1653            // `hir_to_ty` can return projection types with escaping vars for GATs, e.g. `<() as Trait>::Gat<'_>`
1654            if !ty.has_escaping_bound_vars()
1655                && let Some(normalized_value) = normalize(cx, ty::Binder::dummy(ty))
1656            {
1657                return clean_middle_ty(normalized_value, cx, None, None);
1658            }
1659
1660            let trait_segments = &p.segments[..p.segments.len() - 1];
1661            let trait_def = cx.tcx.parent(p.res.def_id());
1662            let trait_ = self::Path {
1663                res: Res::Def(DefKind::Trait, trait_def),
1664                segments: trait_segments.iter().map(|x| clean_path_segment(x, cx)).collect(),
1665            };
1666            register_res(cx, trait_.res);
1667            let self_def_id = DefId::local(qself.hir_id.owner.def_id.local_def_index);
1668            let self_type = clean_ty(qself, cx);
1669            let should_fully_qualify =
1670                should_fully_qualify_path(Some(self_def_id), &trait_, &self_type);
1671            Type::QPath(Box::new(QPathData {
1672                assoc: clean_path_segment(p.segments.last().expect("segments were empty"), cx),
1673                should_fully_qualify,
1674                self_type,
1675                trait_: Some(trait_),
1676            }))
1677        }
1678        hir::QPath::TypeRelative(qself, segment) => {
1679            let ty = lower_ty(cx.tcx, hir_ty);
1680            let self_type = clean_ty(qself, cx);
1681
1682            let (trait_, should_fully_qualify) = match ty.kind() {
1683                ty::Alias(ty::Projection, proj) => {
1684                    let res = Res::Def(DefKind::Trait, proj.trait_ref(cx.tcx).def_id);
1685                    let trait_ = clean_path(&hir::Path { span, res, segments: &[] }, cx);
1686                    register_res(cx, trait_.res);
1687                    let self_def_id = res.opt_def_id();
1688                    let should_fully_qualify =
1689                        should_fully_qualify_path(self_def_id, &trait_, &self_type);
1690
1691                    (Some(trait_), should_fully_qualify)
1692                }
1693                ty::Alias(ty::Inherent, _) => (None, false),
1694                // Rustdoc handles `ty::Error`s by turning them into `Type::Infer`s.
1695                ty::Error(_) => return Type::Infer,
1696                _ => bug!("clean: expected associated type, found `{ty:?}`"),
1697            };
1698
1699            Type::QPath(Box::new(QPathData {
1700                assoc: clean_path_segment(segment, cx),
1701                should_fully_qualify,
1702                self_type,
1703                trait_,
1704            }))
1705        }
1706    }
1707}
1708
1709fn maybe_expand_private_type_alias<'tcx>(
1710    cx: &mut DocContext<'tcx>,
1711    path: &hir::Path<'tcx>,
1712) -> Option<Type> {
1713    let Res::Def(DefKind::TyAlias, def_id) = path.res else { return None };
1714    // Substitute private type aliases
1715    let def_id = def_id.as_local()?;
1716    let alias = if !cx.cache.effective_visibilities.is_exported(cx.tcx, def_id.to_def_id())
1717        && !cx.current_type_aliases.contains_key(&def_id.to_def_id())
1718    {
1719        &cx.tcx.hir_expect_item(def_id).kind
1720    } else {
1721        return None;
1722    };
1723    let hir::ItemKind::TyAlias(_, generics, ty) = alias else { return None };
1724
1725    let final_seg = &path.segments.last().expect("segments were empty");
1726    let mut args = DefIdMap::default();
1727    let generic_args = final_seg.args();
1728
1729    let mut indices: hir::GenericParamCount = Default::default();
1730    for param in generics.params.iter() {
1731        match param.kind {
1732            hir::GenericParamKind::Lifetime { .. } => {
1733                let mut j = 0;
1734                let lifetime = generic_args.args.iter().find_map(|arg| match arg {
1735                    hir::GenericArg::Lifetime(lt) => {
1736                        if indices.lifetimes == j {
1737                            return Some(lt);
1738                        }
1739                        j += 1;
1740                        None
1741                    }
1742                    _ => None,
1743                });
1744                if let Some(lt) = lifetime {
1745                    let lt = if !lt.is_anonymous() {
1746                        clean_lifetime(lt, cx)
1747                    } else {
1748                        Lifetime::elided()
1749                    };
1750                    args.insert(param.def_id.to_def_id(), GenericArg::Lifetime(lt));
1751                }
1752                indices.lifetimes += 1;
1753            }
1754            hir::GenericParamKind::Type { ref default, .. } => {
1755                let mut j = 0;
1756                let type_ = generic_args.args.iter().find_map(|arg| match arg {
1757                    hir::GenericArg::Type(ty) => {
1758                        if indices.types == j {
1759                            return Some(ty.as_unambig_ty());
1760                        }
1761                        j += 1;
1762                        None
1763                    }
1764                    _ => None,
1765                });
1766                if let Some(ty) = type_.or(*default) {
1767                    args.insert(param.def_id.to_def_id(), GenericArg::Type(clean_ty(ty, cx)));
1768                }
1769                indices.types += 1;
1770            }
1771            // FIXME(#82852): Instantiate const parameters.
1772            hir::GenericParamKind::Const { .. } => {}
1773        }
1774    }
1775
1776    Some(cx.enter_alias(args, def_id.to_def_id(), |cx| {
1777        cx.with_param_env(def_id.to_def_id(), |cx| clean_ty(ty, cx))
1778    }))
1779}
1780
1781pub(crate) fn clean_ty<'tcx>(ty: &hir::Ty<'tcx>, cx: &mut DocContext<'tcx>) -> Type {
1782    use rustc_hir::*;
1783
1784    match ty.kind {
1785        TyKind::Never => Primitive(PrimitiveType::Never),
1786        TyKind::Ptr(ref m) => RawPointer(m.mutbl, Box::new(clean_ty(m.ty, cx))),
1787        TyKind::Ref(l, ref m) => {
1788            let lifetime = if l.is_anonymous() { None } else { Some(clean_lifetime(l, cx)) };
1789            BorrowedRef { lifetime, mutability: m.mutbl, type_: Box::new(clean_ty(m.ty, cx)) }
1790        }
1791        TyKind::Slice(ty) => Slice(Box::new(clean_ty(ty, cx))),
1792        TyKind::Pat(ty, pat) => Type::Pat(Box::new(clean_ty(ty, cx)), format!("{pat:?}").into()),
1793        TyKind::Array(ty, const_arg) => {
1794            // NOTE(min_const_generics): We can't use `const_eval_poly` for constants
1795            // as we currently do not supply the parent generics to anonymous constants
1796            // but do allow `ConstKind::Param`.
1797            //
1798            // `const_eval_poly` tries to first substitute generic parameters which
1799            // results in an ICE while manually constructing the constant and using `eval`
1800            // does nothing for `ConstKind::Param`.
1801            let length = match const_arg.kind {
1802                hir::ConstArgKind::Infer(..) | hir::ConstArgKind::Error(..) => "_".to_string(),
1803                hir::ConstArgKind::Anon(hir::AnonConst { def_id, .. }) => {
1804                    let ct = lower_const_arg_for_rustdoc(cx.tcx, const_arg, FeedConstTy::No);
1805                    let typing_env = ty::TypingEnv::post_analysis(cx.tcx, *def_id);
1806                    let ct = cx.tcx.normalize_erasing_regions(typing_env, ct);
1807                    print_const(cx, ct)
1808                }
1809                hir::ConstArgKind::Path(..) => {
1810                    let ct = lower_const_arg_for_rustdoc(cx.tcx, const_arg, FeedConstTy::No);
1811                    print_const(cx, ct)
1812                }
1813            };
1814            Array(Box::new(clean_ty(ty, cx)), length.into())
1815        }
1816        TyKind::Tup(tys) => Tuple(tys.iter().map(|ty| clean_ty(ty, cx)).collect()),
1817        TyKind::OpaqueDef(ty) => {
1818            ImplTrait(ty.bounds.iter().filter_map(|x| clean_generic_bound(x, cx)).collect())
1819        }
1820        TyKind::Path(_) => clean_qpath(ty, cx),
1821        TyKind::TraitObject(bounds, lifetime) => {
1822            let bounds = bounds.iter().map(|bound| clean_poly_trait_ref(bound, cx)).collect();
1823            let lifetime = if !lifetime.is_elided() {
1824                Some(clean_lifetime(lifetime.pointer(), cx))
1825            } else {
1826                None
1827            };
1828            DynTrait(bounds, lifetime)
1829        }
1830        TyKind::FnPtr(barefn) => BareFunction(Box::new(clean_bare_fn_ty(barefn, cx))),
1831        TyKind::UnsafeBinder(unsafe_binder_ty) => {
1832            UnsafeBinder(Box::new(clean_unsafe_binder_ty(unsafe_binder_ty, cx)))
1833        }
1834        // Rustdoc handles `TyKind::Err`s by turning them into `Type::Infer`s.
