rustc_hir_typeck/
_match.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
use rustc_errors::{Applicability, Diag};
use rustc_hir::def::{CtorOf, DefKind, Res};
use rustc_hir::def_id::LocalDefId;
use rustc_hir::{self as hir, ExprKind, PatKind};
use rustc_hir_pretty::ty_to_string;
use rustc_middle::ty::{self, Ty};
use rustc_span::Span;
use rustc_trait_selection::traits::{
    IfExpressionCause, MatchExpressionArmCause, ObligationCause, ObligationCauseCode,
};
use tracing::{debug, instrument};

use crate::coercion::{AsCoercionSite, CoerceMany};
use crate::{Diverges, Expectation, FnCtxt, Needs};

impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
    #[instrument(skip(self), level = "debug", ret)]
    pub(crate) fn check_expr_match(
        &self,
        expr: &'tcx hir::Expr<'tcx>,
        scrut: &'tcx hir::Expr<'tcx>,
        arms: &'tcx [hir::Arm<'tcx>],
        orig_expected: Expectation<'tcx>,
        match_src: hir::MatchSource,
    ) -> Ty<'tcx> {
        let tcx = self.tcx;

        let acrb = arms_contain_ref_bindings(arms);
        let scrutinee_ty = self.demand_scrutinee_type(scrut, acrb, arms.is_empty());
        debug!(?scrutinee_ty);

        // If there are no arms, that is a diverging match; a special case.
        if arms.is_empty() {
            self.diverges.set(self.diverges.get() | Diverges::always(expr.span));
            return tcx.types.never;
        }

        self.warn_arms_when_scrutinee_diverges(arms);

        // Otherwise, we have to union together the types that the arms produce and so forth.
        let scrut_diverges = self.diverges.replace(Diverges::Maybe);

        // #55810: Type check patterns first so we get types for all bindings.
        let scrut_span = scrut.span.find_ancestor_inside(expr.span).unwrap_or(scrut.span);
        for arm in arms {
            self.check_pat_top(arm.pat, scrutinee_ty, Some(scrut_span), Some(scrut), None);
        }

        // Now typecheck the blocks.
        //
        // The result of the match is the common supertype of all the
        // arms. Start out the value as bottom, since it's the, well,
        // bottom the type lattice, and we'll be moving up the lattice as
        // we process each arm. (Note that any match with 0 arms is matching
        // on any empty type and is therefore unreachable; should the flow
        // of execution reach it, we will panic, so bottom is an appropriate
        // type in that case)
        let mut all_arms_diverge = Diverges::WarnedAlways;

        let expected = orig_expected.adjust_for_branches(self);
        debug!(?expected);

        let mut coercion = {
            let coerce_first = match expected {
                // We don't coerce to `()` so that if the match expression is a
                // statement it's branches can have any consistent type. That allows
                // us to give better error messages (pointing to a usually better
                // arm for inconsistent arms or to the whole match when a `()` type
                // is required).
                Expectation::ExpectHasType(ety) if ety != tcx.types.unit => ety,
                _ => self.next_ty_var(expr.span),
            };
            CoerceMany::with_coercion_sites(coerce_first, arms)
        };

        let mut prior_non_diverging_arms = vec![]; // Used only for diagnostics.
        let mut prior_arm = None;
        for arm in arms {
            if let Some(e) = &arm.guard {
                self.diverges.set(Diverges::Maybe);
                self.check_expr_has_type_or_error(e, tcx.types.bool, |_| {});
            }

            self.diverges.set(Diverges::Maybe);

            let arm_ty = self.check_expr_with_expectation(arm.body, expected);
            all_arms_diverge &= self.diverges.get();
            let tail_defines_return_position_impl_trait =
                self.return_position_impl_trait_from_match_expectation(orig_expected);

