1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
use rustc_data_structures::base_n;
use rustc_data_structures::fx::FxHashMap;
use rustc_data_structures::intern::Interned;
use rustc_hir as hir;
use rustc_hir::def::CtorKind;
use rustc_hir::def_id::{CrateNum, DefId};
use rustc_hir::definitions::{DefPathData, DisambiguatedDefPathData};
use rustc_middle::bug;
use rustc_middle::ty::layout::IntegerExt;
use rustc_middle::ty::print::{Print, PrintError, Printer};
use rustc_middle::ty::{
    self, EarlyBinder, FloatTy, Instance, IntTy, ReifyReason, Ty, TyCtxt, TypeVisitable,
    TypeVisitableExt, UintTy,
};
use rustc_middle::ty::{GenericArg, GenericArgKind};
use rustc_span::symbol::kw;
use rustc_target::abi::Integer;
use rustc_target::spec::abi::Abi;

use std::fmt::Write;
use std::iter;
use std::ops::Range;

pub(super) fn mangle<'tcx>(
    tcx: TyCtxt<'tcx>,
    instance: Instance<'tcx>,
    instantiating_crate: Option<CrateNum>,
) -> String {
    let def_id = instance.def_id();
    // FIXME(eddyb) this should ideally not be needed.
    let args = tcx.normalize_erasing_regions(ty::ParamEnv::reveal_all(), instance.args);

    let prefix = "_R";
    let mut cx: SymbolMangler<'_> = SymbolMangler {
        tcx,
        start_offset: prefix.len(),
        paths: FxHashMap::default(),
        types: FxHashMap::default(),
        consts: FxHashMap::default(),
        binders: vec![],
        out: String::from(prefix),
    };

    // Append `::{shim:...#0}` to shims that can coexist with a non-shim instance.
    let shim_kind = match instance.def {
        ty::InstanceDef::ThreadLocalShim(_) => Some("tls"),
        ty::InstanceDef::VTableShim(_) => Some("vtable"),
        ty::InstanceDef::ReifyShim(_, None) => Some("reify"),
        ty::InstanceDef::ReifyShim(_, Some(ReifyReason::FnPtr)) => Some("reify_fnptr"),
        ty::InstanceDef::ReifyShim(_, Some(ReifyReason::Vtable)) => Some("reify_vtable"),

        ty::InstanceDef::ConstructCoroutineInClosureShim { .. }
        | ty::InstanceDef::CoroutineKindShim { .. } => Some("fn_once"),

        _ => None,
    };

    if let Some(shim_kind) = shim_kind {
        cx.path_append_ns(|cx| cx.print_def_path(def_id, args), 'S', 0, shim_kind).unwrap()
    } else {
        cx.print_def_path(def_id, args).unwrap()
    };
    if let Some(instantiating_crate) = instantiating_crate {
        cx.print_def_path(instantiating_crate.as_def_id(), &[]).unwrap();
    }
    std::mem::take(&mut cx.out)
}

pub(super) fn mangle_typeid_for_trait_ref<'tcx>(
    tcx: TyCtxt<'tcx>,
    trait_ref: ty::PolyExistentialTraitRef<'tcx>,
) -> String {
    // FIXME(flip1995): See comment in `mangle_typeid_for_fnabi`.
    let mut cx = SymbolMangler {
        tcx,
        start_offset: 0,
        paths: FxHashMap::default(),
        types: FxHashMap::default(),
        consts: FxHashMap::default(),
        binders: vec![],
        out: String::new(),
    };
    cx.print_def_path(trait_ref.def_id(), &[]).unwrap();
    std::mem::take(&mut cx.out)
}

struct BinderLevel {
    /// The range of distances from the root of what's
    /// being printed, to the lifetimes in a binder.
    /// Specifically, a `BrAnon` lifetime has depth
    /// `lifetime_depths.start + index`, going away from the
    /// the root and towards its use site, as the var index increases.
    /// This is used to flatten rustc's pairing of `BrAnon`
    /// (intra-binder disambiguation) with a `DebruijnIndex`
    /// (binder addressing), to "true" de Bruijn indices,
    /// by subtracting the depth of a certain lifetime, from
    /// the innermost depth at its use site.
    lifetime_depths: Range<u32>,
}

struct SymbolMangler<'tcx> {
    tcx: TyCtxt<'tcx>,
    binders: Vec<BinderLevel>,
    out: String,