1835        TyKind::Infer(())
1836        | TyKind::Err(_)
1837        | TyKind::InferDelegation(..)
1838        | TyKind::TraitAscription(_) => Infer,
1839    }
1840}
1841
1842/// Returns `None` if the type could not be normalized
1843fn normalize<'tcx>(
1844    cx: &DocContext<'tcx>,
1845    ty: ty::Binder<'tcx, Ty<'tcx>>,
1846) -> Option<ty::Binder<'tcx, Ty<'tcx>>> {
1847    // HACK: low-churn fix for #79459 while we wait for a trait normalization fix
1848    if !cx.tcx.sess.opts.unstable_opts.normalize_docs {
1849        return None;
1850    }
1851
1852    use rustc_middle::traits::ObligationCause;
1853    use rustc_trait_selection::infer::TyCtxtInferExt;
1854    use rustc_trait_selection::traits::query::normalize::QueryNormalizeExt;
1855
1856    // Try to normalize `<X as Y>::T` to a type
1857    let infcx = cx.tcx.infer_ctxt().build(TypingMode::non_body_analysis());
1858    let normalized = infcx
1859        .at(&ObligationCause::dummy(), cx.param_env)
1860        .query_normalize(ty)
1861        .map(|resolved| infcx.resolve_vars_if_possible(resolved.value));
1862    match normalized {
1863        Ok(normalized_value) => {
1864            debug!("normalized {ty:?} to {normalized_value:?}");
1865            Some(normalized_value)
1866        }
1867        Err(err) => {
1868            debug!("failed to normalize {ty:?}: {err:?}");
1869            None
1870        }
1871    }
1872}
1873
1874fn clean_trait_object_lifetime_bound<'tcx>(
1875    region: ty::Region<'tcx>,
1876    container: Option<ContainerTy<'_, 'tcx>>,
1877    preds: &'tcx ty::List<ty::PolyExistentialPredicate<'tcx>>,
1878    tcx: TyCtxt<'tcx>,
1879) -> Option<Lifetime> {
1880    if can_elide_trait_object_lifetime_bound(region, container, preds, tcx) {
1881        return None;
1882    }
1883
1884    // Since there is a semantic difference between an implicitly elided (i.e. "defaulted") object
1885    // lifetime and an explicitly elided object lifetime (`'_`), we intentionally don't hide the
1886    // latter contrary to `clean_middle_region`.
1887    match region.kind() {
1888        ty::ReStatic => Some(Lifetime::statik()),
1889        ty::ReEarlyParam(region) => Some(Lifetime(region.name)),
1890        ty::ReBound(_, ty::BoundRegion { kind: ty::BoundRegionKind::Named(def_id), .. }) => {
1891            Some(Lifetime(tcx.item_name(def_id)))
1892        }
1893        ty::ReBound(..)
1894        | ty::ReLateParam(_)
1895        | ty::ReVar(_)
1896        | ty::RePlaceholder(_)
1897        | ty::ReErased
1898        | ty::ReError(_) => None,
1899    }
1900}
1901
1902fn can_elide_trait_object_lifetime_bound<'tcx>(
1903    region: ty::Region<'tcx>,
1904    container: Option<ContainerTy<'_, 'tcx>>,
1905    preds: &'tcx ty::List<ty::PolyExistentialPredicate<'tcx>>,
1906    tcx: TyCtxt<'tcx>,
1907) -> bool {
1908    // Below we quote extracts from https://doc.rust-lang.org/stable/reference/lifetime-elision.html#default-trait-object-lifetimes
1909
1910    // > If the trait object is used as a type argument of a generic type then the containing type is
1911    // > first used to try to infer a bound.
1912    let default = container
1913        .map_or(ObjectLifetimeDefault::Empty, |container| container.object_lifetime_default(tcx));
1914
1915    // > If there is a unique bound from the containing type then that is the default
1916    // If there is a default object lifetime and the given region is lexically equal to it, elide it.
1917    match default {
1918        ObjectLifetimeDefault::Static => return region.kind() == ty::ReStatic,
1919        // FIXME(fmease): Don't compare lexically but respect de Bruijn indices etc. to handle shadowing correctly.
1920        ObjectLifetimeDefault::Arg(default) => {
1921            return region.get_name(tcx) == default.get_name(tcx);
1922        }
1923        // > If there is more than one bound from the containing type then an explicit bound must be specified
1924        // Due to ambiguity there is no default trait-object lifetime and thus elision is impossible.
1925        // Don't elide the lifetime.
1926        ObjectLifetimeDefault::Ambiguous => return false,
1927        // There is no meaningful bound. Further processing is needed...
1928        ObjectLifetimeDefault::Empty => {}
1929    }
1930
1931    // > If neither of those rules apply, then the bounds on the trait are used:
1932    match *object_region_bounds(tcx, preds) {
1933        // > If the trait has no lifetime bounds, then the lifetime is inferred in expressions
1934        // > and is 'static outside of expressions.
1935        // FIXME: If we are in an expression context (i.e. fn bodies and const exprs) then the default is
1936        // `'_` and not `'static`. Only if we are in a non-expression one, the default is `'static`.
1937        // Note however that at the time of this writing it should be fine to disregard this subtlety
1938        // as we neither render const exprs faithfully anyway (hiding them in some places or using `_` instead)
1939        // nor show the contents of fn bodies.
1940        [] => region.kind() == ty::ReStatic,
1941        // > If the trait is defined with a single lifetime bound then that bound is used.
1942        // > If 'static is used for any lifetime bound then 'static is used.
1943        // FIXME(fmease): Don't compare lexically but respect de Bruijn indices etc. to handle shadowing correctly.
1944        [object_region] => object_region.get_name(tcx) == region.get_name(tcx),
1945        // There are several distinct trait regions and none are `'static`.
1946        // Due to ambiguity there is no default trait-object lifetime and thus elision is impossible.
1947        // Don't elide the lifetime.
1948        _ => false,
1949    }
1950}
1951
1952#[derive(Debug)]
1953pub(crate) enum ContainerTy<'a, 'tcx> {
1954    Ref(ty::Region<'tcx>),
1955    Regular {
1956        ty: DefId,
1957        /// The arguments *have* to contain an arg for the self type if the corresponding generics
1958        /// contain a self type.
1959        args: ty::Binder<'tcx, &'a [ty::GenericArg<'tcx>]>,
1960        arg: usize,
1961    },
1962}
1963
1964impl<'tcx> ContainerTy<'_, 'tcx> {
1965    fn object_lifetime_default(self, tcx: TyCtxt<'tcx>) -> ObjectLifetimeDefault<'tcx> {
1966        match self {
1967            Self::Ref(region) => ObjectLifetimeDefault::Arg(region),
1968            Self::Regular { ty: container, args, arg: index } => {
1969                let (DefKind::Struct
1970                | DefKind::Union
1971                | DefKind::Enum
1972                | DefKind::TyAlias
1973                | DefKind::Trait) = tcx.def_kind(container)
1974                else {
1975                    return ObjectLifetimeDefault::Empty;
1976                };
1977
1978                let generics = tcx.generics_of(container);
1979                debug_assert_eq!(generics.parent_count, 0);
1980
1981                let param = generics.own_params[index].def_id;
1982                let default = tcx.object_lifetime_default(param);
1983                match default {
1984                    rbv::ObjectLifetimeDefault::Param(lifetime) => {
1985                        // The index is relative to the parent generics but since we don't have any,
1986                        // we don't need to translate it.