            let (arm_block_id, arm_span) = if let hir::ExprKind::Block(blk, _) = arm.body.kind {
                (Some(blk.hir_id), self.find_block_span(blk))
            } else {
                (None, arm.body.span)
            };

            let code = match prior_arm {
                // The reason for the first arm to fail is not that the match arms diverge,
                // but rather that there's a prior obligation that doesn't hold.
                None => ObligationCauseCode::BlockTailExpression(arm.body.hir_id, match_src),
                Some((prior_arm_block_id, prior_arm_ty, prior_arm_span)) => {
                    ObligationCauseCode::MatchExpressionArm(Box::new(MatchExpressionArmCause {
                        arm_block_id,
                        arm_span,
                        arm_ty,
                        prior_arm_block_id,
                        prior_arm_ty,
                        prior_arm_span,
                        scrut_span: scrut.span,
                        expr_span: expr.span,
                        source: match_src,
                        prior_non_diverging_arms: prior_non_diverging_arms.clone(),
                        tail_defines_return_position_impl_trait,
                    }))
                }
            };
            let cause = self.cause(arm_span, code);

            // This is the moral equivalent of `coercion.coerce(self, cause, arm.body, arm_ty)`.
            // We use it this way to be able to expand on the potential error and detect when a
            // `match` tail statement could be a tail expression instead. If so, we suggest
            // removing the stray semicolon.
            coercion.coerce_inner(
                self,
                &cause,
                Some(arm.body),
                arm_ty,
                |err| {
                    self.explain_never_type_coerced_to_unit(err, arm, arm_ty, prior_arm, expr);
                },
                false,
            );

            if !arm_ty.is_never() {
                // When a match arm has type `!`, then it doesn't influence the expected type for
                // the following arm. If all of the prior arms are `!`, then the influence comes
                // from elsewhere and we shouldn't point to any previous arm.
                prior_arm = Some((arm_block_id, arm_ty, arm_span));

                prior_non_diverging_arms.push(arm_span);
                if prior_non_diverging_arms.len() > 5 {
                    prior_non_diverging_arms.remove(0);
                }
            }
        }

        // If all of the arms in the `match` diverge,
        // and we're dealing with an actual `match` block
        // (as opposed to a `match` desugared from something else'),
        // we can emit a better note. Rather than pointing
        // at a diverging expression in an arbitrary arm,
        // we can point at the entire `match` expression
        if let (Diverges::Always { .. }, hir::MatchSource::Normal) = (all_arms_diverge, match_src) {
            all_arms_diverge = Diverges::Always {
                span: expr.span,
                custom_note: Some(
                    "any code following this `match` expression is unreachable, as all arms diverge",
                ),
            };
        }

        // We won't diverge unless the scrutinee or all arms diverge.
        self.diverges.set(scrut_diverges | all_arms_diverge);

        coercion.complete(self)
    }

    fn explain_never_type_coerced_to_unit(
        &self,
        err: &mut Diag<'_>,
        arm: &hir::Arm<'tcx>,
        arm_ty: Ty<'tcx>,
        prior_arm: Option<(Option<hir::HirId>, Ty<'tcx>, Span)>,
        expr: &hir::Expr<'tcx>,
    ) {
        if let hir::ExprKind::Block(block, _) = arm.body.kind
            && let Some(expr) = block.expr
            && let arm_tail_ty = self.node_ty(expr.hir_id)
            && arm_tail_ty.is_never()
            && !arm_ty.is_never()
        {
            err.span_label(
                expr.span,
                format!(
                    "this expression is of type `!`, but it is coerced to `{arm_ty}` due to its \
                     surrounding expression",
                ),
            );
            self.suggest_mismatched_types_on_tail(
                err,
                expr,
                arm_ty,
                prior_arm.map_or(arm_tail_ty, |(_, ty, _)| ty),
                expr.hir_id,
            );
        }
        self.suggest_removing_semicolon_for_coerce(err, expr, arm_ty, prior_arm)
    }

    fn suggest_removing_semicolon_for_coerce(
        &self,
        diag: &mut Diag<'_>,
        expr: &hir::Expr<'tcx>,
        arm_ty: Ty<'tcx>,
        prior_arm: Option<(Option<hir::HirId>, Ty<'tcx>, Span)>,
    ) {
        let hir = self.tcx.hir();

