rustc_const_eval/const_eval/machine.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740
use std::borrow::{Borrow, Cow};
use std::fmt;
use std::hash::Hash;
use rustc_abi::{Align, ExternAbi, Size};
use rustc_ast::Mutability;
use rustc_data_structures::fx::{FxHashMap, FxIndexMap, IndexEntry};
use rustc_hir::def_id::{DefId, LocalDefId};
use rustc_hir::{self as hir, CRATE_HIR_ID, LangItem};
use rustc_middle::mir::AssertMessage;
use rustc_middle::query::TyCtxtAt;
use rustc_middle::ty::layout::TyAndLayout;
use rustc_middle::ty::{self, Ty, TyCtxt};
use rustc_middle::{bug, mir};
use rustc_span::Span;
use rustc_span::symbol::{Symbol, sym};
use tracing::debug;
use super::error::*;
use crate::errors::{LongRunning, LongRunningWarn};
use crate::fluent_generated as fluent;
use crate::interpret::{
self, AllocId, AllocRange, ConstAllocation, CtfeProvenance, FnArg, Frame, GlobalAlloc, ImmTy,
InterpCx, InterpResult, MPlaceTy, OpTy, Pointer, RangeSet, Scalar, compile_time_machine,
interp_ok, throw_exhaust, throw_inval, throw_ub, throw_ub_custom, throw_unsup,
throw_unsup_format,
};
/// When hitting this many interpreted terminators we emit a deny by default lint
/// that notfies the user that their constant takes a long time to evaluate. If that's
/// what they intended, they can just allow the lint.
const LINT_TERMINATOR_LIMIT: usize = 2_000_000;
/// The limit used by `-Z tiny-const-eval-limit`. This smaller limit is useful for internal
/// tests not needing to run 30s or more to show some behaviour.
const TINY_LINT_TERMINATOR_LIMIT: usize = 20;
/// After this many interpreted terminators, we start emitting progress indicators at every
/// power of two of interpreted terminators.
const PROGRESS_INDICATOR_START: usize = 4_000_000;
/// Extra machine state for CTFE, and the Machine instance.
//
// Should be public because out-of-tree rustc consumers need this
// if they want to interact with constant values.
pub struct CompileTimeMachine<'tcx> {
/// The number of terminators that have been evaluated.
///
/// This is used to produce lints informing the user that the compiler is not stuck.
/// Set to `usize::MAX` to never report anything.
pub(super) num_evaluated_steps: usize,
/// The virtual call stack.
pub(super) stack: Vec<Frame<'tcx>>,
/// Pattern matching on consts with references would be unsound if those references
/// could point to anything mutable. Therefore, when evaluating consts and when constructing valtrees,
/// we ensure that only immutable global memory can be accessed.
pub(super) can_access_mut_global: CanAccessMutGlobal,
/// Whether to check alignment during evaluation.
pub(super) check_alignment: CheckAlignment,
/// If `Some`, we are evaluating the initializer of the static with the given `LocalDefId`,
/// storing the result in the given `AllocId`.
/// Used to prevent reads from a static's base allocation, as that may allow for self-initialization loops.
pub(crate) static_root_ids: Option<(AllocId, LocalDefId)>,
/// A cache of "data range" computations for unions (i.e., the offsets of non-padding bytes).
union_data_ranges: FxHashMap<Ty<'tcx>, RangeSet>,
}
#[derive(Copy, Clone)]
pub enum CheckAlignment {
/// Ignore all alignment requirements.
/// This is mainly used in interning.
No,
/// Hard error when dereferencing a misaligned pointer.