1987                        let index = generics.param_def_id_to_index[&lifetime];
1988                        let arg = args.skip_binder()[index as usize].expect_region();
1989                        ObjectLifetimeDefault::Arg(arg)
1990                    }
1991                    rbv::ObjectLifetimeDefault::Empty => ObjectLifetimeDefault::Empty,
1992                    rbv::ObjectLifetimeDefault::Static => ObjectLifetimeDefault::Static,
1993                    rbv::ObjectLifetimeDefault::Ambiguous => ObjectLifetimeDefault::Ambiguous,
1994                }
1995            }
1996        }
1997    }
1998}
1999
2000#[derive(Debug, Clone, Copy)]
2001pub(crate) enum ObjectLifetimeDefault<'tcx> {
2002    Empty,
2003    Static,
2004    Ambiguous,
2005    Arg(ty::Region<'tcx>),
2006}
2007
2008#[instrument(level = "trace", skip(cx), ret)]
2009pub(crate) fn clean_middle_ty<'tcx>(
2010    bound_ty: ty::Binder<'tcx, Ty<'tcx>>,
2011    cx: &mut DocContext<'tcx>,
2012    parent_def_id: Option<DefId>,
2013    container: Option<ContainerTy<'_, 'tcx>>,
2014) -> Type {
2015    let bound_ty = normalize(cx, bound_ty).unwrap_or(bound_ty);
2016    match *bound_ty.skip_binder().kind() {
2017        ty::Never => Primitive(PrimitiveType::Never),
2018        ty::Bool => Primitive(PrimitiveType::Bool),
2019        ty::Char => Primitive(PrimitiveType::Char),
2020        ty::Int(int_ty) => Primitive(int_ty.into()),
2021        ty::Uint(uint_ty) => Primitive(uint_ty.into()),
2022        ty::Float(float_ty) => Primitive(float_ty.into()),
2023        ty::Str => Primitive(PrimitiveType::Str),
2024        ty::Slice(ty) => Slice(Box::new(clean_middle_ty(bound_ty.rebind(ty), cx, None, None))),
2025        ty::Pat(ty, pat) => Type::Pat(
2026            Box::new(clean_middle_ty(bound_ty.rebind(ty), cx, None, None)),
2027            format!("{pat:?}").into_boxed_str(),
2028        ),
2029        ty::Array(ty, n) => {
2030            let n = cx.tcx.normalize_erasing_regions(cx.typing_env(), n);
2031            let n = print_const(cx, n);
2032            Array(Box::new(clean_middle_ty(bound_ty.rebind(ty), cx, None, None)), n.into())
2033        }
2034        ty::RawPtr(ty, mutbl) => {
2035            RawPointer(mutbl, Box::new(clean_middle_ty(bound_ty.rebind(ty), cx, None, None)))
2036        }
2037        ty::Ref(r, ty, mutbl) => BorrowedRef {
2038            lifetime: clean_middle_region(r, cx),
2039            mutability: mutbl,
2040            type_: Box::new(clean_middle_ty(
2041                bound_ty.rebind(ty),
2042                cx,
2043                None,
2044                Some(ContainerTy::Ref(r)),
2045            )),
2046        },
2047        ty::FnDef(..) | ty::FnPtr(..) => {
2048            // FIXME: should we merge the outer and inner binders somehow?
2049            let sig = bound_ty.skip_binder().fn_sig(cx.tcx);
2050            let decl = clean_poly_fn_sig(cx, None, sig);
2051            let generic_params = clean_bound_vars(sig.bound_vars(), cx);
2052
2053            BareFunction(Box::new(BareFunctionDecl {
2054                safety: sig.safety(),
2055                generic_params,
2056                decl,
2057                abi: sig.abi(),
2058            }))
2059        }
2060        ty::UnsafeBinder(inner) => {
2061            let generic_params = clean_bound_vars(inner.bound_vars(), cx);
2062            let ty = clean_middle_ty(inner.into(), cx, None, None);
2063            UnsafeBinder(Box::new(UnsafeBinderTy { generic_params, ty }))
2064        }
2065        ty::Adt(def, args) => {
2066            let did = def.did();
2067            let kind = match def.adt_kind() {
2068                AdtKind::Struct => ItemType::Struct,
2069                AdtKind::Union => ItemType::Union,
2070                AdtKind::Enum => ItemType::Enum,
2071            };
2072            inline::record_extern_fqn(cx, did, kind);
2073            let path = clean_middle_path(cx, did, false, ThinVec::new(), bound_ty.rebind(args));
2074            Type::Path { path }
2075        }
2076        ty::Foreign(did) => {
2077            inline::record_extern_fqn(cx, did, ItemType::ForeignType);
2078            let path = clean_middle_path(
2079                cx,
2080                did,
2081                false,
2082                ThinVec::new(),
2083                ty::Binder::dummy(ty::GenericArgs::empty()),
2084            );
2085            Type::Path { path }
2086        }
2087        ty::Dynamic(obj, reg) => {
2088            // HACK: pick the first `did` as the `did` of the trait object. Someone
2089            // might want to implement "native" support for marker-trait-only
2090            // trait objects.
2091            let mut dids = obj.auto_traits();
2092            let did = obj
2093                .principal_def_id()
2094                .or_else(|| dids.next())
2095                .unwrap_or_else(|| panic!("found trait object `{bound_ty:?}` with no traits?"));
2096            let args = match obj.principal() {
2097                Some(principal) => principal.map_bound(|p| p.args),
2098                // marker traits have no args.
2099                _ => ty::Binder::dummy(ty::GenericArgs::empty()),
2100            };
2101
2102            inline::record_extern_fqn(cx, did, ItemType::Trait);
2103
2104            let lifetime = clean_trait_object_lifetime_bound(reg, container, obj, cx.tcx);
2105
2106            let mut bounds = dids
2107                .map(|did| {
2108                    let empty = ty::Binder::dummy(ty::GenericArgs::empty());
2109                    let path = clean_middle_path(cx, did, false, ThinVec::new(), empty);
2110                    inline::record_extern_fqn(cx, did, ItemType::Trait);
2111                    PolyTrait { trait_: path, generic_params: Vec::new() }
2112                })
2113                .collect::<Vec<_>>();
2114
2115            let constraints = obj
2116                .projection_bounds()
2117                .map(|pb| AssocItemConstraint {
2118                    assoc: projection_to_path_segment(
2119                        pb.map_bound(|pb| {
2120                            pb.with_self_ty(cx.tcx, cx.tcx.types.trait_object_dummy_self)
2121                                .projection_term
2122                        }),
2123                        cx,
2124                    ),
2125                    kind: AssocItemConstraintKind::Equality {
2126                        term: clean_middle_term(pb.map_bound(|pb| pb.term), cx),
2127                    },
2128                })
2129                .collect();
2130
2131            let late_bound_regions: FxIndexSet<_> = obj
2132                .iter()
2133                .flat_map(|pred| pred.bound_vars())
2134                .filter_map(|var| match var {
2135                    ty::BoundVariableKind::Region(ty::BoundRegionKind::Named(def_id)) => {
2136                        let name = cx.tcx.item_name(def_id);
2137                        if name != kw::UnderscoreLifetime {
2138                            Some(GenericParamDef::lifetime(def_id, name))
2139                        } else {
2140                            None
2141                        }
2142                    }
2143                    _ => None,
2144                })
2145                .collect();
2146            let late_bound_regions = late_bound_regions.into_iter().collect();
2147
2148            let path = clean_middle_path(cx, did, false, constraints, args);
2149            bounds.insert(0, PolyTrait { trait_: path, generic_params: late_bound_regions });
2150
2151            DynTrait(bounds, lifetime)
2152        }
2153        ty::Tuple(t) => {
2154            Tuple(t.iter().map(|t| clean_middle_ty(bound_ty.rebind(t), cx, None, None)).collect())
2155        }
2156
2157        ty::Alias(ty::Projection, alias_ty @ ty::AliasTy { def_id, args, .. }) => {
2158            if cx.tcx.is_impl_trait_in_trait(def_id) {
2159                clean_middle_opaque_bounds(cx, def_id, args)
2160            } else {
2161                Type::QPath(Box::new(clean_projection(
2162                    bound_ty.rebind(alias_ty.into()),
2163                    cx,
2164                    parent_def_id,
2165                )))
2166            }
2167        }
2168
2169        ty::Alias(ty::Inherent, alias_ty @ ty::AliasTy { def_id, .. }) => {
2170            let alias_ty = bound_ty.rebind(alias_ty);
2171            let self_type = clean_middle_ty(alias_ty.map_bound(|ty| ty.self_ty()), cx, None, None);
2172
2173            Type::QPath(Box::new(QPathData {
2174                assoc: PathSegment {
2175                    name: cx.tcx.item_name(def_id),
2176                    args: GenericArgs::AngleBracketed {
2177                        args: clean_middle_generic_args(
2178                            cx,
2179                            alias_ty.map_bound(|ty| ty.args.as_slice()),
2180                            true,
2181                            def_id,
2182                        ),
2183                        constraints: Default::default(),
2184                    },
2185                },
2186                should_fully_qualify: false,
2187                self_type,
2188                trait_: None,
2189            }))
2190        }
2191
2192        ty::Alias(ty::Free, ty::AliasTy { def_id, args, .. }) => {
2193            if cx.tcx.features().lazy_type_alias() {
2194                // Free type alias `data` represents the `type X` in `type X = Y`. If we need `Y`,
2195                // we need to use `type_of`.
