1use std::borrow::{Borrow, Cow};
2use std::fmt;
3use std::hash::Hash;
45use rustc_abi::{Align, Size};
6use rustc_ast::Mutability;
7use rustc_data_structures::fx::{FxHashMap, FxIndexMap, IndexEntry};
8use rustc_hir::def_id::{DefId, LocalDefId};
9use rustc_hir::{selfas hir, CRATE_HIR_ID, LangItem};
10use rustc_middle::mir::AssertMessage;
11use rustc_middle::mir::interpret::{Pointer, ReportedErrorInfo};
12use rustc_middle::query::TyCtxtAt;
13use rustc_middle::ty::layout::{HasTypingEnv, TyAndLayout, ValidityRequirement};
14use rustc_middle::ty::{self, Ty, TyCtxt};
15use rustc_middle::{bug, mir};
16use rustc_span::{Span, Symbol, sym};
17use rustc_target::callconv::FnAbi;
18use tracing::debug;
1920use super::error::*;
21use crate::errors::{LongRunning, LongRunningWarn};
22use crate::fluent_generatedas fluent;
23use crate::interpret::{
24self, AllocId, AllocInit, AllocRange, ConstAllocation, CtfeProvenance, FnArg, Frame,
25GlobalAlloc, ImmTy, InterpCx, InterpResult, OpTy, PlaceTy, RangeSet, Scalar,
26compile_time_machine, err_inval, interp_ok, throw_exhaust, throw_inval, throw_ub,
27throw_ub_custom, throw_unsup, throw_unsup_format,
28};
2930/// When hitting this many interpreted terminators we emit a deny by default lint
31/// that notfies the user that their constant takes a long time to evaluate. If that's
32/// what they intended, they can just allow the lint.
33const LINT_TERMINATOR_LIMIT: usize = 2_000_000;
34/// The limit used by `-Z tiny-const-eval-limit`. This smaller limit is useful for internal
35/// tests not needing to run 30s or more to show some behaviour.
36const TINY_LINT_TERMINATOR_LIMIT: usize = 20;
37/// After this many interpreted terminators, we start emitting progress indicators at every
38/// power of two of interpreted terminators.
39const PROGRESS_INDICATOR_START: usize = 4_000_000;
4041/// Extra machine state for CTFE, and the Machine instance.
42//
43// Should be public because out-of-tree rustc consumers need this
44// if they want to interact with constant values.
45pub struct CompileTimeMachine<'tcx> {
46/// The number of terminators that have been evaluated.
47 ///
48 /// This is used to produce lints informing the user that the compiler is not stuck.
49 /// Set to `usize::MAX` to never report anything.
50pub(super) num_evaluated_steps: usize,
5152/// The virtual call stack.
53pub(super) stack: Vec<Frame<'tcx>>,
5455/// Pattern matching on consts with references would be unsound if those references
56 /// could point to anything mutable. Therefore, when evaluating consts and when constructing valtrees,
57 /// we ensure that only immutable global memory can be accessed.
58pub(super) can_access_mut_global: CanAccessMutGlobal,
5960/// Whether to check alignment during evaluation.
61pub(super) check_alignment: CheckAlignment,
6263/// If `Some`, we are evaluating the initializer of the static with the given `LocalDefId`,
64 /// storing the result in the given `AllocId`.
65 /// Used to prevent accesses to a static's base allocation, as that may allow for self-initialization loops.
66pub(crate) static_root_ids: Option<(AllocId, LocalDefId)>,
6768/// A cache of "data range" computations for unions (i.e., the offsets of non-padding bytes).
69union_data_ranges: FxHashMap<Ty<'tcx>, RangeSet>,
70}
7172#[derive(#[automatically_derived]
impl ::core::marker::Copy for CheckAlignment { }Copy, #[automatically_derived]
impl ::core::clone::Clone for CheckAlignment {
#[inline]
fn clone(&self) -> CheckAlignment { *self }
}Clone)]
73pub enum CheckAlignment {
74/// Ignore all alignment requirements.
75 /// This is mainly used in interning.
76No,
77/// Hard error when dereferencing a misaligned pointer.
78Error,
79}
8081#[derive(#[automatically_derived]
impl ::core::marker::Copy for CanAccessMutGlobal { }Copy, #[automatically_derived]
impl ::core::clone::Clone for CanAccessMutGlobal {
#[inline]
fn clone(&self) -> CanAccessMutGlobal { *self }
}Clone, #[automatically_derived]
impl ::core::cmp::PartialEq for CanAccessMutGlobal {
#[inline]
fn eq(&self, other: &CanAccessMutGlobal) -> bool {
let __self_discr = ::core::intrinsics::discriminant_value(self);
let __arg1_discr = ::core::intrinsics::discriminant_value(other);
__self_discr == __arg1_discr
}
}PartialEq)]
82pub(crate) enum CanAccessMutGlobal {
83 No,
84 Yes,
85}
8687impl From<bool> for CanAccessMutGlobal {
88fn from(value: bool) -> Self {
89if value { Self::Yes } else { Self::No }
90 }
91}
9293impl<'tcx> CompileTimeMachine<'tcx> {
94pub(crate) fn new(
95 can_access_mut_global: CanAccessMutGlobal,
96 check_alignment: CheckAlignment,
97 ) -> Self {
98CompileTimeMachine {
99 num_evaluated_steps: 0,
100 stack: Vec::new(),
101can_access_mut_global,
102check_alignment,
103 static_root_ids: None,
104 union_data_ranges: FxHashMap::default(),
105 }
106 }
107}
108109impl<K: Hash + Eq, V> interpret::AllocMap<K, V> for FxIndexMap<K, V> {
110#[inline(always)]
111fn contains_key<Q: ?Sized + Hash + Eq>(&mut self, k: &Q) -> bool112where
113K: Borrow<Q>,
114 {
115FxIndexMap::contains_key(self, k)
116 }
117118#[inline(always)]
119fn contains_key_ref<Q: ?Sized + Hash + Eq>(&self, k: &Q) -> bool120where
121K: Borrow<Q>,
122 {
123FxIndexMap::contains_key(self, k)
124 }
125126#[inline(always)]
127fn insert(&mut self, k: K, v: V) -> Option<V> {
128FxIndexMap::insert(self, k, v)
129 }
130131#[inline(always)]
132fn remove<Q: ?Sized + Hash + Eq>(&mut self, k: &Q) -> Option<V>
133where
134K: Borrow<Q>,
135 {
136// FIXME(#120456) - is `swap_remove` correct?
