rustc_middle/ty/
context.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
//! Type context book-keeping.

#![allow(rustc::usage_of_ty_tykind)]

pub mod tls;

use std::assert_matches::assert_matches;
use std::borrow::Borrow;
use std::cmp::Ordering;
use std::hash::{Hash, Hasher};
use std::marker::PhantomData;
use std::ops::{Bound, Deref};
use std::{fmt, iter, mem};

use rustc_abi::{ExternAbi, FieldIdx, Layout, LayoutData, TargetDataLayout, VariantIdx};
use rustc_ast::{self as ast, attr};
use rustc_data_structures::defer;
use rustc_data_structures::fingerprint::Fingerprint;
use rustc_data_structures::fx::FxHashMap;
use rustc_data_structures::intern::Interned;
use rustc_data_structures::profiling::SelfProfilerRef;
use rustc_data_structures::sharded::{IntoPointer, ShardedHashMap};
use rustc_data_structures::stable_hasher::{HashStable, StableHasher};
use rustc_data_structures::steal::Steal;
use rustc_data_structures::sync::{self, FreezeReadGuard, Lock, Lrc, RwLock, WorkerLocal};
#[cfg(parallel_compiler)]
use rustc_data_structures::sync::{DynSend, DynSync};
use rustc_data_structures::unord::UnordSet;
use rustc_errors::{
    Applicability, Diag, DiagCtxtHandle, ErrorGuaranteed, LintDiagnostic, MultiSpan,
};
use rustc_hir as hir;
use rustc_hir::def::DefKind;
use rustc_hir::def_id::{CrateNum, DefId, LOCAL_CRATE, LocalDefId};
use rustc_hir::definitions::Definitions;
use rustc_hir::intravisit::Visitor;
use rustc_hir::lang_items::LangItem;
use rustc_hir::{HirId, Node, TraitCandidate};
use rustc_index::IndexVec;
use rustc_macros::{HashStable, TyDecodable, TyEncodable};
use rustc_query_system::cache::WithDepNode;
use rustc_query_system::dep_graph::DepNodeIndex;
use rustc_query_system::ich::StableHashingContext;
use rustc_serialize::opaque::{FileEncodeResult, FileEncoder};
use rustc_session::config::CrateType;
use rustc_session::cstore::{CrateStoreDyn, Untracked};
use rustc_session::lint::Lint;
use rustc_session::{Limit, MetadataKind, Session};
use rustc_span::def_id::{CRATE_DEF_ID, DefPathHash, StableCrateId};
use rustc_span::symbol::{Ident, Symbol, kw, sym};
use rustc_span::{DUMMY_SP, Span};
use rustc_type_ir::TyKind::*;
use rustc_type_ir::fold::TypeFoldable;
use rustc_type_ir::lang_items::TraitSolverLangItem;
pub use rustc_type_ir::lift::Lift;
use rustc_type_ir::{CollectAndApply, Interner, TypeFlags, WithCachedTypeInfo, search_graph};
use tracing::{debug, instrument};

use crate::arena::Arena;
use crate::dep_graph::{DepGraph, DepKindStruct};
use crate::infer::canonical::{CanonicalParamEnvCache, CanonicalVarInfo, CanonicalVarInfos};
use crate::lint::lint_level;
use crate::metadata::ModChild;
use crate::middle::codegen_fn_attrs::CodegenFnAttrs;
use crate::middle::{resolve_bound_vars, stability};
use crate::mir::interpret::{self, Allocation, ConstAllocation};
use crate::mir::{Body, Local, Place, PlaceElem, ProjectionKind, Promoted};
use crate::query::plumbing::QuerySystem;
use crate::query::{IntoQueryParam, LocalCrate, Providers, TyCtxtAt};
use crate::thir::Thir;
use crate::traits;
use crate::traits::solve;
use crate::traits::solve::{
    ExternalConstraints, ExternalConstraintsData, PredefinedOpaques, PredefinedOpaquesData,
};
use crate::ty::predicate::ExistentialPredicateStableCmpExt as _;
use crate::ty::{
    self, AdtDef, AdtDefData, AdtKind, Binder, BoundConstness, Clause, Clauses, Const, GenericArg,
    GenericArgs, GenericArgsRef, GenericParamDefKind, ImplPolarity, List, ListWithCachedTypeInfo,
    ParamConst, ParamTy, Pattern, PatternKind, PolyExistentialPredicate, PolyFnSig, Predicate,
    PredicateKind, PredicatePolarity, Region, RegionKind, ReprOptions, TraitObjectVisitor, Ty,
    TyKind, TyVid, Visibility,
};

#[allow(rustc::usage_of_ty_tykind)]
impl<'tcx> Interner for TyCtxt<'tcx> {
    type DefId = DefId;
    type LocalDefId = LocalDefId;
    type Span = Span;

    type GenericArgs = ty::GenericArgsRef<'tcx>;

    type GenericArgsSlice = &'tcx [ty::GenericArg<'tcx>];
    type GenericArg = ty::GenericArg<'tcx>;
    type Term = ty::Term<'tcx>;
    type BoundVarKinds = &'tcx List<ty::BoundVariableKind>;

    type BoundVarKind = ty::BoundVariableKind;
    type PredefinedOpaques = solve::PredefinedOpaques<'tcx>;

    fn mk_predefined_opaques_in_body(
        self,
        data: PredefinedOpaquesData<Self>,
    ) -> Self::PredefinedOpaques {
        self.mk_predefined_opaques_in_body(data)
    }
    type DefiningOpaqueTypes = &'tcx ty::List<LocalDefId>;
    type CanonicalVars = CanonicalVarInfos<'tcx>;
    fn mk_canonical_var_infos(self, infos: &[ty::CanonicalVarInfo<Self>]) -> Self::CanonicalVars {
        self.mk_canonical_var_infos(infos)
    }

    type ExternalConstraints = ExternalConstraints<'tcx>;
    fn mk_external_constraints(
        self,
        data: ExternalConstraintsData<Self>,
    ) -> ExternalConstraints<'tcx> {
        self.mk_external_constraints(data)
    }
    type DepNodeIndex = DepNodeIndex;
    fn with_cached_task<T>(self, task: impl FnOnce() -> T) -> (T, DepNodeIndex) {
        self.dep_graph.with_anon_task(self, crate::dep_graph::dep_kinds::TraitSelect, task)
    }
    type Ty = Ty<'tcx>;
    type Tys = &'tcx List<Ty<'tcx>>;

    type FnInputTys = &'tcx [Ty<'tcx>];
    type ParamTy = ParamTy;
    type BoundTy = ty::BoundTy;

    type PlaceholderTy = ty::PlaceholderType;
    type ErrorGuaranteed = ErrorGuaranteed;
    type BoundExistentialPredicates = &'tcx List<PolyExistentialPredicate<'tcx>>;

    type AllocId = crate::mir::interpret::AllocId;
    type Pat = Pattern<'tcx>;
    type Safety = hir::Safety;
    type Abi = ExternAbi;
    type Const = ty::Const<'tcx>;
    type PlaceholderConst = ty::PlaceholderConst;

    type ParamConst = ty::ParamConst;
    type BoundConst = ty::BoundVar;
    type ValueConst = ty::ValTree<'tcx>;
    type ExprConst = ty::Expr<'tcx>;
    type Region = Region<'tcx>;

    type EarlyParamRegion = ty::EarlyParamRegion;
    type LateParamRegion = ty::LateParamRegion;
    type BoundRegion = ty::BoundRegion;
    type PlaceholderRegion = ty::PlaceholderRegion;

    type ParamEnv = ty::ParamEnv<'tcx>;
    type Predicate = Predicate<'tcx>;

    type Clause = Clause<'tcx>;
    type Clauses = ty::Clauses<'tcx>;

    type Tracked<T: fmt::Debug + Clone> = WithDepNode<T>;
    fn mk_tracked<T: fmt::Debug + Clone>(
        self,
        data: T,
        dep_node: DepNodeIndex,
    ) -> Self::Tracked<T> {
        WithDepNode::new(dep_node, data)
    }
    fn get_tracked<T: fmt::Debug + Clone>(self, tracked: &Self::Tracked<T>) -> T {
        tracked.get(self)
    }

    fn with_global_cache<R>(self, f: impl FnOnce(&mut search_graph::GlobalCache<Self>) -> R) -> R {
        f(&mut *self.new_solver_evaluation_cache.lock())
    }

    fn evaluation_is_concurrent(&self) -> bool {
        self.sess.threads() > 1
    }

    fn expand_abstract_consts<T: TypeFoldable<TyCtxt<'tcx>>>(self, t: T) -> T {
        self.expand_abstract_consts(t)
    }

    type GenericsOf = &'tcx ty::Generics;

    fn generics_of(self, def_id: DefId) -> &'tcx ty::Generics {
        self.generics_of(def_id)
    }

    type VariancesOf = &'tcx [ty::Variance];

    fn variances_of(self, def_id: DefId) -> Self::VariancesOf {
        self.variances_of(def_id)
    }

    fn type_of(self, def_id: DefId) -> ty::EarlyBinder<'tcx, Ty<'tcx>> {
        self.type_of(def_id)
    }

    type AdtDef = ty::AdtDef<'tcx>;
    fn adt_def(self, adt_def_id: DefId) -> Self::AdtDef {
        self.adt_def(adt_def_id)
    }

    fn alias_ty_kind(self, alias: ty::AliasTy<'tcx>) -> ty::AliasTyKind {
        match self.def_kind(alias.def_id) {
            DefKind::AssocTy => {
                if let DefKind::Impl { of_trait: false } = self.def_kind(self.parent(alias.def_id))
                {
                    ty::Inherent
                } else {
                    ty::Projection
                }
            }
            DefKind::OpaqueTy => ty::Opaque,
            DefKind::TyAlias => ty::Weak,
            kind => bug!("unexpected DefKind in AliasTy: {kind:?}"),
        }
    }

    fn alias_term_kind(self, alias: ty::AliasTerm<'tcx>) -> ty::AliasTermKind {
        match self.def_kind(alias.def_id) {
            DefKind::AssocTy => {
                if let DefKind::Impl { of_trait: false } = self.def_kind(self.parent(alias.def_id))
                {
                    ty::AliasTermKind::InherentTy
                } else {
                    ty::AliasTermKind::ProjectionTy
                }
            }
            DefKind::OpaqueTy => ty::AliasTermKind::OpaqueTy,
            DefKind::TyAlias => ty::AliasTermKind::WeakTy,
            DefKind::AssocConst => ty::AliasTermKind::ProjectionConst,
            DefKind::AnonConst => ty::AliasTermKind::UnevaluatedConst,
            kind => bug!("unexpected DefKind in AliasTy: {kind:?}"),
        }
    }

    fn trait_ref_and_own_args_for_alias(
        self,
        def_id: DefId,
        args: ty::GenericArgsRef<'tcx>,
    ) -> (ty::TraitRef<'tcx>, &'tcx [ty::GenericArg<'tcx>]) {
        assert_matches!(self.def_kind(def_id), DefKind::AssocTy | DefKind::AssocConst);
        let trait_def_id = self.parent(def_id);
        assert_matches!(self.def_kind(trait_def_id), DefKind::Trait);
        let trait_generics = self.generics_of(trait_def_id);
        (
            ty::TraitRef::new_from_args(self, trait_def_id, args.truncate_to(self, trait_generics)),
            &args[trait_generics.count()..],
        )
    }

    fn mk_args(self, args: &[Self::GenericArg]) -> ty::GenericArgsRef<'tcx> {
        self.mk_args(args)
    }

    fn mk_args_from_iter<I, T>(self, args: I) -> T::Output
    where
        I: Iterator<Item = T>,
        T: CollectAndApply<Self::GenericArg, ty::GenericArgsRef<'tcx>>,
    {
        self.mk_args_from_iter(args)
    }

    fn check_args_compatible(self, def_id: DefId, args: ty::GenericArgsRef<'tcx>) -> bool {
        self.check_args_compatible(def_id, args)
    }

    fn debug_assert_args_compatible(self, def_id: DefId, args: ty::GenericArgsRef<'tcx>) {
        self.debug_assert_args_compatible(def_id, args);
    }

    /// Assert that the args from an `ExistentialTraitRef` or `ExistentialProjection`
    /// are compatible with the `DefId`. Since we're missing a `Self` type, stick on
    /// a dummy self type and forward to `debug_assert_args_compatible`.
    fn debug_assert_existential_args_compatible(
        self,
        def_id: Self::DefId,
        args: Self::GenericArgs,
    ) {
        // FIXME: We could perhaps add a `skip: usize` to `debug_assert_args_compatible`
        // to avoid needing to reintern the set of args...
        if cfg!(debug_assertions) {
            self.debug_assert_args_compatible(
                def_id,
                self.mk_args_from_iter(
                    [self.types.trait_object_dummy_self.into()].into_iter().chain(args.iter()),
                ),
            );
        }
    }

    fn mk_type_list_from_iter<I, T>(self, args: I) -> T::Output
    where
        I: Iterator<Item = T>,
        T: CollectAndApply<Ty<'tcx>, &'tcx List<Ty<'tcx>>>,
    {
        self.mk_type_list_from_iter(args)
    }

    fn parent(self, def_id: DefId) -> DefId {
        self.parent(def_id)
    }

    fn recursion_limit(self) -> usize {
        self.recursion_limit().0
    }

    type Features = &'tcx rustc_feature::Features;

    fn features(self) -> Self::Features {
        self.features()
    }

    fn bound_coroutine_hidden_types(
        self,
        def_id: DefId,
    ) -> impl IntoIterator<Item = ty::EarlyBinder<'tcx, ty::Binder<'tcx, Ty<'tcx>>>> {
        self.bound_coroutine_hidden_types(def_id)
    }

    fn fn_sig(self, def_id: DefId) -> ty::EarlyBinder<'tcx, ty::PolyFnSig<'tcx>> {
        self.fn_sig(def_id)
    }

    fn coroutine_movability(self, def_id: DefId) -> rustc_ast::Movability {
        self.coroutine_movability(def_id)
    }

    fn coroutine_for_closure(self, def_id: DefId) -> DefId {
        self.coroutine_for_closure(def_id)
    }

    fn generics_require_sized_self(self, def_id: DefId) -> bool {
        self.generics_require_sized_self(def_id)
    }

    fn item_bounds(
        self,
        def_id: DefId,
    ) -> ty::EarlyBinder<'tcx, impl IntoIterator<Item = ty::Clause<'tcx>>> {
        self.item_bounds(def_id).map_bound(IntoIterator::into_iter)
    }

    fn predicates_of(
        self,
        def_id: DefId,
    ) -> ty::EarlyBinder<'tcx, impl IntoIterator<Item = ty::Clause<'tcx>>> {
        ty::EarlyBinder::bind(
            self.predicates_of(def_id).instantiate_identity(self).predicates.into_iter(),
        )
    }

    fn own_predicates_of(
        self,
        def_id: DefId,
    ) -> ty::EarlyBinder<'tcx, impl IntoIterator<Item = ty::Clause<'tcx>>> {
        ty::EarlyBinder::bind(
            self.predicates_of(def_id).instantiate_own_identity().map(|(clause, _)| clause),
        )
    }

    fn explicit_super_predicates_of(
        self,
        def_id: DefId,
    ) -> ty::EarlyBinder<'tcx, impl IntoIterator<Item = (ty::Clause<'tcx>, Span)>> {
        self.explicit_super_predicates_of(def_id).map_bound(|preds| preds.into_iter().copied())
    }

    fn explicit_implied_predicates_of(
        self,
        def_id: DefId,
    ) -> ty::EarlyBinder<'tcx, impl IntoIterator<Item = (ty::Clause<'tcx>, Span)>> {
        self.explicit_implied_predicates_of(def_id).map_bound(|preds| preds.into_iter().copied())
    }

    fn is_const_impl(self, def_id: DefId) -> bool {
        self.is_conditionally_const(def_id)
    }

    fn const_conditions(
        self,
        def_id: DefId,
    ) -> ty::EarlyBinder<'tcx, impl IntoIterator<Item = ty::Binder<'tcx, ty::TraitRef<'tcx>>>> {
        ty::EarlyBinder::bind(
            self.const_conditions(def_id).instantiate_identity(self).into_iter().map(|(c, _)| c),
        )
    }

    fn implied_const_bounds(
        self,
        def_id: DefId,
    ) -> ty::EarlyBinder<'tcx, impl IntoIterator<Item = ty::Binder<'tcx, ty::TraitRef<'tcx>>>> {
        ty::EarlyBinder::bind(
            self.implied_const_bounds(def_id).iter_identity_copied().map(|(c, _)| c),
        )
    }

    fn has_target_features(self, def_id: DefId) -> bool {
        !self.codegen_fn_attrs(def_id).target_features.is_empty()
    }

    fn require_lang_item(self, lang_item: TraitSolverLangItem) -> DefId {
        self.require_lang_item(trait_lang_item_to_lang_item(lang_item), None)
    }

    fn is_lang_item(self, def_id: DefId, lang_item: TraitSolverLangItem) -> bool {
        self.is_lang_item(def_id, trait_lang_item_to_lang_item(lang_item))
    }

    fn as_lang_item(self, def_id: DefId) -> Option<TraitSolverLangItem> {
        lang_item_to_trait_lang_item(self.lang_items().from_def_id(def_id)?)
    }

    fn associated_type_def_ids(self, def_id: DefId) -> impl IntoIterator<Item = DefId> {
        self.associated_items(def_id)
            .in_definition_order()
            .filter(|assoc_item| matches!(assoc_item.kind, ty::AssocKind::Type))
            .map(|assoc_item| assoc_item.def_id)
    }

