rustc_hir_typeck/_match.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
use rustc_errors::{Applicability, Diag};
use rustc_hir::def::{CtorOf, DefKind, Res};
use rustc_hir::def_id::LocalDefId;
use rustc_hir::{self as hir, ExprKind, PatKind};
use rustc_hir_pretty::ty_to_string;
use rustc_middle::ty::{self, Ty};
use rustc_span::Span;
use rustc_trait_selection::traits::{
IfExpressionCause, MatchExpressionArmCause, ObligationCause, ObligationCauseCode,
};
use tracing::{debug, instrument};
use crate::coercion::{AsCoercionSite, CoerceMany};
use crate::{Diverges, Expectation, FnCtxt, Needs};
impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
#[instrument(skip(self), level = "debug", ret)]
pub(crate) fn check_expr_match(
&self,
expr: &'tcx hir::Expr<'tcx>,
scrut: &'tcx hir::Expr<'tcx>,
arms: &'tcx [hir::Arm<'tcx>],
orig_expected: Expectation<'tcx>,
match_src: hir::MatchSource,
) -> Ty<'tcx> {
let tcx = self.tcx;
let acrb = arms_contain_ref_bindings(arms);
let scrutinee_ty = self.demand_scrutinee_type(scrut, acrb, arms.is_empty());
debug!(?scrutinee_ty);
// If there are no arms, that is a diverging match; a special case.
if arms.is_empty() {
self.diverges.set(self.diverges.get() | Diverges::always(expr.span));
return tcx.types.never;
}
self.warn_arms_when_scrutinee_diverges(arms);
// Otherwise, we have to union together the types that the arms produce and so forth.
let scrut_diverges = self.diverges.replace(Diverges::Maybe);
// #55810: Type check patterns first so we get types for all bindings.
let scrut_span = scrut.span.find_ancestor_inside(expr.span).unwrap_or(scrut.span);
for arm in arms {
self.check_pat_top(arm.pat, scrutinee_ty, Some(scrut_span), Some(scrut), None);
}
// Now typecheck the blocks.
//
// The result of the match is the common supertype of all the
// arms. Start out the value as bottom, since it's the, well,
// bottom the type lattice, and we'll be moving up the lattice as
// we process each arm. (Note that any match with 0 arms is matching
// on any empty type and is therefore unreachable; should the flow
// of execution reach it, we will panic, so bottom is an appropriate
// type in that case)
let mut all_arms_diverge = Diverges::WarnedAlways;
let expected =
orig_expected.try_structurally_resolve_and_adjust_for_branches(self, expr.span);
debug!(?expected);
let mut coercion = {
let coerce_first = match expected {
// We don't coerce to `()` so that if the match expression is a
// statement it's branches can have any consistent type. That allows
// us to give better error messages (pointing to a usually better
// arm for inconsistent arms or to the whole match when a `()` type
// is required).
Expectation::ExpectHasType(ety) if ety != tcx.types.unit => ety,
_ => self.next_ty_var(expr.span),
};
CoerceMany::with_coercion_sites(coerce_first, arms)
};
let mut prior_non_diverging_arms = vec![]; // Used only for diagnostics.
let mut prior_arm = None;
for arm in arms {
if let Some(e) = &arm.guard {
self.diverges.set(Diverges::Maybe);
self.check_expr_has_type_or_error(e, tcx.types.bool, |_| {});
}
self.diverges.set(Diverges::Maybe);
let arm_ty = self.check_expr_with_expectation(arm.body, expected);
all_arms_diverge &= self.diverges.get();
let tail_defines_return_position_impl_trait =
self.return_position_impl_trait_from_match_expectation(orig_expected);
let (arm_block_id, arm_span) = if let hir::ExprKind::Block(blk, _) = arm.body.kind {
(Some(blk.hir_id), self.find_block_span(blk))
} else {
(None, arm.body.span)
};
let code = match prior_arm {
// The reason for the first arm to fail is not that the match arms diverge,
// but rather that there's a prior obligation that doesn't hold.