Error,
}
#[derive(Copy, Clone, PartialEq)]
pub(crate) enum CanAccessMutGlobal {
No,
Yes,
}
impl From<bool> for CanAccessMutGlobal {
fn from(value: bool) -> Self {
if value { Self::Yes } else { Self::No }
}
}
impl<'tcx> CompileTimeMachine<'tcx> {
pub(crate) fn new(
can_access_mut_global: CanAccessMutGlobal,
check_alignment: CheckAlignment,
) -> Self {
CompileTimeMachine {
num_evaluated_steps: 0,
stack: Vec::new(),
can_access_mut_global,
check_alignment,
static_root_ids: None,
union_data_ranges: FxHashMap::default(),
}
}
}
impl<K: Hash + Eq, V> interpret::AllocMap<K, V> for FxIndexMap<K, V> {
#[inline(always)]
fn contains_key<Q: ?Sized + Hash + Eq>(&mut self, k: &Q) -> bool
where
K: Borrow<Q>,
{
FxIndexMap::contains_key(self, k)
}
#[inline(always)]
fn contains_key_ref<Q: ?Sized + Hash + Eq>(&self, k: &Q) -> bool
where
K: Borrow<Q>,
{
FxIndexMap::contains_key(self, k)
}
#[inline(always)]
fn insert(&mut self, k: K, v: V) -> Option<V> {
FxIndexMap::insert(self, k, v)
}
#[inline(always)]
fn remove<Q: ?Sized + Hash + Eq>(&mut self, k: &Q) -> Option<V>
where
K: Borrow<Q>,
{
// FIXME(#120456) - is `swap_remove` correct?
FxIndexMap::swap_remove(self, k)
}
#[inline(always)]
fn filter_map_collect<T>(&self, mut f: impl FnMut(&K, &V) -> Option<T>) -> Vec<T> {
self.iter().filter_map(move |(k, v)| f(k, v)).collect()
}
#[inline(always)]
fn get_or<E>(&self, k: K, vacant: impl FnOnce() -> Result<V, E>) -> Result<&V, E> {
match self.get(&k) {
Some(v) => Ok(v),
None => {
vacant()?;
bug!("The CTFE machine shouldn't ever need to extend the alloc_map when reading")
}
}
}
#[inline(always)]
fn get_mut_or<E>(&mut self, k: K, vacant: impl FnOnce() -> Result<V, E>) -> Result<&mut V, E> {
match self.entry(k) {
IndexEntry::Occupied(e) => Ok(e.into_mut()),
IndexEntry::Vacant(e) => {
let v = vacant()?;
Ok(e.insert(v))
}
}
}
}
pub type CompileTimeInterpCx<'tcx> = InterpCx<'tcx, CompileTimeMachine<'tcx>>;
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
pub enum MemoryKind {
Heap,
}
impl fmt::Display for MemoryKind {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
MemoryKind::Heap => write!(f, "heap allocation"),
}
}
}
impl interpret::MayLeak for MemoryKind {
#[inline(always)]
fn may_leak(self) -> bool {
match self {
MemoryKind::Heap => false,
}
}
}
impl interpret::MayLeak for ! {
#[inline(always)]
fn may_leak(self) -> bool {
// `self` is uninhabited
self
}
}
impl<'tcx> CompileTimeInterpCx<'tcx> {
fn location_triple_for_span(&self, span: Span) -> (Symbol, u32, u32) {
let topmost = span.ctxt().outer_expn().expansion_cause().unwrap_or(span);
let caller = self.tcx.sess.source_map().lookup_char_pos(topmost.lo());
use rustc_session::RemapFileNameExt;
use rustc_session::config::RemapPathScopeComponents;
(
Symbol::intern(
&caller
.file
.name
.for_scope(self.tcx.sess, RemapPathScopeComponents::DIAGNOSTICS)
.to_string_lossy(),
),
u32::try_from(caller.line).unwrap(),
u32::try_from(caller.col_display).unwrap().checked_add(1).unwrap(),
)
}
/// "Intercept" a function call, because we have something special to do for it.
/// All `#[rustc_do_not_const_check]` functions MUST be hooked here.
/// If this returns `Some` function, which may be `instance` or a different function with
/// compatible arguments, then evaluation should continue with that function.
