rustc_mir_transform/coverage/spans/from_mir.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
use rustc_middle::bug;
use rustc_middle::mir::coverage::CoverageKind;
use rustc_middle::mir::{
self, FakeReadCause, Statement, StatementKind, Terminator, TerminatorKind,
};
use rustc_span::{ExpnKind, Span};
use crate::coverage::ExtractedHirInfo;
use crate::coverage::graph::{
BasicCoverageBlock, BasicCoverageBlockData, CoverageGraph, START_BCB,
};
use crate::coverage::spans::Covspan;
use crate::coverage::unexpand::unexpand_into_body_span_with_expn_kind;
pub(crate) struct ExtractedCovspans {
pub(crate) covspans: Vec<SpanFromMir>,
}
/// Traverses the MIR body to produce an initial collection of coverage-relevant
/// spans, each associated with a node in the coverage graph (BCB) and possibly
/// other metadata.
pub(crate) fn extract_covspans_from_mir(
mir_body: &mir::Body<'_>,
hir_info: &ExtractedHirInfo,
graph: &CoverageGraph,
) -> ExtractedCovspans {
let &ExtractedHirInfo { body_span, .. } = hir_info;
let mut covspans = vec![];
for (bcb, bcb_data) in graph.iter_enumerated() {
bcb_to_initial_coverage_spans(mir_body, body_span, bcb, bcb_data, &mut covspans);
}
// Only add the signature span if we found at least one span in the body.
if !covspans.is_empty() {
// If there is no usable signature span, add a fake one (before refinement)
// to avoid an ugly gap between the body start and the first real span.
// FIXME: Find a more principled way to solve this problem.
let fn_sig_span = hir_info.fn_sig_span_extended.unwrap_or_else(|| body_span.shrink_to_lo());
covspans.push(SpanFromMir::for_fn_sig(fn_sig_span));
}
ExtractedCovspans { covspans }
}
// Generate a set of coverage spans from the filtered set of `Statement`s and `Terminator`s of
// the `BasicBlock`(s) in the given `BasicCoverageBlockData`. One coverage span is generated
// for each `Statement` and `Terminator`. (Note that subsequent stages of coverage analysis will
// merge some coverage spans, at which point a coverage span may represent multiple
// `Statement`s and/or `Terminator`s.)
fn bcb_to_initial_coverage_spans<'a, 'tcx>(
mir_body: &'a mir::Body<'tcx>,
body_span: Span,
bcb: BasicCoverageBlock,
bcb_data: &'a BasicCoverageBlockData,
initial_covspans: &mut Vec<SpanFromMir>,
) {
for &bb in &bcb_data.basic_blocks {
let data = &mir_body[bb];
let unexpand = move |expn_span| {
unexpand_into_body_span_with_expn_kind(expn_span, body_span)
// Discard any spans that fill the entire body, because they tend
// to represent compiler-inserted code, e.g. implicitly returning `()`.
.filter(|(span, _)| !span.source_equal(body_span))
};
let mut extract_statement_span = |statement| {
let expn_span = filtered_statement_span(statement)?;
let (span, expn_kind) = unexpand(expn_span)?;
initial_covspans.push(SpanFromMir::new(span, expn_kind, bcb));
Some(())
};
for statement in data.statements.iter() {
extract_statement_span(statement);
}
let mut extract_terminator_span = |terminator| {
let expn_span = filtered_terminator_span(terminator)?;
let (span, expn_kind) = unexpand(expn_span)?;
initial_covspans.push(SpanFromMir::new(span, expn_kind, bcb));
Some(())
};
extract_terminator_span(data.terminator());
}
}
/// If the MIR `Statement` has a span contributive to computing coverage spans,
/// return it; otherwise return `None`.
fn filtered_statement_span(statement: &Statement<'_>) -> Option<Span> {
match statement.kind {
// These statements have spans that are often outside the scope of the executed source code
// for their parent `BasicBlock`.
StatementKind::StorageLive(_)
| StatementKind::StorageDead(_)
| StatementKind::ConstEvalCounter
| StatementKind::BackwardIncompatibleDropHint { .. }
| StatementKind::Nop => None,
// FIXME(#78546): MIR InstrumentCoverage - Can the source_info.span for `FakeRead`
// statements be more consistent?
//
// FakeReadCause::ForGuardBinding, in this example:
// match somenum {
// x if x < 1 => { ... }
// }...