137FxIndexMap::swap_remove(self, k)
138 }
139140#[inline(always)]
141fn filter_map_collect<T>(&self, mut f: impl FnMut(&K, &V) -> Option<T>) -> Vec<T> {
142self.iter().filter_map(move |(k, v)| f(k, v)).collect()
143 }
144145#[inline(always)]
146fn get_or<E>(&self, k: K, vacant: impl FnOnce() -> Result<V, E>) -> Result<&V, E> {
147match self.get(&k) {
148Some(v) => Ok(v),
149None => {
150vacant()?;
151::rustc_middle::util::bug::bug_fmt(format_args!("The CTFE machine shouldn\'t ever need to extend the alloc_map when reading"))bug!("The CTFE machine shouldn't ever need to extend the alloc_map when reading")152 }
153 }
154 }
155156#[inline(always)]
157fn get_mut_or<E>(&mut self, k: K, vacant: impl FnOnce() -> Result<V, E>) -> Result<&mut V, E> {
158match self.entry(k) {
159IndexEntry::Occupied(e) => Ok(e.into_mut()),
160IndexEntry::Vacant(e) => {
161let v = vacant()?;
162Ok(e.insert(v))
163 }
164 }
165 }
166}
167168pub type CompileTimeInterpCx<'tcx> = InterpCx<'tcx, CompileTimeMachine<'tcx>>;
169170#[derive(#[automatically_derived]
impl ::core::fmt::Debug for MemoryKind {
#[inline]
fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
match self {
MemoryKind::Heap { was_made_global: __self_0 } =>
::core::fmt::Formatter::debug_struct_field1_finish(f, "Heap",
"was_made_global", &__self_0),
}
}
}Debug, #[automatically_derived]
impl ::core::cmp::PartialEq for MemoryKind {
#[inline]
fn eq(&self, other: &MemoryKind) -> bool {
match (self, other) {
(MemoryKind::Heap { was_made_global: __self_0 },
MemoryKind::Heap { was_made_global: __arg1_0 }) =>
__self_0 == __arg1_0,
}
}
}PartialEq, #[automatically_derived]
impl ::core::cmp::Eq for MemoryKind {
#[inline]
#[doc(hidden)]
#[coverage(off)]
fn assert_receiver_is_total_eq(&self) {
let _: ::core::cmp::AssertParamIsEq<bool>;
}
}Eq, #[automatically_derived]
impl ::core::marker::Copy for MemoryKind { }Copy, #[automatically_derived]
impl ::core::clone::Clone for MemoryKind {
#[inline]
fn clone(&self) -> MemoryKind {
let _: ::core::clone::AssertParamIsClone<bool>;
*self
}
}Clone)]
171pub enum MemoryKind {
172 Heap {
173/// Indicates whether `make_global` was called on this allocation.
174 /// If this is `true`, the allocation must be immutable.
175was_made_global: bool,
176 },
177}
178179impl fmt::Displayfor MemoryKind {
180fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
181match self {
182 MemoryKind::Heap { was_made_global } => {
183f.write_fmt(format_args!("heap allocation{0}",
if *was_made_global { " (made global)" } else { "" }))write!(f, "heap allocation{}", if *was_made_global { " (made global)" } else { "" })184 }
185 }
186 }
187}
188189impl interpret::MayLeakfor MemoryKind {
190#[inline(always)]
191fn may_leak(self) -> bool {
192match self {
193 MemoryKind::Heap { was_made_global } => was_made_global,
194 }
195 }
196}
197198impl interpret::MayLeakfor ! {
199#[inline(always)]
200fn may_leak(self) -> bool {
201// `self` is uninhabited
202self203 }
204}
205206impl<'tcx> CompileTimeInterpCx<'tcx> {
207fn location_triple_for_span(&self, span: Span) -> (Symbol, u32, u32) {
208let topmost = span.ctxt().outer_expn().expansion_cause().unwrap_or(span);
209let caller = self.tcx.sess.source_map().lookup_char_pos(topmost.lo());
210211use rustc_span::RemapPathScopeComponents;
212 (
213Symbol::intern(
214&caller.file.name.display(RemapPathScopeComponents::DIAGNOSTICS).to_string_lossy(),
215 ),
216u32::try_from(caller.line).unwrap(),
217u32::try_from(caller.col_display).unwrap().checked_add(1).unwrap(),
218 )
219 }
220221/// "Intercept" a function call, because we have something special to do for it.
222 /// All `#[rustc_do_not_const_check]` functions MUST be hooked here.
223 /// If this returns `Some` function, which may be `instance` or a different function with
224 /// compatible arguments, then evaluation should continue with that function.
225 /// If this returns `None`, the function call has been handled and the function has returned.
226fn hook_special_const_fn(
227&mut self,
228 instance: ty::Instance<'tcx>,
229 args: &[FnArg<'tcx>],
230 _dest: &PlaceTy<'tcx>,
231 _ret: Option<mir::BasicBlock>,
232 ) -> InterpResult<'tcx, Option<ty::Instance<'tcx>>> {
233let def_id = instance.def_id();
234235if self.tcx.is_lang_item(def_id, LangItem::PanicDisplay)
236 || self.tcx.is_lang_item(def_id, LangItem::BeginPanic)
237 {
238let args = self.copy_fn_args(args);
239// &str or &&str
240if !(args.len() == 1) {
::core::panicking::panic("assertion failed: args.len() == 1")
};assert!(args.len() == 1);
241242let mut msg_place = self.deref_pointer(&args[0])?;
243while msg_place.layout.ty.is_ref() {
244 msg_place = self.deref_pointer(&msg_place)?;
245 }
246247let msg = Symbol::intern(self.read_str(&msg_place)?);
248let span = self.find_closest_untracked_caller_location();
249let (file, line, col) = self.location_triple_for_span(span);
250return Err(ConstEvalErrKind::Panic { msg, file, line, col }).into();
251 } else if self.tcx.is_lang_item(def_id, LangItem::PanicFmt) {
252// For panic_fmt, call const_panic_fmt instead.
253let const_def_id = self.tcx.require_lang_item(LangItem::ConstPanicFmt, self.tcx.span);
254let new_instance = ty::Instance::expect_resolve(
255*self.tcx,
256self.typing_env(),
257const_def_id,
258instance.args,
259self.cur_span(),
260 );
261262return interp_ok(Some(new_instance));
263 }
264interp_ok(Some(instance))
265 }
266267/// See documentation on the `ptr_guaranteed_cmp` intrinsic.