    // This implementation is a bit different from `TyCtxt::for_each_relevant_impl`,
    // since we want to skip over blanket impls for non-rigid aliases, and also we
    // only want to consider types that *actually* unify with float/int vars.
    fn for_each_relevant_impl(
        self,
        trait_def_id: DefId,
        self_ty: Ty<'tcx>,
        mut f: impl FnMut(DefId),
    ) {
        let tcx = self;
        let trait_impls = tcx.trait_impls_of(trait_def_id);
        let mut consider_impls_for_simplified_type = |simp| {
            if let Some(impls_for_type) = trait_impls.non_blanket_impls().get(&simp) {
                for &impl_def_id in impls_for_type {
                    f(impl_def_id);
                }
            }
        };

        match self_ty.kind() {
            ty::Bool
            | ty::Char
            | ty::Int(_)
            | ty::Uint(_)
            | ty::Float(_)
            | ty::Adt(_, _)
            | ty::Foreign(_)
            | ty::Str
            | ty::Array(_, _)
            | ty::Pat(_, _)
            | ty::Slice(_)
            | ty::RawPtr(_, _)
            | ty::Ref(_, _, _)
            | ty::FnDef(_, _)
            | ty::FnPtr(..)
            | ty::Dynamic(_, _, _)
            | ty::Closure(..)
            | ty::CoroutineClosure(..)
            | ty::Coroutine(_, _)
            | ty::Never
            | ty::Tuple(_) => {
                let simp = ty::fast_reject::simplify_type(
                    tcx,
                    self_ty,
                    ty::fast_reject::TreatParams::AsRigid,
                )
                .unwrap();
                consider_impls_for_simplified_type(simp);
            }

            // HACK: For integer and float variables we have to manually look at all impls
            // which have some integer or float as a self type.
            ty::Infer(ty::IntVar(_)) => {
                use ty::IntTy::*;
                use ty::UintTy::*;
                // This causes a compiler error if any new integer kinds are added.
                let (I8 | I16 | I32 | I64 | I128 | Isize): ty::IntTy;
                let (U8 | U16 | U32 | U64 | U128 | Usize): ty::UintTy;
                let possible_integers = [
                    // signed integers
                    ty::SimplifiedType::Int(I8),
                    ty::SimplifiedType::Int(I16),
                    ty::SimplifiedType::Int(I32),
                    ty::SimplifiedType::Int(I64),
                    ty::SimplifiedType::Int(I128),
                    ty::SimplifiedType::Int(Isize),
                    // unsigned integers
                    ty::SimplifiedType::Uint(U8),
                    ty::SimplifiedType::Uint(U16),
                    ty::SimplifiedType::Uint(U32),
                    ty::SimplifiedType::Uint(U64),
                    ty::SimplifiedType::Uint(U128),
                    ty::SimplifiedType::Uint(Usize),
                ];
                for simp in possible_integers {
                    consider_impls_for_simplified_type(simp);
                }
            }

            ty::Infer(ty::FloatVar(_)) => {
                // This causes a compiler error if any new float kinds are added.
                let (ty::FloatTy::F16 | ty::FloatTy::F32 | ty::FloatTy::F64 | ty::FloatTy::F128);
                let possible_floats = [
                    ty::SimplifiedType::Float(ty::FloatTy::F16),
                    ty::SimplifiedType::Float(ty::FloatTy::F32),
                    ty::SimplifiedType::Float(ty::FloatTy::F64),
                    ty::SimplifiedType::Float(ty::FloatTy::F128),
                ];

                for simp in possible_floats {
                    consider_impls_for_simplified_type(simp);
                }
            }

            // The only traits applying to aliases and placeholders are blanket impls.
            //
            // Impls which apply to an alias after normalization are handled by
            // `assemble_candidates_after_normalizing_self_ty`.
            ty::Alias(_, _) | ty::Placeholder(..) | ty::Error(_) => (),

            // FIXME: These should ideally not exist as a self type. It would be nice for
            // the builtin auto trait impls of coroutines to instead directly recurse
            // into the witness.
            ty::CoroutineWitness(..) => (),

            // These variants should not exist as a self type.
            ty::Infer(ty::TyVar(_) | ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_))
            | ty::Param(_)
            | ty::Bound(_, _) => bug!("unexpected self type: {self_ty}"),
        }

        let trait_impls = tcx.trait_impls_of(trait_def_id);
        for &impl_def_id in trait_impls.blanket_impls() {
            f(impl_def_id);
        }
    }

    fn has_item_definition(self, def_id: DefId) -> bool {
        self.defaultness(def_id).has_value()
    }

    fn impl_is_default(self, impl_def_id: DefId) -> bool {
        self.defaultness(impl_def_id).is_default()
    }

    fn impl_trait_ref(self, impl_def_id: DefId) -> ty::EarlyBinder<'tcx, ty::TraitRef<'tcx>> {
        self.impl_trait_ref(impl_def_id).unwrap()
    }

    fn impl_polarity(self, impl_def_id: DefId) -> ty::ImplPolarity {
        self.impl_polarity(impl_def_id)
    }

    fn trait_is_auto(self, trait_def_id: DefId) -> bool {
        self.trait_is_auto(trait_def_id)
    }

    fn trait_is_alias(self, trait_def_id: DefId) -> bool {
        self.trait_is_alias(trait_def_id)
    }

    fn trait_is_dyn_compatible(self, trait_def_id: DefId) -> bool {
        self.is_dyn_compatible(trait_def_id)
    }

    fn trait_is_fundamental(self, def_id: DefId) -> bool {
        self.trait_def(def_id).is_fundamental
    }

    fn trait_may_be_implemented_via_object(self, trait_def_id: DefId) -> bool {
        self.trait_def(trait_def_id).implement_via_object
    }

    fn is_impl_trait_in_trait(self, def_id: DefId) -> bool {
        self.is_impl_trait_in_trait(def_id)
    }

    fn delay_bug(self, msg: impl ToString) -> ErrorGuaranteed {
        self.dcx().span_delayed_bug(DUMMY_SP, msg.to_string())
    }

    fn is_general_coroutine(self, coroutine_def_id: DefId) -> bool {
        self.is_general_coroutine(coroutine_def_id)
    }

    fn coroutine_is_async(self, coroutine_def_id: DefId) -> bool {
        self.coroutine_is_async(coroutine_def_id)
    }

    fn coroutine_is_gen(self, coroutine_def_id: DefId) -> bool {
        self.coroutine_is_gen(coroutine_def_id)
    }

    fn coroutine_is_async_gen(self, coroutine_def_id: DefId) -> bool {
        self.coroutine_is_async_gen(coroutine_def_id)
    }

    fn layout_is_pointer_like(self, param_env: ty::ParamEnv<'tcx>, ty: Ty<'tcx>) -> bool {
        self.layout_of(self.erase_regions(param_env.and(ty)))
            .is_ok_and(|layout| layout.layout.is_pointer_like(&self.data_layout))
    }

    type UnsizingParams = &'tcx rustc_index::bit_set::BitSet<u32>;
    fn unsizing_params_for_adt(self, adt_def_id: DefId) -> Self::UnsizingParams {
        self.unsizing_params_for_adt(adt_def_id)
    }

    fn find_const_ty_from_env(
        self,
        param_env: ty::ParamEnv<'tcx>,
        placeholder: Self::PlaceholderConst,
    ) -> Ty<'tcx> {
        placeholder.find_const_ty_from_env(param_env)
    }

    fn anonymize_bound_vars<T: TypeFoldable<TyCtxt<'tcx>>>(
        self,
        binder: ty::Binder<'tcx, T>,
    ) -> ty::Binder<'tcx, T> {
        self.anonymize_bound_vars(binder)
    }

    fn opaque_types_defined_by(self, defining_anchor: LocalDefId) -> Self::DefiningOpaqueTypes {
        self.opaque_types_defined_by(defining_anchor)
    }
}

macro_rules! bidirectional_lang_item_map {
    ($($name:ident),+ $(,)?) => {
        fn trait_lang_item_to_lang_item(lang_item: TraitSolverLangItem) -> LangItem {
            match lang_item {
                $(TraitSolverLangItem::$name => LangItem::$name,)+
            }
        }

        fn lang_item_to_trait_lang_item(lang_item: LangItem) -> Option<TraitSolverLangItem> {
            Some(match lang_item {
                $(LangItem::$name => TraitSolverLangItem::$name,)+
                _ => return None,
            })
        }
    }
}

bidirectional_lang_item_map! {
// tidy-alphabetical-start
    AsyncDestruct,
    AsyncFn,
    AsyncFnKindHelper,
    AsyncFnKindUpvars,
    AsyncFnMut,
    AsyncFnOnce,
    AsyncFnOnceOutput,
    AsyncIterator,
    CallOnceFuture,
    CallRefFuture,
    Clone,
    Copy,
    Coroutine,
    CoroutineReturn,
    CoroutineYield,
    Destruct,
    DiscriminantKind,
    DynMetadata,
    Fn,
    FnMut,
    FnOnce,
    FnPtrTrait,
    FusedIterator,
    Future,
    FutureOutput,
    Iterator,
    Metadata,
    Option,
    PointeeTrait,
    PointerLike,
    Poll,
    Sized,
    TransmuteTrait,
    Tuple,
    Unpin,
    Unsize,
// tidy-alphabetical-end
}

impl<'tcx> rustc_type_ir::inherent::DefId<TyCtxt<'tcx>> for DefId {
    fn is_local(self) -> bool {
        self.is_local()
    }

    fn as_local(self) -> Option<LocalDefId> {
        self.as_local()
    }
}

impl<'tcx> rustc_type_ir::inherent::Abi<TyCtxt<'tcx>> for ExternAbi {
    fn rust() -> Self {
        ExternAbi::Rust
    }

    fn is_rust(self) -> bool {
        matches!(self, ExternAbi::Rust)
    }
}

impl<'tcx> rustc_type_ir::inherent::Safety<TyCtxt<'tcx>> for hir::Safety {
    fn safe() -> Self {
        hir::Safety::Safe
    }

    fn is_safe(self) -> bool {
        matches!(self, hir::Safety::Safe)
    }

    fn prefix_str(self) -> &'static str {
        self.prefix_str()
    }
}

impl<'tcx> rustc_type_ir::inherent::Features<TyCtxt<'tcx>> for &'tcx rustc_feature::Features {
    fn generic_const_exprs(self) -> bool {
        self.generic_const_exprs()
    }

    fn coroutine_clone(self) -> bool {
        self.coroutine_clone()
    }

    fn associated_const_equality(self) -> bool {
        self.associated_const_equality()
    }
}

impl<'tcx> rustc_type_ir::inherent::Span<TyCtxt<'tcx>> for Span {
    fn dummy() -> Self {
        DUMMY_SP
    }
}

type InternedSet<'tcx, T> = ShardedHashMap<InternedInSet<'tcx, T>, ()>;

pub struct CtxtInterners<'tcx> {
    /// The arena that types, regions, etc. are allocated from.
    arena: &'tcx WorkerLocal<Arena<'tcx>>,

    // Specifically use a speedy hash algorithm for these hash sets, since
    // they're accessed quite often.
    type_: InternedSet<'tcx, WithCachedTypeInfo<TyKind<'tcx>>>,
    const_lists: InternedSet<'tcx, List<ty::Const<'tcx>>>,
    args: InternedSet<'tcx, GenericArgs<'tcx>>,
    type_lists: InternedSet<'tcx, List<Ty<'tcx>>>,
    canonical_var_infos: InternedSet<'tcx, List<CanonicalVarInfo<'tcx>>>,
    region: InternedSet<'tcx, RegionKind<'tcx>>,
    poly_existential_predicates: InternedSet<'tcx, List<PolyExistentialPredicate<'tcx>>>,
    predicate: InternedSet<'tcx, WithCachedTypeInfo<ty::Binder<'tcx, PredicateKind<'tcx>>>>,
    clauses: InternedSet<'tcx, ListWithCachedTypeInfo<Clause<'tcx>>>,
    projs: InternedSet<'tcx, List<ProjectionKind>>,
    place_elems: InternedSet<'tcx, List<PlaceElem<'tcx>>>,
    const_: InternedSet<'tcx, WithCachedTypeInfo<ty::ConstKind<'tcx>>>,
    pat: InternedSet<'tcx, PatternKind<'tcx>>,
    const_allocation: InternedSet<'tcx, Allocation>,
    bound_variable_kinds: InternedSet<'tcx, List<ty::BoundVariableKind>>,
    layout: InternedSet<'tcx, LayoutData<FieldIdx, VariantIdx>>,
    adt_def: InternedSet<'tcx, AdtDefData>,
    external_constraints: InternedSet<'tcx, ExternalConstraintsData<TyCtxt<'tcx>>>,
    predefined_opaques_in_body: InternedSet<'tcx, PredefinedOpaquesData<TyCtxt<'tcx>>>,
    fields: InternedSet<'tcx, List<FieldIdx>>,
    local_def_ids: InternedSet<'tcx, List<LocalDefId>>,
    captures: InternedSet<'tcx, List<&'tcx ty::CapturedPlace<'tcx>>>,
    offset_of: InternedSet<'tcx, List<(VariantIdx, FieldIdx)>>,
}

impl<'tcx> CtxtInterners<'tcx> {
    fn new(arena: &'tcx WorkerLocal<Arena<'tcx>>) -> CtxtInterners<'tcx> {
        CtxtInterners {
            arena,
            type_: Default::default(),
            const_lists: Default::default(),
            args: Default::default(),
            type_lists: Default::default(),
            region: Default::default(),
            poly_existential_predicates: Default::default(),
            canonical_var_infos: Default::default(),
            predicate: Default::default(),
            clauses: Default::default(),
            projs: Default::default(),
            place_elems: Default::default(),
            const_: Default::default(),
            pat: Default::default(),
            const_allocation: Default::default(),
            bound_variable_kinds: Default::default(),
            layout: Default::default(),
            adt_def: Default::default(),
            external_constraints: Default::default(),
            predefined_opaques_in_body: Default::default(),
            fields: Default::default(),
            local_def_ids: Default::default(),
            captures: Default::default(),
            offset_of: Default::default(),
        }
    }

    /// Interns a type. (Use `mk_*` functions instead, where possible.)
    #[allow(rustc::usage_of_ty_tykind)]
    #[inline(never)]
    fn intern_ty(&self, kind: TyKind<'tcx>, sess: &Session, untracked: &Untracked) -> Ty<'tcx> {
        Ty(Interned::new_unchecked(
            self.type_
                .intern(kind, |kind| {
                    let flags = super::flags::FlagComputation::for_kind(&kind);
                    let stable_hash = self.stable_hash(&flags, sess, untracked, &kind);