// The BasicBlock within the match arm code included one of these statements, but the span
// for it covered the `1` in this source. The actual statements have nothing to do with that
// source span:
// FakeRead(ForGuardBinding, _4);
// where `_4` is:
// _4 = &_1; (at the span for the first `x`)
// and `_1` is the `Place` for `somenum`.
//
// If and when the Issue is resolved, remove this special case match pattern:
StatementKind::FakeRead(box (FakeReadCause::ForGuardBinding, _)) => None,
// Retain spans from most other statements.
StatementKind::FakeRead(_)
| StatementKind::Intrinsic(..)
| StatementKind::Coverage(
// The purpose of `SpanMarker` is to be matched and accepted here.
CoverageKind::SpanMarker,
)
| StatementKind::Assign(_)
| StatementKind::SetDiscriminant { .. }
| StatementKind::Deinit(..)
| StatementKind::Retag(_, _)
| StatementKind::PlaceMention(..)
| StatementKind::AscribeUserType(_, _) => Some(statement.source_info.span),
// Block markers are used for branch coverage, so ignore them here.
StatementKind::Coverage(CoverageKind::BlockMarker { .. }) => None,
// These coverage statements should not exist prior to coverage instrumentation.
StatementKind::Coverage(
CoverageKind::CounterIncrement { .. }
| CoverageKind::ExpressionUsed { .. }
| CoverageKind::CondBitmapUpdate { .. }
| CoverageKind::TestVectorBitmapUpdate { .. },
) => bug!(
"Unexpected coverage statement found during coverage instrumentation: {statement:?}"
),
}
}
/// If the MIR `Terminator` has a span contributive to computing coverage spans,
/// return it; otherwise return `None`.
fn filtered_terminator_span(terminator: &Terminator<'_>) -> Option<Span> {
match terminator.kind {
// These terminators have spans that don't positively contribute to computing a reasonable
// span of actually executed source code. (For example, SwitchInt terminators extracted from
// an `if condition { block }` has a span that includes the executed block, if true,
// but for coverage, the code region executed, up to *and* through the SwitchInt,
// actually stops before the if's block.)
TerminatorKind::Unreachable // Unreachable blocks are not connected to the MIR CFG
| TerminatorKind::Assert { .. }
| TerminatorKind::Drop { .. }
| TerminatorKind::SwitchInt { .. }
// For `FalseEdge`, only the `real` branch is taken, so it is similar to a `Goto`.
| TerminatorKind::FalseEdge { .. }
| TerminatorKind::Goto { .. } => None,
// Call `func` operand can have a more specific span when part of a chain of calls
TerminatorKind::Call { ref func, .. }
| TerminatorKind::TailCall { ref func, .. } => {
let mut span = terminator.source_info.span;
if let mir::Operand::Constant(box constant) = func {
if constant.span.lo() > span.lo() {
span = span.with_lo(constant.span.lo());
}
}
Some(span)
}
// Retain spans from all other terminators
TerminatorKind::UnwindResume
| TerminatorKind::UnwindTerminate(_)
| TerminatorKind::Return
| TerminatorKind::Yield { .. }
| TerminatorKind::CoroutineDrop
| TerminatorKind::FalseUnwind { .. }
| TerminatorKind::InlineAsm { .. } => {
Some(terminator.source_info.span)
}
}
}
#[derive(Debug)]
pub(crate) struct Hole {
pub(crate) span: Span,
}
impl Hole {
pub(crate) fn merge_if_overlapping_or_adjacent(&mut self, other: &mut Self) -> bool {
if !self.span.overlaps_or_adjacent(other.span) {
return false;
}
self.span = self.span.to(other.span);
true
}
}
#[derive(Debug)]
pub(crate) struct SpanFromMir {
/// A span that has been extracted from MIR and then "un-expanded" back to
/// within the current function's `body_span`. After various intermediate
/// processing steps, this span is emitted as part of the final coverage
/// mappings.
///
/// With the exception of `fn_sig_span`, this should always be contained
/// within `body_span`.
pub(crate) span: Span,
pub(crate) expn_kind: Option<ExpnKind>,
pub(crate) bcb: BasicCoverageBlock,
}
impl SpanFromMir {
fn for_fn_sig(fn_sig_span: Span) -> Self {
Self::new(fn_sig_span, None, START_BCB)
}
pub(crate) fn new(span: Span, expn_kind: Option<ExpnKind>, bcb: BasicCoverageBlock) -> Self {
Self { span, expn_kind, bcb }
}
pub(crate) fn into_covspan(self) -> Covspan {
let Self { span, expn_kind: _, bcb } = self;
Covspan { span, bcb }
}
}