268 /// Returns `2` if the result is unknown.
269 /// Returns `1` if the pointers are guaranteed equal.
270 /// Returns `0` if the pointers are guaranteed inequal.
271 ///
272 /// Note that this intrinsic is exposed on stable for comparison with null. In other words, any
273 /// change to this function that affects comparison with null is insta-stable!
274fn guaranteed_cmp(&mut self, a: Scalar, b: Scalar) -> InterpResult<'tcx, u8> {
275interp_ok(match (a, b) {
276// Comparisons between integers are always known.
277(Scalar::Int(a), Scalar::Int(b)) => (a == b) as u8,
278// Comparing a pointer `ptr` with an integer `int` is equivalent to comparing
279 // `ptr-int` with null, so we can reduce this case to a `scalar_may_be_null` test.
280(Scalar::Int(int), Scalar::Ptr(ptr, _)) | (Scalar::Ptr(ptr, _), Scalar::Int(int)) => {
281let int = int.to_target_usize(*self.tcx);
282// The `wrapping_neg` here may produce a value that is not
283 // a valid target usize any more... but `wrapping_offset` handles that correctly.
284let offset_ptr = ptr.wrapping_offset(Size::from_bytes(int.wrapping_neg()), self);
285if !self.scalar_may_be_null(Scalar::from_pointer(offset_ptr, self))? {
286// `ptr.wrapping_sub(int)` is definitely not equal to `0`, so `ptr != int`
2870
288} else {
289// `ptr.wrapping_sub(int)` could be equal to `0`, but might not be,
290 // so we cannot know for sure if `ptr == int` or not
2912
292}
293 }
294 (Scalar::Ptr(a, _), Scalar::Ptr(b, _)) => {
295let (a_prov, a_offset) = a.prov_and_relative_offset();
296let (b_prov, b_offset) = b.prov_and_relative_offset();
297let a_allocid = a_prov.alloc_id();
298let b_allocid = b_prov.alloc_id();
299let a_info = self.get_alloc_info(a_allocid);
300let b_info = self.get_alloc_info(b_allocid);
301302// Check if the pointers cannot be equal due to alignment
303if a_info.align > Align::ONE && b_info.align > Align::ONE {
304let min_align = Ord::min(a_info.align.bytes(), b_info.align.bytes());
305let a_residue = a_offset.bytes() % min_align;
306let b_residue = b_offset.bytes() % min_align;
307if a_residue != b_residue {
308// If the two pointers have a different residue modulo their
309 // common alignment, they cannot be equal.
310return interp_ok(0);
311 }
312// The pointers have the same residue modulo their common alignment,
313 // so they could be equal. Try the other checks.
314}
315316if let (Some(GlobalAlloc::Static(a_did)), Some(GlobalAlloc::Static(b_did))) = (
317self.tcx.try_get_global_alloc(a_allocid),
318self.tcx.try_get_global_alloc(b_allocid),
319 ) {
320if a_allocid == b_allocid {
321if true {
match (&a_did, &b_did) {
(left_val, right_val) => {
if !(*left_val == *right_val) {
let kind = ::core::panicking::AssertKind::Eq;
::core::panicking::assert_failed(kind, &*left_val,
&*right_val,
::core::option::Option::Some(format_args!("different static item DefIds had same AllocId? {0:?} == {1:?}, {2:?} != {3:?}",
a_allocid, b_allocid, a_did, b_did)));
}
}
};
};debug_assert_eq!(
322 a_did, b_did,
323"different static item DefIds had same AllocId? {a_allocid:?} == {b_allocid:?}, {a_did:?} != {b_did:?}"
324);
325// Comparing two pointers into the same static. As per
326 // https://doc.rust-lang.org/nightly/reference/items/static-items.html#r-items.static.intro
327 // a static cannot be duplicated, so if two pointers are into the same
328 // static, they are equal if and only if their offsets are equal.
329(a_offset == b_offset) as u8330 } else {
331if true {
match (&(a_did), &(b_did)) {
(left_val, right_val) => {
if *left_val == *right_val {
let kind = ::core::panicking::AssertKind::Ne;
::core::panicking::assert_failed(kind, &*left_val,
&*right_val,
::core::option::Option::Some(format_args!("same static item DefId had two different AllocIds? {0:?} != {1:?}, {2:?} == {3:?}",
a_allocid, b_allocid, a_did, b_did)));
}
}
};
};debug_assert_ne!(
332 a_did, b_did,
333"same static item DefId had two different AllocIds? {a_allocid:?} != {b_allocid:?}, {a_did:?} == {b_did:?}"
334);
335// Comparing two pointers into the different statics.
336 // We can never determine for sure that two pointers into different statics
337 // are *equal*, but we can know that they are *inequal* if they are both
338 // strictly in-bounds (i.e. in-bounds and not one-past-the-end) of
339 // their respective static, as different non-zero-sized statics cannot
340 // overlap or be deduplicated as per
341 // https://doc.rust-lang.org/nightly/reference/items/static-items.html#r-items.static.intro
342 // (non-deduplication), and
343 // https://doc.rust-lang.org/nightly/reference/items/static-items.html#r-items.static.storage-disjointness
344 // (non-overlapping).
345if a_offset < a_info.size && b_offset < b_info.size {
3460
347} else {
348// Otherwise, conservatively say we don't know.
349 // There are some cases we could still return `0` for, e.g.
350 // if the pointers being equal would require their statics to overlap
351 // one or more bytes, but for simplicity we currently only check
352 // strictly in-bounds pointers.
3532
354}
355 }
356 } else {
357// All other cases we conservatively say we don't know.
358 //
359 // For comparing statics to non-statics, as per https://doc.rust-lang.org/nightly/reference/items/static-items.html#r-items.static.storage-disjointness
360 // immutable statics can overlap with other kinds of allocations sometimes.
361 //
362 // FIXME: We could be more decisive for (non-zero-sized) mutable statics,
363 // which cannot overlap with other kinds of allocations.
364 //
365 // Functions and vtables can be duplicated and deduplicated, so we
366 // cannot be sure of runtime equality of pointers to the same one, or the
367 // runtime inequality of pointers to different ones (see e.g. #73722),
368 // so comparing those should return 2, whether they are the same allocation
369 // or not.