        // First, check that we're actually in the tail of a function.
        let Some(body) = hir.maybe_body_owned_by(self.body_id) else {
            return;
        };
        let hir::ExprKind::Block(block, _) = body.value.kind else {
            return;
        };
        let Some(hir::Stmt { kind: hir::StmtKind::Semi(last_expr), span: semi_span, .. }) =
            block.innermost_block().stmts.last()
        else {
            return;
        };
        if last_expr.hir_id != expr.hir_id {
            return;
        }

        // Next, make sure that we have no type expectation.
        let Some(ret) =
            self.tcx.hir_node_by_def_id(self.body_id).fn_decl().map(|decl| decl.output.span())
        else {
            return;
        };

        let can_coerce_to_return_ty = match self.ret_coercion.as_ref() {
            Some(ret_coercion) => {
                let ret_ty = ret_coercion.borrow().expected_ty();
                let ret_ty = self.infcx.shallow_resolve(ret_ty);
                self.may_coerce(arm_ty, ret_ty)
                    && prior_arm.is_none_or(|(_, ty, _)| self.may_coerce(ty, ret_ty))
                    // The match arms need to unify for the case of `impl Trait`.
                    && !matches!(ret_ty.kind(), ty::Alias(ty::Opaque, ..))
            }
            _ => false,
        };
        if !can_coerce_to_return_ty {
            return;
        }

        let semi = expr.span.shrink_to_hi().with_hi(semi_span.hi());
        let sugg = crate::errors::RemoveSemiForCoerce { expr: expr.span, ret, semi };
        diag.subdiagnostic(sugg);
    }

    /// When the previously checked expression (the scrutinee) diverges,
    /// warn the user about the match arms being unreachable.
    fn warn_arms_when_scrutinee_diverges(&self, arms: &'tcx [hir::Arm<'tcx>]) {
        for arm in arms {
            self.warn_if_unreachable(arm.body.hir_id, arm.body.span, "arm");
        }
    }

    /// Handle the fallback arm of a desugared if(-let) like a missing else.
    ///
    /// Returns `true` if there was an error forcing the coercion to the `()` type.
    pub(super) fn if_fallback_coercion<T>(
        &self,
        if_span: Span,
        cond_expr: &'tcx hir::Expr<'tcx>,
        then_expr: &'tcx hir::Expr<'tcx>,
        coercion: &mut CoerceMany<'tcx, '_, T>,
    ) -> bool
    where
        T: AsCoercionSite,
    {
        // If this `if` expr is the parent's function return expr,
        // the cause of the type coercion is the return type, point at it. (#25228)
        let hir_id = self.tcx.parent_hir_id(self.tcx.parent_hir_id(then_expr.hir_id));
        let ret_reason = self.maybe_get_coercion_reason(hir_id, if_span);
        let cause = self.cause(if_span, ObligationCauseCode::IfExpressionWithNoElse);
        let mut error = false;
        coercion.coerce_forced_unit(
            self,
            &cause,
            |err| self.explain_if_expr(err, ret_reason, if_span, cond_expr, then_expr, &mut error),
            false,
        );
        error
    }