/// If this returns `None`, the function call has been handled and the function has returned.
fn hook_special_const_fn(
&mut self,
instance: ty::Instance<'tcx>,
args: &[FnArg<'tcx>],
_dest: &MPlaceTy<'tcx>,
_ret: Option<mir::BasicBlock>,
) -> InterpResult<'tcx, Option<ty::Instance<'tcx>>> {
let def_id = instance.def_id();
if self.tcx.has_attr(def_id, sym::rustc_const_panic_str)
|| self.tcx.is_lang_item(def_id, LangItem::BeginPanic)
{
let args = self.copy_fn_args(args);
// &str or &&str
assert!(args.len() == 1);
let mut msg_place = self.deref_pointer(&args[0])?;
while msg_place.layout.ty.is_ref() {
msg_place = self.deref_pointer(&msg_place)?;
}
let msg = Symbol::intern(self.read_str(&msg_place)?);
let span = self.find_closest_untracked_caller_location();
let (file, line, col) = self.location_triple_for_span(span);
return Err(ConstEvalErrKind::Panic { msg, file, line, col }).into();
} else if self.tcx.is_lang_item(def_id, LangItem::PanicFmt) {
// For panic_fmt, call const_panic_fmt instead.
let const_def_id = self.tcx.require_lang_item(LangItem::ConstPanicFmt, None);
// FIXME(@lcnr): why does this use an empty env if we've got a `param_env` right here.
let new_instance = ty::Instance::expect_resolve(
*self.tcx,
ty::TypingEnv::fully_monomorphized(),
const_def_id,
instance.args,
self.cur_span(),
);
return interp_ok(Some(new_instance));
}
interp_ok(Some(instance))
}
/// See documentation on the `ptr_guaranteed_cmp` intrinsic.
/// Returns `2` if the result is unknown.
/// Returns `1` if the pointers are guaranteed equal.
/// Returns `0` if the pointers are guaranteed inequal.
///
/// Note that this intrinsic is exposed on stable for comparison with null. In other words, any
/// change to this function that affects comparison with null is insta-stable!
fn guaranteed_cmp(&mut self, a: Scalar, b: Scalar) -> InterpResult<'tcx, u8> {
interp_ok(match (a, b) {
// Comparisons between integers are always known.
(Scalar::Int { .. }, Scalar::Int { .. }) => {
if a == b {
1
} else {
0
}
}
// Comparisons of abstract pointers with null pointers are known if the pointer
// is in bounds, because if they are in bounds, the pointer can't be null.
// Inequality with integers other than null can never be known for sure.
(Scalar::Int(int), ptr @ Scalar::Ptr(..))
| (ptr @ Scalar::Ptr(..), Scalar::Int(int))
if int.is_null() && !self.scalar_may_be_null(ptr)? =>
{
0
}
// Equality with integers can never be known for sure.
(Scalar::Int { .. }, Scalar::Ptr(..)) | (Scalar::Ptr(..), Scalar::Int { .. }) => 2,
// FIXME: return a `1` for when both sides are the same pointer, *except* that
// some things (like functions and vtables) do not have stable addresses
// so we need to be careful around them (see e.g. #73722).
// FIXME: return `0` for at least some comparisons where we can reliably
// determine the result of runtime inequality tests at compile-time.
// Examples include comparison of addresses in different static items.
(Scalar::Ptr(..), Scalar::Ptr(..)) => 2,
})
}
}
impl<'tcx> CompileTimeMachine<'tcx> {
#[inline(always)]
/// Find the first stack frame that is within the current crate, if any.