370 //
371 // `GlobalAlloc::TypeId` exists mostly to prevent consteval from comparing
372 // `TypeId`s, so comparing those should always return 2, whether they are the
373 // same allocation or not.
374 //
375 // FIXME: We could revisit comparing pointers into the same
376 // `GlobalAlloc::Memory` once https://github.com/rust-lang/rust/issues/128775
377 // is fixed (but they can be deduplicated, so comparing pointers into different
378 // ones should return 2).
3792
380}
381 }
382 })
383 }
384}
385386impl<'tcx> CompileTimeMachine<'tcx> {
387#[inline(always)]
388/// Find the first stack frame that is within the current crate, if any.
389 /// Otherwise, return the crate's HirId
390pub fn best_lint_scope(&self, tcx: TyCtxt<'tcx>) -> hir::HirId {
391self.stack.iter().find_map(|frame| frame.lint_root(tcx)).unwrap_or(CRATE_HIR_ID)
392 }
393}
394395impl<'tcx> interpret::Machine<'tcx> for CompileTimeMachine<'tcx> {
396CtfeProvenance
bool
!
crate::const_eval::MemoryKind
rustc_data_structures::fx::FxIndexMap<AllocId,
(MemoryKind<Self::MemoryKind>, Allocation)>
Option<Self::MemoryKind>
None
()
()
Box<[u8]>
&InterpCx<'tcx, Self>
_ecx
bool
false;
&mut InterpCx<'tcx, Self>
_ecx
mir::UnwindTerminateReason
_reason
InterpResult<'tcx>
{
::core::panicking::panic_fmt(format_args!("internal error: entered unreachable code: {0}",
format_args!("unwinding cannot happen during compile-time evaluation")));
}
&InterpCx<'tcx, Self>
_ecx
ty::Instance<'tcx>
_instance
InterpResult<'tcx>
interp_ok(());
&mut InterpCx<'tcx, Self>
_ecx
!
fn_val
&FnAbi<'tcx, Ty<'tcx>>
_abi
&[FnArg<'tcx>]
_args
&PlaceTy<'tcx, Self::Provenance>
_destination
Option<mir::BasicBlock>
_target
mir::UnwindAction
_unwind
InterpResult<'tcx>
match fn_val {}
&InterpCx<'tcx, Self>
_ecx
bool
true;
&InterpCx<'tcx, Self>
_ecx
AllocId
_id
&'b Allocation
alloc
InterpResult<'tcx, Cow<'b, Allocation<Self::Provenance>>>
interp_ok(Cow::Borrowed(alloc));
&InterpCx<'tcx, Self>
_ecx
AllocId
_id
MemoryKind<Self::MemoryKind>
_kind
Size
_size
Align
_align
InterpResult<'tcx, Self::AllocExtra>
interp_ok(());
&InterpCx<'tcx, Self>
ecx
DefId
def_id
InterpResult<'tcx, Pointer>
interp_ok(Pointer::new(ecx.tcx.reserve_and_set_static_alloc(def_id).into(),
Size::ZERO));
&InterpCx<'tcx, Self>
_ecx
Pointer<CtfeProvenance>
ptr
Option<MemoryKind<Self::MemoryKind>>
_kind
InterpResult<'tcx, Pointer<CtfeProvenance>>
interp_ok(ptr);
&InterpCx<'tcx, Self>
_ecx
u64
addr
InterpResult<'tcx, Pointer<Option<CtfeProvenance>>>
interp_ok(Pointer::without_provenance(addr));
&InterpCx<'tcx, Self>
_ecx
Pointer<CtfeProvenance>
ptr
i64
_size
Option<(AllocId, Size, Self::ProvenanceExtra)>
let (prov, offset) = ptr.prov_and_relative_offset();
Some((prov.alloc_id(), offset, prov.immutable()));
&InterpCx<'tcx, Self>
_ecx
Option<ty::Instance<'tcx>>
_instance
usize
CTFE_ALLOC_SALT;compile_time_machine!(<'tcx>);
397398const PANIC_ON_ALLOC_FAIL: bool = false; // will be raised as a proper error
399400#[inline(always)]
401fn enforce_alignment(ecx: &InterpCx<'tcx, Self>) -> bool {
402#[allow(non_exhaustive_omitted_patterns)] match ecx.machine.check_alignment {
CheckAlignment::Error => true,
_ => false,
}matches!(ecx.machine.check_alignment, CheckAlignment::Error)403 }
404405#[inline(always)]
406fn enforce_validity(ecx: &InterpCx<'tcx, Self>, layout: TyAndLayout<'tcx>) -> bool {
407ecx.tcx.sess.opts.unstable_opts.extra_const_ub_checks || layout.is_uninhabited()
408 }
409410fn load_mir(
411 ecx: &InterpCx<'tcx, Self>,
412 instance: ty::InstanceKind<'tcx>,
413 ) -> &'tcx mir::Body<'tcx> {
414match instance {
415 ty::InstanceKind::Item(def) => ecx.tcx.mir_for_ctfe(def),
416_ => ecx.tcx.instance_mir(instance),
417 }
418 }
419420fn find_mir_or_eval_fn(
421 ecx: &mut InterpCx<'tcx, Self>,
422 orig_instance: ty::Instance<'tcx>,
423 _abi: &FnAbi<'tcx, Ty<'tcx>>,
424 args: &[FnArg<'tcx>],
425 dest: &PlaceTy<'tcx>,
426 ret: Option<mir::BasicBlock>,
427 _unwind: mir::UnwindAction, // unwinding is not supported in consts
428) -> InterpResult<'tcx, Option<(&'tcx mir::Body<'tcx>, ty::Instance<'tcx>)>> {
429{
use ::tracing::__macro_support::Callsite as _;
static __CALLSITE: ::tracing::callsite::DefaultCallsite =
{
static META: ::tracing::Metadata<'static> =
{
::tracing_core::metadata::Metadata::new("event compiler/rustc_const_eval/src/const_eval/machine.rs:429",
"rustc_const_eval::const_eval::machine",
::tracing::Level::DEBUG,
::tracing_core::__macro_support::Option::Some("compiler/rustc_const_eval/src/const_eval/machine.rs"),
::tracing_core::__macro_support::Option::Some(429u32),
::tracing_core::__macro_support::Option::Some("rustc_const_eval::const_eval::machine"),
::tracing_core::field::FieldSet::new(&["message"],
::tracing_core::callsite::Identifier(&__CALLSITE)),
::tracing::metadata::Kind::EVENT)
};
::tracing::callsite::DefaultCallsite::new(&META)
};
let enabled =
::tracing::Level::DEBUG <= ::tracing::level_filters::STATIC_MAX_LEVEL
&&
::tracing::Level::DEBUG <=
::tracing::level_filters::LevelFilter::current() &&
{
let interest = __CALLSITE.interest();
!interest.is_never() &&
::tracing::__macro_support::__is_enabled(__CALLSITE.metadata(),
interest)
};
if enabled {
(|value_set: ::tracing::field::ValueSet|
{
let meta = __CALLSITE.metadata();
::tracing::Event::dispatch(meta, &value_set);
;
})({
#[allow(unused_imports)]
use ::tracing::field::{debug, display, Value};
let mut iter = __CALLSITE.metadata().fields().iter();
__CALLSITE.metadata().fields().value_set(&[(&::tracing::__macro_support::Iterator::next(&mut iter).expect("FieldSet corrupted (this is a bug)"),
::tracing::__macro_support::Option::Some(&format_args!("find_mir_or_eval_fn: {0:?}",
orig_instance) as &dyn Value))])
});
} else { ; }
};debug!("find_mir_or_eval_fn: {:?}", orig_instance);
430431// Replace some functions.
