1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
pub use crate::llvm::Type;

use crate::abi::{FnAbiLlvmExt, LlvmType};
use crate::common;
use crate::context::CodegenCx;
use crate::llvm;
use crate::llvm::{Bool, False, True};
use crate::type_of::LayoutLlvmExt;
use crate::value::Value;
use rustc_codegen_ssa::common::TypeKind;
use rustc_codegen_ssa::traits::*;
use rustc_data_structures::small_c_str::SmallCStr;
use rustc_middle::bug;
use rustc_middle::ty::layout::TyAndLayout;
use rustc_middle::ty::{self, Ty};
use rustc_target::abi::call::{CastTarget, FnAbi, Reg};
use rustc_target::abi::{AddressSpace, Align, Integer, Size};

use std::fmt;
use std::ptr;

use libc::c_uint;

impl PartialEq for Type {
    fn eq(&self, other: &Self) -> bool {
        ptr::eq(self, other)
    }
}

impl fmt::Debug for Type {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.write_str(
            &llvm::build_string(|s| unsafe {
                llvm::LLVMRustWriteTypeToString(self, s);
            })
            .expect("non-UTF8 type description from LLVM"),
        )
    }
}

impl<'ll> CodegenCx<'ll, '_> {
    pub(crate) fn type_named_struct(&self, name: &str) -> &'ll Type {
        let name = SmallCStr::new(name);
        unsafe { llvm::LLVMStructCreateNamed(self.llcx, name.as_ptr()) }
    }

    pub(crate) fn set_struct_body(&self, ty: &'ll Type, els: &[&'ll Type], packed: bool) {
        unsafe { llvm::LLVMStructSetBody(ty, els.as_ptr(), els.len() as c_uint, packed as Bool) }
    }

    pub(crate) fn type_void(&self) -> &'ll Type {
        unsafe { llvm::LLVMVoidTypeInContext(self.llcx) }
    }

    pub(crate) fn type_metadata(&self) -> &'ll Type {
        unsafe { llvm::LLVMRustMetadataTypeInContext(self.llcx) }
    }

    ///x Creates an integer type with the given number of bits, e.g., i24
    pub(crate) fn type_ix(&self, num_bits: u64) -> &'ll Type {
        unsafe { llvm::LLVMIntTypeInContext(self.llcx, num_bits as c_uint) }
    }

    pub(crate) fn type_vector(&self, ty: &'ll Type, len: u64) -> &'ll Type {
        unsafe { llvm::LLVMVectorType(ty, len as c_uint) }
    }

    pub(crate) fn func_params_types(&self, ty: &'ll Type) -> Vec<&'ll Type> {
        unsafe {
            let n_args = llvm::LLVMCountParamTypes(ty) as usize;
            let mut args = Vec::with_capacity(n_args);
            llvm::LLVMGetParamTypes(ty, args.as_mut_ptr());
            args.set_len(n_args);
            args
        }
    }

    pub(crate) fn type_bool(&self) -> &'ll Type {
        self.type_i8()
    }

    pub(crate) fn type_int_from_ty(&self, t: ty::IntTy) -> &'ll Type {
        match t {
            ty::IntTy::Isize => self.type_isize(),
            ty::IntTy::I8 => self.type_i8(),
            ty::IntTy::I16 => self.type_i16(),
            ty::IntTy::I32 => self.type_i32(),
            ty::IntTy::I64 => self.type_i64(),
            ty::IntTy::I128 => self.type_i128(),
        }
    }

    pub(crate) fn type_uint_from_ty(&self, t: ty::UintTy) -> &'ll Type {
        match t {
            ty::UintTy::Usize => self.type_isize(),
            ty::UintTy::U8 => self.type_i8(),
            ty::UintTy::U16 => self.type_i16(),
            ty::UintTy::U32 => self.type_i32(),
            ty::UintTy::U64 => self.type_i64(),
            ty::UintTy::U128 => self.type_i128(),
        }
    }

    pub(crate) fn type_float_from_ty(&self, t: ty::FloatTy) -> &'ll Type {
        match t {
            ty::FloatTy::F32 => self.type_f32(),
            ty::FloatTy::F64 => self.type_f64(),
        }
    }

    pub(crate) fn type_pointee_for_align(&self, align: Align) -> &'ll Type {
        // FIXME(eddyb) We could find a better approximation if ity.align < align.
        let ity = Integer::approximate_align(self, align);
        self.type_from_integer(ity)
    }