2196                let path =
2197                    clean_middle_path(cx, def_id, false, ThinVec::new(), bound_ty.rebind(args));
2198                Type::Path { path }
2199            } else {
2200                let ty = cx.tcx.type_of(def_id).instantiate(cx.tcx, args);
2201                clean_middle_ty(bound_ty.rebind(ty), cx, None, None)
2202            }
2203        }
2204
2205        ty::Param(ref p) => {
2206            if let Some(bounds) = cx.impl_trait_bounds.remove(&p.index.into()) {
2207                ImplTrait(bounds)
2208            } else if p.name == kw::SelfUpper {
2209                SelfTy
2210            } else {
2211                Generic(p.name)
2212            }
2213        }
2214
2215        ty::Bound(_, ref ty) => match ty.kind {
2216            ty::BoundTyKind::Param(def_id) => Generic(cx.tcx.item_name(def_id)),
2217            ty::BoundTyKind::Anon => panic!("unexpected anonymous bound type variable"),
2218        },
2219
2220        ty::Alias(ty::Opaque, ty::AliasTy { def_id, args, .. }) => {
2221            // If it's already in the same alias, don't get an infinite loop.
2222            if cx.current_type_aliases.contains_key(&def_id) {
2223                let path =
2224                    clean_middle_path(cx, def_id, false, ThinVec::new(), bound_ty.rebind(args));
2225                Type::Path { path }
2226            } else {
2227                *cx.current_type_aliases.entry(def_id).or_insert(0) += 1;
2228                // Grab the "TraitA + TraitB" from `impl TraitA + TraitB`,
2229                // by looking up the bounds associated with the def_id.
2230                let ty = clean_middle_opaque_bounds(cx, def_id, args);
2231                if let Some(count) = cx.current_type_aliases.get_mut(&def_id) {
2232                    *count -= 1;
2233                    if *count == 0 {
2234                        cx.current_type_aliases.remove(&def_id);
2235                    }
2236                }
2237                ty
2238            }
2239        }
2240
2241        ty::Closure(..) => panic!("Closure"),
2242        ty::CoroutineClosure(..) => panic!("CoroutineClosure"),
2243        ty::Coroutine(..) => panic!("Coroutine"),
2244        ty::Placeholder(..) => panic!("Placeholder"),
2245        ty::CoroutineWitness(..) => panic!("CoroutineWitness"),
2246        ty::Infer(..) => panic!("Infer"),
2247
2248        ty::Error(_) => FatalError.raise(),
2249    }
2250}
2251
2252fn clean_middle_opaque_bounds<'tcx>(
2253    cx: &mut DocContext<'tcx>,
2254    impl_trait_def_id: DefId,
2255    args: ty::GenericArgsRef<'tcx>,
2256) -> Type {
2257    let mut has_sized = false;
2258
2259    let bounds: Vec<_> = cx
2260        .tcx
2261        .explicit_item_bounds(impl_trait_def_id)
2262        .iter_instantiated_copied(cx.tcx, args)
2263        .collect();
2264
2265    let mut bounds = bounds
2266        .iter()
2267        .filter_map(|(bound, _)| {
2268            let bound_predicate = bound.kind();
2269            let trait_ref = match bound_predicate.skip_binder() {
2270                ty::ClauseKind::Trait(tr) => bound_predicate.rebind(tr.trait_ref),
2271                ty::ClauseKind::TypeOutlives(ty::OutlivesPredicate(_ty, reg)) => {
2272                    return clean_middle_region(reg, cx).map(GenericBound::Outlives);
2273                }
2274                _ => return None,
2275            };
2276
2277            // FIXME(sized-hierarchy): Always skip `MetaSized` bounds so that only `?Sized`
2278            // is shown and none of the new sizedness traits leak into documentation.
2279            if cx.tcx.is_lang_item(trait_ref.def_id(), LangItem::MetaSized) {
2280                return None;
2281            }
2282
2283            if let Some(sized) = cx.tcx.lang_items().sized_trait()
2284                && trait_ref.def_id() == sized
2285            {
2286                has_sized = true;
2287                return None;
2288            }
2289
2290            let bindings: ThinVec<_> = bounds
2291                .iter()
2292                .filter_map(|(bound, _)| {
2293                    let bound = bound.kind();
2294                    if let ty::ClauseKind::Projection(proj_pred) = bound.skip_binder()
2295                        && proj_pred.projection_term.trait_ref(cx.tcx) == trait_ref.skip_binder()
2296                    {
2297                        return Some(AssocItemConstraint {
2298                            assoc: projection_to_path_segment(
2299                                bound.rebind(proj_pred.projection_term),
2300                                cx,
2301                            ),
2302                            kind: AssocItemConstraintKind::Equality {
2303                                term: clean_middle_term(bound.rebind(proj_pred.term), cx),
2304                            },
2305                        });
2306                    }
2307                    None
2308                })
2309                .collect();
2310
2311            Some(clean_poly_trait_ref_with_constraints(cx, trait_ref, bindings))
2312        })
2313        .collect::<Vec<_>>();
2314
2315    if !has_sized {
2316        bounds.push(GenericBound::maybe_sized(cx));
2317    }
2318
2319    // Move trait bounds to the front.
2320    bounds.sort_by_key(|b| !b.is_trait_bound());
2321
2322    // Add back a `Sized` bound if there are no *trait* bounds remaining (incl. `?Sized`).
2323    // Since all potential trait bounds are at the front we can just check the first bound.