/// Otherwise, return the crate's HirId
pub fn best_lint_scope(&self, tcx: TyCtxt<'tcx>) -> hir::HirId {
self.stack.iter().find_map(|frame| frame.lint_root(tcx)).unwrap_or(CRATE_HIR_ID)
}
}
impl<'tcx> interpret::Machine<'tcx> for CompileTimeMachine<'tcx> {
compile_time_machine!(<'tcx>);
type MemoryKind = MemoryKind;
const PANIC_ON_ALLOC_FAIL: bool = false; // will be raised as a proper error
#[inline(always)]
fn enforce_alignment(ecx: &InterpCx<'tcx, Self>) -> bool {
matches!(ecx.machine.check_alignment, CheckAlignment::Error)
}
#[inline(always)]
fn enforce_validity(ecx: &InterpCx<'tcx, Self>, layout: TyAndLayout<'tcx>) -> bool {
ecx.tcx.sess.opts.unstable_opts.extra_const_ub_checks || layout.is_uninhabited()
}
fn load_mir(
ecx: &InterpCx<'tcx, Self>,
instance: ty::InstanceKind<'tcx>,
) -> InterpResult<'tcx, &'tcx mir::Body<'tcx>> {
match instance {
ty::InstanceKind::Item(def) => interp_ok(ecx.tcx.mir_for_ctfe(def)),
_ => interp_ok(ecx.tcx.instance_mir(instance)),
}
}
fn find_mir_or_eval_fn(
ecx: &mut InterpCx<'tcx, Self>,
orig_instance: ty::Instance<'tcx>,
_abi: ExternAbi,
args: &[FnArg<'tcx>],
dest: &MPlaceTy<'tcx>,
ret: Option<mir::BasicBlock>,
_unwind: mir::UnwindAction, // unwinding is not supported in consts
) -> InterpResult<'tcx, Option<(&'tcx mir::Body<'tcx>, ty::Instance<'tcx>)>> {
debug!("find_mir_or_eval_fn: {:?}", orig_instance);
// Replace some functions.
let Some(instance) = ecx.hook_special_const_fn(orig_instance, args, dest, ret)? else {
// Call has already been handled.
return interp_ok(None);
};
// Only check non-glue functions
if let ty::InstanceKind::Item(def) = instance.def {
// Execution might have wandered off into other crates, so we cannot do a stability-
// sensitive check here. But we can at least rule out functions that are not const at
// all. That said, we have to allow calling functions inside a trait marked with
// #[const_trait]. These *are* const-checked!
// FIXME(const_trait_impl): why does `is_const_fn` not classify them as const?
if (!ecx.tcx.is_const_fn(def) && !ecx.tcx.is_const_default_method(def))
|| ecx.tcx.has_attr(def, sym::rustc_do_not_const_check)
{
// We certainly do *not* want to actually call the fn
// though, so be sure we return here.
throw_unsup_format!("calling non-const function `{}`", instance)
}
}
// This is a const fn. Call it.
// In case of replacement, we return the *original* instance to make backtraces work out
// (and we hope this does not confuse the FnAbi checks too much).
interp_ok(Some((ecx.load_mir(instance.def, None)?, orig_instance)))
}
fn panic_nounwind(ecx: &mut InterpCx<'tcx, Self>, msg: &str) -> InterpResult<'tcx> {
let msg = Symbol::intern(msg);
let span = ecx.find_closest_untracked_caller_location();
let (file, line, col) = ecx.location_triple_for_span(span);
Err(ConstEvalErrKind::Panic { msg, file, line, col }).into()
}
fn call_intrinsic(
ecx: &mut InterpCx<'tcx, Self>,
instance: ty::Instance<'tcx>,
args: &[OpTy<'tcx>],
dest: &MPlaceTy<'tcx, Self::Provenance>,
target: Option<mir::BasicBlock>,
_unwind: mir::UnwindAction,
) -> InterpResult<'tcx, Option<ty::Instance<'tcx>>> {
// Shared intrinsics.
if ecx.eval_intrinsic(instance, args, dest, target)? {
return interp_ok(None);
}
let intrinsic_name = ecx.tcx.item_name(instance.def_id());
// CTFE-specific intrinsics.
match intrinsic_name {
sym::ptr_guaranteed_cmp => {
let a = ecx.read_scalar(&args[0])?;
let b = ecx.read_scalar(&args[1])?;
let cmp = ecx.guaranteed_cmp(a, b)?;
ecx.write_scalar(Scalar::from_u8(cmp), dest)?;
}
sym::const_allocate => {
let size = ecx.read_scalar(&args[0])?.to_target_usize(ecx)?;
let align = ecx.read_scalar(&args[1])?.to_target_usize(ecx)?;
let align = match Align::from_bytes(align) {
Ok(a) => a,
Err(err) => throw_ub_custom!(
fluent::const_eval_invalid_align_details,
name = "const_allocate",
err_kind = err.diag_ident(),
align = err.align()
),
};
let ptr = ecx.allocate_ptr(
Size::from_bytes(size),
align,
interpret::MemoryKind::Machine(MemoryKind::Heap),
)?;
ecx.write_pointer(ptr, dest)?;
}
sym::const_deallocate => {
let ptr = ecx.read_pointer(&args[0])?;
let size = ecx.read_scalar(&args[1])?.to_target_usize(ecx)?;
let align = ecx.read_scalar(&args[2])?.to_target_usize(ecx)?;
let size = Size::from_bytes(size);
let align = match Align::from_bytes(align) {
Ok(a) => a,
Err(err) => throw_ub_custom!(
fluent::const_eval_invalid_align_details,
name = "const_deallocate",
err_kind = err.diag_ident(),
align = err.align()
),
};
// If an allocation is created in an another const,
// we don't deallocate it.