                    InternedInSet(self.arena.alloc(WithCachedTypeInfo {
                        internee: kind,
                        stable_hash,
                        flags: flags.flags,
                        outer_exclusive_binder: flags.outer_exclusive_binder,
                    }))
                })
                .0,
        ))
    }

    /// Interns a const. (Use `mk_*` functions instead, where possible.)
    #[allow(rustc::usage_of_ty_tykind)]
    #[inline(never)]
    fn intern_const(
        &self,
        kind: ty::ConstKind<'tcx>,
        sess: &Session,
        untracked: &Untracked,
    ) -> Const<'tcx> {
        Const(Interned::new_unchecked(
            self.const_
                .intern(kind, |kind: ty::ConstKind<'_>| {
                    let flags = super::flags::FlagComputation::for_const_kind(&kind);
                    let stable_hash = self.stable_hash(&flags, sess, untracked, &kind);

                    InternedInSet(self.arena.alloc(WithCachedTypeInfo {
                        internee: kind,
                        stable_hash,
                        flags: flags.flags,
                        outer_exclusive_binder: flags.outer_exclusive_binder,
                    }))
                })
                .0,
        ))
    }

    fn stable_hash<'a, T: HashStable<StableHashingContext<'a>>>(
        &self,
        flags: &ty::flags::FlagComputation,
        sess: &'a Session,
        untracked: &'a Untracked,
        val: &T,
    ) -> Fingerprint {
        // It's impossible to hash inference variables (and will ICE), so we don't need to try to cache them.
        // Without incremental, we rarely stable-hash types, so let's not do it proactively.
        if flags.flags.intersects(TypeFlags::HAS_INFER) || sess.opts.incremental.is_none() {
            Fingerprint::ZERO
        } else {
            let mut hasher = StableHasher::new();
            let mut hcx = StableHashingContext::new(sess, untracked);
            val.hash_stable(&mut hcx, &mut hasher);
            hasher.finish()
        }
    }

    /// Interns a predicate. (Use `mk_predicate` instead, where possible.)
    #[inline(never)]
    fn intern_predicate(
        &self,
        kind: Binder<'tcx, PredicateKind<'tcx>>,
        sess: &Session,
        untracked: &Untracked,
    ) -> Predicate<'tcx> {
        Predicate(Interned::new_unchecked(
            self.predicate
                .intern(kind, |kind| {
                    let flags = super::flags::FlagComputation::for_predicate(kind);

                    let stable_hash = self.stable_hash(&flags, sess, untracked, &kind);

                    InternedInSet(self.arena.alloc(WithCachedTypeInfo {
                        internee: kind,
                        stable_hash,
                        flags: flags.flags,
                        outer_exclusive_binder: flags.outer_exclusive_binder,
                    }))
                })
                .0,
        ))
    }

    fn intern_clauses(&self, clauses: &[Clause<'tcx>]) -> Clauses<'tcx> {
        if clauses.is_empty() {
            ListWithCachedTypeInfo::empty()
        } else {
            self.clauses
                .intern_ref(clauses, || {
                    let flags = super::flags::FlagComputation::for_clauses(clauses);

                    InternedInSet(ListWithCachedTypeInfo::from_arena(
                        &*self.arena,
                        flags.into(),
                        clauses,
                    ))
                })
                .0
        }
    }
}

// For these preinterned values, an alternative would be to have
// variable-length vectors that grow as needed. But that turned out to be
// slightly more complex and no faster.

const NUM_PREINTERNED_TY_VARS: u32 = 100;
const NUM_PREINTERNED_FRESH_TYS: u32 = 20;
const NUM_PREINTERNED_FRESH_INT_TYS: u32 = 3;
const NUM_PREINTERNED_FRESH_FLOAT_TYS: u32 = 3;

// This number may seem high, but it is reached in all but the smallest crates.
const NUM_PREINTERNED_RE_VARS: u32 = 500;
const NUM_PREINTERNED_RE_LATE_BOUNDS_I: u32 = 2;
const NUM_PREINTERNED_RE_LATE_BOUNDS_V: u32 = 20;

pub struct CommonTypes<'tcx> {
    pub unit: Ty<'tcx>,
    pub bool: Ty<'tcx>,
    pub char: Ty<'tcx>,
    pub isize: Ty<'tcx>,
    pub i8: Ty<'tcx>,
    pub i16: Ty<'tcx>,
    pub i32: Ty<'tcx>,
    pub i64: Ty<'tcx>,
    pub i128: Ty<'tcx>,
    pub usize: Ty<'tcx>,
    pub u8: Ty<'tcx>,
    pub u16: Ty<'tcx>,
    pub u32: Ty<'tcx>,
    pub u64: Ty<'tcx>,
    pub u128: Ty<'tcx>,
    pub f16: Ty<'tcx>,
    pub f32: Ty<'tcx>,
    pub f64: Ty<'tcx>,
    pub f128: Ty<'tcx>,
    pub str_: Ty<'tcx>,
    pub never: Ty<'tcx>,
    pub self_param: Ty<'tcx>,

    /// Dummy type used for the `Self` of a `TraitRef` created for converting
    /// a trait object, and which gets removed in `ExistentialTraitRef`.
    /// This type must not appear anywhere in other converted types.
    /// `Infer(ty::FreshTy(0))` does the job.
    pub trait_object_dummy_self: Ty<'tcx>,

    /// Pre-interned `Infer(ty::TyVar(n))` for small values of `n`.
    pub ty_vars: Vec<Ty<'tcx>>,

    /// Pre-interned `Infer(ty::FreshTy(n))` for small values of `n`.
    pub fresh_tys: Vec<Ty<'tcx>>,

    /// Pre-interned `Infer(ty::FreshIntTy(n))` for small values of `n`.
    pub fresh_int_tys: Vec<Ty<'tcx>>,

    /// Pre-interned `Infer(ty::FreshFloatTy(n))` for small values of `n`.
    pub fresh_float_tys: Vec<Ty<'tcx>>,
}

pub struct CommonLifetimes<'tcx> {
    /// `ReStatic`
    pub re_static: Region<'tcx>,

    /// Erased region, used outside of type inference.
    pub re_erased: Region<'tcx>,

    /// Pre-interned `ReVar(ty::RegionVar(n))` for small values of `n`.
    pub re_vars: Vec<Region<'tcx>>,

    /// Pre-interned values of the form:
    /// `ReBound(DebruijnIndex(i), BoundRegion { var: v, kind: BrAnon })`
    /// for small values of `i` and `v`.
    pub re_late_bounds: Vec<Vec<Region<'tcx>>>,
}

pub struct CommonConsts<'tcx> {
    pub unit: Const<'tcx>,
    pub true_: Const<'tcx>,
    pub false_: Const<'tcx>,
}

impl<'tcx> CommonTypes<'tcx> {
    fn new(
        interners: &CtxtInterners<'tcx>,
        sess: &Session,
        untracked: &Untracked,
    ) -> CommonTypes<'tcx> {
        let mk = |ty| interners.intern_ty(ty, sess, untracked);

        let ty_vars =
            (0..NUM_PREINTERNED_TY_VARS).map(|n| mk(Infer(ty::TyVar(TyVid::from(n))))).collect();
        let fresh_tys: Vec<_> =
            (0..NUM_PREINTERNED_FRESH_TYS).map(|n| mk(Infer(ty::FreshTy(n)))).collect();
        let fresh_int_tys: Vec<_> =
            (0..NUM_PREINTERNED_FRESH_INT_TYS).map(|n| mk(Infer(ty::FreshIntTy(n)))).collect();
        let fresh_float_tys: Vec<_> =
            (0..NUM_PREINTERNED_FRESH_FLOAT_TYS).map(|n| mk(Infer(ty::FreshFloatTy(n)))).collect();

        CommonTypes {
            unit: mk(Tuple(List::empty())),
            bool: mk(Bool),
            char: mk(Char),
            never: mk(Never),
            isize: mk(Int(ty::IntTy::Isize)),
            i8: mk(Int(ty::IntTy::I8)),
            i16: mk(Int(ty::IntTy::I16)),
            i32: mk(Int(ty::IntTy::I32)),
            i64: mk(Int(ty::IntTy::I64)),
            i128: mk(Int(ty::IntTy::I128)),
            usize: mk(Uint(ty::UintTy::Usize)),
            u8: mk(Uint(ty::UintTy::U8)),
            u16: mk(Uint(ty::UintTy::U16)),
            u32: mk(Uint(ty::UintTy::U32)),
            u64: mk(Uint(ty::UintTy::U64)),
            u128: mk(Uint(ty::UintTy::U128)),
            f16: mk(Float(ty::FloatTy::F16)),
            f32: mk(Float(ty::FloatTy::F32)),
            f64: mk(Float(ty::FloatTy::F64)),
            f128: mk(Float(ty::FloatTy::F128)),
            str_: mk(Str),
            self_param: mk(ty::Param(ty::ParamTy { index: 0, name: kw::SelfUpper })),

            trait_object_dummy_self: fresh_tys[0],

            ty_vars,
            fresh_tys,
            fresh_int_tys,
            fresh_float_tys,
        }
    }
}

impl<'tcx> CommonLifetimes<'tcx> {
    fn new(interners: &CtxtInterners<'tcx>) -> CommonLifetimes<'tcx> {
        let mk = |r| {
            Region(Interned::new_unchecked(
                interners.region.intern(r, |r| InternedInSet(interners.arena.alloc(r))).0,
            ))
        };

        let re_vars =
            (0..NUM_PREINTERNED_RE_VARS).map(|n| mk(ty::ReVar(ty::RegionVid::from(n)))).collect();

        let re_late_bounds = (0..NUM_PREINTERNED_RE_LATE_BOUNDS_I)
            .map(|i| {
                (0..NUM_PREINTERNED_RE_LATE_BOUNDS_V)
                    .map(|v| {
                        mk(ty::ReBound(ty::DebruijnIndex::from(i), ty::BoundRegion {
                            var: ty::BoundVar::from(v),
                            kind: ty::BrAnon,
                        }))
                    })
                    .collect()
            })
            .collect();

        CommonLifetimes {
            re_static: mk(ty::ReStatic),
            re_erased: mk(ty::ReErased),
            re_vars,
            re_late_bounds,
        }
    }
}

impl<'tcx> CommonConsts<'tcx> {
    fn new(
        interners: &CtxtInterners<'tcx>,
        types: &CommonTypes<'tcx>,
        sess: &Session,
        untracked: &Untracked,
    ) -> CommonConsts<'tcx> {
        let mk_const = |c| {
            interners.intern_const(
                c, sess, // This is only used to create a stable hashing context.
                untracked,
            )
        };

        CommonConsts {
            unit: mk_const(ty::ConstKind::Value(types.unit, ty::ValTree::zst())),
            true_: mk_const(ty::ConstKind::Value(
                types.bool,
                ty::ValTree::Leaf(ty::ScalarInt::TRUE),
            )),
            false_: mk_const(ty::ConstKind::Value(
                types.bool,
                ty::ValTree::Leaf(ty::ScalarInt::FALSE),
            )),
        }
    }
}

/// This struct contains information regarding a free parameter region,
/// either a `ReEarlyParam` or `ReLateParam`.
#[derive(Debug)]
pub struct FreeRegionInfo {
    /// `LocalDefId` of the free region.
    pub def_id: LocalDefId,
    /// the bound region corresponding to free region.
    pub bound_region: ty::BoundRegionKind,
    /// checks if bound region is in Impl Item
    pub is_impl_item: bool,
}

/// This struct should only be created by `create_def`.
#[derive(Copy, Clone)]
pub struct TyCtxtFeed<'tcx, KEY: Copy> {
    pub tcx: TyCtxt<'tcx>,
    // Do not allow direct access, as downstream code must not mutate this field.
    key: KEY,
}

/// Never return a `Feed` from a query. Only queries that create a `DefId` are
/// allowed to feed queries for that `DefId`.
impl<KEY: Copy, CTX> !HashStable<CTX> for TyCtxtFeed<'_, KEY> {}

/// The same as `TyCtxtFeed`, but does not contain a `TyCtxt`.
/// Use this to pass around when you have a `TyCtxt` elsewhere.
/// Just an optimization to save space and not store hundreds of
/// `TyCtxtFeed` in the resolver.
#[derive(Copy, Clone)]
pub struct Feed<'tcx, KEY: Copy> {
    _tcx: PhantomData<TyCtxt<'tcx>>,
    // Do not allow direct access, as downstream code must not mutate this field.
    key: KEY,
}

/// Never return a `Feed` from a query. Only queries that create a `DefId` are
/// allowed to feed queries for that `DefId`.
impl<KEY: Copy, CTX> !HashStable<CTX> for Feed<'_, KEY> {}

impl<T: fmt::Debug + Copy> fmt::Debug for Feed<'_, T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        self.key.fmt(f)
    }
}

/// Some workarounds to use cases that cannot use `create_def`.
/// Do not add new ways to create `TyCtxtFeed` without consulting
/// with T-compiler and making an analysis about why your addition
/// does not cause incremental compilation issues.
impl<'tcx> TyCtxt<'tcx> {
    /// Can only be fed before queries are run, and is thus exempt from any
    /// incremental issues. Do not use except for the initial query feeding.
    pub fn feed_unit_query(self) -> TyCtxtFeed<'tcx, ()> {
        self.dep_graph.assert_ignored();
        TyCtxtFeed { tcx: self, key: () }
    }

    /// Only used in the resolver to register the `CRATE_DEF_ID` `DefId` and feed
    /// some queries for it. It will panic if used twice.
    pub fn create_local_crate_def_id(self, span: Span) -> TyCtxtFeed<'tcx, LocalDefId> {
        let key = self.untracked().source_span.push(span);
        assert_eq!(key, CRATE_DEF_ID);
        TyCtxtFeed { tcx: self, key }
    }

    /// In order to break cycles involving `AnonConst`, we need to set the expected type by side
    /// effect. However, we do not want this as a general capability, so this interface restricts
    /// to the only allowed case.
    pub fn feed_anon_const_type(self, key: LocalDefId, value: ty::EarlyBinder<'tcx, Ty<'tcx>>) {
        debug_assert_eq!(self.def_kind(key), DefKind::AnonConst);
        TyCtxtFeed { tcx: self, key }.type_of(value)
    }
}

impl<'tcx, KEY: Copy> TyCtxtFeed<'tcx, KEY> {
    #[inline(always)]
    pub fn key(&self) -> KEY {
        self.key
    }

    #[inline(always)]
    pub fn downgrade(self) -> Feed<'tcx, KEY> {
        Feed { _tcx: PhantomData, key: self.key }
    }
}

impl<'tcx, KEY: Copy> Feed<'tcx, KEY> {
    #[inline(always)]
    pub fn key(&self) -> KEY {
        self.key
    }

    #[inline(always)]
    pub fn upgrade(self, tcx: TyCtxt<'tcx>) -> TyCtxtFeed<'tcx, KEY> {
        TyCtxtFeed { tcx, key: self.key }
    }
}

impl<'tcx> TyCtxtFeed<'tcx, LocalDefId> {
    #[inline(always)]
    pub fn def_id(&self) -> LocalDefId {
        self.key
    }

    // Caller must ensure that `self.key` ID is indeed an owner.
    pub fn feed_owner_id(&self) -> TyCtxtFeed<'tcx, hir::OwnerId> {
        TyCtxtFeed { tcx: self.tcx, key: hir::OwnerId { def_id: self.key } }
    }

    // Fills in all the important parts needed by HIR queries
    pub fn feed_hir(&self) {
        self.local_def_id_to_hir_id(HirId::make_owner(self.def_id()));

        let node = hir::OwnerNode::Synthetic;
        let bodies = Default::default();
        let attrs = hir::AttributeMap::EMPTY;

        let (opt_hash_including_bodies, _) = self.tcx.hash_owner_nodes(node, &bodies, &attrs.map);
        let node = node.into();
        self.opt_hir_owner_nodes(Some(self.tcx.arena.alloc(hir::OwnerNodes {
            opt_hash_including_bodies,
            nodes: IndexVec::from_elem_n(
                hir::ParentedNode { parent: hir::ItemLocalId::INVALID, node },
                1,
            ),
            bodies,
        })));
        self.feed_owner_id().hir_attrs(attrs);
    }
}