    /// The length of the prefix in `out` (e.g. 2 for `_R`).
    start_offset: usize,
    /// The values are start positions in `out`, in bytes.
    paths: FxHashMap<(DefId, &'tcx [GenericArg<'tcx>]), usize>,
    types: FxHashMap<Ty<'tcx>, usize>,
    consts: FxHashMap<ty::Const<'tcx>, usize>,
}

impl<'tcx> SymbolMangler<'tcx> {
    fn push(&mut self, s: &str) {
        self.out.push_str(s);
    }

    /// Push a `_`-terminated base 62 integer, using the format
    /// specified in the RFC as `<base-62-number>`, that is:
    /// * `x = 0` is encoded as just the `"_"` terminator
    /// * `x > 0` is encoded as `x - 1` in base 62, followed by `"_"`,
    ///   e.g. `1` becomes `"0_"`, `62` becomes `"Z_"`, etc.
    fn push_integer_62(&mut self, x: u64) {
        push_integer_62(x, &mut self.out)
    }

    /// Push a `tag`-prefixed base 62 integer, when larger than `0`, that is:
    /// * `x = 0` is encoded as `""` (nothing)
    /// * `x > 0` is encoded as the `tag` followed by `push_integer_62(x - 1)`
    ///   e.g. `1` becomes `tag + "_"`, `2` becomes `tag + "0_"`, etc.
    fn push_opt_integer_62(&mut self, tag: &str, x: u64) {
        if let Some(x) = x.checked_sub(1) {
            self.push(tag);
            self.push_integer_62(x);
        }
    }

    fn push_disambiguator(&mut self, dis: u64) {
        self.push_opt_integer_62("s", dis);
    }

    fn push_ident(&mut self, ident: &str) {
        push_ident(ident, &mut self.out)
    }

    fn path_append_ns(
        &mut self,
        print_prefix: impl FnOnce(&mut Self) -> Result<(), PrintError>,
        ns: char,
        disambiguator: u64,
        name: &str,
    ) -> Result<(), PrintError> {
        self.push("N");
        self.out.push(ns);
        print_prefix(self)?;
        self.push_disambiguator(disambiguator);
        self.push_ident(name);
        Ok(())
    }

    fn print_backref(&mut self, i: usize) -> Result<(), PrintError> {
        self.push("B");
        self.push_integer_62((i - self.start_offset) as u64);
        Ok(())
    }

    fn in_binder<T>(
        &mut self,
        value: &ty::Binder<'tcx, T>,
        print_value: impl FnOnce(&mut Self, &T) -> Result<(), PrintError>,
    ) -> Result<(), PrintError>
    where
        T: TypeVisitable<TyCtxt<'tcx>>,
    {
        let mut lifetime_depths =
            self.binders.last().map(|b| b.lifetime_depths.end).map_or(0..0, |i| i..i);

        // FIXME(non-lifetime-binders): What to do here?
        let lifetimes = value
            .bound_vars()
            .iter()
            .filter(|var| matches!(var, ty::BoundVariableKind::Region(..)))
            .count() as u32;

        self.push_opt_integer_62("G", lifetimes as u64);
        lifetime_depths.end += lifetimes;

        self.binders.push(BinderLevel { lifetime_depths });
        print_value(self, value.as_ref().skip_binder())?;
        self.binders.pop();