let (alloc_id, _, _) = ecx.ptr_get_alloc_id(ptr, 0)?;
let is_allocated_in_another_const = matches!(
ecx.tcx.try_get_global_alloc(alloc_id),
Some(interpret::GlobalAlloc::Memory(_))
);
if !is_allocated_in_another_const {
ecx.deallocate_ptr(
ptr,
Some((size, align)),
interpret::MemoryKind::Machine(MemoryKind::Heap),
)?;
}
}
// The intrinsic represents whether the value is known to the optimizer (LLVM).
// We're not doing any optimizations here, so there is no optimizer that could know the value.
// (We know the value here in the machine of course, but this is the runtime of that code,
// not the optimization stage.)
sym::is_val_statically_known => ecx.write_scalar(Scalar::from_bool(false), dest)?,
_ => {
// We haven't handled the intrinsic, let's see if we can use a fallback body.
if ecx.tcx.intrinsic(instance.def_id()).unwrap().must_be_overridden {
throw_unsup_format!(
"intrinsic `{intrinsic_name}` is not supported at compile-time"
);
}
return interp_ok(Some(ty::Instance {
def: ty::InstanceKind::Item(instance.def_id()),
args: instance.args,
}));
}
}
// Intrinsic is done, jump to next block.
ecx.return_to_block(target)?;
interp_ok(None)
}
fn assert_panic(
ecx: &mut InterpCx<'tcx, Self>,
msg: &AssertMessage<'tcx>,
_unwind: mir::UnwindAction,
) -> InterpResult<'tcx> {
use rustc_middle::mir::AssertKind::*;
// Convert `AssertKind<Operand>` to `AssertKind<Scalar>`.
let eval_to_int =
|op| ecx.read_immediate(&ecx.eval_operand(op, None)?).map(|x| x.to_const_int());
let err = match msg {
BoundsCheck { len, index } => {
let len = eval_to_int(len)?;
let index = eval_to_int(index)?;
BoundsCheck { len, index }
}
Overflow(op, l, r) => Overflow(*op, eval_to_int(l)?, eval_to_int(r)?),
OverflowNeg(op) => OverflowNeg(eval_to_int(op)?),
DivisionByZero(op) => DivisionByZero(eval_to_int(op)?),
RemainderByZero(op) => RemainderByZero(eval_to_int(op)?),
ResumedAfterReturn(coroutine_kind) => ResumedAfterReturn(*coroutine_kind),
ResumedAfterPanic(coroutine_kind) => ResumedAfterPanic(*coroutine_kind),
MisalignedPointerDereference { ref required, ref found } => {
MisalignedPointerDereference {
required: eval_to_int(required)?,
found: eval_to_int(found)?,
}
}
};
Err(ConstEvalErrKind::AssertFailure(err)).into()
}
fn binary_ptr_op(
_ecx: &InterpCx<'tcx, Self>,
_bin_op: mir::BinOp,
_left: &ImmTy<'tcx>,
_right: &ImmTy<'tcx>,
) -> InterpResult<'tcx, ImmTy<'tcx>> {
throw_unsup_format!("pointer arithmetic or comparison is not supported at compile-time");
}
fn increment_const_eval_counter(ecx: &mut InterpCx<'tcx, Self>) -> InterpResult<'tcx> {
// The step limit has already been hit in a previous call to `increment_const_eval_counter`.
if let Some(new_steps) = ecx.machine.num_evaluated_steps.checked_add(1) {
let (limit, start) = if ecx.tcx.sess.opts.unstable_opts.tiny_const_eval_limit {
(TINY_LINT_TERMINATOR_LIMIT, TINY_LINT_TERMINATOR_LIMIT)
} else {
(LINT_TERMINATOR_LIMIT, PROGRESS_INDICATOR_START)
};
ecx.machine.num_evaluated_steps = new_steps;
// By default, we have a *deny* lint kicking in after some time
// to ensure `loop {}` doesn't just go forever.