/// The central data structure of the compiler. It stores references
/// to the various **arenas** and also houses the results of the
/// various **compiler queries** that have been performed. See the
/// [rustc dev guide] for more details.
///
/// [rustc dev guide]: https://rustc-dev-guide.rust-lang.org/ty.html
///
/// An implementation detail: `TyCtxt` is a wrapper type for [GlobalCtxt],
/// which is the struct that actually holds all the data. `TyCtxt` derefs to
/// `GlobalCtxt`, and in practice `TyCtxt` is passed around everywhere, and all
/// operations are done via `TyCtxt`. A `TyCtxt` is obtained for a `GlobalCtxt`
/// by calling `enter` with a closure `f`. That function creates both the
/// `TyCtxt`, and an `ImplicitCtxt` around it that is put into TLS. Within `f`:
/// - The `ImplicitCtxt` is available implicitly via TLS.
/// - The `TyCtxt` is available explicitly via the `tcx` parameter, and also
///   implicitly within the `ImplicitCtxt`. Explicit access is preferred when
///   possible.
#[derive(Copy, Clone)]
#[rustc_diagnostic_item = "TyCtxt"]
#[rustc_pass_by_value]
pub struct TyCtxt<'tcx> {
    gcx: &'tcx GlobalCtxt<'tcx>,
}

// Explicitly implement `DynSync` and `DynSend` for `TyCtxt` to short circuit trait resolution.
#[cfg(parallel_compiler)]
unsafe impl DynSend for TyCtxt<'_> {}
#[cfg(parallel_compiler)]
unsafe impl DynSync for TyCtxt<'_> {}
fn _assert_tcx_fields() {
    sync::assert_dyn_sync::<&'_ GlobalCtxt<'_>>();
    sync::assert_dyn_send::<&'_ GlobalCtxt<'_>>();
}

impl<'tcx> Deref for TyCtxt<'tcx> {
    type Target = &'tcx GlobalCtxt<'tcx>;
    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.gcx
    }
}

/// See [TyCtxt] for details about this type.
pub struct GlobalCtxt<'tcx> {
    pub arena: &'tcx WorkerLocal<Arena<'tcx>>,
    pub hir_arena: &'tcx WorkerLocal<hir::Arena<'tcx>>,

    interners: CtxtInterners<'tcx>,

    pub sess: &'tcx Session,
    crate_types: Vec<CrateType>,
    /// The `stable_crate_id` is constructed out of the crate name and all the
    /// `-C metadata` arguments passed to the compiler. Its value forms a unique
    /// global identifier for the crate. It is used to allow multiple crates
    /// with the same name to coexist. See the
    /// `rustc_symbol_mangling` crate for more information.
    stable_crate_id: StableCrateId,

    pub dep_graph: DepGraph,

    pub prof: SelfProfilerRef,

    /// Common types, pre-interned for your convenience.
    pub types: CommonTypes<'tcx>,

    /// Common lifetimes, pre-interned for your convenience.
    pub lifetimes: CommonLifetimes<'tcx>,

    /// Common consts, pre-interned for your convenience.
    pub consts: CommonConsts<'tcx>,

    /// Hooks to be able to register functions in other crates that can then still
    /// be called from rustc_middle.
    pub(crate) hooks: crate::hooks::Providers,

    untracked: Untracked,

    pub query_system: QuerySystem<'tcx>,
    pub(crate) query_kinds: &'tcx [DepKindStruct<'tcx>],

    // Internal caches for metadata decoding. No need to track deps on this.
    pub ty_rcache: Lock<FxHashMap<ty::CReaderCacheKey, Ty<'tcx>>>,
    pub pred_rcache: Lock<FxHashMap<ty::CReaderCacheKey, Predicate<'tcx>>>,

    /// Caches the results of trait selection. This cache is used
    /// for things that do not have to do with the parameters in scope.
    pub selection_cache: traits::SelectionCache<'tcx>,

    /// Caches the results of trait evaluation. This cache is used
    /// for things that do not have to do with the parameters in scope.
    /// Merge this with `selection_cache`?
    pub evaluation_cache: traits::EvaluationCache<'tcx>,

    /// Caches the results of goal evaluation in the new solver.
    pub new_solver_evaluation_cache: Lock<search_graph::GlobalCache<TyCtxt<'tcx>>>,

    pub canonical_param_env_cache: CanonicalParamEnvCache<'tcx>,

    /// Data layout specification for the current target.
    pub data_layout: TargetDataLayout,

    /// Stores memory for globals (statics/consts).
    pub(crate) alloc_map: Lock<interpret::AllocMap<'tcx>>,

    current_gcx: CurrentGcx,
}

impl<'tcx> GlobalCtxt<'tcx> {
    /// Installs `self` in a `TyCtxt` and `ImplicitCtxt` for the duration of
    /// `f`.
    pub fn enter<F, R>(&'tcx self, f: F) -> R
    where
        F: FnOnce(TyCtxt<'tcx>) -> R,
    {
        let icx = tls::ImplicitCtxt::new(self);

        // Reset `current_gcx` to `None` when we exit.
        let _on_drop = defer(move || {
            *self.current_gcx.value.write() = None;
        });

        // Set this `GlobalCtxt` as the current one.
        {
            let mut guard = self.current_gcx.value.write();
            assert!(guard.is_none(), "no `GlobalCtxt` is currently set");
            *guard = Some(self as *const _ as *const ());
        }

        tls::enter_context(&icx, || f(icx.tcx))
    }

    pub fn finish(&self) -> FileEncodeResult {
        self.dep_graph.finish_encoding()
    }
}

/// This is used to get a reference to a `GlobalCtxt` if one is available.
///
/// This is needed to allow the deadlock handler access to `GlobalCtxt` to look for query cycles.
/// It cannot use the `TLV` global because that's only guaranteed to be defined on the thread
/// creating the `GlobalCtxt`. Other threads have access to the `TLV` only inside Rayon jobs, but
/// the deadlock handler is not called inside such a job.
#[derive(Clone)]
pub struct CurrentGcx {
    /// This stores a pointer to a `GlobalCtxt`. This is set to `Some` inside `GlobalCtxt::enter`
    /// and reset to `None` when that function returns or unwinds.
    value: Lrc<RwLock<Option<*const ()>>>,
}

#[cfg(parallel_compiler)]
unsafe impl DynSend for CurrentGcx {}
#[cfg(parallel_compiler)]
unsafe impl DynSync for CurrentGcx {}

impl CurrentGcx {
    pub fn new() -> Self {
        Self { value: Lrc::new(RwLock::new(None)) }
    }

    pub fn access<R>(&self, f: impl for<'tcx> FnOnce(&'tcx GlobalCtxt<'tcx>) -> R) -> R {
        let read_guard = self.value.read();
        let gcx: *const GlobalCtxt<'_> = read_guard.unwrap() as *const _;
        // SAFETY: We hold the read lock for the `GlobalCtxt` pointer. That prevents
        // `GlobalCtxt::enter` from returning as it would first acquire the write lock.
        // This ensures the `GlobalCtxt` is live during `f`.
        f(unsafe { &*gcx })
    }
}

impl<'tcx> TyCtxt<'tcx> {
    pub fn has_typeck_results(self, def_id: LocalDefId) -> bool {
        // Closures' typeck results come from their outermost function,
        // as they are part of the same "inference environment".
        let typeck_root_def_id = self.typeck_root_def_id(def_id.to_def_id());
        if typeck_root_def_id != def_id.to_def_id() {
            return self.has_typeck_results(typeck_root_def_id.expect_local());
        }

        self.hir_node_by_def_id(def_id).body_id().is_some()
    }

    /// Expects a body and returns its codegen attributes.
    ///
    /// Unlike `codegen_fn_attrs`, this returns `CodegenFnAttrs::EMPTY` for
    /// constants.
    pub fn body_codegen_attrs(self, def_id: DefId) -> &'tcx CodegenFnAttrs {
        let def_kind = self.def_kind(def_id);
        if def_kind.has_codegen_attrs() {
            self.codegen_fn_attrs(def_id)
        } else if matches!(
            def_kind,
            DefKind::AnonConst | DefKind::AssocConst | DefKind::Const | DefKind::InlineConst
        ) {
            CodegenFnAttrs::EMPTY
        } else {
            bug!(
                "body_codegen_fn_attrs called on unexpected definition: {:?} {:?}",
                def_id,
                def_kind
            )
        }
    }

    pub fn alloc_steal_thir(self, thir: Thir<'tcx>) -> &'tcx Steal<Thir<'tcx>> {
        self.arena.alloc(Steal::new(thir))
    }

    pub fn alloc_steal_mir(self, mir: Body<'tcx>) -> &'tcx Steal<Body<'tcx>> {
        self.arena.alloc(Steal::new(mir))
    }

    pub fn alloc_steal_promoted(
        self,
        promoted: IndexVec<Promoted, Body<'tcx>>,
    ) -> &'tcx Steal<IndexVec<Promoted, Body<'tcx>>> {
        self.arena.alloc(Steal::new(promoted))
    }

    pub fn mk_adt_def(
        self,
        did: DefId,
        kind: AdtKind,
        variants: IndexVec<VariantIdx, ty::VariantDef>,
        repr: ReprOptions,
    ) -> ty::AdtDef<'tcx> {
        self.mk_adt_def_from_data(ty::AdtDefData::new(self, did, kind, variants, repr))
    }

    /// Allocates a read-only byte or string literal for `mir::interpret`.
    /// Returns the same `AllocId` if called again with the same bytes.
    pub fn allocate_bytes_dedup(self, bytes: &[u8], salt: usize) -> interpret::AllocId {
        // Create an allocation that just contains these bytes.
        let alloc = interpret::Allocation::from_bytes_byte_aligned_immutable(bytes);
        let alloc = self.mk_const_alloc(alloc);
        self.reserve_and_set_memory_dedup(alloc, salt)
    }

    /// Returns a range of the start/end indices specified with the
    /// `rustc_layout_scalar_valid_range` attribute.
    // FIXME(eddyb) this is an awkward spot for this method, maybe move it?
    pub fn layout_scalar_valid_range(self, def_id: DefId) -> (Bound<u128>, Bound<u128>) {
        let get = |name| {
            let Some(attr) = self.get_attr(def_id, name) else {
                return Bound::Unbounded;
            };
            debug!("layout_scalar_valid_range: attr={:?}", attr);
            if let Some(
                &[
                    ast::MetaItemInner::Lit(ast::MetaItemLit {
                        kind: ast::LitKind::Int(a, _), ..
                    }),
                ],
            ) = attr.meta_item_list().as_deref()
            {
                Bound::Included(a.get())
            } else {
                self.dcx().span_delayed_bug(
                    attr.span,
                    "invalid rustc_layout_scalar_valid_range attribute",
                );
                Bound::Unbounded
            }
        };
        (
            get(sym::rustc_layout_scalar_valid_range_start),
            get(sym::rustc_layout_scalar_valid_range_end),
        )
    }

    pub fn lift<T: Lift<TyCtxt<'tcx>>>(self, value: T) -> Option<T::Lifted> {
        value.lift_to_interner(self)
    }

    /// Creates a type context. To use the context call `fn enter` which
    /// provides a `TyCtxt`.
    ///
    /// By only providing the `TyCtxt` inside of the closure we enforce that the type
    /// context and any interned value (types, args, etc.) can only be used while `ty::tls`
    /// has a valid reference to the context, to allow formatting values that need it.
    pub fn create_global_ctxt(
        s: &'tcx Session,
        crate_types: Vec<CrateType>,
        stable_crate_id: StableCrateId,
        arena: &'tcx WorkerLocal<Arena<'tcx>>,
        hir_arena: &'tcx WorkerLocal<hir::Arena<'tcx>>,
        untracked: Untracked,
        dep_graph: DepGraph,
        query_kinds: &'tcx [DepKindStruct<'tcx>],
        query_system: QuerySystem<'tcx>,
        hooks: crate::hooks::Providers,
        current_gcx: CurrentGcx,
    ) -> GlobalCtxt<'tcx> {
        let data_layout = s.target.parse_data_layout().unwrap_or_else(|err| {
            s.dcx().emit_fatal(err);
        });
        let interners = CtxtInterners::new(arena);
        let common_types = CommonTypes::new(&interners, s, &untracked);
        let common_lifetimes = CommonLifetimes::new(&interners);
        let common_consts = CommonConsts::new(&interners, &common_types, s, &untracked);

        GlobalCtxt {
            sess: s,
            crate_types,
            stable_crate_id,
            arena,
            hir_arena,
            interners,
            dep_graph,
            hooks,
            prof: s.prof.clone(),
            types: common_types,
            lifetimes: common_lifetimes,
            consts: common_consts,
            untracked,
            query_system,
            query_kinds,
            ty_rcache: Default::default(),
            pred_rcache: Default::default(),
            selection_cache: Default::default(),
            evaluation_cache: Default::default(),
            new_solver_evaluation_cache: Default::default(),
            canonical_param_env_cache: Default::default(),
            data_layout,
            alloc_map: Lock::new(interpret::AllocMap::new()),
            current_gcx,
        }
    }

    pub fn consider_optimizing<T: Fn() -> String>(self, msg: T) -> bool {
        self.sess.consider_optimizing(|| self.crate_name(LOCAL_CRATE), msg)
    }

    /// Obtain all lang items of this crate and all dependencies (recursively)
    pub fn lang_items(self) -> &'tcx rustc_hir::lang_items::LanguageItems {
        self.get_lang_items(())
    }

    /// Gets a `Ty` representing the [`LangItem::OrderingEnum`]
    #[track_caller]
    pub fn ty_ordering_enum(self, span: Option<Span>) -> Ty<'tcx> {
        let ordering_enum = self.require_lang_item(hir::LangItem::OrderingEnum, span);
        self.type_of(ordering_enum).no_bound_vars().unwrap()
    }

    /// Obtain the given diagnostic item's `DefId`. Use `is_diagnostic_item` if you just want to
    /// compare against another `DefId`, since `is_diagnostic_item` is cheaper.
    pub fn get_diagnostic_item(self, name: Symbol) -> Option<DefId> {
        self.all_diagnostic_items(()).name_to_id.get(&name).copied()
    }

    /// Obtain the diagnostic item's name
    pub fn get_diagnostic_name(self, id: DefId) -> Option<Symbol> {
        self.diagnostic_items(id.krate).id_to_name.get(&id).copied()
    }

    /// Check whether the diagnostic item with the given `name` has the given `DefId`.
    pub fn is_diagnostic_item(self, name: Symbol, did: DefId) -> bool {
        self.diagnostic_items(did.krate).name_to_id.get(&name) == Some(&did)
    }

    pub fn is_coroutine(self, def_id: DefId) -> bool {
        self.coroutine_kind(def_id).is_some()
    }

    /// Returns the movability of the coroutine of `def_id`, or panics
    /// if given a `def_id` that is not a coroutine.
    pub fn coroutine_movability(self, def_id: DefId) -> hir::Movability {
        self.coroutine_kind(def_id).expect("expected a coroutine").movability()
    }

    /// Returns `true` if the node pointed to by `def_id` is a coroutine for an async construct.
    pub fn coroutine_is_async(self, def_id: DefId) -> bool {
        matches!(
            self.coroutine_kind(def_id),
            Some(hir::CoroutineKind::Desugared(hir::CoroutineDesugaring::Async, _))
        )
    }

    // Whether the body owner is synthetic, which in this case means it does not correspond to
    // meaningful HIR. This is currently used to skip over MIR borrowck.
    pub fn is_synthetic_mir(self, def_id: impl Into<DefId>) -> bool {
        matches!(self.def_kind(def_id.into()), DefKind::SyntheticCoroutineBody)
    }