        Ok(())
    }
}

impl<'tcx> Printer<'tcx> for SymbolMangler<'tcx> {
    fn tcx(&self) -> TyCtxt<'tcx> {
        self.tcx
    }

    fn print_def_path(
        &mut self,
        def_id: DefId,
        args: &'tcx [GenericArg<'tcx>],
    ) -> Result<(), PrintError> {
        if let Some(&i) = self.paths.get(&(def_id, args)) {
            return self.print_backref(i);
        }
        let start = self.out.len();

        self.default_print_def_path(def_id, args)?;

        // Only cache paths that do not refer to an enclosing
        // binder (which would change depending on context).
        if !args.iter().any(|k| k.has_escaping_bound_vars()) {
            self.paths.insert((def_id, args), start);
        }
        Ok(())
    }

    fn print_impl_path(
        &mut self,
        impl_def_id: DefId,
        args: &'tcx [GenericArg<'tcx>],
        mut self_ty: Ty<'tcx>,
        mut impl_trait_ref: Option<ty::TraitRef<'tcx>>,
    ) -> Result<(), PrintError> {
        let key = self.tcx.def_key(impl_def_id);
        let parent_def_id = DefId { index: key.parent.unwrap(), ..impl_def_id };

        let mut param_env = self.tcx.param_env_reveal_all_normalized(impl_def_id);
        if !args.is_empty() {
            param_env = EarlyBinder::bind(param_env).instantiate(self.tcx, args);
        }

        match &mut impl_trait_ref {
            Some(impl_trait_ref) => {
                assert_eq!(impl_trait_ref.self_ty(), self_ty);
                *impl_trait_ref = self.tcx.normalize_erasing_regions(param_env, *impl_trait_ref);
                self_ty = impl_trait_ref.self_ty();
            }
            None => {
                self_ty = self.tcx.normalize_erasing_regions(param_env, self_ty);
            }
        }

        self.push(match impl_trait_ref {
            Some(_) => "X",
            None => "M",
        });

        // Encode impl generic params if the generic parameters contain non-region parameters
        // (implying polymorphization is enabled) and this isn't an inherent impl.
        if impl_trait_ref.is_some() && args.iter().any(|a| a.has_non_region_param()) {
            self.path_generic_args(
                |this| {
                    this.path_append_ns(
                        |cx| cx.print_def_path(parent_def_id, &[]),
                        'I',
                        key.disambiguated_data.disambiguator as u64,
                        "",
                    )
                },
                args,
            )?;
        } else {
            self.push_disambiguator(key.disambiguated_data.disambiguator as u64);
            self.print_def_path(parent_def_id, &[])?;
        }

        self_ty.print(self)?;

        if let Some(trait_ref) = impl_trait_ref {
            self.print_def_path(trait_ref.def_id, trait_ref.args)?;
        }

        Ok(())
    }

    fn print_region(&mut self, region: ty::Region<'_>) -> Result<(), PrintError> {
        let i = match *region {
            // Erased lifetimes use the index 0, for a
            // shorter mangling of `L_`.
            ty::ReErased => 0,

            // Bound lifetimes use indices starting at 1,
            // see `BinderLevel` for more details.
            ty::ReBound(debruijn, ty::BoundRegion { var, kind: ty::BrAnon }) => {
                let binder = &self.binders[self.binders.len() - 1 - debruijn.index()];
                let depth = binder.lifetime_depths.start + var.as_u32();

                1 + (self.binders.last().unwrap().lifetime_depths.end - 1 - depth)
            }

            _ => bug!("symbol_names: non-erased region `{:?}`", region),
        };
        self.push("L");
        self.push_integer_62(i as u64);
        Ok(())
    }