2324    if bounds.first().is_none_or(|b| !b.is_trait_bound()) {
2325        bounds.insert(0, GenericBound::sized(cx));
2326    }
2327
2328    if let Some(args) = cx.tcx.rendered_precise_capturing_args(impl_trait_def_id) {
2329        bounds.push(GenericBound::Use(
2330            args.iter()
2331                .map(|arg| match arg {
2332                    hir::PreciseCapturingArgKind::Lifetime(lt) => {
2333                        PreciseCapturingArg::Lifetime(Lifetime(*lt))
2334                    }
2335                    hir::PreciseCapturingArgKind::Param(param) => {
2336                        PreciseCapturingArg::Param(*param)
2337                    }
2338                })
2339                .collect(),
2340        ));
2341    }
2342
2343    ImplTrait(bounds)
2344}
2345
2346pub(crate) fn clean_field<'tcx>(field: &hir::FieldDef<'tcx>, cx: &mut DocContext<'tcx>) -> Item {
2347    clean_field_with_def_id(field.def_id.to_def_id(), field.ident.name, clean_ty(field.ty, cx), cx)
2348}
2349
2350pub(crate) fn clean_middle_field(field: &ty::FieldDef, cx: &mut DocContext<'_>) -> Item {
2351    clean_field_with_def_id(
2352        field.did,
2353        field.name,
2354        clean_middle_ty(
2355            ty::Binder::dummy(cx.tcx.type_of(field.did).instantiate_identity()),
2356            cx,
2357            Some(field.did),
2358            None,
2359        ),
2360        cx,
2361    )
2362}
2363
2364pub(crate) fn clean_field_with_def_id(
2365    def_id: DefId,
2366    name: Symbol,
2367    ty: Type,
2368    cx: &mut DocContext<'_>,
2369) -> Item {
2370    Item::from_def_id_and_parts(def_id, Some(name), StructFieldItem(ty), cx)
2371}
2372
2373pub(crate) fn clean_variant_def(variant: &ty::VariantDef, cx: &mut DocContext<'_>) -> Item {
2374    let discriminant = match variant.discr {
2375        ty::VariantDiscr::Explicit(def_id) => Some(Discriminant { expr: None, value: def_id }),
2376        ty::VariantDiscr::Relative(_) => None,
2377    };
2378
2379    let kind = match variant.ctor_kind() {
2380        Some(CtorKind::Const) => VariantKind::CLike,
2381        Some(CtorKind::Fn) => VariantKind::Tuple(
2382            variant.fields.iter().map(|field| clean_middle_field(field, cx)).collect(),
2383        ),
2384        None => VariantKind::Struct(VariantStruct {
2385            fields: variant.fields.iter().map(|field| clean_middle_field(field, cx)).collect(),
2386        }),
2387    };
2388
2389    Item::from_def_id_and_parts(
2390        variant.def_id,
2391        Some(variant.name),
2392        VariantItem(Variant { kind, discriminant }),
2393        cx,
2394    )
2395}
2396
2397pub(crate) fn clean_variant_def_with_args<'tcx>(
2398    variant: &ty::VariantDef,
2399    args: &GenericArgsRef<'tcx>,
2400    cx: &mut DocContext<'tcx>,
2401) -> Item {
2402    let discriminant = match variant.discr {
2403        ty::VariantDiscr::Explicit(def_id) => Some(Discriminant { expr: None, value: def_id }),
2404        ty::VariantDiscr::Relative(_) => None,
2405    };
2406
2407    use rustc_middle::traits::ObligationCause;
2408    use rustc_trait_selection::infer::TyCtxtInferExt;
2409    use rustc_trait_selection::traits::query::normalize::QueryNormalizeExt;
2410
2411    let infcx = cx.tcx.infer_ctxt().build(TypingMode::non_body_analysis());
2412    let kind = match variant.ctor_kind() {
2413        Some(CtorKind::Const) => VariantKind::CLike,
2414        Some(CtorKind::Fn) => VariantKind::Tuple(
2415            variant
2416                .fields
2417                .iter()
2418                .map(|field| {
2419                    let ty = cx.tcx.type_of(field.did).instantiate(cx.tcx, args);
2420
2421                    // normalize the type to only show concrete types
2422                    // note: we do not use try_normalize_erasing_regions since we
2423                    // do care about showing the regions
2424                    let ty = infcx
2425                        .at(&ObligationCause::dummy(), cx.param_env)
2426                        .query_normalize(ty)
2427                        .map(|normalized| normalized.value)
2428                        .unwrap_or(ty);
2429
2430                    clean_field_with_def_id(
2431                        field.did,
2432                        field.name,
2433                        clean_middle_ty(ty::Binder::dummy(ty), cx, Some(field.did), None),
2434                        cx,
2435                    )
2436                })
2437                .collect(),
2438        ),
2439        None => VariantKind::Struct(VariantStruct {
2440            fields: variant
2441                .fields
2442                .iter()
2443                .map(|field| {
2444                    let ty = cx.tcx.type_of(field.did).instantiate(cx.tcx, args);
2445
2446                    // normalize the type to only show concrete types
2447                    // note: we do not use try_normalize_erasing_regions since we
2448                    // do care about showing the regions
2449                    let ty = infcx
2450                        .at(&ObligationCause::dummy(), cx.param_env)
2451                        .query_normalize(ty)
2452                        .map(|normalized| normalized.value)
2453                        .unwrap_or(ty);
2454
2455                    clean_field_with_def_id(
2456                        field.did,
2457                        field.name,
2458                        clean_middle_ty(ty::Binder::dummy(ty), cx, Some(field.did), None),
2459                        cx,
2460                    )
2461                })
2462                .collect(),
2463        }),
2464    };
2465
2466    Item::from_def_id_and_parts(
2467        variant.def_id,
2468        Some(variant.name),
2469        VariantItem(Variant { kind, discriminant }),
2470        cx,
2471    )
2472}
2473
2474fn clean_variant_data<'tcx>(
2475    variant: &hir::VariantData<'tcx>,
2476    disr_expr: &Option<&hir::AnonConst>,
2477    cx: &mut DocContext<'tcx>,
2478) -> Variant {
2479    let discriminant = disr_expr
2480        .map(|disr| Discriminant { expr: Some(disr.body), value: disr.def_id.to_def_id() });
2481
2482    let kind = match variant {
2483        hir::VariantData::Struct { fields, .. } => VariantKind::Struct(VariantStruct {
2484            fields: fields.iter().map(|x| clean_field(x, cx)).collect(),
2485        }),
2486        hir::VariantData::Tuple(..) => {
2487            VariantKind::Tuple(variant.fields().iter().map(|x| clean_field(x, cx)).collect())
2488        }
2489        hir::VariantData::Unit(..) => VariantKind::CLike,
2490    };
2491
2492    Variant { discriminant, kind }
2493}
2494
2495fn clean_path<'tcx>(path: &hir::Path<'tcx>, cx: &mut DocContext<'tcx>) -> Path {
2496    Path {
2497        res: path.res,
2498        segments: path.segments.iter().map(|x| clean_path_segment(x, cx)).collect(),
2499    }
2500}
2501
2502fn clean_generic_args<'tcx>(
2503    generic_args: &hir::GenericArgs<'tcx>,
2504    cx: &mut DocContext<'tcx>,
2505) -> GenericArgs {
2506    match generic_args.parenthesized {
2507        hir::GenericArgsParentheses::No => {
2508            let args = generic_args
2509                .args
2510                .iter()
2511                .map(|arg| match arg {
2512                    hir::GenericArg::Lifetime(lt) if !lt.is_anonymous() => {
2513                        GenericArg::Lifetime(clean_lifetime(lt, cx))
2514                    }
2515                    hir::GenericArg::Lifetime(_) => GenericArg::Lifetime(Lifetime::elided()),
2516                    hir::GenericArg::Type(ty) => GenericArg::Type(clean_ty(ty.as_unambig_ty(), cx)),
2517                    hir::GenericArg::Const(ct) => {
2518                        GenericArg::Const(Box::new(clean_const(ct.as_unambig_ct())))
2519                    }
2520                    hir::GenericArg::Infer(_inf) => GenericArg::Infer,
2521                })
2522                .collect();
2523            let constraints = generic_args
2524                .constraints
2525                .iter()
2526                .map(|c| clean_assoc_item_constraint(c, cx))
2527                .collect::<ThinVec<_>>();
2528            GenericArgs::AngleBracketed { args, constraints }
2529        }
2530        hir::GenericArgsParentheses::ParenSugar => {
2531            let Some((inputs, output)) = generic_args.paren_sugar_inputs_output() else {
2532                bug!();
2533            };
2534            let inputs = inputs.iter().map(|x| clean_ty(x, cx)).collect();
2535            let output = match output.kind {
2536                hir::TyKind::Tup(&[]) => None,
2537                _ => Some(Box::new(clean_ty(output, cx))),
2538            };
2539            GenericArgs::Parenthesized { inputs, output }
2540        }
2541        hir::GenericArgsParentheses::ReturnTypeNotation => GenericArgs::ReturnTypeNotation,
2542    }
2543}
2544
2545fn clean_path_segment<'tcx>(
2546    path: &hir::PathSegment<'tcx>,
2547    cx: &mut DocContext<'tcx>,
2548) -> PathSegment {
2549    PathSegment { name: path.ident.name, args: clean_generic_args(path.args(), cx) }
2550}
2551
2552fn clean_bare_fn_ty<'tcx>(
2553    bare_fn: &hir::FnPtrTy<'tcx>,
2554    cx: &mut DocContext<'tcx>,
2555) -> BareFunctionDecl {
2556    let (generic_params, decl) = enter_impl_trait(cx, |cx| {
2557        // NOTE: Generics must be cleaned before params.
2558        let generic_params = bare_fn
2559            .generic_params
2560            .iter()
2561            .filter(|p| !is_elided_lifetime(p))
2562            .map(|x| clean_generic_param(cx, None, x))
2563            .collect();
2564        // Since it's more conventional stylistically, elide the name of all params called `_`
2565        // unless there's at least one interestingly named param in which case don't elide any
2566        // name since mixing named and unnamed params is less legible.