    /// Return a LLVM type that has at most the required alignment,
    /// and exactly the required size, as a best-effort padding array.
    pub(crate) fn type_padding_filler(&self, size: Size, align: Align) -> &'ll Type {
        let unit = Integer::approximate_align(self, align);
        let size = size.bytes();
        let unit_size = unit.size().bytes();
        assert_eq!(size % unit_size, 0);
        self.type_array(self.type_from_integer(unit), size / unit_size)
    }

    pub(crate) fn type_variadic_func(&self, args: &[&'ll Type], ret: &'ll Type) -> &'ll Type {
        unsafe { llvm::LLVMFunctionType(ret, args.as_ptr(), args.len() as c_uint, True) }
    }

    pub(crate) fn type_array(&self, ty: &'ll Type, len: u64) -> &'ll Type {
        unsafe { llvm::LLVMRustArrayType(ty, len) }
    }
}

impl<'ll, 'tcx> BaseTypeMethods<'tcx> for CodegenCx<'ll, 'tcx> {
    fn type_i1(&self) -> &'ll Type {
        unsafe { llvm::LLVMInt1TypeInContext(self.llcx) }
    }

    fn type_i8(&self) -> &'ll Type {
        unsafe { llvm::LLVMInt8TypeInContext(self.llcx) }
    }

    fn type_i16(&self) -> &'ll Type {
        unsafe { llvm::LLVMInt16TypeInContext(self.llcx) }
    }

    fn type_i32(&self) -> &'ll Type {
        unsafe { llvm::LLVMInt32TypeInContext(self.llcx) }
    }

    fn type_i64(&self) -> &'ll Type {
        unsafe { llvm::LLVMInt64TypeInContext(self.llcx) }
    }

    fn type_i128(&self) -> &'ll Type {
        unsafe { llvm::LLVMIntTypeInContext(self.llcx, 128) }
    }

    fn type_isize(&self) -> &'ll Type {
        self.isize_ty
    }

    fn type_f32(&self) -> &'ll Type {
        unsafe { llvm::LLVMFloatTypeInContext(self.llcx) }
    }

    fn type_f64(&self) -> &'ll Type {
        unsafe { llvm::LLVMDoubleTypeInContext(self.llcx) }
    }

    fn type_func(&self, args: &[&'ll Type], ret: &'ll Type) -> &'ll Type {
        unsafe { llvm::LLVMFunctionType(ret, args.as_ptr(), args.len() as c_uint, False) }
    }

    fn type_struct(&self, els: &[&'ll Type], packed: bool) -> &'ll Type {
        unsafe {
            llvm::LLVMStructTypeInContext(
                self.llcx,
                els.as_ptr(),
                els.len() as c_uint,
                packed as Bool,
            )
        }
    }

    fn type_kind(&self, ty: &'ll Type) -> TypeKind {
        unsafe { llvm::LLVMRustGetTypeKind(ty).to_generic() }
    }

    fn type_ptr_to(&self, ty: &'ll Type) -> &'ll Type {
        assert_ne!(
            self.type_kind(ty),
            TypeKind::Function,
            "don't call ptr_to on function types, use ptr_to_llvm_type on FnAbi instead or explicitly specify an address space if it makes sense"
        );
        ty.ptr_to(AddressSpace::DATA)
    }