    /// Returns `true` if the node pointed to by `def_id` is a general coroutine that implements `Coroutine`.
    /// This means it is neither an `async` or `gen` construct.
    pub fn is_general_coroutine(self, def_id: DefId) -> bool {
        matches!(self.coroutine_kind(def_id), Some(hir::CoroutineKind::Coroutine(_)))
    }

    /// Returns `true` if the node pointed to by `def_id` is a coroutine for a `gen` construct.
    pub fn coroutine_is_gen(self, def_id: DefId) -> bool {
        matches!(
            self.coroutine_kind(def_id),
            Some(hir::CoroutineKind::Desugared(hir::CoroutineDesugaring::Gen, _))
        )
    }

    /// Returns `true` if the node pointed to by `def_id` is a coroutine for a `async gen` construct.
    pub fn coroutine_is_async_gen(self, def_id: DefId) -> bool {
        matches!(
            self.coroutine_kind(def_id),
            Some(hir::CoroutineKind::Desugared(hir::CoroutineDesugaring::AsyncGen, _))
        )
    }

    pub fn stability(self) -> &'tcx stability::Index {
        self.stability_index(())
    }

    pub fn features(self) -> &'tcx rustc_feature::Features {
        self.features_query(())
    }

    pub fn def_key(self, id: impl IntoQueryParam<DefId>) -> rustc_hir::definitions::DefKey {
        let id = id.into_query_param();
        // Accessing the DefKey is ok, since it is part of DefPathHash.
        if let Some(id) = id.as_local() {
            self.definitions_untracked().def_key(id)
        } else {
            self.cstore_untracked().def_key(id)
        }
    }

    /// Converts a `DefId` into its fully expanded `DefPath` (every
    /// `DefId` is really just an interned `DefPath`).
    ///
    /// Note that if `id` is not local to this crate, the result will
    ///  be a non-local `DefPath`.
    pub fn def_path(self, id: DefId) -> rustc_hir::definitions::DefPath {
        // Accessing the DefPath is ok, since it is part of DefPathHash.
        if let Some(id) = id.as_local() {
            self.definitions_untracked().def_path(id)
        } else {
            self.cstore_untracked().def_path(id)
        }
    }

    #[inline]
    pub fn def_path_hash(self, def_id: DefId) -> rustc_hir::definitions::DefPathHash {
        // Accessing the DefPathHash is ok, it is incr. comp. stable.
        if let Some(def_id) = def_id.as_local() {
            self.definitions_untracked().def_path_hash(def_id)
        } else {
            self.cstore_untracked().def_path_hash(def_id)
        }
    }

    #[inline]
    pub fn crate_types(self) -> &'tcx [CrateType] {
        &self.crate_types
    }

    pub fn metadata_kind(self) -> MetadataKind {
        self.crate_types()
            .iter()
            .map(|ty| match *ty {
                CrateType::Executable | CrateType::Staticlib | CrateType::Cdylib => {
                    MetadataKind::None
                }
                CrateType::Rlib => MetadataKind::Uncompressed,
                CrateType::Dylib | CrateType::ProcMacro => MetadataKind::Compressed,
            })
            .max()
            .unwrap_or(MetadataKind::None)
    }

    pub fn needs_metadata(self) -> bool {
        self.metadata_kind() != MetadataKind::None
    }

    pub fn needs_crate_hash(self) -> bool {
        // Why is the crate hash needed for these configurations?
        // - debug_assertions: for the "fingerprint the result" check in
        //   `rustc_query_system::query::plumbing::execute_job`.
        // - incremental: for query lookups.
        // - needs_metadata: for putting into crate metadata.
        // - instrument_coverage: for putting into coverage data (see
        //   `hash_mir_source`).
        cfg!(debug_assertions)
            || self.sess.opts.incremental.is_some()
            || self.needs_metadata()
            || self.sess.instrument_coverage()
    }

    #[inline]
    pub fn stable_crate_id(self, crate_num: CrateNum) -> StableCrateId {
        if crate_num == LOCAL_CRATE {
            self.stable_crate_id
        } else {
            self.cstore_untracked().stable_crate_id(crate_num)
        }
    }

    /// Maps a StableCrateId to the corresponding CrateNum. This method assumes
    /// that the crate in question has already been loaded by the CrateStore.
    #[inline]
    pub fn stable_crate_id_to_crate_num(self, stable_crate_id: StableCrateId) -> CrateNum {
        if stable_crate_id == self.stable_crate_id(LOCAL_CRATE) {
            LOCAL_CRATE
        } else {
            *self
                .untracked()
                .stable_crate_ids
                .read()
                .get(&stable_crate_id)
                .unwrap_or_else(|| bug!("uninterned StableCrateId: {stable_crate_id:?}"))
        }
    }

    /// Converts a `DefPathHash` to its corresponding `DefId` in the current compilation
    /// session, if it still exists. This is used during incremental compilation to
    /// turn a deserialized `DefPathHash` into its current `DefId`.
    pub fn def_path_hash_to_def_id(self, hash: DefPathHash) -> Option<DefId> {
        debug!("def_path_hash_to_def_id({:?})", hash);

        let stable_crate_id = hash.stable_crate_id();

        // If this is a DefPathHash from the local crate, we can look up the
        // DefId in the tcx's `Definitions`.
        if stable_crate_id == self.stable_crate_id(LOCAL_CRATE) {
            Some(self.untracked.definitions.read().local_def_path_hash_to_def_id(hash)?.to_def_id())
        } else {
            Some(self.def_path_hash_to_def_id_extern(hash, stable_crate_id))
        }
    }

    pub fn def_path_debug_str(self, def_id: DefId) -> String {
        // We are explicitly not going through queries here in order to get
        // crate name and stable crate id since this code is called from debug!()
        // statements within the query system and we'd run into endless
        // recursion otherwise.
        let (crate_name, stable_crate_id) = if def_id.is_local() {
            (self.crate_name(LOCAL_CRATE), self.stable_crate_id(LOCAL_CRATE))
        } else {
            let cstore = &*self.cstore_untracked();
            (cstore.crate_name(def_id.krate), cstore.stable_crate_id(def_id.krate))
        };

        format!(
            "{}[{:04x}]{}",
            crate_name,
            // Don't print the whole stable crate id. That's just
            // annoying in debug output.
            stable_crate_id.as_u64() >> (8 * 6),
            self.def_path(def_id).to_string_no_crate_verbose()
        )
    }

    pub fn dcx(self) -> DiagCtxtHandle<'tcx> {
        self.sess.dcx()
    }
}

impl<'tcx> TyCtxtAt<'tcx> {
    /// Create a new definition within the incr. comp. engine.
    pub fn create_def(
        self,
        parent: LocalDefId,
        name: Symbol,
        def_kind: DefKind,
    ) -> TyCtxtFeed<'tcx, LocalDefId> {
        let feed = self.tcx.create_def(parent, name, def_kind);

        feed.def_span(self.span);
        feed
    }
}

impl<'tcx> TyCtxt<'tcx> {
    /// `tcx`-dependent operations performed for every created definition.
    pub fn create_def(
        self,
        parent: LocalDefId,
        name: Symbol,
        def_kind: DefKind,
    ) -> TyCtxtFeed<'tcx, LocalDefId> {
        let data = def_kind.def_path_data(name);
        // The following call has the side effect of modifying the tables inside `definitions`.
        // These very tables are relied on by the incr. comp. engine to decode DepNodes and to
        // decode the on-disk cache.
        //
        // Any LocalDefId which is used within queries, either as key or result, either:
        // - has been created before the construction of the TyCtxt;
        // - has been created by this call to `create_def`.
        // As a consequence, this LocalDefId is always re-created before it is needed by the incr.
        // comp. engine itself.
        //
        // This call also writes to the value of `source_span` and `expn_that_defined` queries.
        // This is fine because:
        // - those queries are `eval_always` so we won't miss their result changing;
        // - this write will have happened before these queries are called.
        let def_id = self.untracked.definitions.write().create_def(parent, data);

        // This function modifies `self.definitions` using a side-effect.
        // We need to ensure that these side effects are re-run by the incr. comp. engine.
        // Depending on the forever-red node will tell the graph that the calling query
        // needs to be re-evaluated.
        self.dep_graph.read_index(DepNodeIndex::FOREVER_RED_NODE);

        let feed = TyCtxtFeed { tcx: self, key: def_id };
        feed.def_kind(def_kind);
        // Unique types created for closures participate in type privacy checking.
        // They have visibilities inherited from the module they are defined in.
        // Visibilities for opaque types are meaningless, but still provided
        // so that all items have visibilities.
        if matches!(def_kind, DefKind::Closure | DefKind::OpaqueTy) {
            let parent_mod = self.parent_module_from_def_id(def_id).to_def_id();
            feed.visibility(ty::Visibility::Restricted(parent_mod));
        }

        feed
    }

    pub fn create_crate_num(
        self,
        stable_crate_id: StableCrateId,
    ) -> Result<TyCtxtFeed<'tcx, CrateNum>, CrateNum> {
        if let Some(&existing) = self.untracked().stable_crate_ids.read().get(&stable_crate_id) {
            return Err(existing);
        }

        let num = CrateNum::new(self.untracked().stable_crate_ids.read().len());
        self.untracked().stable_crate_ids.write().insert(stable_crate_id, num);
        Ok(TyCtxtFeed { key: num, tcx: self })
    }

    pub fn iter_local_def_id(self) -> impl Iterator<Item = LocalDefId> + 'tcx {
        // Create a dependency to the red node to be sure we re-execute this when the amount of
        // definitions change.
        self.dep_graph.read_index(DepNodeIndex::FOREVER_RED_NODE);

        let definitions = &self.untracked.definitions;
        std::iter::from_coroutine(
            #[coroutine]
            || {
                let mut i = 0;

                // Recompute the number of definitions each time, because our caller may be creating
                // new ones.
                while i < { definitions.read().num_definitions() } {
                    let local_def_index = rustc_span::def_id::DefIndex::from_usize(i);
                    yield LocalDefId { local_def_index };
                    i += 1;
                }

                // Freeze definitions once we finish iterating on them, to prevent adding new ones.
                definitions.freeze();
            },
        )
    }

    pub fn def_path_table(self) -> &'tcx rustc_hir::definitions::DefPathTable {
        // Create a dependency to the crate to be sure we re-execute this when the amount of
        // definitions change.
        self.dep_graph.read_index(DepNodeIndex::FOREVER_RED_NODE);

        // Freeze definitions once we start iterating on them, to prevent adding new ones
        // while iterating. If some query needs to add definitions, it should be `ensure`d above.
        self.untracked.definitions.freeze().def_path_table()
    }

    pub fn def_path_hash_to_def_index_map(
        self,
    ) -> &'tcx rustc_hir::def_path_hash_map::DefPathHashMap {
        // Create a dependency to the crate to be sure we re-execute this when the amount of
        // definitions change.
        self.ensure().hir_crate(());
        // Freeze definitions once we start iterating on them, to prevent adding new ones
        // while iterating. If some query needs to add definitions, it should be `ensure`d above.
        self.untracked.definitions.freeze().def_path_hash_to_def_index_map()
    }

    /// Note that this is *untracked* and should only be used within the query
    /// system if the result is otherwise tracked through queries
    #[inline]
    pub fn cstore_untracked(self) -> FreezeReadGuard<'tcx, CrateStoreDyn> {
        FreezeReadGuard::map(self.untracked.cstore.read(), |c| &**c)
    }

    /// Give out access to the untracked data without any sanity checks.
    pub fn untracked(self) -> &'tcx Untracked {
        &self.untracked
    }
    /// Note that this is *untracked* and should only be used within the query
    /// system if the result is otherwise tracked through queries
    #[inline]
    pub fn definitions_untracked(self) -> FreezeReadGuard<'tcx, Definitions> {
        self.untracked.definitions.read()
    }

    /// Note that this is *untracked* and should only be used within the query
    /// system if the result is otherwise tracked through queries
    #[inline]
    pub fn source_span_untracked(self, def_id: LocalDefId) -> Span {
        self.untracked.source_span.get(def_id).unwrap_or(DUMMY_SP)
    }

    #[inline(always)]
    pub fn with_stable_hashing_context<R>(
        self,
        f: impl FnOnce(StableHashingContext<'_>) -> R,
    ) -> R {
        f(StableHashingContext::new(self.sess, &self.untracked))
    }

    pub fn serialize_query_result_cache(self, encoder: FileEncoder) -> FileEncodeResult {
        self.query_system.on_disk_cache.as_ref().map_or(Ok(0), |c| c.serialize(self, encoder))
    }

    #[inline]
    pub fn local_crate_exports_generics(self) -> bool {
        debug_assert!(self.sess.opts.share_generics());

        self.crate_types().iter().any(|crate_type| {
            match crate_type {
                CrateType::Executable
                | CrateType::Staticlib
                | CrateType::ProcMacro
                | CrateType::Cdylib => false,

                // FIXME rust-lang/rust#64319, rust-lang/rust#64872:
                // We want to block export of generics from dylibs,
                // but we must fix rust-lang/rust#65890 before we can
                // do that robustly.
                CrateType::Dylib => true,

                CrateType::Rlib => true,
            }
        })
    }

    /// Returns the `DefId` and the `BoundRegionKind` corresponding to the given region.
    pub fn is_suitable_region(
        self,
        generic_param_scope: LocalDefId,
        mut region: Region<'tcx>,
    ) -> Option<FreeRegionInfo> {
        let (suitable_region_binding_scope, bound_region) = loop {
            let def_id =
                region.opt_param_def_id(self, generic_param_scope.to_def_id())?.as_local()?;
            let scope = self.local_parent(def_id);
            if self.def_kind(scope) == DefKind::OpaqueTy {
                // Lifetime params of opaque types are synthetic and thus irrelevant to
                // diagnostics. Map them back to their origin!
                region = self.map_opaque_lifetime_to_parent_lifetime(def_id);
                continue;
            }
            break (scope, ty::BrNamed(def_id.into(), self.item_name(def_id.into())));
        };

        let is_impl_item = match self.hir_node_by_def_id(suitable_region_binding_scope) {
            Node::Item(..) | Node::TraitItem(..) => false,
            Node::ImplItem(..) => self.is_bound_region_in_impl_item(suitable_region_binding_scope),
            _ => false,
        };

        Some(FreeRegionInfo { def_id: suitable_region_binding_scope, bound_region, is_impl_item })
    }

    /// Given a `DefId` for an `fn`, return all the `dyn` and `impl` traits in its return type.
    pub fn return_type_impl_or_dyn_traits(
        self,
        scope_def_id: LocalDefId,
    ) -> Vec<&'tcx hir::Ty<'tcx>> {
        let hir_id = self.local_def_id_to_hir_id(scope_def_id);
        let Some(hir::FnDecl { output: hir::FnRetTy::Return(hir_output), .. }) =
            self.hir().fn_decl_by_hir_id(hir_id)
        else {
            return vec![];
        };

        let mut v = TraitObjectVisitor(vec![], self.hir());
        v.visit_ty(hir_output);
        v.0
    }

    /// Given a `DefId` for an `fn`, return all the `dyn` and `impl` traits in
    /// its return type, and the associated alias span when type alias is used,
    /// along with a span for lifetime suggestion (if there are existing generics).
    pub fn return_type_impl_or_dyn_traits_with_type_alias(
        self,
        scope_def_id: LocalDefId,
    ) -> Option<(Vec<&'tcx hir::Ty<'tcx>>, Span, Option<Span>)> {
        let hir_id = self.local_def_id_to_hir_id(scope_def_id);
        let mut v = TraitObjectVisitor(vec![], self.hir());
        // when the return type is a type alias
        if let Some(hir::FnDecl { output: hir::FnRetTy::Return(hir_output), .. }) = self.hir().fn_decl_by_hir_id(hir_id)
            && let hir::TyKind::Path(hir::QPath::Resolved(
                None,
                hir::Path { res: hir::def::Res::Def(DefKind::TyAlias, def_id), .. }, )) = hir_output.kind
            && let Some(local_id) = def_id.as_local()
            && let Some(alias_ty) = self.hir_node_by_def_id(local_id).alias_ty() // it is type alias
            && let Some(alias_generics) = self.hir_node_by_def_id(local_id).generics()
        {
            v.visit_ty(alias_ty);
            if !v.0.is_empty() {
                return Some((
                    v.0,
                    alias_generics.span,
                    alias_generics.span_for_lifetime_suggestion(),
                ));
            }
        }
        None
    }