None => ObligationCauseCode::BlockTailExpression(arm.body.hir_id, match_src),
Some((prior_arm_block_id, prior_arm_ty, prior_arm_span)) => {
ObligationCauseCode::MatchExpressionArm(Box::new(MatchExpressionArmCause {
arm_block_id,
arm_span,
arm_ty,
prior_arm_block_id,
prior_arm_ty,
prior_arm_span,
scrut_span: scrut.span,
expr_span: expr.span,
source: match_src,
prior_non_diverging_arms: prior_non_diverging_arms.clone(),
tail_defines_return_position_impl_trait,
}))
}
};
let cause = self.cause(arm_span, code);
// This is the moral equivalent of `coercion.coerce(self, cause, arm.body, arm_ty)`.
// We use it this way to be able to expand on the potential error and detect when a
// `match` tail statement could be a tail expression instead. If so, we suggest
// removing the stray semicolon.
coercion.coerce_inner(
self,
&cause,
Some(arm.body),
arm_ty,
|err| {
self.explain_never_type_coerced_to_unit(err, arm, arm_ty, prior_arm, expr);
},
false,
);
if !arm_ty.is_never() {
// When a match arm has type `!`, then it doesn't influence the expected type for
// the following arm. If all of the prior arms are `!`, then the influence comes
// from elsewhere and we shouldn't point to any previous arm.
prior_arm = Some((arm_block_id, arm_ty, arm_span));
prior_non_diverging_arms.push(arm_span);
if prior_non_diverging_arms.len() > 5 {
prior_non_diverging_arms.remove(0);
}
}
}
// If all of the arms in the `match` diverge,
// and we're dealing with an actual `match` block
// (as opposed to a `match` desugared from something else'),
// we can emit a better note. Rather than pointing
// at a diverging expression in an arbitrary arm,
// we can point at the entire `match` expression
if let (Diverges::Always { .. }, hir::MatchSource::Normal) = (all_arms_diverge, match_src) {
all_arms_diverge = Diverges::Always {
span: expr.span,
custom_note: Some(
"any code following this `match` expression is unreachable, as all arms diverge",
),
};
}
// We won't diverge unless the scrutinee or all arms diverge.
self.diverges.set(scrut_diverges | all_arms_diverge);
coercion.complete(self)
}
fn explain_never_type_coerced_to_unit(
&self,
err: &mut Diag<'_>,
arm: &hir::Arm<'tcx>,
arm_ty: Ty<'tcx>,
prior_arm: Option<(Option<hir::HirId>, Ty<'tcx>, Span)>,
expr: &hir::Expr<'tcx>,
) {
if let hir::ExprKind::Block(block, _) = arm.body.kind
&& let Some(expr) = block.expr
&& let arm_tail_ty = self.node_ty(expr.hir_id)
&& arm_tail_ty.is_never()
&& !arm_ty.is_never()
{
err.span_label(
expr.span,
format!(
"this expression is of type `!`, but it is coerced to `{arm_ty}` due to its \
surrounding expression",
),
);
self.suggest_mismatched_types_on_tail(
err,
expr,
arm_ty,
prior_arm.map_or(arm_tail_ty, |(_, ty, _)| ty),
expr.hir_id,
);
}
self.suggest_removing_semicolon_for_coerce(err, expr, arm_ty, prior_arm)
}
fn suggest_removing_semicolon_for_coerce(
&self,
diag: &mut Diag<'_>,
expr: &hir::Expr<'tcx>,
arm_ty: Ty<'tcx>,
prior_arm: Option<(Option<hir::HirId>, Ty<'tcx>, Span)>,
) {
let hir = self.tcx.hir();
// First, check that we're actually in the tail of a function.
let Some(body) = hir.maybe_body_owned_by(self.body_id) else {
return;
};
let hir::ExprKind::Block(block, _) = body.value.kind else {
return;
};
let Some(hir::Stmt { kind: hir::StmtKind::Semi(last_expr), span: semi_span, .. }) =
block.innermost_block().stmts.last()
else {
return;
};
if last_expr.hir_id != expr.hir_id {
return;
}
// Next, make sure that we have no type expectation.
let Some(ret) =
self.tcx.hir_node_by_def_id(self.body_id).fn_decl().map(|decl| decl.output.span())
else {
return;
};
let can_coerce_to_return_ty = match self.ret_coercion.as_ref() {
Some(ret_coercion) => {
let ret_ty = ret_coercion.borrow().expected_ty();
let ret_ty = self.infcx.shallow_resolve(ret_ty);
self.may_coerce(arm_ty, ret_ty)
&& prior_arm.is_none_or(|(_, ty, _)| self.may_coerce(ty, ret_ty))
// The match arms need to unify for the case of `impl Trait`.