432let Some(instance) = ecx.hook_special_const_fn(orig_instance, args, dest, ret)? else {
433// Call has already been handled.
434return interp_ok(None);
435 };
436437// Only check non-glue functions
438if let ty::InstanceKind::Item(def) = instance.def {
439// Execution might have wandered off into other crates, so we cannot do a stability-
440 // sensitive check here. But we can at least rule out functions that are not const at
441 // all. That said, we have to allow calling functions inside a `const trait`. These
442 // *are* const-checked!
443if !ecx.tcx.is_const_fn(def) || ecx.tcx.has_attr(def, sym::rustc_do_not_const_check) {
444// We certainly do *not* want to actually call the fn
445 // though, so be sure we return here.
446do yeet ::rustc_middle::mir::interpret::InterpErrorKind::Unsupported(::rustc_middle::mir::interpret::UnsupportedOpInfo::Unsupported(::alloc::__export::must_use({
::alloc::fmt::format(format_args!("calling non-const function `{0}`",
instance))
})))throw_unsup_format!("calling non-const function `{}`", instance)447 }
448 }
449450// This is a const fn. Call it.
451 // In case of replacement, we return the *original* instance to make backtraces work out
452 // (and we hope this does not confuse the FnAbi checks too much).
453interp_ok(Some((ecx.load_mir(instance.def, None)?, orig_instance)))
454 }
455456fn panic_nounwind(ecx: &mut InterpCx<'tcx, Self>, msg: &str) -> InterpResult<'tcx> {
457let msg = Symbol::intern(msg);
458let span = ecx.find_closest_untracked_caller_location();
459let (file, line, col) = ecx.location_triple_for_span(span);
460Err(ConstEvalErrKind::Panic { msg, file, line, col }).into()
461 }
462463fn call_intrinsic(
464 ecx: &mut InterpCx<'tcx, Self>,
465 instance: ty::Instance<'tcx>,
466 args: &[OpTy<'tcx>],
467 dest: &PlaceTy<'tcx, Self::Provenance>,
468 target: Option<mir::BasicBlock>,
469 _unwind: mir::UnwindAction,
470 ) -> InterpResult<'tcx, Option<ty::Instance<'tcx>>> {
471// Shared intrinsics.
472if ecx.eval_intrinsic(instance, args, dest, target)? {
473return interp_ok(None);
474 }
475let intrinsic_name = ecx.tcx.item_name(instance.def_id());
476477// CTFE-specific intrinsics.
478match intrinsic_name {
479 sym::ptr_guaranteed_cmp => {
480let a = ecx.read_scalar(&args[0])?;
481let b = ecx.read_scalar(&args[1])?;
482let cmp = ecx.guaranteed_cmp(a, b)?;
483ecx.write_scalar(Scalar::from_u8(cmp), dest)?;
484 }
485 sym::const_allocate => {
486let size = ecx.read_scalar(&args[0])?.to_target_usize(ecx)?;
487let align = ecx.read_scalar(&args[1])?.to_target_usize(ecx)?;
488489let align = match Align::from_bytes(align) {
490Ok(a) => a,
491Err(err) => do yeet {
let (name, err_kind, align) =
("const_allocate", err.diag_ident(), err.align());
::rustc_middle::mir::interpret::InterpErrorKind::UndefinedBehavior(::rustc_middle::mir::interpret::UndefinedBehaviorInfo::Custom(::rustc_middle::error::CustomSubdiagnostic {
msg: || fluent::const_eval_invalid_align_details,
add_args: Box::new(move |mut set_arg|
{
set_arg("name".into(),
rustc_errors::IntoDiagArg::into_diag_arg(name, &mut None));
set_arg("err_kind".into(),
rustc_errors::IntoDiagArg::into_diag_arg(err_kind,
&mut None));
set_arg("align".into(),
rustc_errors::IntoDiagArg::into_diag_arg(align, &mut None));
}),
}))
}throw_ub_custom!(
492 fluent::const_eval_invalid_align_details,
493 name = "const_allocate",
494 err_kind = err.diag_ident(),
495 align = err.align()
496 ),
497 };
498499let ptr = ecx.allocate_ptr(
500Size::from_bytes(size),
501align,
502 interpret::MemoryKind::Machine(MemoryKind::Heap { was_made_global: false }),
503 AllocInit::Uninit,
504 )?;
505ecx.write_pointer(ptr, dest)?;
506 }
507 sym::const_deallocate => {
508let ptr = ecx.read_pointer(&args[0])?;
509let size = ecx.read_scalar(&args[1])?.to_target_usize(ecx)?;
510let align = ecx.read_scalar(&args[2])?.to_target_usize(ecx)?;
511512let size = Size::from_bytes(size);
513let align = match Align::from_bytes(align) {
514Ok(a) => a,
515Err(err) => do yeet {
let (name, err_kind, align) =
("const_deallocate", err.diag_ident(), err.align());
::rustc_middle::mir::interpret::InterpErrorKind::UndefinedBehavior(::rustc_middle::mir::interpret::UndefinedBehaviorInfo::Custom(::rustc_middle::error::CustomSubdiagnostic {
msg: || fluent::const_eval_invalid_align_details,
add_args: Box::new(move |mut set_arg|
{
set_arg("name".into(),
rustc_errors::IntoDiagArg::into_diag_arg(name, &mut None));
set_arg("err_kind".into(),
rustc_errors::IntoDiagArg::into_diag_arg(err_kind,
&mut None));
set_arg("align".into(),
rustc_errors::IntoDiagArg::into_diag_arg(align, &mut None));
}),
}))
}throw_ub_custom!(
516 fluent::const_eval_invalid_align_details,
517 name = "const_deallocate",
518 err_kind = err.diag_ident(),
519 align = err.align()
520 ),
521 };
522523// If an allocation is created in an another const,
524 // we don't deallocate it.