    /// Checks if the bound region is in Impl Item.
    pub fn is_bound_region_in_impl_item(self, suitable_region_binding_scope: LocalDefId) -> bool {
        let container_id = self.parent(suitable_region_binding_scope.to_def_id());
        if self.impl_trait_ref(container_id).is_some() {
            // For now, we do not try to target impls of traits. This is
            // because this message is going to suggest that the user
            // change the fn signature, but they may not be free to do so,
            // since the signature must match the trait.
            //
            // FIXME(#42706) -- in some cases, we could do better here.
            return true;
        }
        false
    }

    /// Determines whether identifiers in the assembly have strict naming rules.
    /// Currently, only NVPTX* targets need it.
    pub fn has_strict_asm_symbol_naming(self) -> bool {
        self.sess.target.arch.contains("nvptx")
    }

    /// Returns `&'static core::panic::Location<'static>`.
    pub fn caller_location_ty(self) -> Ty<'tcx> {
        Ty::new_imm_ref(
            self,
            self.lifetimes.re_static,
            self.type_of(self.require_lang_item(LangItem::PanicLocation, None))
                .instantiate(self, self.mk_args(&[self.lifetimes.re_static.into()])),
        )
    }

    /// Returns a displayable description and article for the given `def_id` (e.g. `("a", "struct")`).
    pub fn article_and_description(self, def_id: DefId) -> (&'static str, &'static str) {
        let kind = self.def_kind(def_id);
        (self.def_kind_descr_article(kind, def_id), self.def_kind_descr(kind, def_id))
    }

    pub fn type_length_limit(self) -> Limit {
        self.limits(()).type_length_limit
    }

    pub fn recursion_limit(self) -> Limit {
        self.limits(()).recursion_limit
    }

    pub fn move_size_limit(self) -> Limit {
        self.limits(()).move_size_limit
    }

    pub fn all_traits(self) -> impl Iterator<Item = DefId> + 'tcx {
        iter::once(LOCAL_CRATE)
            .chain(self.crates(()).iter().copied())
            .flat_map(move |cnum| self.traits(cnum).iter().copied())
    }

    #[inline]
    pub fn local_visibility(self, def_id: LocalDefId) -> Visibility {
        self.visibility(def_id).expect_local()
    }

    /// Returns the origin of the opaque type `def_id`.
    #[instrument(skip(self), level = "trace", ret)]
    pub fn local_opaque_ty_origin(self, def_id: LocalDefId) -> hir::OpaqueTyOrigin<LocalDefId> {
        self.hir().expect_opaque_ty(def_id).origin
    }
}

macro_rules! nop_lift {
    ($set:ident; $ty:ty => $lifted:ty) => {
        impl<'a, 'tcx> Lift<TyCtxt<'tcx>> for $ty {
            type Lifted = $lifted;
            fn lift_to_interner(self, tcx: TyCtxt<'tcx>) -> Option<Self::Lifted> {
                // Assert that the set has the right type.
                // Given an argument that has an interned type, the return type has the type of
                // the corresponding interner set. This won't actually return anything, we're
                // just doing this to compute said type!
                fn _intern_set_ty_from_interned_ty<'tcx, Inner>(
                    _x: Interned<'tcx, Inner>,
                ) -> InternedSet<'tcx, Inner> {
                    unreachable!()
                }
                fn _type_eq<T>(_x: &T, _y: &T) {}
                fn _test<'tcx>(x: $lifted, tcx: TyCtxt<'tcx>) {
                    // If `x` is a newtype around an `Interned<T>`, then `interner` is an
                    // interner of appropriate type. (Ideally we'd also check that `x` is a
                    // newtype with just that one field. Not sure how to do that.)
                    let interner = _intern_set_ty_from_interned_ty(x.0);
                    // Now check that this is the same type as `interners.$set`.
                    _type_eq(&interner, &tcx.interners.$set);
                }

                tcx.interners
                    .$set
                    .contains_pointer_to(&InternedInSet(&*self.0.0))
                    // SAFETY: `self` is interned and therefore valid
                    // for the entire lifetime of the `TyCtxt`.
                    .then(|| unsafe { mem::transmute(self) })
            }
        }
    };
}

macro_rules! nop_list_lift {
    ($set:ident; $ty:ty => $lifted:ty) => {
        impl<'a, 'tcx> Lift<TyCtxt<'tcx>> for &'a List<$ty> {
            type Lifted = &'tcx List<$lifted>;
            fn lift_to_interner(self, tcx: TyCtxt<'tcx>) -> Option<Self::Lifted> {
                // Assert that the set has the right type.
                if false {
                    let _x: &InternedSet<'tcx, List<$lifted>> = &tcx.interners.$set;
                }

                if self.is_empty() {
                    return Some(List::empty());
                }
                tcx.interners
                    .$set
                    .contains_pointer_to(&InternedInSet(self))
                    .then(|| unsafe { mem::transmute(self) })
            }
        }
    };
}

nop_lift! {type_; Ty<'a> => Ty<'tcx>}
nop_lift! {region; Region<'a> => Region<'tcx>}
nop_lift! {const_; Const<'a> => Const<'tcx>}
nop_lift! {pat; Pattern<'a> => Pattern<'tcx>}
nop_lift! {const_allocation; ConstAllocation<'a> => ConstAllocation<'tcx>}
nop_lift! {predicate; Predicate<'a> => Predicate<'tcx>}
nop_lift! {predicate; Clause<'a> => Clause<'tcx>}
nop_lift! {layout; Layout<'a> => Layout<'tcx>}

nop_list_lift! {type_lists; Ty<'a> => Ty<'tcx>}
nop_list_lift! {poly_existential_predicates; PolyExistentialPredicate<'a> => PolyExistentialPredicate<'tcx>}
nop_list_lift! {bound_variable_kinds; ty::BoundVariableKind => ty::BoundVariableKind}

// This is the impl for `&'a GenericArgs<'a>`.
nop_list_lift! {args; GenericArg<'a> => GenericArg<'tcx>}

macro_rules! nop_slice_lift {
    ($ty:ty => $lifted:ty) => {
        impl<'a, 'tcx> Lift<TyCtxt<'tcx>> for &'a [$ty] {
            type Lifted = &'tcx [$lifted];
            fn lift_to_interner(self, tcx: TyCtxt<'tcx>) -> Option<Self::Lifted> {
                if self.is_empty() {
                    return Some(&[]);
                }
                tcx.interners
                    .arena
                    .dropless
                    .contains_slice(self)
                    .then(|| unsafe { mem::transmute(self) })
            }
        }
    };
}

nop_slice_lift! {ty::ValTree<'a> => ty::ValTree<'tcx>}

TrivialLiftImpls! {
    ImplPolarity, PredicatePolarity, Promoted, BoundConstness,
}

macro_rules! sty_debug_print {
    ($fmt: expr, $ctxt: expr, $($variant: ident),*) => {{
        // Curious inner module to allow variant names to be used as
        // variable names.
        #[allow(non_snake_case)]
        mod inner {
            use crate::ty::{self, TyCtxt};
            use crate::ty::context::InternedInSet;

            #[derive(Copy, Clone)]
            struct DebugStat {
                total: usize,
                lt_infer: usize,
                ty_infer: usize,
                ct_infer: usize,
                all_infer: usize,
            }

            pub(crate) fn go(fmt: &mut std::fmt::Formatter<'_>, tcx: TyCtxt<'_>) -> std::fmt::Result {
                let mut total = DebugStat {
                    total: 0,
                    lt_infer: 0,
                    ty_infer: 0,
                    ct_infer: 0,
                    all_infer: 0,
                };
                $(let mut $variant = total;)*

                for shard in tcx.interners.type_.lock_shards() {
                    let types = shard.keys();
                    for &InternedInSet(t) in types {
                        let variant = match t.internee {
                            ty::Bool | ty::Char | ty::Int(..) | ty::Uint(..) |
                                ty::Float(..) | ty::Str | ty::Never => continue,
                            ty::Error(_) => /* unimportant */ continue,
                            $(ty::$variant(..) => &mut $variant,)*
                        };
                        let lt = t.flags.intersects(ty::TypeFlags::HAS_RE_INFER);
                        let ty = t.flags.intersects(ty::TypeFlags::HAS_TY_INFER);
                        let ct = t.flags.intersects(ty::TypeFlags::HAS_CT_INFER);

                        variant.total += 1;
                        total.total += 1;
                        if lt { total.lt_infer += 1; variant.lt_infer += 1 }
                        if ty { total.ty_infer += 1; variant.ty_infer += 1 }
                        if ct { total.ct_infer += 1; variant.ct_infer += 1 }
                        if lt && ty && ct { total.all_infer += 1; variant.all_infer += 1 }
                    }
                }
                writeln!(fmt, "Ty interner             total           ty lt ct all")?;
                $(writeln!(fmt, "    {:18}: {uses:6} {usespc:4.1}%, \
                            {ty:4.1}% {lt:5.1}% {ct:4.1}% {all:4.1}%",
                    stringify!($variant),
                    uses = $variant.total,
                    usespc = $variant.total as f64 * 100.0 / total.total as f64,
                    ty = $variant.ty_infer as f64 * 100.0  / total.total as f64,
                    lt = $variant.lt_infer as f64 * 100.0  / total.total as f64,
                    ct = $variant.ct_infer as f64 * 100.0  / total.total as f64,
                    all = $variant.all_infer as f64 * 100.0  / total.total as f64)?;
                )*
                writeln!(fmt, "                  total {uses:6}        \
                          {ty:4.1}% {lt:5.1}% {ct:4.1}% {all:4.1}%",
                    uses = total.total,
                    ty = total.ty_infer as f64 * 100.0  / total.total as f64,
                    lt = total.lt_infer as f64 * 100.0  / total.total as f64,
                    ct = total.ct_infer as f64 * 100.0  / total.total as f64,
                    all = total.all_infer as f64 * 100.0  / total.total as f64)
            }
        }

        inner::go($fmt, $ctxt)
    }}
}

impl<'tcx> TyCtxt<'tcx> {
    pub fn debug_stats(self) -> impl std::fmt::Debug + 'tcx {
        struct DebugStats<'tcx>(TyCtxt<'tcx>);

        impl<'tcx> std::fmt::Debug for DebugStats<'tcx> {
            fn fmt(&self, fmt: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
                sty_debug_print!(
                    fmt,
                    self.0,
                    Adt,
                    Array,
                    Slice,
                    RawPtr,
                    Ref,
                    FnDef,
                    FnPtr,
                    Placeholder,
                    Coroutine,
                    CoroutineWitness,
                    Dynamic,
                    Closure,
                    CoroutineClosure,
                    Tuple,
                    Bound,
                    Param,
                    Infer,
                    Alias,
                    Pat,
                    Foreign
                )?;

                writeln!(fmt, "GenericArgs interner: #{}", self.0.interners.args.len())?;
                writeln!(fmt, "Region interner: #{}", self.0.interners.region.len())?;
                writeln!(
                    fmt,
                    "Const Allocation interner: #{}",
                    self.0.interners.const_allocation.len()
                )?;
                writeln!(fmt, "Layout interner: #{}", self.0.interners.layout.len())?;

                Ok(())
            }
        }

        DebugStats(self)
    }
}

// This type holds a `T` in the interner. The `T` is stored in the arena and
// this type just holds a pointer to it, but it still effectively owns it. It
// impls `Borrow` so that it can be looked up using the original
// (non-arena-memory-owning) types.
struct InternedInSet<'tcx, T: ?Sized>(&'tcx T);

impl<'tcx, T: 'tcx + ?Sized> Clone for InternedInSet<'tcx, T> {
    fn clone(&self) -> Self {
        InternedInSet(self.0)
    }
}

impl<'tcx, T: 'tcx + ?Sized> Copy for InternedInSet<'tcx, T> {}

impl<'tcx, T: 'tcx + ?Sized> IntoPointer for InternedInSet<'tcx, T> {
    fn into_pointer(&self) -> *const () {
        self.0 as *const _ as *const ()
    }
}

#[allow(rustc::usage_of_ty_tykind)]
impl<'tcx, T> Borrow<T> for InternedInSet<'tcx, WithCachedTypeInfo<T>> {
    fn borrow(&self) -> &T {
        &self.0.internee
    }
}

impl<'tcx, T: PartialEq> PartialEq for InternedInSet<'tcx, WithCachedTypeInfo<T>> {
    fn eq(&self, other: &InternedInSet<'tcx, WithCachedTypeInfo<T>>) -> bool {
        // The `Borrow` trait requires that `x.borrow() == y.borrow()` equals
        // `x == y`.
        self.0.internee == other.0.internee
    }
}

impl<'tcx, T: Eq> Eq for InternedInSet<'tcx, WithCachedTypeInfo<T>> {}

impl<'tcx, T: Hash> Hash for InternedInSet<'tcx, WithCachedTypeInfo<T>> {
    fn hash<H: Hasher>(&self, s: &mut H) {
        // The `Borrow` trait requires that `x.borrow().hash(s) == x.hash(s)`.
        self.0.internee.hash(s)
    }
}

impl<'tcx, T> Borrow<[T]> for InternedInSet<'tcx, List<T>> {
    fn borrow(&self) -> &[T] {
        &self.0[..]
    }
}

impl<'tcx, T: PartialEq> PartialEq for InternedInSet<'tcx, List<T>> {
    fn eq(&self, other: &InternedInSet<'tcx, List<T>>) -> bool {
        // The `Borrow` trait requires that `x.borrow() == y.borrow()` equals
        // `x == y`.
        self.0[..] == other.0[..]
    }
}

impl<'tcx, T: Eq> Eq for InternedInSet<'tcx, List<T>> {}

impl<'tcx, T: Hash> Hash for InternedInSet<'tcx, List<T>> {
    fn hash<H: Hasher>(&self, s: &mut H) {
        // The `Borrow` trait requires that `x.borrow().hash(s) == x.hash(s)`.
        self.0[..].hash(s)
    }
}

impl<'tcx, T> Borrow<[T]> for InternedInSet<'tcx, ListWithCachedTypeInfo<T>> {
    fn borrow(&self) -> &[T] {
        &self.0[..]
    }
}

impl<'tcx, T: PartialEq> PartialEq for InternedInSet<'tcx, ListWithCachedTypeInfo<T>> {
    fn eq(&self, other: &InternedInSet<'tcx, ListWithCachedTypeInfo<T>>) -> bool {
        // The `Borrow` trait requires that `x.borrow() == y.borrow()` equals
        // `x == y`.
        self.0[..] == other.0[..]
    }
}

impl<'tcx, T: Eq> Eq for InternedInSet<'tcx, ListWithCachedTypeInfo<T>> {}

impl<'tcx, T: Hash> Hash for InternedInSet<'tcx, ListWithCachedTypeInfo<T>> {
    fn hash<H: Hasher>(&self, s: &mut H) {
        // The `Borrow` trait requires that `x.borrow().hash(s) == x.hash(s)`.
        self.0[..].hash(s)
    }
}

macro_rules! direct_interners {
    ($($name:ident: $vis:vis $method:ident($ty:ty): $ret_ctor:ident -> $ret_ty:ty,)+) => {
        $(impl<'tcx> Borrow<$ty> for InternedInSet<'tcx, $ty> {
            fn borrow<'a>(&'a self) -> &'a $ty {
                &self.0
            }
        }

        impl<'tcx> PartialEq for InternedInSet<'tcx, $ty> {
            fn eq(&self, other: &Self) -> bool {
                // The `Borrow` trait requires that `x.borrow() == y.borrow()`
                // equals `x == y`.
                self.0 == other.0
            }
        }

        impl<'tcx> Eq for InternedInSet<'tcx, $ty> {}

        impl<'tcx> Hash for InternedInSet<'tcx, $ty> {
            fn hash<H: Hasher>(&self, s: &mut H) {
                // The `Borrow` trait requires that `x.borrow().hash(s) ==
                // x.hash(s)`.
                self.0.hash(s)
            }
        }

        impl<'tcx> TyCtxt<'tcx> {
            $vis fn $method(self, v: $ty) -> $ret_ty {
                $ret_ctor(Interned::new_unchecked(self.interners.$name.intern(v, |v| {
                    InternedInSet(self.interners.arena.alloc(v))
                }).0))
            }
        })+
    }
}