&& !matches!(ret_ty.kind(), ty::Alias(ty::Opaque, ..))
}
_ => false,
};
if !can_coerce_to_return_ty {
return;
}
let semi = expr.span.shrink_to_hi().with_hi(semi_span.hi());
let sugg = crate::errors::RemoveSemiForCoerce { expr: expr.span, ret, semi };
diag.subdiagnostic(sugg);
}
/// When the previously checked expression (the scrutinee) diverges,
/// warn the user about the match arms being unreachable.
fn warn_arms_when_scrutinee_diverges(&self, arms: &'tcx [hir::Arm<'tcx>]) {
for arm in arms {
self.warn_if_unreachable(arm.body.hir_id, arm.body.span, "arm");
}
}
/// Handle the fallback arm of a desugared if(-let) like a missing else.
///
/// Returns `true` if there was an error forcing the coercion to the `()` type.
pub(super) fn if_fallback_coercion<T>(
&self,
if_span: Span,
cond_expr: &'tcx hir::Expr<'tcx>,
then_expr: &'tcx hir::Expr<'tcx>,
coercion: &mut CoerceMany<'tcx, '_, T>,
) -> bool
where
T: AsCoercionSite,
{
// If this `if` expr is the parent's function return expr,
// the cause of the type coercion is the return type, point at it. (#25228)
let hir_id = self.tcx.parent_hir_id(self.tcx.parent_hir_id(then_expr.hir_id));
let ret_reason = self.maybe_get_coercion_reason(hir_id, if_span);
let cause = self.cause(if_span, ObligationCauseCode::IfExpressionWithNoElse);
let mut error = false;
coercion.coerce_forced_unit(
self,
&cause,
|err| self.explain_if_expr(err, ret_reason, if_span, cond_expr, then_expr, &mut error),
false,
);
error
}
/// Explain why `if` expressions without `else` evaluate to `()` and detect likely irrefutable
/// `if let PAT = EXPR {}` expressions that could be turned into `let PAT = EXPR;`.
fn explain_if_expr(
&self,
err: &mut Diag<'_>,
ret_reason: Option<(Span, String)>,
if_span: Span,
cond_expr: &'tcx hir::Expr<'tcx>,
then_expr: &'tcx hir::Expr<'tcx>,
error: &mut bool,
) {
if let Some((if_span, msg)) = ret_reason {
err.span_label(if_span, msg);
} else if let ExprKind::Block(block, _) = then_expr.kind
&& let Some(expr) = block.expr
{
err.span_label(expr.span, "found here");
}
err.note("`if` expressions without `else` evaluate to `()`");
err.help("consider adding an `else` block that evaluates to the expected type");
*error = true;
if let ExprKind::Let(hir::LetExpr { span, pat, init, .. }) = cond_expr.kind
&& let ExprKind::Block(block, _) = then_expr.kind
// Refutability checks occur on the MIR, so we approximate it here by checking
// if we have an enum with a single variant or a struct in the pattern.
&& let PatKind::TupleStruct(qpath, ..) | PatKind::Struct(qpath, ..) = pat.kind
&& let hir::QPath::Resolved(_, path) = qpath
{
match path.res {
Res::Def(DefKind::Ctor(CtorOf::Struct, _), _) => {
// Structs are always irrefutable. Their fields might not be, but we
// don't check for that here, it's only an approximation.
}
Res::Def(DefKind::Ctor(CtorOf::Variant, _), def_id)
if self
.tcx
.adt_def(self.tcx.parent(self.tcx.parent(def_id)))
.variants()
.len()
== 1 =>
{
// There's only a single variant in the `enum`, so we can suggest the
// irrefutable `let` instead of `if let`.
}
_ => return,
}
let mut sugg = vec![
// Remove the `if`
(if_span.until(*span), String::new()),
];
match (block.stmts, block.expr) {
([first, ..], Some(expr)) => {
let padding = self
.tcx
.sess
.source_map()
.indentation_before(first.span)
.unwrap_or_else(|| String::new());
sugg.extend([
(init.span.between(first.span), format!(";\n{padding}")),
(expr.span.shrink_to_hi().with_hi(block.span.hi()), String::new()),
]);
}
([], Some(expr)) => {
let padding = self
.tcx
.sess
.source_map()
.indentation_before(expr.span)
.unwrap_or_else(|| String::new());
sugg.extend([
(init.span.between(expr.span), format!(";\n{padding}")),
(expr.span.shrink_to_hi().with_hi(block.span.hi()), String::new()),
]);
}
// If there's no value in the body, then the `if` expression would already
// be of type `()`, so checking for those cases is unnecessary.