525let (alloc_id, _, _) = ecx.ptr_get_alloc_id(ptr, 0)?;
526let is_allocated_in_another_const = #[allow(non_exhaustive_omitted_patterns)] match ecx.tcx.try_get_global_alloc(alloc_id)
{
Some(interpret::GlobalAlloc::Memory(_)) => true,
_ => false,
}matches!(
527 ecx.tcx.try_get_global_alloc(alloc_id),
528Some(interpret::GlobalAlloc::Memory(_))
529 );
530531if !is_allocated_in_another_const {
532ecx.deallocate_ptr(
533ptr,
534Some((size, align)),
535 interpret::MemoryKind::Machine(MemoryKind::Heap { was_made_global: false }),
536 )?;
537 }
538 }
539540 sym::const_make_global => {
541let ptr = ecx.read_pointer(&args[0])?;
542ecx.make_const_heap_ptr_global(ptr)?;
543ecx.write_pointer(ptr, dest)?;
544 }
545546// The intrinsic represents whether the value is known to the optimizer (LLVM).
547 // We're not doing any optimizations here, so there is no optimizer that could know the value.
548 // (We know the value here in the machine of course, but this is the runtime of that code,
549 // not the optimization stage.)
550sym::is_val_statically_known => ecx.write_scalar(Scalar::from_bool(false), dest)?,
551552// We handle these here since Miri does not want to have them.
553sym::assert_inhabited554 | sym::assert_zero_valid555 | sym::assert_mem_uninitialized_valid => {
556let ty = instance.args.type_at(0);
557let requirement = ValidityRequirement::from_intrinsic(intrinsic_name).unwrap();
558559let should_panic = !ecx560 .tcx
561 .check_validity_requirement((requirement, ecx.typing_env().as_query_input(ty)))
562 .map_err(|_| ::rustc_middle::mir::interpret::InterpErrorKind::InvalidProgram(::rustc_middle::mir::interpret::InvalidProgramInfo::TooGeneric)err_inval!(TooGeneric))?;
563564if should_panic {
565let layout = ecx.layout_of(ty)?;
566567let msg = match requirement {
568// For *all* intrinsics we first check `is_uninhabited` to give a more specific
569 // error message.
570_ if layout.is_uninhabited() => ::alloc::__export::must_use({
::alloc::fmt::format(format_args!("aborted execution: attempted to instantiate uninhabited type `{0}`",
ty))
})format!(
571"aborted execution: attempted to instantiate uninhabited type `{ty}`"
572),
573 ValidityRequirement::Inhabited => ::rustc_middle::util::bug::bug_fmt(format_args!("handled earlier"))bug!("handled earlier"),
574 ValidityRequirement::Zero => ::alloc::__export::must_use({
::alloc::fmt::format(format_args!("aborted execution: attempted to zero-initialize type `{0}`, which is invalid",
ty))
})format!(
575"aborted execution: attempted to zero-initialize type `{ty}`, which is invalid"
576),
577 ValidityRequirement::UninitMitigated0x01Fill => ::alloc::__export::must_use({
::alloc::fmt::format(format_args!("aborted execution: attempted to leave type `{0}` uninitialized, which is invalid",
ty))
})format!(
578"aborted execution: attempted to leave type `{ty}` uninitialized, which is invalid"
579),
580 ValidityRequirement::Uninit => ::rustc_middle::util::bug::bug_fmt(format_args!("assert_uninit_valid doesn\'t exist"))bug!("assert_uninit_valid doesn't exist"),
581 };
582583Self::panic_nounwind(ecx, &msg)?;
584// Skip the `return_to_block` at the end (we panicked, we do not return).
585return interp_ok(None);
586 }
587 }
588589 sym::type_of => {
590let ty = ecx.read_type_id(&args[0])?;
591ecx.write_type_info(ty, dest)?;
592 }
593594_ => {
595// We haven't handled the intrinsic, let's see if we can use a fallback body.
596if ecx.tcx.intrinsic(instance.def_id()).unwrap().must_be_overridden {
597do yeet ::rustc_middle::mir::interpret::InterpErrorKind::Unsupported(::rustc_middle::mir::interpret::UnsupportedOpInfo::Unsupported(::alloc::__export::must_use({
::alloc::fmt::format(format_args!("intrinsic `{0}` is not supported at compile-time",
intrinsic_name))
})));throw_unsup_format!(
598"intrinsic `{intrinsic_name}` is not supported at compile-time"
599);
600 }
601return interp_ok(Some(ty::Instance {
602 def: ty::InstanceKind::Item(instance.def_id()),
603 args: instance.args,
604 }));
605 }
606 }
607608// Intrinsic is done, jump to next block.
609ecx.return_to_block(target)?;
610interp_ok(None)
611 }
612613fn assert_panic(
614 ecx: &mut InterpCx<'tcx, Self>,
615 msg: &AssertMessage<'tcx>,
616 _unwind: mir::UnwindAction,
617 ) -> InterpResult<'tcx> {
618use rustc_middle::mir::AssertKind::*;
619// Convert `AssertKind<Operand>` to `AssertKind<Scalar>`.