    /// Explain why `if` expressions without `else` evaluate to `()` and detect likely irrefutable
    /// `if let PAT = EXPR {}` expressions that could be turned into `let PAT = EXPR;`.
    fn explain_if_expr(
        &self,
        err: &mut Diag<'_>,
        ret_reason: Option<(Span, String)>,
        if_span: Span,
        cond_expr: &'tcx hir::Expr<'tcx>,
        then_expr: &'tcx hir::Expr<'tcx>,
        error: &mut bool,
    ) {
        if let Some((if_span, msg)) = ret_reason {
            err.span_label(if_span, msg);
        } else if let ExprKind::Block(block, _) = then_expr.kind
            && let Some(expr) = block.expr
        {
            err.span_label(expr.span, "found here");
        }
        err.note("`if` expressions without `else` evaluate to `()`");
        err.help("consider adding an `else` block that evaluates to the expected type");
        *error = true;
        if let ExprKind::Let(hir::LetExpr { span, pat, init, .. }) = cond_expr.kind
            && let ExprKind::Block(block, _) = then_expr.kind
            // Refutability checks occur on the MIR, so we approximate it here by checking
            // if we have an enum with a single variant or a struct in the pattern.
            && let PatKind::TupleStruct(qpath, ..) | PatKind::Struct(qpath, ..) = pat.kind
            && let hir::QPath::Resolved(_, path) = qpath
        {
            match path.res {
                Res::Def(DefKind::Ctor(CtorOf::Struct, _), _) => {
                    // Structs are always irrefutable. Their fields might not be, but we
                    // don't check for that here, it's only an approximation.
                }
                Res::Def(DefKind::Ctor(CtorOf::Variant, _), def_id)
                    if self
                        .tcx
                        .adt_def(self.tcx.parent(self.tcx.parent(def_id)))
                        .variants()
                        .len()
                        == 1 =>
                {
                    // There's only a single variant in the `enum`, so we can suggest the
                    // irrefutable `let` instead of `if let`.
                }
                _ => return,
            }

            let mut sugg = vec![
                // Remove the `if`
                (if_span.until(*span), String::new()),
            ];
            match (block.stmts, block.expr) {
                ([first, ..], Some(expr)) => {
                    let padding = self
                        .tcx
                        .sess
                        .source_map()
                        .indentation_before(first.span)
                        .unwrap_or_else(|| String::new());
                    sugg.extend([
                        (init.span.between(first.span), format!(";\n{padding}")),
                        (expr.span.shrink_to_hi().with_hi(block.span.hi()), String::new()),
                    ]);
                }
                ([], Some(expr)) => {
                    let padding = self
                        .tcx
                        .sess
                        .source_map()
                        .indentation_before(expr.span)
                        .unwrap_or_else(|| String::new());
                    sugg.extend([
                        (init.span.between(expr.span), format!(";\n{padding}")),
                        (expr.span.shrink_to_hi().with_hi(block.span.hi()), String::new()),
                    ]);
                }
                // If there's no value in the body, then the `if` expression would already
                // be of type `()`, so checking for those cases is unnecessary.
                (_, None) => return,
            }
            err.multipart_suggestion(
                "consider using an irrefutable `let` binding instead",
                sugg,
                Applicability::MaybeIncorrect,
            );
        }
    }

    pub(crate) fn maybe_get_coercion_reason(
        &self,
        hir_id: hir::HirId,
        sp: Span,
    ) -> Option<(Span, String)> {
        let node = self.tcx.hir_node(hir_id);
        if let hir::Node::Block(block) = node {
            // check that the body's parent is an fn
            let parent = self.tcx.parent_hir_node(self.tcx.parent_hir_id(block.hir_id));
            if let (Some(expr), hir::Node::Item(hir::Item { kind: hir::ItemKind::Fn(..), .. })) =
                (&block.expr, parent)
            {
                // check that the `if` expr without `else` is the fn body's expr
                if expr.span == sp {
                    return self.get_fn_decl(hir_id).map(|(_, fn_decl)| {
                        let (ty, span) = match fn_decl.output {
                            hir::FnRetTy::DefaultReturn(span) => ("()".to_string(), span),
                            hir::FnRetTy::Return(ty) => (ty_to_string(&self.tcx, ty), ty.span),
                        };
                        (span, format!("expected `{ty}` because of this return type"))
                    });
                }
            }
        }
        if let hir::Node::LetStmt(hir::LetStmt { ty: Some(_), pat, .. }) = node {
            return Some((pat.span, "expected because of this assignment".to_string()));
        }
        None
    }