// Functions with a `mk_` prefix are intended for use outside this file and
// crate. Functions with an `intern_` prefix are intended for use within this
// crate only, and have a corresponding `mk_` function.
direct_interners! {
    region: pub(crate) intern_region(RegionKind<'tcx>): Region -> Region<'tcx>,
    pat: pub mk_pat(PatternKind<'tcx>): Pattern -> Pattern<'tcx>,
    const_allocation: pub mk_const_alloc(Allocation): ConstAllocation -> ConstAllocation<'tcx>,
    layout: pub mk_layout(LayoutData<FieldIdx, VariantIdx>): Layout -> Layout<'tcx>,
    adt_def: pub mk_adt_def_from_data(AdtDefData): AdtDef -> AdtDef<'tcx>,
    external_constraints: pub mk_external_constraints(ExternalConstraintsData<TyCtxt<'tcx>>):
        ExternalConstraints -> ExternalConstraints<'tcx>,
    predefined_opaques_in_body: pub mk_predefined_opaques_in_body(PredefinedOpaquesData<TyCtxt<'tcx>>):
        PredefinedOpaques -> PredefinedOpaques<'tcx>,
}

macro_rules! slice_interners {
    ($($field:ident: $vis:vis $method:ident($ty:ty)),+ $(,)?) => (
        impl<'tcx> TyCtxt<'tcx> {
            $($vis fn $method(self, v: &[$ty]) -> &'tcx List<$ty> {
                if v.is_empty() {
                    List::empty()
                } else {
                    self.interners.$field.intern_ref(v, || {
                        InternedInSet(List::from_arena(&*self.arena, (), v))
                    }).0
                }
            })+
        }
    );
}

// These functions intern slices. They all have a corresponding
// `mk_foo_from_iter` function that interns an iterator. The slice version
// should be used when possible, because it's faster.
slice_interners!(
    const_lists: pub mk_const_list(Const<'tcx>),
    args: pub mk_args(GenericArg<'tcx>),
    type_lists: pub mk_type_list(Ty<'tcx>),
    canonical_var_infos: pub mk_canonical_var_infos(CanonicalVarInfo<'tcx>),
    poly_existential_predicates: intern_poly_existential_predicates(PolyExistentialPredicate<'tcx>),
    projs: pub mk_projs(ProjectionKind),
    place_elems: pub mk_place_elems(PlaceElem<'tcx>),
    bound_variable_kinds: pub mk_bound_variable_kinds(ty::BoundVariableKind),
    fields: pub mk_fields(FieldIdx),
    local_def_ids: intern_local_def_ids(LocalDefId),
    captures: intern_captures(&'tcx ty::CapturedPlace<'tcx>),
    offset_of: pub mk_offset_of((VariantIdx, FieldIdx)),
);

impl<'tcx> TyCtxt<'tcx> {
    /// Given a `fn` type, returns an equivalent `unsafe fn` type;
    /// that is, a `fn` type that is equivalent in every way for being
    /// unsafe.
    pub fn safe_to_unsafe_fn_ty(self, sig: PolyFnSig<'tcx>) -> Ty<'tcx> {
        assert_eq!(sig.safety(), hir::Safety::Safe);
        Ty::new_fn_ptr(self, sig.map_bound(|sig| ty::FnSig { safety: hir::Safety::Unsafe, ..sig }))
    }

    /// Given the def_id of a Trait `trait_def_id` and the name of an associated item `assoc_name`
    /// returns true if the `trait_def_id` defines an associated item of name `assoc_name`.
    pub fn trait_may_define_assoc_item(self, trait_def_id: DefId, assoc_name: Ident) -> bool {
        self.supertrait_def_ids(trait_def_id).any(|trait_did| {
            self.associated_items(trait_did)
                .filter_by_name_unhygienic(assoc_name.name)
                .any(|item| self.hygienic_eq(assoc_name, item.ident(self), trait_did))
        })
    }

    /// Given a `ty`, return whether it's an `impl Future<...>`.
    pub fn ty_is_opaque_future(self, ty: Ty<'_>) -> bool {
        let ty::Alias(ty::Opaque, ty::AliasTy { def_id, .. }) = ty.kind() else { return false };
        let future_trait = self.require_lang_item(LangItem::Future, None);

        self.explicit_item_super_predicates(def_id).skip_binder().iter().any(|&(predicate, _)| {
            let ty::ClauseKind::Trait(trait_predicate) = predicate.kind().skip_binder() else {
                return false;
            };
            trait_predicate.trait_ref.def_id == future_trait
                && trait_predicate.polarity == PredicatePolarity::Positive
        })
    }

    /// Computes the def-ids of the transitive supertraits of `trait_def_id`. This (intentionally)
    /// does not compute the full elaborated super-predicates but just the set of def-ids. It is used
    /// to identify which traits may define a given associated type to help avoid cycle errors,
    /// and to make size estimates for vtable layout computation.
    pub fn supertrait_def_ids(self, trait_def_id: DefId) -> impl Iterator<Item = DefId> + 'tcx {
        rustc_type_ir::elaborate::supertrait_def_ids(self, trait_def_id)
    }

    /// Given a closure signature, returns an equivalent fn signature. Detuples
    /// and so forth -- so e.g., if we have a sig with `Fn<(u32, i32)>` then
    /// you would get a `fn(u32, i32)`.
    /// `unsafety` determines the unsafety of the fn signature. If you pass
    /// `hir::Safety::Unsafe` in the previous example, then you would get
    /// an `unsafe fn (u32, i32)`.
    /// It cannot convert a closure that requires unsafe.
    pub fn signature_unclosure(self, sig: PolyFnSig<'tcx>, safety: hir::Safety) -> PolyFnSig<'tcx> {
        sig.map_bound(|s| {
            let params = match s.inputs()[0].kind() {
                ty::Tuple(params) => *params,
                _ => bug!(),
            };
            self.mk_fn_sig(params, s.output(), s.c_variadic, safety, ExternAbi::Rust)
        })
    }

    #[inline]
    pub fn mk_predicate(self, binder: Binder<'tcx, PredicateKind<'tcx>>) -> Predicate<'tcx> {
        self.interners.intern_predicate(
            binder,
            self.sess,
            // This is only used to create a stable hashing context.
            &self.untracked,
        )
    }

    #[inline]
    pub fn reuse_or_mk_predicate(
        self,
        pred: Predicate<'tcx>,
        binder: Binder<'tcx, PredicateKind<'tcx>>,
    ) -> Predicate<'tcx> {
        if pred.kind() != binder { self.mk_predicate(binder) } else { pred }
    }

    pub fn check_args_compatible(self, def_id: DefId, args: &'tcx [ty::GenericArg<'tcx>]) -> bool {
        self.check_args_compatible_inner(def_id, args, false)
    }

    fn check_args_compatible_inner(
        self,
        def_id: DefId,
        args: &'tcx [ty::GenericArg<'tcx>],
        nested: bool,
    ) -> bool {
        let generics = self.generics_of(def_id);

        // IATs themselves have a weird arg setup (self + own args), but nested items *in* IATs
        // (namely: opaques, i.e. ATPITs) do not.
        let own_args = if !nested
            && let DefKind::AssocTy = self.def_kind(def_id)
            && let DefKind::Impl { of_trait: false } = self.def_kind(self.parent(def_id))
        {
            if generics.own_params.len() + 1 != args.len() {
                return false;
            }

            if !matches!(args[0].unpack(), ty::GenericArgKind::Type(_)) {
                return false;
            }

            &args[1..]
        } else {
            if generics.count() != args.len() {
                return false;
            }

            let (parent_args, own_args) = args.split_at(generics.parent_count);

            if let Some(parent) = generics.parent
                && !self.check_args_compatible_inner(parent, parent_args, true)
            {
                return false;
            }

            own_args
        };

        for (param, arg) in std::iter::zip(&generics.own_params, own_args) {
            match (&param.kind, arg.unpack()) {
                (ty::GenericParamDefKind::Type { .. }, ty::GenericArgKind::Type(_))
                | (ty::GenericParamDefKind::Lifetime, ty::GenericArgKind::Lifetime(_))
                | (ty::GenericParamDefKind::Const { .. }, ty::GenericArgKind::Const(_)) => {}
                _ => return false,
            }
        }

        true
    }

    /// With `cfg(debug_assertions)`, assert that args are compatible with their generics,
    /// and print out the args if not.
    pub fn debug_assert_args_compatible(self, def_id: DefId, args: &'tcx [ty::GenericArg<'tcx>]) {
        if cfg!(debug_assertions) && !self.check_args_compatible(def_id, args) {
            if let DefKind::AssocTy = self.def_kind(def_id)
                && let DefKind::Impl { of_trait: false } = self.def_kind(self.parent(def_id))
            {
                bug!(
                    "args not compatible with generics for {}: args={:#?}, generics={:#?}",
                    self.def_path_str(def_id),
                    args,
                    // Make `[Self, GAT_ARGS...]` (this could be simplified)
                    self.mk_args_from_iter(
                        [self.types.self_param.into()].into_iter().chain(
                            self.generics_of(def_id)
                                .own_args(ty::GenericArgs::identity_for_item(self, def_id))
                                .iter()
                                .copied()
                        )
                    )
                );
            } else {
                bug!(
                    "args not compatible with generics for {}: args={:#?}, generics={:#?}",
                    self.def_path_str(def_id),
                    args,
                    ty::GenericArgs::identity_for_item(self, def_id)
                );
            }
        }
    }

    #[inline(always)]
    pub(crate) fn check_and_mk_args(
        self,
        def_id: DefId,
        args: impl IntoIterator<Item: Into<GenericArg<'tcx>>>,
    ) -> GenericArgsRef<'tcx> {
        let args = self.mk_args_from_iter(args.into_iter().map(Into::into));
        self.debug_assert_args_compatible(def_id, args);
        args
    }

    #[inline]
    pub fn mk_ct_from_kind(self, kind: ty::ConstKind<'tcx>) -> Const<'tcx> {
        self.interners.intern_const(
            kind,
            self.sess,
            // This is only used to create a stable hashing context.
            &self.untracked,
        )
    }

    // Avoid this in favour of more specific `Ty::new_*` methods, where possible.
    #[allow(rustc::usage_of_ty_tykind)]
    #[inline]
    pub fn mk_ty_from_kind(self, st: TyKind<'tcx>) -> Ty<'tcx> {
        self.interners.intern_ty(
            st,
            self.sess,
            // This is only used to create a stable hashing context.
            &self.untracked,
        )
    }

    pub fn mk_param_from_def(self, param: &ty::GenericParamDef) -> GenericArg<'tcx> {
        match param.kind {
            GenericParamDefKind::Lifetime => {
                ty::Region::new_early_param(self, param.to_early_bound_region_data()).into()
            }
            GenericParamDefKind::Type { .. } => Ty::new_param(self, param.index, param.name).into(),
            GenericParamDefKind::Const { .. } => {
                ty::Const::new_param(self, ParamConst { index: param.index, name: param.name })
                    .into()
            }
        }
    }

    pub fn mk_place_field(self, place: Place<'tcx>, f: FieldIdx, ty: Ty<'tcx>) -> Place<'tcx> {
        self.mk_place_elem(place, PlaceElem::Field(f, ty))
    }

    pub fn mk_place_deref(self, place: Place<'tcx>) -> Place<'tcx> {
        self.mk_place_elem(place, PlaceElem::Deref)
    }

    pub fn mk_place_downcast(
        self,
        place: Place<'tcx>,
        adt_def: AdtDef<'tcx>,
        variant_index: VariantIdx,
    ) -> Place<'tcx> {
        self.mk_place_elem(
            place,
            PlaceElem::Downcast(Some(adt_def.variant(variant_index).name), variant_index),
        )
    }

    pub fn mk_place_downcast_unnamed(
        self,
        place: Place<'tcx>,
        variant_index: VariantIdx,
    ) -> Place<'tcx> {
        self.mk_place_elem(place, PlaceElem::Downcast(None, variant_index))
    }

    pub fn mk_place_index(self, place: Place<'tcx>, index: Local) -> Place<'tcx> {
        self.mk_place_elem(place, PlaceElem::Index(index))
    }

    /// This method copies `Place`'s projection, add an element and reintern it. Should not be used
    /// to build a full `Place` it's just a convenient way to grab a projection and modify it in
    /// flight.
    pub fn mk_place_elem(self, place: Place<'tcx>, elem: PlaceElem<'tcx>) -> Place<'tcx> {
        let mut projection = place.projection.to_vec();
        projection.push(elem);

        Place { local: place.local, projection: self.mk_place_elems(&projection) }
    }

    pub fn mk_poly_existential_predicates(
        self,
        eps: &[PolyExistentialPredicate<'tcx>],
    ) -> &'tcx List<PolyExistentialPredicate<'tcx>> {
        assert!(!eps.is_empty());
        assert!(
            eps.array_windows()
                .all(|[a, b]| a.skip_binder().stable_cmp(self, &b.skip_binder())
                    != Ordering::Greater)
        );
        self.intern_poly_existential_predicates(eps)
    }

    pub fn mk_clauses(self, clauses: &[Clause<'tcx>]) -> Clauses<'tcx> {
        // FIXME consider asking the input slice to be sorted to avoid
        // re-interning permutations, in which case that would be asserted
        // here.
        self.interners.intern_clauses(clauses)
    }

    pub fn mk_local_def_ids(self, clauses: &[LocalDefId]) -> &'tcx List<LocalDefId> {
        // FIXME consider asking the input slice to be sorted to avoid
        // re-interning permutations, in which case that would be asserted
        // here.
        self.intern_local_def_ids(clauses)
    }

    pub fn mk_local_def_ids_from_iter<I, T>(self, iter: I) -> T::Output
    where
        I: Iterator<Item = T>,
        T: CollectAndApply<LocalDefId, &'tcx List<LocalDefId>>,
    {
        T::collect_and_apply(iter, |xs| self.mk_local_def_ids(xs))
    }

    pub fn mk_captures_from_iter<I, T>(self, iter: I) -> T::Output
    where
        I: Iterator<Item = T>,
        T: CollectAndApply<
                &'tcx ty::CapturedPlace<'tcx>,
                &'tcx List<&'tcx ty::CapturedPlace<'tcx>>,
            >,
    {
        T::collect_and_apply(iter, |xs| self.intern_captures(xs))
    }

    pub fn mk_const_list_from_iter<I, T>(self, iter: I) -> T::Output
    where
        I: Iterator<Item = T>,
        T: CollectAndApply<ty::Const<'tcx>, &'tcx List<ty::Const<'tcx>>>,
    {
        T::collect_and_apply(iter, |xs| self.mk_const_list(xs))
    }