    fn print_type(&mut self, ty: Ty<'tcx>) -> Result<(), PrintError> {
        // Basic types, never cached (single-character).
        let basic_type = match ty.kind() {
            ty::Bool => "b",
            ty::Char => "c",
            ty::Str => "e",
            ty::Tuple(_) if ty.is_unit() => "u",
            ty::Int(IntTy::I8) => "a",
            ty::Int(IntTy::I16) => "s",
            ty::Int(IntTy::I32) => "l",
            ty::Int(IntTy::I64) => "x",
            ty::Int(IntTy::I128) => "n",
            ty::Int(IntTy::Isize) => "i",
            ty::Uint(UintTy::U8) => "h",
            ty::Uint(UintTy::U16) => "t",
            ty::Uint(UintTy::U32) => "m",
            ty::Uint(UintTy::U64) => "y",
            ty::Uint(UintTy::U128) => "o",
            ty::Uint(UintTy::Usize) => "j",
            // FIXME(f16_f128): update these once `rustc-demangle` supports the new types
            ty::Float(FloatTy::F16) => unimplemented!("f16_f128"),
            ty::Float(FloatTy::F32) => "f",
            ty::Float(FloatTy::F64) => "d",
            ty::Float(FloatTy::F128) => unimplemented!("f16_f128"),
            ty::Never => "z",

            // Placeholders (should be demangled as `_`).
            ty::Param(_) | ty::Bound(..) | ty::Placeholder(_) | ty::Infer(_) | ty::Error(_) => "p",

            _ => "",
        };
        if !basic_type.is_empty() {
            self.push(basic_type);
            return Ok(());
        }

        if let Some(&i) = self.types.get(&ty) {
            return self.print_backref(i);
        }
        let start = self.out.len();

        match *ty.kind() {
            // Basic types, handled above.
            ty::Bool | ty::Char | ty::Str | ty::Int(_) | ty::Uint(_) | ty::Float(_) | ty::Never => {
                unreachable!()
            }
            ty::Tuple(_) if ty.is_unit() => unreachable!(),

            // Placeholders, also handled as part of basic types.
            ty::Param(_) | ty::Bound(..) | ty::Placeholder(_) | ty::Infer(_) | ty::Error(_) => {
                unreachable!()
            }

            ty::Ref(r, ty, mutbl) => {
                self.push(match mutbl {
                    hir::Mutability::Not => "R",
                    hir::Mutability::Mut => "Q",
                });
                if !r.is_erased() {
                    r.print(self)?;
                }
                ty.print(self)?;
            }

            ty::RawPtr(ty, mutbl) => {
                self.push(match mutbl {
                    hir::Mutability::Not => "P",
                    hir::Mutability::Mut => "O",
                });
                ty.print(self)?;
            }

            ty::Pat(ty, pat) => match *pat {
                ty::PatternKind::Range { start, end, include_end } => {
                    let consts = [
                        start.unwrap_or(self.tcx.consts.unit),
                        end.unwrap_or(self.tcx.consts.unit),
                        ty::Const::from_bool(self.tcx, include_end).into(),
                    ];
                    // HACK: Represent as tuple until we have something better.
                    // HACK: constants are used in arrays, even if the types don't match.
                    self.push("T");
                    ty.print(self)?;
                    for ct in consts {
                        Ty::new_array_with_const_len(self.tcx, self.tcx.types.unit, ct)
                            .print(self)?;
                    }
                    self.push("E");
                }
            },

            ty::Array(ty, len) => {
                self.push("A");
                ty.print(self)?;
                self.print_const(len)?;
            }
            ty::Slice(ty) => {
                self.push("S");
                ty.print(self)?;
            }

            ty::Tuple(tys) => {
                self.push("T");
                for ty in tys.iter() {
                    ty.print(self)?;
                }
                self.push("E");
            }

            // Mangle all nominal types as paths.
            ty::Adt(ty::AdtDef(Interned(&ty::AdtDefData { did: def_id, .. }, _)), args)
            | ty::FnDef(def_id, args)
            | ty::Alias(ty::Projection | ty::Opaque, ty::AliasTy { def_id, args, .. })
            | ty::Closure(def_id, args)
            | ty::CoroutineClosure(def_id, args)
            | ty::Coroutine(def_id, args) => {
                self.print_def_path(def_id, args)?;
            }
            ty::Foreign(def_id) => {
                self.print_def_path(def_id, &[])?;
            }