(_, None) => return,
}
err.multipart_suggestion(
"consider using an irrefutable `let` binding instead",
sugg,
Applicability::MaybeIncorrect,
);
}
}
pub(crate) fn maybe_get_coercion_reason(
&self,
hir_id: hir::HirId,
sp: Span,
) -> Option<(Span, String)> {
let node = self.tcx.hir_node(hir_id);
if let hir::Node::Block(block) = node {
// check that the body's parent is an fn
let parent = self.tcx.parent_hir_node(self.tcx.parent_hir_id(block.hir_id));
if let (Some(expr), hir::Node::Item(hir::Item { kind: hir::ItemKind::Fn(..), .. })) =
(&block.expr, parent)
{
// check that the `if` expr without `else` is the fn body's expr
if expr.span == sp {
return self.get_fn_decl(hir_id).map(|(_, fn_decl)| {
let (ty, span) = match fn_decl.output {
hir::FnRetTy::DefaultReturn(span) => ("()".to_string(), span),
hir::FnRetTy::Return(ty) => (ty_to_string(&self.tcx, ty), ty.span),
};
(span, format!("expected `{ty}` because of this return type"))
});
}
}
}
if let hir::Node::LetStmt(hir::LetStmt { ty: Some(_), pat, .. }) = node {
return Some((pat.span, "expected because of this assignment".to_string()));
}
None
}
pub(crate) fn if_cause(
&self,
span: Span,
cond_span: Span,
then_expr: &'tcx hir::Expr<'tcx>,
else_expr: &'tcx hir::Expr<'tcx>,
then_ty: Ty<'tcx>,
else_ty: Ty<'tcx>,
tail_defines_return_position_impl_trait: Option<LocalDefId>,
) -> ObligationCause<'tcx> {
let mut outer_span = if self.tcx.sess.source_map().is_multiline(span) {
// The `if`/`else` isn't in one line in the output, include some context to make it
// clear it is an if/else expression:
// ```
// LL | let x = if true {
// | _____________-
// LL || 10i32
// || ----- expected because of this
// LL || } else {
// LL || 10u32
// || ^^^^^ expected `i32`, found `u32`
// LL || };
// ||_____- `if` and `else` have incompatible types
// ```
Some(span)
} else {
// The entire expression is in one line, only point at the arms
// ```
// LL | let x = if true { 10i32 } else { 10u32 };
// | ----- ^^^^^ expected `i32`, found `u32`
// | |
// | expected because of this
// ```
None
};
let (error_sp, else_id) = if let ExprKind::Block(block, _) = &else_expr.kind {
let block = block.innermost_block();
// Avoid overlapping spans that aren't as readable:
// ```
// 2 | let x = if true {
// | _____________-
// 3 | | 3
// | | - expected because of this
// 4 | | } else {
// | |____________^
// 5 | ||
// 6 | || };
// | || ^
// | ||_____|
// | |______if and else have incompatible types
// | expected integer, found `()`
// ```
// by not pointing at the entire expression:
// ```
// 2 | let x = if true {
// | ------- `if` and `else` have incompatible types
// 3 | 3
// | - expected because of this
// 4 | } else {
// | ____________^
// 5 | |
// 6 | | };
// | |_____^ expected integer, found `()`
// ```
if block.expr.is_none()
&& block.stmts.is_empty()
&& let Some(outer_span) = &mut outer_span
&& let Some(cond_span) = cond_span.find_ancestor_inside(*outer_span)
{
*outer_span = outer_span.with_hi(cond_span.hi())
}
(self.find_block_span(block), block.hir_id)
} else {
(else_expr.span, else_expr.hir_id)
};
let then_id = if let ExprKind::Block(block, _) = &then_expr.kind {
let block = block.innermost_block();
// Exclude overlapping spans
if block.expr.is_none() && block.stmts.is_empty() {
outer_span = None;
}
block.hir_id
} else {
then_expr.hir_id
};
// Finally construct the cause:
self.cause(
error_sp,
ObligationCauseCode::IfExpression(Box::new(IfExpressionCause {
else_id,
then_id,
then_ty,
else_ty,
outer_span,
tail_defines_return_position_impl_trait,
})),
)
}
pub(super) fn demand_scrutinee_type(
&self,
scrut: &'tcx hir::Expr<'tcx>,
contains_ref_bindings: Option<hir::Mutability>,
no_arms: bool,
) -> Ty<'tcx> {
// Not entirely obvious: if matches may create ref bindings, we want to
// use the *precise* type of the scrutinee, *not* some supertype, as
// the "scrutinee type" (issue #23116).