    // Unlike various other `mk_*_from_iter` functions, this one uses `I:
    // IntoIterator` instead of `I: Iterator`, and it doesn't have a slice
    // variant, because of the need to combine `inputs` and `output`. This
    // explains the lack of `_from_iter` suffix.
    pub fn mk_fn_sig<I, T>(
        self,
        inputs: I,
        output: I::Item,
        c_variadic: bool,
        safety: hir::Safety,
        abi: ExternAbi,
    ) -> T::Output
    where
        I: IntoIterator<Item = T>,
        T: CollectAndApply<Ty<'tcx>, ty::FnSig<'tcx>>,
    {
        T::collect_and_apply(inputs.into_iter().chain(iter::once(output)), |xs| ty::FnSig {
            inputs_and_output: self.mk_type_list(xs),
            c_variadic,
            safety,
            abi,
        })
    }

    pub fn mk_poly_existential_predicates_from_iter<I, T>(self, iter: I) -> T::Output
    where
        I: Iterator<Item = T>,
        T: CollectAndApply<
                PolyExistentialPredicate<'tcx>,
                &'tcx List<PolyExistentialPredicate<'tcx>>,
            >,
    {
        T::collect_and_apply(iter, |xs| self.mk_poly_existential_predicates(xs))
    }

    pub fn mk_clauses_from_iter<I, T>(self, iter: I) -> T::Output
    where
        I: Iterator<Item = T>,
        T: CollectAndApply<Clause<'tcx>, Clauses<'tcx>>,
    {
        T::collect_and_apply(iter, |xs| self.mk_clauses(xs))
    }

    pub fn mk_type_list_from_iter<I, T>(self, iter: I) -> T::Output
    where
        I: Iterator<Item = T>,
        T: CollectAndApply<Ty<'tcx>, &'tcx List<Ty<'tcx>>>,
    {
        T::collect_and_apply(iter, |xs| self.mk_type_list(xs))
    }

    pub fn mk_args_from_iter<I, T>(self, iter: I) -> T::Output
    where
        I: Iterator<Item = T>,
        T: CollectAndApply<GenericArg<'tcx>, ty::GenericArgsRef<'tcx>>,
    {
        T::collect_and_apply(iter, |xs| self.mk_args(xs))
    }

    pub fn mk_canonical_var_infos_from_iter<I, T>(self, iter: I) -> T::Output
    where
        I: Iterator<Item = T>,
        T: CollectAndApply<CanonicalVarInfo<'tcx>, &'tcx List<CanonicalVarInfo<'tcx>>>,
    {
        T::collect_and_apply(iter, |xs| self.mk_canonical_var_infos(xs))
    }

    pub fn mk_place_elems_from_iter<I, T>(self, iter: I) -> T::Output
    where
        I: Iterator<Item = T>,
        T: CollectAndApply<PlaceElem<'tcx>, &'tcx List<PlaceElem<'tcx>>>,
    {
        T::collect_and_apply(iter, |xs| self.mk_place_elems(xs))
    }

    pub fn mk_fields_from_iter<I, T>(self, iter: I) -> T::Output
    where
        I: Iterator<Item = T>,
        T: CollectAndApply<FieldIdx, &'tcx List<FieldIdx>>,
    {
        T::collect_and_apply(iter, |xs| self.mk_fields(xs))
    }

    pub fn mk_offset_of_from_iter<I, T>(self, iter: I) -> T::Output
    where
        I: Iterator<Item = T>,
        T: CollectAndApply<(VariantIdx, FieldIdx), &'tcx List<(VariantIdx, FieldIdx)>>,
    {
        T::collect_and_apply(iter, |xs| self.mk_offset_of(xs))
    }

    pub fn mk_args_trait(
        self,
        self_ty: Ty<'tcx>,
        rest: impl IntoIterator<Item = GenericArg<'tcx>>,
    ) -> GenericArgsRef<'tcx> {
        self.mk_args_from_iter(iter::once(self_ty.into()).chain(rest))
    }

    pub fn mk_bound_variable_kinds_from_iter<I, T>(self, iter: I) -> T::Output
    where
        I: Iterator<Item = T>,
        T: CollectAndApply<ty::BoundVariableKind, &'tcx List<ty::BoundVariableKind>>,
    {
        T::collect_and_apply(iter, |xs| self.mk_bound_variable_kinds(xs))
    }

    /// Emit a lint at `span` from a lint struct (some type that implements `LintDiagnostic`,
    /// typically generated by `#[derive(LintDiagnostic)]`).
    #[track_caller]
    pub fn emit_node_span_lint(
        self,
        lint: &'static Lint,
        hir_id: HirId,
        span: impl Into<MultiSpan>,
        decorator: impl for<'a> LintDiagnostic<'a, ()>,
    ) {
        let (level, src) = self.lint_level_at_node(lint, hir_id);
        lint_level(self.sess, lint, level, src, Some(span.into()), |lint| {
            decorator.decorate_lint(lint);
        })
    }

    /// Emit a lint at the appropriate level for a hir node, with an associated span.
    ///
    /// [`lint_level`]: rustc_middle::lint::lint_level#decorate-signature
    #[rustc_lint_diagnostics]
    #[track_caller]
    pub fn node_span_lint(
        self,
        lint: &'static Lint,
        hir_id: HirId,
        span: impl Into<MultiSpan>,
        decorate: impl for<'a, 'b> FnOnce(&'b mut Diag<'a, ()>),
    ) {
        let (level, src) = self.lint_level_at_node(lint, hir_id);
        lint_level(self.sess, lint, level, src, Some(span.into()), decorate);
    }

    /// Find the crate root and the appropriate span where `use` and outer attributes can be
    /// inserted at.
    pub fn crate_level_attribute_injection_span(self, hir_id: HirId) -> Option<Span> {
        for (_hir_id, node) in self.hir().parent_iter(hir_id) {
            if let hir::Node::Crate(m) = node {
                return Some(m.spans.inject_use_span.shrink_to_lo());
            }
        }
        None
    }

    pub fn disabled_nightly_features<E: rustc_errors::EmissionGuarantee>(
        self,
        diag: &mut Diag<'_, E>,
        hir_id: Option<HirId>,
        features: impl IntoIterator<Item = (String, Symbol)>,
    ) {
        if !self.sess.is_nightly_build() {
            return;
        }

        let span = hir_id.and_then(|id| self.crate_level_attribute_injection_span(id));
        for (desc, feature) in features {
            // FIXME: make this string translatable
            let msg =
                format!("add `#![feature({feature})]` to the crate attributes to enable{desc}");
            if let Some(span) = span {
                diag.span_suggestion_verbose(
                    span,
                    msg,
                    format!("#![feature({feature})]\n"),
                    Applicability::MaybeIncorrect,
                );
            } else {
                diag.help(msg);
            }
        }
    }

    /// Emit a lint from a lint struct (some type that implements `LintDiagnostic`, typically
    /// generated by `#[derive(LintDiagnostic)]`).
    #[track_caller]
    pub fn emit_node_lint(
        self,
        lint: &'static Lint,
        id: HirId,
        decorator: impl for<'a> LintDiagnostic<'a, ()>,
    ) {
        self.node_lint(lint, id, |lint| {
            decorator.decorate_lint(lint);
        })
    }

    /// Emit a lint at the appropriate level for a hir node.
    ///
    /// [`lint_level`]: rustc_middle::lint::lint_level#decorate-signature
    #[rustc_lint_diagnostics]
    #[track_caller]
    pub fn node_lint(
        self,
        lint: &'static Lint,
        id: HirId,
        decorate: impl for<'a, 'b> FnOnce(&'b mut Diag<'a, ()>),
    ) {
        let (level, src) = self.lint_level_at_node(lint, id);
        lint_level(self.sess, lint, level, src, None, decorate);
    }

    pub fn in_scope_traits(self, id: HirId) -> Option<&'tcx [TraitCandidate]> {
        let map = self.in_scope_traits_map(id.owner)?;
        let candidates = map.get(&id.local_id)?;
        Some(candidates)
    }

    pub fn named_bound_var(self, id: HirId) -> Option<resolve_bound_vars::ResolvedArg> {
        debug!(?id, "named_region");
        self.named_variable_map(id.owner).get(&id.local_id).cloned()
    }

    pub fn is_late_bound(self, id: HirId) -> bool {
        self.is_late_bound_map(id.owner).is_some_and(|set| set.contains(&id.local_id))
    }

    pub fn late_bound_vars(self, id: HirId) -> &'tcx List<ty::BoundVariableKind> {
        self.mk_bound_variable_kinds(
            &self.late_bound_vars_map(id.owner).get(&id.local_id).cloned().unwrap_or_else(|| {
                bug!("No bound vars found for {}", self.hir().node_to_string(id))
            }),
        )
    }

    /// Given the def-id of an early-bound lifetime on an opaque corresponding to
    /// a duplicated captured lifetime, map it back to the early- or late-bound
    /// lifetime of the function from which it originally as captured. If it is
    /// a late-bound lifetime, this will represent the liberated (`ReLateParam`) lifetime
    /// of the signature.
    // FIXME(RPITIT): if we ever synthesize new lifetimes for RPITITs and not just
    // re-use the generics of the opaque, this function will need to be tweaked slightly.
    pub fn map_opaque_lifetime_to_parent_lifetime(
        self,
        mut opaque_lifetime_param_def_id: LocalDefId,
    ) -> ty::Region<'tcx> {
        debug_assert!(
            matches!(self.def_kind(opaque_lifetime_param_def_id), DefKind::LifetimeParam),
            "{opaque_lifetime_param_def_id:?} is a {}",
            self.def_descr(opaque_lifetime_param_def_id.to_def_id())
        );

        loop {
            let parent = self.local_parent(opaque_lifetime_param_def_id);
            let lifetime_mapping = self.opaque_captured_lifetimes(parent);

            let Some((lifetime, _)) = lifetime_mapping
                .iter()
                .find(|(_, duplicated_param)| *duplicated_param == opaque_lifetime_param_def_id)
            else {
                bug!("duplicated lifetime param should be present");
            };

            match *lifetime {
                resolve_bound_vars::ResolvedArg::EarlyBound(ebv) => {
                    let new_parent = self.local_parent(ebv);

                    // If we map to another opaque, then it should be a parent
                    // of the opaque we mapped from. Continue mapping.
                    if matches!(self.def_kind(new_parent), DefKind::OpaqueTy) {
                        debug_assert_eq!(self.local_parent(parent), new_parent);
                        opaque_lifetime_param_def_id = ebv;
                        continue;
                    }

                    let generics = self.generics_of(new_parent);
                    return ty::Region::new_early_param(self, ty::EarlyParamRegion {
                        index: generics
                            .param_def_id_to_index(self, ebv.to_def_id())
                            .expect("early-bound var should be present in fn generics"),
                        name: self.item_name(ebv.to_def_id()),
                    });
                }
                resolve_bound_vars::ResolvedArg::LateBound(_, _, lbv) => {
                    let new_parent = self.local_parent(lbv);
                    return ty::Region::new_late_param(
                        self,
                        new_parent.to_def_id(),
                        ty::BoundRegionKind::BrNamed(
                            lbv.to_def_id(),
                            self.item_name(lbv.to_def_id()),
                        ),
                    );
                }
                resolve_bound_vars::ResolvedArg::Error(guar) => {
                    return ty::Region::new_error(self, guar);
                }
                _ => {
                    return ty::Region::new_error_with_message(
                        self,
                        self.def_span(opaque_lifetime_param_def_id),
                        "cannot resolve lifetime",
                    );
                }
            }
        }
    }

    /// Whether `def_id` is a stable const fn (i.e., doesn't need any feature gates to be called).
    ///
    /// When this is `false`, the function may still be callable as a `const fn` due to features
    /// being enabled!
    pub fn is_stable_const_fn(self, def_id: DefId) -> bool {
        self.is_const_fn(def_id)
            && match self.lookup_const_stability(def_id) {
                None => true, // a fn in a non-staged_api crate
                Some(stability) if stability.is_const_stable() => true,
                _ => false,
            }
    }

    /// Whether the trait impl is marked const. This does not consider stability or feature gates.
    pub fn is_const_trait_impl(self, def_id: DefId) -> bool {
        self.def_kind(def_id) == DefKind::Impl { of_trait: true }
            && self.constness(def_id) == hir::Constness::Const
    }

    pub fn intrinsic(self, def_id: impl IntoQueryParam<DefId> + Copy) -> Option<ty::IntrinsicDef> {
        match self.def_kind(def_id) {
            DefKind::Fn | DefKind::AssocFn => {}
            _ => return None,
        }
        self.intrinsic_raw(def_id)
    }

    pub fn next_trait_solver_globally(self) -> bool {
        self.sess.opts.unstable_opts.next_solver.globally
    }

    pub fn next_trait_solver_in_coherence(self) -> bool {
        self.sess.opts.unstable_opts.next_solver.coherence
    }

    pub fn is_impl_trait_in_trait(self, def_id: DefId) -> bool {
        self.opt_rpitit_info(def_id).is_some()
    }

    /// Named module children from all kinds of items, including imports.
    /// In addition to regular items this list also includes struct and variant constructors, and
    /// items inside `extern {}` blocks because all of them introduce names into parent module.
    ///
    /// Module here is understood in name resolution sense - it can be a `mod` item,
    /// or a crate root, or an enum, or a trait.
    ///
    /// This is not a query, making it a query causes perf regressions
    /// (probably due to hashing spans in `ModChild`ren).
    pub fn module_children_local(self, def_id: LocalDefId) -> &'tcx [ModChild] {
        self.resolutions(()).module_children.get(&def_id).map_or(&[], |v| &v[..])
    }

    pub fn resolver_for_lowering(self) -> &'tcx Steal<(ty::ResolverAstLowering, Lrc<ast::Crate>)> {
        self.resolver_for_lowering_raw(()).0
    }

    /// Given an `impl_id`, return the trait it implements.
    /// Return `None` if this is an inherent impl.
    pub fn impl_trait_ref(
        self,
        def_id: impl IntoQueryParam<DefId>,
    ) -> Option<ty::EarlyBinder<'tcx, ty::TraitRef<'tcx>>> {
        Some(self.impl_trait_header(def_id)?.trait_ref)
    }

    pub fn impl_polarity(self, def_id: impl IntoQueryParam<DefId>) -> ty::ImplPolarity {
        self.impl_trait_header(def_id).map_or(ty::ImplPolarity::Positive, |h| h.polarity)
    }

    pub fn needs_coroutine_by_move_body_def_id(self, def_id: DefId) -> bool {
        if let Some(hir::CoroutineKind::Desugared(_, hir::CoroutineSource::Closure)) =
            self.coroutine_kind(def_id)
            && let ty::Coroutine(_, args) = self.type_of(def_id).instantiate_identity().kind()
            && args.as_coroutine().kind_ty().to_opt_closure_kind() != Some(ty::ClosureKind::FnOnce)
        {
            true
        } else {
            false
        }
    }

    /// Whether this is a trait implementation that has `#[diagnostic::do_not_recommend]`
    pub fn do_not_recommend_impl(self, def_id: DefId) -> bool {
        self.get_diagnostic_attr(def_id, sym::do_not_recommend).is_some()
    }
}

/// Parameter attributes that can only be determined by examining the body of a function instead
/// of just its signature.
///
/// These can be useful for optimization purposes when a function is directly called. We compute
/// them and store them into the crate metadata so that downstream crates can make use of them.
///
/// Right now, we only have `read_only`, but `no_capture` and `no_alias` might be useful in the
/// future.
#[derive(Clone, Copy, PartialEq, Debug, Default, TyDecodable, TyEncodable, HashStable)]
pub struct DeducedParamAttrs {
    /// The parameter is marked immutable in the function and contains no `UnsafeCell` (i.e. its
    /// type is freeze).
    pub read_only: bool,
}

pub fn provide(providers: &mut Providers) {
    providers.maybe_unused_trait_imports =
        |tcx, ()| &tcx.resolutions(()).maybe_unused_trait_imports;
    providers.names_imported_by_glob_use = |tcx, id| {
        tcx.arena.alloc(UnordSet::from(
            tcx.resolutions(()).glob_map.get(&id).cloned().unwrap_or_default(),
        ))
    };

    providers.extern_mod_stmt_cnum =
        |tcx, id| tcx.resolutions(()).extern_crate_map.get(&id).cloned();
    providers.is_panic_runtime =
        |tcx, LocalCrate| attr::contains_name(tcx.hir().krate_attrs(), sym::panic_runtime);
    providers.is_compiler_builtins =
        |tcx, LocalCrate| attr::contains_name(tcx.hir().krate_attrs(), sym::compiler_builtins);
    providers.has_panic_handler = |tcx, LocalCrate| {
        // We want to check if the panic handler was defined in this crate
        tcx.lang_items().panic_impl().is_some_and(|did| did.is_local())
    };
    providers.source_span = |tcx, def_id| tcx.untracked.source_span.get(def_id).unwrap_or(DUMMY_SP);
}