            ty::FnPtr(sig) => {
                self.push("F");
                self.in_binder(&sig, |cx, sig| {
                    if sig.unsafety == hir::Unsafety::Unsafe {
                        cx.push("U");
                    }
                    match sig.abi {
                        Abi::Rust => {}
                        Abi::C { unwind: false } => cx.push("KC"),
                        abi => {
                            cx.push("K");
                            let name = abi.name();
                            if name.contains('-') {
                                cx.push_ident(&name.replace('-', "_"));
                            } else {
                                cx.push_ident(name);
                            }
                        }
                    }
                    for &ty in sig.inputs() {
                        ty.print(cx)?;
                    }
                    if sig.c_variadic {
                        cx.push("v");
                    }
                    cx.push("E");
                    sig.output().print(cx)
                })?;
            }

            ty::Dynamic(predicates, r, kind) => {
                self.push(match kind {
                    ty::Dyn => "D",
                    // FIXME(dyn-star): need to update v0 mangling docs
                    ty::DynStar => "D*",
                });
                self.print_dyn_existential(predicates)?;
                r.print(self)?;
            }

            ty::Alias(ty::Inherent, _) => bug!("symbol_names: unexpected inherent projection"),
            ty::Alias(ty::Weak, _) => bug!("symbol_names: unexpected weak projection"),
            ty::CoroutineWitness(..) => bug!("symbol_names: unexpected `CoroutineWitness`"),
        }

        // Only cache types that do not refer to an enclosing
        // binder (which would change depending on context).
        if !ty.has_escaping_bound_vars() {
            self.types.insert(ty, start);
        }
        Ok(())
    }

    fn print_dyn_existential(
        &mut self,
        predicates: &'tcx ty::List<ty::PolyExistentialPredicate<'tcx>>,
    ) -> Result<(), PrintError> {
        // Okay, so this is a bit tricky. Imagine we have a trait object like
        // `dyn for<'a> Foo<'a, Bar = &'a ()>`. When we mangle this, the
        // output looks really close to the syntax, where the `Bar = &'a ()` bit
        // is under the same binders (`['a]`) as the `Foo<'a>` bit. However, we
        // actually desugar these into two separate `ExistentialPredicate`s. We
        // can't enter/exit the "binder scope" twice though, because then we
        // would mangle the binders twice. (Also, side note, we merging these
        // two is kind of difficult, because of potential HRTBs in the Projection
        // predicate.)
        //
        // Also worth mentioning: imagine that we instead had
        // `dyn for<'a> Foo<'a, Bar = &'a ()> + Send`. In this case, `Send` is
        // under the same binders as `Foo`. Currently, this doesn't matter,
        // because only *auto traits* are allowed other than the principal trait
        // and all auto traits don't have any generics. Two things could
        // make this not an "okay" mangling:
        // 1) Instead of mangling only *used*
        // bound vars, we want to mangle *all* bound vars (`for<'b> Send` is a
        // valid trait predicate);
        // 2) We allow multiple "principal" traits in the future, or at least
        // allow in any form another trait predicate that can take generics.
        //
        // Here we assume that predicates have the following structure:
        // [<Trait> [{<Projection>}]] [{<Auto>}]
        // Since any predicates after the first one shouldn't change the binders,
        // just put them all in the binders of the first.
        self.in_binder(&predicates[0], |cx, _| {
            for predicate in predicates.iter() {
                // It would be nice to be able to validate bound vars here, but
                // projections can actually include bound vars from super traits
                // because of HRTBs (only in the `Self` type). Also, auto traits
                // could have different bound vars *anyways*.
                match predicate.as_ref().skip_binder() {
                    ty::ExistentialPredicate::Trait(trait_ref) => {
                        // Use a type that can't appear in defaults of type parameters.
                        let dummy_self = Ty::new_fresh(cx.tcx, 0);
                        let trait_ref = trait_ref.with_self_ty(cx.tcx, dummy_self);
                        cx.print_def_path(trait_ref.def_id, trait_ref.args)?;
                    }
                    ty::ExistentialPredicate::Projection(projection) => {
                        let name = cx.tcx.associated_item(projection.def_id).name;
                        cx.push("p");
                        cx.push_ident(name.as_str());
                        match projection.term.unpack() {
                            ty::TermKind::Ty(ty) => ty.print(cx),
                            ty::TermKind::Const(c) => c.print(cx),
                        }?;
                    }
                    ty::ExistentialPredicate::AutoTrait(def_id) => {
                        cx.print_def_path(*def_id, &[])?;
                    }
                }
            }
            Ok(())
        })?;