2567        let filter = |ident: Option<Ident>| {
2568            ident.map(|ident| ident.name).filter(|&ident| ident != kw::Underscore)
2569        };
2570        let fallback =
2571            bare_fn.param_idents.iter().copied().find_map(filter).map(|_| kw::Underscore);
2572        let params = clean_params(cx, bare_fn.decl.inputs, bare_fn.param_idents, |ident| {
2573            filter(ident).or(fallback)
2574        });
2575        let decl = clean_fn_decl_with_params(cx, bare_fn.decl, None, params);
2576        (generic_params, decl)
2577    });
2578    BareFunctionDecl { safety: bare_fn.safety, abi: bare_fn.abi, decl, generic_params }
2579}
2580
2581fn clean_unsafe_binder_ty<'tcx>(
2582    unsafe_binder_ty: &hir::UnsafeBinderTy<'tcx>,
2583    cx: &mut DocContext<'tcx>,
2584) -> UnsafeBinderTy {
2585    let generic_params = unsafe_binder_ty
2586        .generic_params
2587        .iter()
2588        .filter(|p| !is_elided_lifetime(p))
2589        .map(|x| clean_generic_param(cx, None, x))
2590        .collect();
2591    let ty = clean_ty(unsafe_binder_ty.inner_ty, cx);
2592    UnsafeBinderTy { generic_params, ty }
2593}
2594
2595pub(crate) fn reexport_chain(
2596    tcx: TyCtxt<'_>,
2597    import_def_id: LocalDefId,
2598    target_def_id: DefId,
2599) -> &[Reexport] {
2600    for child in tcx.module_children_local(tcx.local_parent(import_def_id)) {
2601        if child.res.opt_def_id() == Some(target_def_id)
2602            && child.reexport_chain.first().and_then(|r| r.id()) == Some(import_def_id.to_def_id())
2603        {
2604            return &child.reexport_chain;
2605        }
2606    }
2607    &[]
2608}
2609
2610/// Collect attributes from the whole import chain.
2611fn get_all_import_attributes<'hir>(
2612    cx: &mut DocContext<'hir>,
2613    import_def_id: LocalDefId,
2614    target_def_id: DefId,
2615    is_inline: bool,
2616) -> Vec<(Cow<'hir, hir::Attribute>, Option<DefId>)> {
2617    let mut attrs = Vec::new();
2618    let mut first = true;
2619    for def_id in reexport_chain(cx.tcx, import_def_id, target_def_id)
2620        .iter()
2621        .flat_map(|reexport| reexport.id())
2622    {
2623        let import_attrs = inline::load_attrs(cx, def_id);
2624        if first {
2625            // This is the "original" reexport so we get all its attributes without filtering them.
2626            attrs = import_attrs.iter().map(|attr| (Cow::Borrowed(attr), Some(def_id))).collect();
2627            first = false;
2628        // We don't add attributes of an intermediate re-export if it has `#[doc(hidden)]`.
2629        } else if cx.document_hidden() || !cx.tcx.is_doc_hidden(def_id) {
2630            add_without_unwanted_attributes(&mut attrs, import_attrs, is_inline, Some(def_id));
2631        }
2632    }
2633    attrs
2634}
2635
2636/// When inlining items, we merge their attributes (and all the reexports attributes too) with the
2637/// final reexport. For example:
2638///
2639/// ```ignore (just an example)
2640/// #[doc(hidden, cfg(feature = "foo"))]
2641/// pub struct Foo;
2642///
2643/// #[doc(cfg(feature = "bar"))]
2644/// #[doc(hidden, no_inline)]
2645/// pub use Foo as Foo1;
2646///
2647/// #[doc(inline)]
2648/// pub use Foo2 as Bar;
2649/// ```
2650///
2651/// So `Bar` at the end will have both `cfg(feature = "...")`. However, we don't want to merge all
2652/// attributes so we filter out the following ones:
2653/// * `doc(inline)`
2654/// * `doc(no_inline)`
2655/// * `doc(hidden)`
2656fn add_without_unwanted_attributes<'hir>(
2657    attrs: &mut Vec<(Cow<'hir, hir::Attribute>, Option<DefId>)>,
2658    new_attrs: &'hir [hir::Attribute],
2659    is_inline: bool,
2660    import_parent: Option<DefId>,
2661) {
2662    for attr in new_attrs {
2663        match attr {
2664            hir::Attribute::Parsed(AttributeKind::DocComment { .. }) => {
2665                attrs.push((Cow::Borrowed(attr), import_parent));
2666            }
2667            hir::Attribute::Parsed(AttributeKind::Doc(box d)) => {
2668                // Remove attributes from `normal` that should not be inherited by `use` re-export.
2669                let DocAttribute { hidden, inline, cfg, .. } = d;
2670                let mut attr = DocAttribute::default();
2671                if is_inline {
2672                    attr.cfg = cfg.clone();
2673                } else {
2674                    attr.inline = inline.clone();
2675                    attr.hidden = hidden.clone();
2676                }
2677                attrs.push((
2678                    Cow::Owned(hir::Attribute::Parsed(AttributeKind::Doc(Box::new(attr)))),
2679                    import_parent,
2680                ));
2681            }
2682            hir::Attribute::Unparsed(normal) if let [ident] = &*normal.path.segments => {
2683                if is_inline || ident.name != sym::cfg_trace {
2684                    // If it's not a `cfg()` attribute, we keep it.
2685                    attrs.push((Cow::Borrowed(attr), import_parent));
2686                }
2687            }
2688            // FIXME: make sure to exclude `#[cfg_trace]` here when it is ported to the new parsers
2689            hir::Attribute::Parsed(..) => {
2690                attrs.push((Cow::Borrowed(attr), import_parent));
2691            }
2692            _ => {}
2693        }
2694    }
2695}
2696
2697fn clean_maybe_renamed_item<'tcx>(
2698    cx: &mut DocContext<'tcx>,
2699    item: &hir::Item<'tcx>,
2700    renamed: Option<Symbol>,
2701    import_ids: &[LocalDefId],
2702) -> Vec<Item> {
2703    use hir::ItemKind;
2704    fn get_name(
2705        cx: &DocContext<'_>,
2706        item: &hir::Item<'_>,
2707        renamed: Option<Symbol>,
2708    ) -> Option<Symbol> {
2709        renamed.or_else(|| cx.tcx.hir_opt_name(item.hir_id()))
2710    }
2711
2712    let def_id = item.owner_id.to_def_id();
2713    cx.with_param_env(def_id, |cx| {
2714        // These kinds of item either don't need a `name` or accept a `None` one so we handle them
2715        // before.