// In case that lint got reduced, in particular for `--cap-lint` situations, we also
// have a hard warning shown every now and then for really long executions.
if new_steps == limit {
// By default, we stop after a million steps, but the user can disable this lint
// to be able to run until the heat death of the universe or power loss, whichever
// comes first.
let hir_id = ecx.machine.best_lint_scope(*ecx.tcx);
let is_error = ecx
.tcx
.lint_level_at_node(
rustc_session::lint::builtin::LONG_RUNNING_CONST_EVAL,
hir_id,
)
.0
.is_error();
let span = ecx.cur_span();
ecx.tcx.emit_node_span_lint(
rustc_session::lint::builtin::LONG_RUNNING_CONST_EVAL,
hir_id,
span,
LongRunning { item_span: ecx.tcx.span },
);
// If this was a hard error, don't bother continuing evaluation.
if is_error {
let guard = ecx
.tcx
.dcx()
.span_delayed_bug(span, "The deny lint should have already errored");
throw_inval!(AlreadyReported(guard.into()));
}
} else if new_steps > start && new_steps.is_power_of_two() {
// Only report after a certain number of terminators have been evaluated and the
// current number of evaluated terminators is a power of 2. The latter gives us a cheap
// way to implement exponential backoff.
let span = ecx.cur_span();
// We store a unique number in `force_duplicate` to evade `-Z deduplicate-diagnostics`.
// `new_steps` is guaranteed to be unique because `ecx.machine.num_evaluated_steps` is
// always increasing.
ecx.tcx.dcx().emit_warn(LongRunningWarn {
span,
item_span: ecx.tcx.span,
force_duplicate: new_steps,
});
}
}
interp_ok(())
}
#[inline(always)]
fn expose_ptr(_ecx: &mut InterpCx<'tcx, Self>, _ptr: Pointer) -> InterpResult<'tcx> {
// This is only reachable with -Zunleash-the-miri-inside-of-you.
throw_unsup_format!("exposing pointers is not possible at compile-time")
}
#[inline(always)]
fn init_frame(
ecx: &mut InterpCx<'tcx, Self>,
frame: Frame<'tcx>,
) -> InterpResult<'tcx, Frame<'tcx>> {
// Enforce stack size limit. Add 1 because this is run before the new frame is pushed.
if !ecx.recursion_limit.value_within_limit(ecx.stack().len() + 1) {
throw_exhaust!(StackFrameLimitReached)
} else {
interp_ok(frame)
}
}
#[inline(always)]
fn stack<'a>(
ecx: &'a InterpCx<'tcx, Self>,
) -> &'a [Frame<'tcx, Self::Provenance, Self::FrameExtra>] {
&ecx.machine.stack
}
#[inline(always)]
fn stack_mut<'a>(
ecx: &'a mut InterpCx<'tcx, Self>,
) -> &'a mut Vec<Frame<'tcx, Self::Provenance, Self::FrameExtra>> {
&mut ecx.machine.stack
}
fn before_access_global(
_tcx: TyCtxtAt<'tcx>,
machine: &Self,
alloc_id: AllocId,
alloc: ConstAllocation<'tcx>,
_static_def_id: Option<DefId>,
is_write: bool,
) -> InterpResult<'tcx> {
let alloc = alloc.inner();
if is_write {
// Write access. These are never allowed, but we give a targeted error message.
match alloc.mutability {
Mutability::Not => throw_ub!(WriteToReadOnly(alloc_id)),
Mutability::Mut => Err(ConstEvalErrKind::ModifiedGlobal).into(),
}
} else {
// Read access. These are usually allowed, with some exceptions.
if machine.can_access_mut_global == CanAccessMutGlobal::Yes {
// Machine configuration allows us read from anything (e.g., `static` initializer).
interp_ok(())
} else if alloc.mutability == Mutability::Mut {
// Machine configuration does not allow us to read statics (e.g., `const`
// initializer).