        self.push("E");
        Ok(())
    }

    fn print_const(&mut self, ct: ty::Const<'tcx>) -> Result<(), PrintError> {
        // We only mangle a typed value if the const can be evaluated.
        let ct = ct.normalize(self.tcx, ty::ParamEnv::reveal_all());
        match ct.kind() {
            ty::ConstKind::Value(_) => {}

            // Placeholders (should be demangled as `_`).
            // NOTE(eddyb) despite `Unevaluated` having a `DefId` (and therefore
            // a path), even for it we still need to encode a placeholder, as
            // the path could refer back to e.g. an `impl` using the constant.
            ty::ConstKind::Unevaluated(_)
            | ty::ConstKind::Expr(_)
            | ty::ConstKind::Param(_)
            | ty::ConstKind::Infer(_)
            | ty::ConstKind::Bound(..)
            | ty::ConstKind::Placeholder(_)
            | ty::ConstKind::Error(_) => {
                // Never cached (single-character).
                self.push("p");
                return Ok(());
            }
        }

        if let Some(&i) = self.consts.get(&ct) {
            self.print_backref(i)?;
            return Ok(());
        }

        let start = self.out.len();
        let ty = ct.ty();

        match ty.kind() {
            ty::Uint(_) | ty::Int(_) | ty::Bool | ty::Char => {
                ty.print(self)?;

                let mut bits = ct.eval_bits(self.tcx, ty::ParamEnv::reveal_all());

                // Negative integer values are mangled using `n` as a "sign prefix".
                if let ty::Int(ity) = ty.kind() {
                    let val =
                        Integer::from_int_ty(&self.tcx, *ity).size().sign_extend(bits) as i128;
                    if val < 0 {
                        self.push("n");
                    }
                    bits = val.unsigned_abs();
                }

                let _ = write!(self.out, "{bits:x}_");
            }

            // FIXME(valtrees): Remove the special case for `str`
            // here and fully support unsized constants.
            ty::Ref(_, inner_ty, mutbl) => {
                self.push(match mutbl {
                    hir::Mutability::Not => "R",
                    hir::Mutability::Mut => "Q",
                });

                match inner_ty.kind() {
                    ty::Str if mutbl.is_not() => {
                        match ct.kind() {
                            ty::ConstKind::Value(valtree) => {
                                let slice =
                                    valtree.try_to_raw_bytes(self.tcx(), ty).unwrap_or_else(|| {
                                        bug!(
                                        "expected to get raw bytes from valtree {:?} for type {:}",
                                        valtree, ty
                                    )
                                    });
                                let s = std::str::from_utf8(slice)
                                    .expect("non utf8 str from MIR interpreter");

                                self.push("e");

                                // FIXME(eddyb) use a specialized hex-encoding loop.
                                for byte in s.bytes() {
                                    let _ = write!(self.out, "{byte:02x}");
                                }

                                self.push("_");
                            }

                            _ => {
                                bug!("symbol_names: unsupported `&str` constant: {:?}", ct);
                            }
                        }
                    }
                    _ => {
                        let pointee_ty = ct
                            .ty()
                            .builtin_deref(true)
                            .expect("tried to dereference on non-ptr type")
                            .ty;
                        // FIXME(const_generics): add an assert that we only do this for valtrees.
                        let dereferenced_const = self.tcx.mk_ct_from_kind(ct.kind(), pointee_ty);
                        dereferenced_const.print(self)?;
                    }
                }
            }