2716        match item.kind {
2717            ItemKind::Impl(ref impl_) => return clean_impl(impl_, item.owner_id.def_id, cx),
2718            ItemKind::Use(path, kind) => {
2719                return clean_use_statement(
2720                    item,
2721                    get_name(cx, item, renamed),
2722                    path,
2723                    kind,
2724                    cx,
2725                    &mut FxHashSet::default(),
2726                );
2727            }
2728            _ => {}
2729        }
2730
2731        let mut name = get_name(cx, item, renamed).unwrap();
2732
2733        let kind = match item.kind {
2734            ItemKind::Static(mutability, _, ty, body_id) => StaticItem(Static {
2735                type_: Box::new(clean_ty(ty, cx)),
2736                mutability,
2737                expr: Some(body_id),
2738            }),
2739            ItemKind::Const(_, generics, ty, rhs) => ConstantItem(Box::new(Constant {
2740                generics: clean_generics(generics, cx),
2741                type_: clean_ty(ty, cx),
2742                kind: clean_const_item_rhs(rhs, def_id),
2743            })),
2744            ItemKind::TyAlias(_, generics, ty) => {
2745                *cx.current_type_aliases.entry(def_id).or_insert(0) += 1;
2746                let rustdoc_ty = clean_ty(ty, cx);
2747                let type_ =
2748                    clean_middle_ty(ty::Binder::dummy(lower_ty(cx.tcx, ty)), cx, None, None);
2749                let generics = clean_generics(generics, cx);
2750                if let Some(count) = cx.current_type_aliases.get_mut(&def_id) {
2751                    *count -= 1;
2752                    if *count == 0 {
2753                        cx.current_type_aliases.remove(&def_id);
2754                    }
2755                }
2756
2757                let ty = cx.tcx.type_of(def_id).instantiate_identity();
2758
2759                let mut ret = Vec::new();
2760                let inner_type = clean_ty_alias_inner_type(ty, cx, &mut ret);
2761
2762                ret.push(generate_item_with_correct_attrs(
2763                    cx,
2764                    TypeAliasItem(Box::new(TypeAlias {
2765                        generics,
2766                        inner_type,
2767                        type_: rustdoc_ty,
2768                        item_type: Some(type_),
2769                    })),
2770                    item.owner_id.def_id.to_def_id(),
2771                    name,
2772                    import_ids,
2773                    renamed,
2774                ));
2775                return ret;
2776            }
2777            ItemKind::Enum(_, generics, def) => EnumItem(Enum {
2778                variants: def.variants.iter().map(|v| clean_variant(v, cx)).collect(),
2779                generics: clean_generics(generics, cx),
2780            }),
2781            ItemKind::TraitAlias(_, _, generics, bounds) => TraitAliasItem(TraitAlias {
2782                generics: clean_generics(generics, cx),
2783                bounds: bounds.iter().filter_map(|x| clean_generic_bound(x, cx)).collect(),
2784            }),
2785            ItemKind::Union(_, generics, variant_data) => UnionItem(Union {
2786                generics: clean_generics(generics, cx),
2787                fields: variant_data.fields().iter().map(|x| clean_field(x, cx)).collect(),
2788            }),
2789            ItemKind::Struct(_, generics, variant_data) => StructItem(Struct {
2790                ctor_kind: variant_data.ctor_kind(),
2791                generics: clean_generics(generics, cx),
2792                fields: variant_data.fields().iter().map(|x| clean_field(x, cx)).collect(),
2793            }),
2794            // FIXME: handle attributes and derives that aren't proc macros, and macros with
2795            // multiple kinds
2796            ItemKind::Macro(_, macro_def, MacroKinds::BANG) => MacroItem(Macro {
2797                source: display_macro_source(cx, name, macro_def),
2798                macro_rules: macro_def.macro_rules,
2799            }),
2800            ItemKind::Macro(_, _, MacroKinds::ATTR) => {
2801                clean_proc_macro(item, &mut name, MacroKind::Attr, cx)
2802            }
2803            ItemKind::Macro(_, _, MacroKinds::DERIVE) => {
2804                clean_proc_macro(item, &mut name, MacroKind::Derive, cx)
2805            }
2806            ItemKind::Macro(_, _, _) => todo!("Handle macros with multiple kinds"),
2807            // proc macros can have a name set by attributes
2808            ItemKind::Fn { ref sig, generics, body: body_id, .. } => {
2809                clean_fn_or_proc_macro(item, sig, generics, body_id, &mut name, cx)
2810            }
2811            ItemKind::Trait(_, _, _, _, generics, bounds, item_ids) => {
2812                let items = item_ids
2813                    .iter()
2814                    .map(|&ti| clean_trait_item(cx.tcx.hir_trait_item(ti), cx))
2815                    .collect();
2816
2817                TraitItem(Box::new(Trait {
2818                    def_id,
2819                    items,
2820                    generics: clean_generics(generics, cx),
2821                    bounds: bounds.iter().filter_map(|x| clean_generic_bound(x, cx)).collect(),
2822                }))
2823            }
2824            ItemKind::ExternCrate(orig_name, _) => {
2825                return clean_extern_crate(item, name, orig_name, cx);
2826            }
2827            _ => span_bug!(item.span, "not yet converted"),
2828        };
2829
2830        vec![generate_item_with_correct_attrs(
2831            cx,
2832            kind,
2833            item.owner_id.def_id.to_def_id(),
2834            name,
2835            import_ids,
2836            renamed,
2837        )]
2838    })
2839}
2840
2841fn clean_variant<'tcx>(variant: &hir::Variant<'tcx>, cx: &mut DocContext<'tcx>) -> Item {
2842    let kind = VariantItem(clean_variant_data(&variant.data, &variant.disr_expr, cx));
2843    Item::from_def_id_and_parts(variant.def_id.to_def_id(), Some(variant.ident.name), kind, cx)
2844}
2845
2846fn clean_impl<'tcx>(
2847    impl_: &hir::Impl<'tcx>,
2848    def_id: LocalDefId,
2849    cx: &mut DocContext<'tcx>,
2850) -> Vec<Item> {
2851    let tcx = cx.tcx;
2852    let mut ret = Vec::new();
2853    let trait_ = impl_.of_trait.map(|t| clean_trait_ref(&t.trait_ref, cx));
2854    let items = impl_
2855        .items
2856        .iter()
2857        .map(|&ii| clean_impl_item(tcx.hir_impl_item(ii), cx))
2858        .collect::<Vec<_>>();
2859
2860    // If this impl block is an implementation of the Deref trait, then we
2861    // need to try inlining the target's inherent impl blocks as well.
2862    if trait_.as_ref().map(|t| t.def_id()) == tcx.lang_items().deref_trait() {
2863        build_deref_target_impls(cx, &items, &mut ret);
2864    }
2865
2866    let for_ = clean_ty(impl_.self_ty, cx);
2867    let type_alias =
2868        for_.def_id(&cx.cache).and_then(|alias_def_id: DefId| match tcx.def_kind(alias_def_id) {
2869            DefKind::TyAlias => Some(clean_middle_ty(
2870                ty::Binder::dummy(tcx.type_of(def_id).instantiate_identity()),
2871                cx,
2872                Some(def_id.to_def_id()),
2873                None,
2874            )),
2875            _ => None,
2876        });
2877    let mut make_item = |trait_: Option<Path>, for_: Type, items: Vec<Item>| {
2878        let kind = ImplItem(Box::new(Impl {
2879            safety: match impl_.of_trait {
2880                Some(of_trait) => of_trait.safety,
2881                None => hir::Safety::Safe,
2882            },
2883            generics: clean_generics(impl_.generics, cx),
2884            trait_,
2885            for_,
2886            items,
2887            polarity: if impl_.of_trait.is_some() {
2888                tcx.impl_polarity(def_id)
2889            } else {
2890                ty::ImplPolarity::Positive
2891            },
2892            kind: if utils::has_doc_flag(tcx, def_id.to_def_id(), |d| d.fake_variadic.is_some()) {
2893                ImplKind::FakeVariadic
2894            } else {
2895                ImplKind::Normal
2896            },
2897        }));
2898        Item::from_def_id_and_parts(def_id.to_def_id(), None, kind, cx)
2899    };
2900    if let Some(type_alias) = type_alias {
2901        ret.push(make_item(trait_.clone(), type_alias, items.clone()));
2902    }
2903    ret.push(make_item(trait_, for_, items));
2904    ret
2905}
2906
2907fn clean_extern_crate<'tcx>(
2908    krate: &hir::Item<'tcx>,
2909    name: Symbol,
2910    orig_name: Option<Symbol>,
2911    cx: &mut DocContext<'tcx>,
2912) -> Vec<Item> {
2913    // this is the ID of the `extern crate` statement
2914    let cnum = cx.tcx.extern_mod_stmt_cnum(krate.owner_id.def_id).unwrap_or(LOCAL_CRATE);
2915    // this is the ID of the crate itself
2916    let crate_def_id = cnum.as_def_id();
2917    let attrs = cx.tcx.hir_attrs(krate.hir_id());
2918    let ty_vis = cx.tcx.visibility(krate.owner_id);
2919    let please_inline = ty_vis.is_public()
2920        && attrs.iter().any(|a| {
2921            matches!(
2922            a,
2923            hir::Attribute::Parsed(AttributeKind::Doc(d))
2924            if d.inline.first().is_some_and(|(i, _)| *i == DocInline::Inline))
2925        })
2926        && !cx.is_json_output();
2927
2928    let krate_owner_def_id = krate.owner_id.def_id;
2929
2930    if please_inline
2931        && let Some(items) = inline::try_inline(
2932            cx,
2933            Res::Def(DefKind::Mod, crate_def_id),
2934            name,
2935            Some((attrs, Some(krate_owner_def_id))),
2936            &mut Default::default(),
2937        )
2938    {
2939        return items;
2940    }
2941
2942    vec![Item::from_def_id_and_parts(
2943        krate_owner_def_id.to_def_id(),
2944        Some(name),
2945        ExternCrateItem { src: orig_name },
2946        cx,
2947    )]
2948}
2949
2950fn clean_use_statement<'tcx>(
2951    import: &hir::Item<'tcx>,
2952    name: Option<Symbol>,
2953    path: &hir::UsePath<'tcx>,
2954    kind: hir::UseKind,
2955    cx: &mut DocContext<'tcx>,
2956    inlined_names: &mut FxHashSet<(ItemType, Symbol)>,
2957) -> Vec<Item> {
2958    let mut items = Vec::new();
2959    let hir::UsePath { segments, ref res, span } = *path;
2960    for res in res.present_items() {
2961        let path = hir::Path { segments, res, span };
2962        items.append(&mut clean_use_statement_inner(import, name, &path, kind, cx, inlined_names));
2963    }
2964    items
2965}
2966
2967fn clean_use_statement_inner<'tcx>(
2968    import: &hir::Item<'tcx>,
2969    name: Option<Symbol>,
2970    path: &hir::Path<'tcx>,
2971    kind: hir::UseKind,
2972    cx: &mut DocContext<'tcx>,
2973    inlined_names: &mut FxHashSet<(ItemType, Symbol)>,
2974) -> Vec<Item> {
2975    if should_ignore_res(path.res) {
2976        return Vec::new();
2977    }
2978    // We need this comparison because some imports (for std types for example)
2979    // are "inserted" as well but directly by the compiler and they should not be
2980    // taken into account.