//
// arielb1 [writes here in this comment thread][c] that there
// is certainly *some* potential danger, e.g., for an example
// like:
//
// [c]: https://github.com/rust-lang/rust/pull/43399#discussion_r130223956
//
// ```
// let Foo(x) = f()[0];
// ```
//
// Then if the pattern matches by reference, we want to match
// `f()[0]` as a lexpr, so we can't allow it to be
// coerced. But if the pattern matches by value, `f()[0]` is
// still syntactically a lexpr, but we *do* want to allow
// coercions.
//
// However, *likely* we are ok with allowing coercions to
// happen if there are no explicit ref mut patterns - all
// implicit ref mut patterns must occur behind a reference, so
// they will have the "correct" variance and lifetime.
//
// This does mean that the following pattern would be legal:
//
// ```
// struct Foo(Bar);
// struct Bar(u32);
// impl Deref for Foo {
// type Target = Bar;
// fn deref(&self) -> &Bar { &self.0 }
// }
// impl DerefMut for Foo {
// fn deref_mut(&mut self) -> &mut Bar { &mut self.0 }
// }
// fn foo(x: &mut Foo) {
// {
// let Bar(z): &mut Bar = x;
// *z = 42;
// }
// assert_eq!(foo.0.0, 42);
// }
// ```
//
// FIXME(tschottdorf): don't call contains_explicit_ref_binding, which
// is problematic as the HIR is being scraped, but ref bindings may be
// implicit after #42640. We need to make sure that pat_adjustments
// (once introduced) is populated by the time we get here.
//
// See #44848.
if let Some(m) = contains_ref_bindings {
self.check_expr_with_needs(scrut, Needs::maybe_mut_place(m))
} else if no_arms {
self.check_expr(scrut)
} else {
// ...but otherwise we want to use any supertype of the
// scrutinee. This is sort of a workaround, see note (*) in
// `check_pat` for some details.
let scrut_ty = self.next_ty_var(scrut.span);
self.check_expr_has_type_or_error(scrut, scrut_ty, |_| {});
scrut_ty
}
}
// Does the expectation of the match define an RPIT?
// (e.g. we're in the tail of a function body)
//
// Returns the `LocalDefId` of the RPIT, which is always identity-substituted.
pub(crate) fn return_position_impl_trait_from_match_expectation(
&self,
expectation: Expectation<'tcx>,
) -> Option<LocalDefId> {
let expected_ty = expectation.to_option(self)?;
let (def_id, args) = match *expected_ty.kind() {
// FIXME: Could also check that the RPIT is not defined
ty::Alias(ty::Opaque, alias_ty) => (alias_ty.def_id.as_local()?, alias_ty.args),
// FIXME(-Znext-solver): Remove this branch once `replace_opaque_types_with_infer` is gone.
ty::Infer(ty::TyVar(_)) => self
.inner
.borrow()
.iter_opaque_types()
.find(|(_, v)| v.ty == expected_ty)
.map(|(k, _)| (k.def_id, k.args))?,
_ => return None,
};
let hir::OpaqueTyOrigin::FnReturn { parent: parent_def_id, .. } =
self.tcx.local_opaque_ty_origin(def_id)
else {
return None;
};
if &args[0..self.tcx.generics_of(parent_def_id).count()]
!= ty::GenericArgs::identity_for_item(self.tcx, parent_def_id).as_slice()
{
return None;
}
Some(def_id)
}
}
fn arms_contain_ref_bindings<'tcx>(arms: &'tcx [hir::Arm<'tcx>]) -> Option<hir::Mutability> {
arms.iter().filter_map(|a| a.pat.contains_explicit_ref_binding()).max()
}