            ty::Array(..) | ty::Tuple(..) | ty::Adt(..) | ty::Slice(_) => {
                let contents = self.tcx.destructure_const(ct);
                let fields = contents.fields.iter().copied();

                let print_field_list = |this: &mut Self| {
                    for field in fields.clone() {
                        field.print(this)?;
                    }
                    this.push("E");
                    Ok(())
                };

                match *ct.ty().kind() {
                    ty::Array(..) | ty::Slice(_) => {
                        self.push("A");
                        print_field_list(self)?;
                    }
                    ty::Tuple(..) => {
                        self.push("T");
                        print_field_list(self)?;
                    }
                    ty::Adt(def, args) => {
                        let variant_idx =
                            contents.variant.expect("destructed const of adt without variant idx");
                        let variant_def = &def.variant(variant_idx);

                        self.push("V");
                        self.print_def_path(variant_def.def_id, args)?;

                        match variant_def.ctor_kind() {
                            Some(CtorKind::Const) => {
                                self.push("U");
                            }
                            Some(CtorKind::Fn) => {
                                self.push("T");
                                print_field_list(self)?;
                            }
                            None => {
                                self.push("S");
                                for (field_def, field) in iter::zip(&variant_def.fields, fields) {
                                    // HACK(eddyb) this mimics `path_append`,
                                    // instead of simply using `field_def.ident`,
                                    // just to be able to handle disambiguators.
                                    let disambiguated_field =
                                        self.tcx.def_key(field_def.did).disambiguated_data;
                                    let field_name = disambiguated_field.data.get_opt_name();
                                    self.push_disambiguator(
                                        disambiguated_field.disambiguator as u64,
                                    );
                                    self.push_ident(field_name.unwrap_or(kw::Empty).as_str());

                                    field.print(self)?;
                                }
                                self.push("E");
                            }
                        }
                    }
                    _ => unreachable!(),
                }
            }
            _ => {
                bug!("symbol_names: unsupported constant of type `{}` ({:?})", ct.ty(), ct);
            }
        }

        // Only cache consts that do not refer to an enclosing
        // binder (which would change depending on context).
        if !ct.has_escaping_bound_vars() {
            self.consts.insert(ct, start);
        }
        Ok(())
    }

    fn path_crate(&mut self, cnum: CrateNum) -> Result<(), PrintError> {
        self.push("C");
        let stable_crate_id = self.tcx.def_path_hash(cnum.as_def_id()).stable_crate_id();
        self.push_disambiguator(stable_crate_id.as_u64());
        let name = self.tcx.crate_name(cnum);
        self.push_ident(name.as_str());
        Ok(())
    }

    fn path_qualified(
        &mut self,
        self_ty: Ty<'tcx>,
        trait_ref: Option<ty::TraitRef<'tcx>>,
    ) -> Result<(), PrintError> {
        assert!(trait_ref.is_some());
        let trait_ref = trait_ref.unwrap();

        self.push("Y");
        self_ty.print(self)?;
        self.print_def_path(trait_ref.def_id, trait_ref.args)
    }

    fn path_append_impl(
        &mut self,
        _: impl FnOnce(&mut Self) -> Result<(), PrintError>,
        _: &DisambiguatedDefPathData,
        _: Ty<'tcx>,
        _: Option<ty::TraitRef<'tcx>>,
    ) -> Result<(), PrintError> {
        // Inlined into `print_impl_path`
        unreachable!()
    }

    fn path_append(
        &mut self,
        print_prefix: impl FnOnce(&mut Self) -> Result<(), PrintError>,
        disambiguated_data: &DisambiguatedDefPathData,
    ) -> Result<(), PrintError> {
        let ns = match disambiguated_data.data {
            // Extern block segments can be skipped, names from extern blocks
            // are effectively living in their parent modules.
            DefPathData::ForeignMod => return print_prefix(self),

            // Uppercase categories are more stable than lowercase ones.
            DefPathData::TypeNs(_) => 't',
            DefPathData::ValueNs(_) => 'v',
            DefPathData::Closure => 'C',
            DefPathData::Ctor => 'c',
            DefPathData::AnonConst => 'k',
            DefPathData::OpaqueTy => 'i',