620let eval_to_int =
621 |op| ecx.read_immediate(&ecx.eval_operand(op, None)?).map(|x| x.to_const_int());
622let err = match msg {
623BoundsCheck { len, index } => {
624let len = eval_to_int(len)?;
625let index = eval_to_int(index)?;
626BoundsCheck { len, index }
627 }
628Overflow(op, l, r) => Overflow(*op, eval_to_int(l)?, eval_to_int(r)?),
629OverflowNeg(op) => OverflowNeg(eval_to_int(op)?),
630DivisionByZero(op) => DivisionByZero(eval_to_int(op)?),
631RemainderByZero(op) => RemainderByZero(eval_to_int(op)?),
632ResumedAfterReturn(coroutine_kind) => ResumedAfterReturn(*coroutine_kind),
633ResumedAfterPanic(coroutine_kind) => ResumedAfterPanic(*coroutine_kind),
634ResumedAfterDrop(coroutine_kind) => ResumedAfterDrop(*coroutine_kind),
635MisalignedPointerDereference { required, found } => MisalignedPointerDereference {
636 required: eval_to_int(required)?,
637 found: eval_to_int(found)?,
638 },
639NullPointerDereference => NullPointerDereference,
640InvalidEnumConstruction(source) => InvalidEnumConstruction(eval_to_int(source)?),
641 };
642Err(ConstEvalErrKind::AssertFailure(err)).into()
643 }
644645#[inline(always)]
646fn runtime_checks(
647 _ecx: &InterpCx<'tcx, Self>,
648 _r: mir::RuntimeChecks,
649 ) -> InterpResult<'tcx, bool> {
650// We can't look at `tcx.sess` here as that can differ across crates, which can lead to
651 // unsound differences in evaluating the same constant at different instantiation sites.
652interp_ok(true)
653 }
654655fn binary_ptr_op(
656 _ecx: &InterpCx<'tcx, Self>,
657 _bin_op: mir::BinOp,
658 _left: &ImmTy<'tcx>,
659 _right: &ImmTy<'tcx>,
660 ) -> InterpResult<'tcx, ImmTy<'tcx>> {
661do yeet ::rustc_middle::mir::interpret::InterpErrorKind::Unsupported(::rustc_middle::mir::interpret::UnsupportedOpInfo::Unsupported(::alloc::__export::must_use({
::alloc::fmt::format(format_args!("pointer arithmetic or comparison is not supported at compile-time"))
})));throw_unsup_format!("pointer arithmetic or comparison is not supported at compile-time");
662 }
663664fn increment_const_eval_counter(ecx: &mut InterpCx<'tcx, Self>) -> InterpResult<'tcx> {
665// The step limit has already been hit in a previous call to `increment_const_eval_counter`.
666667if let Some(new_steps) = ecx.machine.num_evaluated_steps.checked_add(1) {
668let (limit, start) = if ecx.tcx.sess.opts.unstable_opts.tiny_const_eval_limit {
669 (TINY_LINT_TERMINATOR_LIMIT, TINY_LINT_TERMINATOR_LIMIT)
670 } else {
671 (LINT_TERMINATOR_LIMIT, PROGRESS_INDICATOR_START)
672 };
673674ecx.machine.num_evaluated_steps = new_steps;
675// By default, we have a *deny* lint kicking in after some time
676 // to ensure `loop {}` doesn't just go forever.
677 // In case that lint got reduced, in particular for `--cap-lint` situations, we also
678 // have a hard warning shown every now and then for really long executions.
679if new_steps == limit {
680// By default, we stop after a million steps, but the user can disable this lint
681 // to be able to run until the heat death of the universe or power loss, whichever
682 // comes first.
683let hir_id = ecx.machine.best_lint_scope(*ecx.tcx);
684let is_error = ecx685 .tcx
686 .lint_level_at_node(
687 rustc_session::lint::builtin::LONG_RUNNING_CONST_EVAL,
688hir_id,
689 )
690 .level
691 .is_error();
692let span = ecx.cur_span();
693ecx.tcx.emit_node_span_lint(
694 rustc_session::lint::builtin::LONG_RUNNING_CONST_EVAL,
695hir_id,
696span,
697LongRunning { item_span: ecx.tcx.span },
698 );
699// If this was a hard error, don't bother continuing evaluation.
700if is_error {
701let guard = ecx702 .tcx
703 .dcx()
704 .span_delayed_bug(span, "The deny lint should have already errored");
705do yeet ::rustc_middle::mir::interpret::InterpErrorKind::InvalidProgram(::rustc_middle::mir::interpret::InvalidProgramInfo::AlreadyReported(ReportedErrorInfo::allowed_in_infallible(guard)));throw_inval!(AlreadyReported(ReportedErrorInfo::allowed_in_infallible(guard)));
706 }
707 } else if new_steps > start && new_steps.is_power_of_two() {
708// Only report after a certain number of terminators have been evaluated and the
709 // current number of evaluated terminators is a power of 2. The latter gives us a cheap
710 // way to implement exponential backoff.
711let span = ecx.cur_span();
712// We store a unique number in `force_duplicate` to evade `-Z deduplicate-diagnostics`.
713 // `new_steps` is guaranteed to be unique because `ecx.machine.num_evaluated_steps` is
714 // always increasing.
715ecx.tcx.dcx().emit_warn(LongRunningWarn {
716span,
717 item_span: ecx.tcx.span,
718 force_duplicate: new_steps,
719 });
720 }
721 }
722723interp_ok(())
724 }
725726#[inline(always)]
727fn expose_provenance(
728 _ecx: &InterpCx<'tcx, Self>,
729 _provenance: Self::Provenance,
730 ) -> InterpResult<'tcx> {
731// This is only reachable with -Zunleash-the-miri-inside-of-you.
732do yeet ::rustc_middle::mir::interpret::InterpErrorKind::Unsupported(::rustc_middle::mir::interpret::UnsupportedOpInfo::Unsupported(::alloc::__export::must_use({
::alloc::fmt::format(format_args!("exposing pointers is not possible at compile-time"))
})))throw_unsup_format!("exposing pointers is not possible at compile-time")733 }
734735#[inline(always)]
736fn init_frame(
737 ecx: &mut InterpCx<'tcx, Self>,
738 frame: Frame<'tcx>,
739 ) -> InterpResult<'tcx, Frame<'tcx>> {
740// Enforce stack size limit. Add 1 because this is run before the new frame is pushed.