Err(ConstEvalErrKind::ConstAccessesMutGlobal).into()
} else {
// Immutable global, this read is fine.
assert_eq!(alloc.mutability, Mutability::Not);
interp_ok(())
}
}
}
fn retag_ptr_value(
ecx: &mut InterpCx<'tcx, Self>,
_kind: mir::RetagKind,
val: &ImmTy<'tcx, CtfeProvenance>,
) -> InterpResult<'tcx, ImmTy<'tcx, CtfeProvenance>> {
// If it's a frozen shared reference that's not already immutable, potentially make it immutable.
// (Do nothing on `None` provenance, that cannot store immutability anyway.)
if let ty::Ref(_, ty, mutbl) = val.layout.ty.kind()
&& *mutbl == Mutability::Not
&& val
.to_scalar_and_meta()
.0
.to_pointer(ecx)?
.provenance
.is_some_and(|p| !p.immutable())
{
// That next check is expensive, that's why we have all the guards above.
let is_immutable = ty.is_freeze(*ecx.tcx, ecx.param_env);
let place = ecx.ref_to_mplace(val)?;
let new_place = if is_immutable {
place.map_provenance(CtfeProvenance::as_immutable)
} else {
// Even if it is not immutable, remember that it is a shared reference.
// This allows it to become part of the final value of the constant.
// (See <https://github.com/rust-lang/rust/pull/128543> for why we allow this
// even when there is interior mutability.)
place.map_provenance(CtfeProvenance::as_shared_ref)
};
interp_ok(ImmTy::from_immediate(new_place.to_ref(ecx), val.layout))
} else {
interp_ok(val.clone())
}
}
fn before_memory_write(
_tcx: TyCtxtAt<'tcx>,
_machine: &mut Self,
_alloc_extra: &mut Self::AllocExtra,
(_alloc_id, immutable): (AllocId, bool),
range: AllocRange,
) -> InterpResult<'tcx> {
if range.size == Size::ZERO {
// Nothing to check.
return interp_ok(());
}
// Reject writes through immutable pointers.
if immutable {
return Err(ConstEvalErrKind::WriteThroughImmutablePointer).into();
}
// Everything else is fine.
interp_ok(())
}
fn before_alloc_read(ecx: &InterpCx<'tcx, Self>, alloc_id: AllocId) -> InterpResult<'tcx> {
// Check if this is the currently evaluated static.
if Some(alloc_id) == ecx.machine.static_root_ids.map(|(id, _)| id) {
return Err(ConstEvalErrKind::RecursiveStatic).into();
}
// If this is another static, make sure we fire off the query to detect cycles.
// But only do that when checks for static recursion are enabled.
if ecx.machine.static_root_ids.is_some() {
if let Some(GlobalAlloc::Static(def_id)) = ecx.tcx.try_get_global_alloc(alloc_id) {
if ecx.tcx.is_foreign_item(def_id) {
throw_unsup!(ExternStatic(def_id));
}
ecx.ctfe_query(|tcx| tcx.eval_static_initializer(def_id))?;
}
}
interp_ok(())
}
fn cached_union_data_range<'e>(
ecx: &'e mut InterpCx<'tcx, Self>,
ty: Ty<'tcx>,
compute_range: impl FnOnce() -> RangeSet,
) -> Cow<'e, RangeSet> {
if ecx.tcx.sess.opts.unstable_opts.extra_const_ub_checks {
Cow::Borrowed(ecx.machine.union_data_ranges.entry(ty).or_insert_with(compute_range))
} else {
// Don't bother caching, we're only doing one validation at the end anyway.
Cow::Owned(compute_range())
}
}
}
// Please do not add any code below the above `Machine` trait impl. I (oli-obk) plan more cleanups
// so we can end up having a file with just that impl, but for now, let's keep the impl discoverable
// at the bottom of this file.