    pub(crate) fn if_cause(
        &self,
        span: Span,
        cond_span: Span,
        then_expr: &'tcx hir::Expr<'tcx>,
        else_expr: &'tcx hir::Expr<'tcx>,
        then_ty: Ty<'tcx>,
        else_ty: Ty<'tcx>,
        tail_defines_return_position_impl_trait: Option<LocalDefId>,
    ) -> ObligationCause<'tcx> {
        let mut outer_span = if self.tcx.sess.source_map().is_multiline(span) {
            // The `if`/`else` isn't in one line in the output, include some context to make it
            // clear it is an if/else expression:
            // ```
            // LL |      let x = if true {
            //    | _____________-
            // LL ||         10i32
            //    ||         ----- expected because of this
            // LL ||     } else {
            // LL ||         10u32
            //    ||         ^^^^^ expected `i32`, found `u32`
            // LL ||     };
            //    ||_____- `if` and `else` have incompatible types
            // ```
            Some(span)
        } else {
            // The entire expression is in one line, only point at the arms
            // ```
            // LL |     let x = if true { 10i32 } else { 10u32 };
            //    |                       -----          ^^^^^ expected `i32`, found `u32`
            //    |                       |
            //    |                       expected because of this
            // ```
            None
        };

        let (error_sp, else_id) = if let ExprKind::Block(block, _) = &else_expr.kind {
            let block = block.innermost_block();

            // Avoid overlapping spans that aren't as readable:
            // ```
            // 2 |        let x = if true {
            //   |   _____________-
            // 3 |  |         3
            //   |  |         - expected because of this
            // 4 |  |     } else {
            //   |  |____________^
            // 5 | ||
            // 6 | ||     };
            //   | ||     ^
            //   | ||_____|
            //   | |______if and else have incompatible types
            //   |        expected integer, found `()`
            // ```
            // by not pointing at the entire expression:
            // ```
            // 2 |       let x = if true {
            //   |               ------- `if` and `else` have incompatible types
            // 3 |           3
            //   |           - expected because of this
            // 4 |       } else {
            //   |  ____________^
            // 5 | |
            // 6 | |     };
            //   | |_____^ expected integer, found `()`
            // ```
            if block.expr.is_none()
                && block.stmts.is_empty()
                && let Some(outer_span) = &mut outer_span
                && let Some(cond_span) = cond_span.find_ancestor_inside(*outer_span)
            {
                *outer_span = outer_span.with_hi(cond_span.hi())
            }

            (self.find_block_span(block), block.hir_id)
        } else {
            (else_expr.span, else_expr.hir_id)
        };

        let then_id = if let ExprKind::Block(block, _) = &then_expr.kind {
            let block = block.innermost_block();
            // Exclude overlapping spans
            if block.expr.is_none() && block.stmts.is_empty() {
                outer_span = None;
            }
            block.hir_id
        } else {
            then_expr.hir_id
        };

        // Finally construct the cause:
        self.cause(
            error_sp,
            ObligationCauseCode::IfExpression(Box::new(IfExpressionCause {
                else_id,
                then_id,
                then_ty,
                else_ty,
                outer_span,
                tail_defines_return_position_impl_trait,
            })),
        )
    }