            // These should never show up as `path_append` arguments.
            DefPathData::CrateRoot
            | DefPathData::Use
            | DefPathData::GlobalAsm
            | DefPathData::Impl
            | DefPathData::MacroNs(_)
            | DefPathData::LifetimeNs(_)
            | DefPathData::AnonAdt => {
                bug!("symbol_names: unexpected DefPathData: {:?}", disambiguated_data.data)
            }
        };

        let name = disambiguated_data.data.get_opt_name();

        self.path_append_ns(
            print_prefix,
            ns,
            disambiguated_data.disambiguator as u64,
            name.unwrap_or(kw::Empty).as_str(),
        )
    }

    fn path_generic_args(
        &mut self,
        print_prefix: impl FnOnce(&mut Self) -> Result<(), PrintError>,
        args: &[GenericArg<'tcx>],
    ) -> Result<(), PrintError> {
        // Don't print any regions if they're all erased.
        let print_regions = args.iter().any(|arg| match arg.unpack() {
            GenericArgKind::Lifetime(r) => !r.is_erased(),
            _ => false,
        });
        let args = args.iter().cloned().filter(|arg| match arg.unpack() {
            GenericArgKind::Lifetime(_) => print_regions,
            _ => true,
        });

        if args.clone().next().is_none() {
            return print_prefix(self);
        }

        self.push("I");
        print_prefix(self)?;
        for arg in args {
            match arg.unpack() {
                GenericArgKind::Lifetime(lt) => {
                    lt.print(self)?;
                }
                GenericArgKind::Type(ty) => {
                    ty.print(self)?;
                }
                GenericArgKind::Const(c) => {
                    self.push("K");
                    c.print(self)?;
                }
            }
        }
        self.push("E");

        Ok(())
    }
}
/// Push a `_`-terminated base 62 integer, using the format
/// specified in the RFC as `<base-62-number>`, that is:
/// * `x = 0` is encoded as just the `"_"` terminator
/// * `x > 0` is encoded as `x - 1` in base 62, followed by `"_"`,
///   e.g. `1` becomes `"0_"`, `62` becomes `"Z_"`, etc.
pub(crate) fn push_integer_62(x: u64, output: &mut String) {
    if let Some(x) = x.checked_sub(1) {
        base_n::push_str(x as u128, base_n::ALPHANUMERIC_ONLY, output);
    }
    output.push('_');
}

pub(crate) fn encode_integer_62(x: u64) -> String {
    let mut output = String::new();
    push_integer_62(x, &mut output);
    output
}

pub(crate) fn push_ident(ident: &str, output: &mut String) {
    let mut use_punycode = false;
    for b in ident.bytes() {
        match b {
            b'_' | b'a'..=b'z' | b'A'..=b'Z' | b'0'..=b'9' => {}
            0x80..=0xff => use_punycode = true,
            _ => bug!("symbol_names: bad byte {} in ident {:?}", b, ident),
        }
    }

    let punycode_string;
    let ident = if use_punycode {
        output.push('u');

        // FIXME(eddyb) we should probably roll our own punycode implementation.
        let mut punycode_bytes = match punycode::encode(ident) {
            Ok(s) => s.into_bytes(),
            Err(()) => bug!("symbol_names: punycode encoding failed for ident {:?}", ident),
        };

        // Replace `-` with `_`.
        if let Some(c) = punycode_bytes.iter_mut().rfind(|&&mut c| c == b'-') {
            *c = b'_';
        }

        // FIXME(eddyb) avoid rechecking UTF-8 validity.
        punycode_string = String::from_utf8(punycode_bytes).unwrap();
        &punycode_string
    } else {
        ident
    };

    let _ = write!(output, "{}", ident.len());

    // Write a separating `_` if necessary (leading digit or `_`).
    if let Some('_' | '0'..='9') = ident.chars().next() {
        output.push('_');
    }

    output.push_str(ident);
}