2981    if import.span.ctxt().outer_expn_data().kind == ExpnKind::AstPass(AstPass::StdImports) {
2982        return Vec::new();
2983    }
2984
2985    let visibility = cx.tcx.visibility(import.owner_id);
2986    let attrs = cx.tcx.hir_attrs(import.hir_id());
2987    let inline_attr = find_attr!(
2988        attrs,
2989        AttributeKind::Doc(d) if d.inline.first().is_some_and(|(i, _)| *i == DocInline::Inline) => d
2990    )
2991    .and_then(|d| d.inline.first());
2992    let pub_underscore = visibility.is_public() && name == Some(kw::Underscore);
2993    let current_mod = cx.tcx.parent_module_from_def_id(import.owner_id.def_id);
2994    let import_def_id = import.owner_id.def_id;
2995
2996    // The parent of the module in which this import resides. This
2997    // is the same as `current_mod` if that's already the top
2998    // level module.
2999    let parent_mod = cx.tcx.parent_module_from_def_id(current_mod.to_local_def_id());
3000
3001    // This checks if the import can be seen from a higher level module.
3002    // In other words, it checks if the visibility is the equivalent of
3003    // `pub(super)` or higher. If the current module is the top level
3004    // module, there isn't really a parent module, which makes the results
3005    // meaningless. In this case, we make sure the answer is `false`.
3006    let is_visible_from_parent_mod =
3007        visibility.is_accessible_from(parent_mod, cx.tcx) && !current_mod.is_top_level_module();
3008
3009    if pub_underscore && let Some((_, inline_span)) = inline_attr {
3010        struct_span_code_err!(
3011            cx.tcx.dcx(),
3012            *inline_span,
3013            E0780,
3014            "anonymous imports cannot be inlined"
3015        )
3016        .with_span_label(import.span, "anonymous import")
3017        .emit();
3018    }
3019
3020    // We consider inlining the documentation of `pub use` statements, but we
3021    // forcefully don't inline if this is not public or if the
3022    // #[doc(no_inline)] attribute is present.
3023    // Don't inline doc(hidden) imports so they can be stripped at a later stage.
3024    let mut denied = cx.is_json_output()
3025        || !(visibility.is_public() || (cx.document_private() && is_visible_from_parent_mod))
3026        || pub_underscore
3027        || attrs.iter().any(|a| matches!(
3028            a,
3029            hir::Attribute::Parsed(AttributeKind::Doc(d))
3030            if d.hidden.is_some() || d.inline.first().is_some_and(|(i, _)| *i == DocInline::NoInline)
3031        ));
3032
3033    // Also check whether imports were asked to be inlined, in case we're trying to re-export a
3034    // crate in Rust 2018+
3035    let path = clean_path(path, cx);
3036    let inner = if kind == hir::UseKind::Glob {
3037        if !denied {
3038            let mut visited = DefIdSet::default();
3039            if let Some(items) = inline::try_inline_glob(
3040                cx,
3041                path.res,
3042                current_mod,
3043                &mut visited,
3044                inlined_names,
3045                import,
3046            ) {
3047                return items;
3048            }
3049        }
3050        Import::new_glob(resolve_use_source(cx, path), true)
3051    } else {
3052        let name = name.unwrap();
3053        if inline_attr.is_none()
3054            && let Res::Def(DefKind::Mod, did) = path.res
3055            && !did.is_local()
3056            && did.is_crate_root()
3057        {
3058            // if we're `pub use`ing an extern crate root, don't inline it unless we
3059            // were specifically asked for it
3060            denied = true;
3061        }
3062        if !denied
3063            && let Some(mut items) = inline::try_inline(
3064                cx,
3065                path.res,
3066                name,
3067                Some((attrs, Some(import_def_id))),
3068                &mut Default::default(),
3069            )
3070        {
3071            items.push(Item::from_def_id_and_parts(
3072                import_def_id.to_def_id(),
3073                None,
3074                ImportItem(Import::new_simple(name, resolve_use_source(cx, path), false)),
3075                cx,
3076            ));
3077            return items;
3078        }
3079        Import::new_simple(name, resolve_use_source(cx, path), true)
3080    };
3081
3082    vec![Item::from_def_id_and_parts(import_def_id.to_def_id(), None, ImportItem(inner), cx)]
3083}
3084
3085fn clean_maybe_renamed_foreign_item<'tcx>(
3086    cx: &mut DocContext<'tcx>,
3087    item: &hir::ForeignItem<'tcx>,
3088    renamed: Option<Symbol>,
3089    import_id: Option<LocalDefId>,
3090) -> Item {
3091    let def_id = item.owner_id.to_def_id();
3092    cx.with_param_env(def_id, |cx| {
3093        let kind = match item.kind {
3094            hir::ForeignItemKind::Fn(sig, idents, generics) => ForeignFunctionItem(
3095                clean_function(cx, &sig, generics, ParamsSrc::Idents(idents)),
3096                sig.header.safety(),
3097            ),
3098            hir::ForeignItemKind::Static(ty, mutability, safety) => ForeignStaticItem(
3099                Static { type_: Box::new(clean_ty(ty, cx)), mutability, expr: None },
3100                safety,
3101            ),
3102            hir::ForeignItemKind::Type => ForeignTypeItem,
3103        };
3104
3105        generate_item_with_correct_attrs(
3106            cx,
3107            kind,
3108            item.owner_id.def_id.to_def_id(),
3109            item.ident.name,
3110            import_id.as_slice(),
3111            renamed,
3112        )
3113    })
3114}
3115
3116fn clean_assoc_item_constraint<'tcx>(
3117    constraint: &hir::AssocItemConstraint<'tcx>,
3118    cx: &mut DocContext<'tcx>,
3119) -> AssocItemConstraint {
3120    AssocItemConstraint {
3121        assoc: PathSegment {
3122            name: constraint.ident.name,
3123            args: clean_generic_args(constraint.gen_args, cx),
3124        },
3125        kind: match constraint.kind {
3126            hir::AssocItemConstraintKind::Equality { ref term } => {
3127                AssocItemConstraintKind::Equality { term: clean_hir_term(term, cx) }
3128            }
3129            hir::AssocItemConstraintKind::Bound { bounds } => AssocItemConstraintKind::Bound {
3130                bounds: bounds.iter().filter_map(|b| clean_generic_bound(b, cx)).collect(),
3131            },
3132        },
3133    }
3134}
3135
3136fn clean_bound_vars<'tcx>(
3137    bound_vars: &ty::List<ty::BoundVariableKind>,
3138    cx: &mut DocContext<'tcx>,
3139) -> Vec<GenericParamDef> {
3140    bound_vars
3141        .into_iter()
3142        .filter_map(|var| match var {
3143            ty::BoundVariableKind::Region(ty::BoundRegionKind::Named(def_id)) => {
3144                let name = cx.tcx.item_name(def_id);
3145                if name != kw::UnderscoreLifetime {
3146                    Some(GenericParamDef::lifetime(def_id, name))
3147                } else {
3148                    None
3149                }
3150            }
3151            ty::BoundVariableKind::Ty(ty::BoundTyKind::Param(def_id)) => {
3152                let name = cx.tcx.item_name(def_id);
3153                Some(GenericParamDef {
3154                    name,
3155                    def_id,
3156                    kind: GenericParamDefKind::Type {
3157                        bounds: ThinVec::new(),
3158                        default: None,
3159                        synthetic: false,
3160                    },
3161                })
3162            }
3163            // FIXME(non_lifetime_binders): Support higher-ranked const parameters.
3164            ty::BoundVariableKind::Const => None,
3165            _ => None,
3166        })
3167        .collect()
3168}