    fn type_ptr_to_ext(&self, ty: &'ll Type, address_space: AddressSpace) -> &'ll Type {
        ty.ptr_to(address_space)
    }

    fn element_type(&self, ty: &'ll Type) -> &'ll Type {
        match self.type_kind(ty) {
            TypeKind::Array | TypeKind::Vector => unsafe { llvm::LLVMGetElementType(ty) },
            TypeKind::Pointer => bug!("element_type is not supported for opaque pointers"),
            other => bug!("element_type called on unsupported type {:?}", other),
        }
    }

    fn vector_length(&self, ty: &'ll Type) -> usize {
        unsafe { llvm::LLVMGetVectorSize(ty) as usize }
    }

    fn float_width(&self, ty: &'ll Type) -> usize {
        match self.type_kind(ty) {
            TypeKind::Float => 32,
            TypeKind::Double => 64,
            TypeKind::X86_FP80 => 80,
            TypeKind::FP128 | TypeKind::PPC_FP128 => 128,
            _ => bug!("llvm_float_width called on a non-float type"),
        }
    }

    fn int_width(&self, ty: &'ll Type) -> u64 {
        unsafe { llvm::LLVMGetIntTypeWidth(ty) as u64 }
    }

    fn val_ty(&self, v: &'ll Value) -> &'ll Type {
        common::val_ty(v)
    }
}

impl Type {
    pub fn i8_llcx(llcx: &llvm::Context) -> &Type {
        unsafe { llvm::LLVMInt8TypeInContext(llcx) }
    }

    // Creates an integer type with the given number of bits, e.g., i24
    pub fn ix_llcx(llcx: &llvm::Context, num_bits: u64) -> &Type {
        unsafe { llvm::LLVMIntTypeInContext(llcx, num_bits as c_uint) }
    }

    pub fn i8p_llcx(llcx: &llvm::Context) -> &Type {
        Type::i8_llcx(llcx).ptr_to(AddressSpace::DATA)
    }

    fn ptr_to(&self, address_space: AddressSpace) -> &Type {
        unsafe { llvm::LLVMPointerType(self, address_space.0) }
    }
}

impl<'ll, 'tcx> LayoutTypeMethods<'tcx> for CodegenCx<'ll, 'tcx> {
    fn backend_type(&self, layout: TyAndLayout<'tcx>) -> &'ll Type {
        layout.llvm_type(self)
    }
    fn immediate_backend_type(&self, layout: TyAndLayout<'tcx>) -> &'ll Type {
        layout.immediate_llvm_type(self)
    }
    fn is_backend_immediate(&self, layout: TyAndLayout<'tcx>) -> bool {
        layout.is_llvm_immediate()
    }
    fn is_backend_scalar_pair(&self, layout: TyAndLayout<'tcx>) -> bool {
        layout.is_llvm_scalar_pair()
    }
    fn backend_field_index(&self, layout: TyAndLayout<'tcx>, index: usize) -> u64 {
        layout.llvm_field_index(self, index)
    }
    fn scalar_pair_element_backend_type(
        &self,
        layout: TyAndLayout<'tcx>,
        index: usize,
        immediate: bool,
    ) -> &'ll Type {
        layout.scalar_pair_element_llvm_type(self, index, immediate)
    }
    fn cast_backend_type(&self, ty: &CastTarget) -> &'ll Type {
        ty.llvm_type(self)
    }
    fn fn_decl_backend_type(&self, fn_abi: &FnAbi<'tcx, Ty<'tcx>>) -> &'ll Type {
        fn_abi.llvm_type(self)
    }
    fn fn_ptr_backend_type(&self, fn_abi: &FnAbi<'tcx, Ty<'tcx>>) -> &'ll Type {
        fn_abi.ptr_to_llvm_type(self)
    }
    fn reg_backend_type(&self, ty: &Reg) -> &'ll Type {
        ty.llvm_type(self)
    }
}