    pub(super) fn demand_scrutinee_type(
        &self,
        scrut: &'tcx hir::Expr<'tcx>,
        contains_ref_bindings: Option<hir::Mutability>,
        no_arms: bool,
    ) -> Ty<'tcx> {
        // Not entirely obvious: if matches may create ref bindings, we want to
        // use the *precise* type of the scrutinee, *not* some supertype, as
        // the "scrutinee type" (issue #23116).
        //
        // arielb1 [writes here in this comment thread][c] that there
        // is certainly *some* potential danger, e.g., for an example
        // like:
        //
        // [c]: https://github.com/rust-lang/rust/pull/43399#discussion_r130223956
        //
        // ```
        // let Foo(x) = f()[0];
        // ```
        //
        // Then if the pattern matches by reference, we want to match
        // `f()[0]` as a lexpr, so we can't allow it to be
        // coerced. But if the pattern matches by value, `f()[0]` is
        // still syntactically a lexpr, but we *do* want to allow
        // coercions.
        //
        // However, *likely* we are ok with allowing coercions to
        // happen if there are no explicit ref mut patterns - all
        // implicit ref mut patterns must occur behind a reference, so
        // they will have the "correct" variance and lifetime.
        //
        // This does mean that the following pattern would be legal:
        //
        // ```
        // struct Foo(Bar);
        // struct Bar(u32);
        // impl Deref for Foo {
        //     type Target = Bar;
        //     fn deref(&self) -> &Bar { &self.0 }
        // }
        // impl DerefMut for Foo {
        //     fn deref_mut(&mut self) -> &mut Bar { &mut self.0 }
        // }
        // fn foo(x: &mut Foo) {
        //     {
        //         let Bar(z): &mut Bar = x;
        //         *z = 42;
        //     }
        //     assert_eq!(foo.0.0, 42);
        // }
        // ```
        //
        // FIXME(tschottdorf): don't call contains_explicit_ref_binding, which
        // is problematic as the HIR is being scraped, but ref bindings may be
        // implicit after #42640. We need to make sure that pat_adjustments
        // (once introduced) is populated by the time we get here.
        //
        // See #44848.
        if let Some(m) = contains_ref_bindings {
            self.check_expr_with_needs(scrut, Needs::maybe_mut_place(m))
        } else if no_arms {
            self.check_expr(scrut)
        } else {
            // ...but otherwise we want to use any supertype of the
            // scrutinee. This is sort of a workaround, see note (*) in
            // `check_pat` for some details.
            let scrut_ty = self.next_ty_var(scrut.span);
            self.check_expr_has_type_or_error(scrut, scrut_ty, |_| {});
            scrut_ty
        }
    }

    // Does the expectation of the match define an RPIT?
    // (e.g. we're in the tail of a function body)
    //
    // Returns the `LocalDefId` of the RPIT, which is always identity-substituted.
    pub(crate) fn return_position_impl_trait_from_match_expectation(
        &self,
        expectation: Expectation<'tcx>,
    ) -> Option<LocalDefId> {
        let expected_ty = expectation.to_option(self)?;
        let (def_id, args) = match *expected_ty.kind() {
            // FIXME: Could also check that the RPIT is not defined
            ty::Alias(ty::Opaque, alias_ty) => (alias_ty.def_id.as_local()?, alias_ty.args),
            // FIXME(-Znext-solver): Remove this branch once `replace_opaque_types_with_infer` is gone.
            ty::Infer(ty::TyVar(_)) => self
                .inner
                .borrow()
                .iter_opaque_types()
                .find(|(_, v)| v.ty == expected_ty)
                .map(|(k, _)| (k.def_id, k.args))?,
            _ => return None,
        };
        let hir::OpaqueTyOrigin::FnReturn { parent: parent_def_id, .. } =
            self.tcx.local_opaque_ty_origin(def_id)
        else {
            return None;
        };
        if &args[0..self.tcx.generics_of(parent_def_id).count()]
            != ty::GenericArgs::identity_for_item(self.tcx, parent_def_id).as_slice()
        {
            return None;
        }
        Some(def_id)
    }
}

fn arms_contain_ref_bindings<'tcx>(arms: &'tcx [hir::Arm<'tcx>]) -> Option<hir::Mutability> {
    arms.iter().filter_map(|a| a.pat.contains_explicit_ref_binding()).max()
}