741if !ecx.recursion_limit.value_within_limit(ecx.stack().len() + 1) {
742do yeet ::rustc_middle::mir::interpret::InterpErrorKind::ResourceExhaustion(::rustc_middle::mir::interpret::ResourceExhaustionInfo::StackFrameLimitReached)throw_exhaust!(StackFrameLimitReached)743 } else {
744interp_ok(frame)
745 }
746 }
747748#[inline(always)]
749fn stack<'a>(
750 ecx: &'a InterpCx<'tcx, Self>,
751 ) -> &'a [Frame<'tcx, Self::Provenance, Self::FrameExtra>] {
752&ecx.machine.stack
753 }
754755#[inline(always)]
756fn stack_mut<'a>(
757 ecx: &'a mut InterpCx<'tcx, Self>,
758 ) -> &'a mut Vec<Frame<'tcx, Self::Provenance, Self::FrameExtra>> {
759&mut ecx.machine.stack
760 }
761762fn before_access_global(
763 _tcx: TyCtxtAt<'tcx>,
764 machine: &Self,
765 alloc_id: AllocId,
766 alloc: ConstAllocation<'tcx>,
767 _static_def_id: Option<DefId>,
768 is_write: bool,
769 ) -> InterpResult<'tcx> {
770let alloc = alloc.inner();
771if is_write {
772// Write access. These are never allowed, but we give a targeted error message.
773match alloc.mutability {
774 Mutability::Not => do yeet ::rustc_middle::mir::interpret::InterpErrorKind::UndefinedBehavior(::rustc_middle::mir::interpret::UndefinedBehaviorInfo::WriteToReadOnly(alloc_id))throw_ub!(WriteToReadOnly(alloc_id)),
775 Mutability::Mut => Err(ConstEvalErrKind::ModifiedGlobal).into(),
776 }
777 } else {
778// Read access. These are usually allowed, with some exceptions.
779if machine.can_access_mut_global == CanAccessMutGlobal::Yes {
780// Machine configuration allows us read from anything (e.g., `static` initializer).
781interp_ok(())
782 } else if alloc.mutability == Mutability::Mut {
783// Machine configuration does not allow us to read statics (e.g., `const`
784 // initializer).
785Err(ConstEvalErrKind::ConstAccessesMutGlobal).into()
786 } else {
787// Immutable global, this read is fine.
788match (&alloc.mutability, &Mutability::Not) {
(left_val, right_val) => {
if !(*left_val == *right_val) {
let kind = ::core::panicking::AssertKind::Eq;
::core::panicking::assert_failed(kind, &*left_val, &*right_val,
::core::option::Option::None);
}
}
};assert_eq!(alloc.mutability, Mutability::Not);
789interp_ok(())
790 }
791 }
792 }
793794fn retag_ptr_value(
795 ecx: &mut InterpCx<'tcx, Self>,
796 _kind: mir::RetagKind,
797 val: &ImmTy<'tcx, CtfeProvenance>,
798 ) -> InterpResult<'tcx, ImmTy<'tcx, CtfeProvenance>> {
799// If it's a frozen shared reference that's not already immutable, potentially make it immutable.
800 // (Do nothing on `None` provenance, that cannot store immutability anyway.)
801if let ty::Ref(_, ty, mutbl) = val.layout.ty.kind()
802 && *mutbl == Mutability::Not803 && val804 .to_scalar_and_meta()
805 .0
806.to_pointer(ecx)?
807.provenance
808 .is_some_and(|p| !p.immutable())
809 {
810// That next check is expensive, that's why we have all the guards above.
811let is_immutable = ty.is_freeze(*ecx.tcx, ecx.typing_env());
812let place = ecx.ref_to_mplace(val)?;
813let new_place = if is_immutable {
814place.map_provenance(CtfeProvenance::as_immutable)
815 } else {
816// Even if it is not immutable, remember that it is a shared reference.
817 // This allows it to become part of the final value of the constant.
818 // (See <https://github.com/rust-lang/rust/pull/128543> for why we allow this
819 // even when there is interior mutability.)
820place.map_provenance(CtfeProvenance::as_shared_ref)
821 };
822interp_ok(ImmTy::from_immediate(new_place.to_ref(ecx), val.layout))
823 } else {
824interp_ok(val.clone())
825 }
826 }
827828fn before_memory_write(
829 _tcx: TyCtxtAt<'tcx>,
830 _machine: &mut Self,
831 _alloc_extra: &mut Self::AllocExtra,
832 _ptr: Pointer<Option<Self::Provenance>>,
833 (_alloc_id, immutable): (AllocId, bool),
834 range: AllocRange,
835 ) -> InterpResult<'tcx> {
836if range.size == Size::ZERO {
837// Nothing to check.
838return interp_ok(());
839 }
840// Reject writes through immutable pointers.
841if immutable {
842return Err(ConstEvalErrKind::WriteThroughImmutablePointer).into();
843 }
844// Everything else is fine.
845interp_ok(())
846 }
847848fn before_alloc_access(
849 tcx: TyCtxtAt<'tcx>,
850 machine: &Self,
851 alloc_id: AllocId,
852 ) -> InterpResult<'tcx> {
853if machine.stack.is_empty() {
854// Get out of the way for the final copy.
855return interp_ok(());
856 }
857// Check if this is the currently evaluated static.
858if Some(alloc_id) == machine.static_root_ids.map(|(id, _)| id) {
859return Err(ConstEvalErrKind::RecursiveStatic).into();
860 }
861// If this is another static, make sure we fire off the query to detect cycles.
862 // But only do that when checks for static recursion are enabled.
863if machine.static_root_ids.is_some() {
864if let Some(GlobalAlloc::Static(def_id)) = tcx.try_get_global_alloc(alloc_id) {
865if tcx.is_foreign_item(def_id) {
866do yeet ::rustc_middle::mir::interpret::InterpErrorKind::Unsupported(::rustc_middle::mir::interpret::UnsupportedOpInfo::ExternStatic(def_id));throw_unsup!(ExternStatic(def_id));
867 }
868tcx.eval_static_initializer(def_id)?;
869 }
870 }
871interp_ok(())
872 }
873874fn cached_union_data_range<'e>(
875 ecx: &'e mut InterpCx<'tcx, Self>,
876 ty: Ty<'tcx>,
877 compute_range: impl FnOnce() -> RangeSet,
878 ) -> Cow<'e, RangeSet> {
879if ecx.tcx.sess.opts.unstable_opts.extra_const_ub_checks {
880 Cow::Borrowed(ecx.machine.union_data_ranges.entry(ty).or_insert_with(compute_range))
881 } else {
882// Don't bother caching, we're only doing one validation at the end anyway.
883Cow::Owned(compute_range())
884 }
885 }
886887fn get_default_alloc_params(&self) -> <Self::Bytes as mir::interpret::AllocBytes>::AllocParams {
888 }
889}
890891// Please do not add any code below the above `Machine` trait impl. I (oli-obk) plan more cleanups
892// so we can end up having a file with just that impl, but for now, let's keep the impl discoverable
893// at the bottom of this file.