rustc_const_eval/const_eval/
machine.rs

1use std::borrow::{Borrow, Cow};
2use std::fmt;
3use std::hash::Hash;
4
5use rustc_abi::{Align, Size};
6use rustc_ast::Mutability;
7use rustc_data_structures::fx::{FxHashMap, FxIndexMap, IndexEntry};
8use rustc_hir::def_id::{DefId, LocalDefId};
9use rustc_hir::{self as hir, CRATE_HIR_ID, LangItem};
10use rustc_middle::mir::AssertMessage;
11use rustc_middle::mir::interpret::ReportedErrorInfo;
12use rustc_middle::query::TyCtxtAt;
13use rustc_middle::ty::layout::{HasTypingEnv, TyAndLayout, ValidityRequirement};
14use rustc_middle::ty::{self, Ty, TyCtxt};
15use rustc_middle::{bug, mir};
16use rustc_span::{Span, Symbol, sym};
17use rustc_target::callconv::FnAbi;
18use tracing::debug;
19
20use super::error::*;
21use crate::errors::{LongRunning, LongRunningWarn};
22use crate::fluent_generated as fluent;
23use crate::interpret::{
24    self, AllocId, AllocInit, AllocRange, ConstAllocation, CtfeProvenance, FnArg, Frame,
25    GlobalAlloc, ImmTy, InterpCx, InterpResult, OpTy, PlaceTy, Pointer, RangeSet, Scalar,
26    compile_time_machine, err_inval, interp_ok, throw_exhaust, throw_inval, throw_ub,
27    throw_ub_custom, throw_unsup, throw_unsup_format,
28};
29
30/// When hitting this many interpreted terminators we emit a deny by default lint
31/// that notfies the user that their constant takes a long time to evaluate. If that's
32/// what they intended, they can just allow the lint.
33const LINT_TERMINATOR_LIMIT: usize = 2_000_000;
34/// The limit used by `-Z tiny-const-eval-limit`. This smaller limit is useful for internal
35/// tests not needing to run 30s or more to show some behaviour.
36const TINY_LINT_TERMINATOR_LIMIT: usize = 20;
37/// After this many interpreted terminators, we start emitting progress indicators at every
38/// power of two of interpreted terminators.
39const PROGRESS_INDICATOR_START: usize = 4_000_000;
40
41/// Extra machine state for CTFE, and the Machine instance.
42//
43// Should be public because out-of-tree rustc consumers need this
44// if they want to interact with constant values.
45pub struct CompileTimeMachine<'tcx> {
46    /// The number of terminators that have been evaluated.
47    ///
48    /// This is used to produce lints informing the user that the compiler is not stuck.
49    /// Set to `usize::MAX` to never report anything.
50    pub(super) num_evaluated_steps: usize,
51
52    /// The virtual call stack.
53    pub(super) stack: Vec<Frame<'tcx>>,
54
55    /// Pattern matching on consts with references would be unsound if those references
56    /// could point to anything mutable. Therefore, when evaluating consts and when constructing valtrees,
57    /// we ensure that only immutable global memory can be accessed.
58    pub(super) can_access_mut_global: CanAccessMutGlobal,
59
60    /// Whether to check alignment during evaluation.
61    pub(super) check_alignment: CheckAlignment,
62
63    /// If `Some`, we are evaluating the initializer of the static with the given `LocalDefId`,
64    /// storing the result in the given `AllocId`.
65    /// Used to prevent accesses to a static's base allocation, as that may allow for self-initialization loops.
66    pub(crate) static_root_ids: Option<(AllocId, LocalDefId)>,
67
68    /// A cache of "data range" computations for unions (i.e., the offsets of non-padding bytes).
69    union_data_ranges: FxHashMap<Ty<'tcx>, RangeSet>,
70}
71
72#[derive(Copy, Clone)]
73pub enum CheckAlignment {
74    /// Ignore all alignment requirements.
75    /// This is mainly used in interning.
76    No,
77    /// Hard error when dereferencing a misaligned pointer.
78    Error,
79}
80
81#[derive(Copy, Clone, PartialEq)]
82pub(crate) enum CanAccessMutGlobal {
83    No,
84    Yes,
85}
86
87impl From<bool> for CanAccessMutGlobal {
88    fn from(value: bool) -> Self {
89        if value { Self::Yes } else { Self::No }
90    }
91}
92
93impl<'tcx> CompileTimeMachine<'tcx> {
94    pub(crate) fn new(
95        can_access_mut_global: CanAccessMutGlobal,
96        check_alignment: CheckAlignment,
97    ) -> Self {
98        CompileTimeMachine {
99            num_evaluated_steps: 0,
100            stack: Vec::new(),
101            can_access_mut_global,
102            check_alignment,
103            static_root_ids: None,
104            union_data_ranges: FxHashMap::default(),
105        }
106    }
107}
108
109impl<K: Hash + Eq, V> interpret::AllocMap<K, V> for FxIndexMap<K, V> {
110    #[inline(always)]
111    fn contains_key<Q: ?Sized + Hash + Eq>(&mut self, k: &Q) -> bool
112    where
113        K: Borrow<Q>,
114    {
115        FxIndexMap::contains_key(self, k)
116    }
117
118    #[inline(always)]
119    fn contains_key_ref<Q: ?Sized + Hash + Eq>(&self, k: &Q) -> bool
120    where
121        K: Borrow<Q>,
122    {
123        FxIndexMap::contains_key(self, k)
124    }
125
126    #[inline(always)]
127    fn insert(&mut self, k: K, v: V) -> Option<V> {
128        FxIndexMap::insert(self, k, v)
129    }
130
131    #[inline(always)]
132    fn remove<Q: ?Sized + Hash + Eq>(&mut self, k: &Q) -> Option<V>
133    where
134        K: Borrow<Q>,
135    {
136        // FIXME(#120456) - is `swap_remove` correct?
137        FxIndexMap::swap_remove(self, k)
138    }
139
140    #[inline(always)]
141    fn filter_map_collect<T>(&self, mut f: impl FnMut(&K, &V) -> Option<T>) -> Vec<T> {
142        self.iter().filter_map(move |(k, v)| f(k, v)).collect()
143    }
144
145    #[inline(always)]
146    fn get_or<E>(&self, k: K, vacant: impl FnOnce() -> Result<V, E>) -> Result<&V, E> {
147        match self.get(&k) {
148            Some(v) => Ok(v),
149            None => {
150                vacant()?;
151                bug!("The CTFE machine shouldn't ever need to extend the alloc_map when reading")
152            }
153        }
154    }
155
156    #[inline(always)]
157    fn get_mut_or<E>(&mut self, k: K, vacant: impl FnOnce() -> Result<V, E>) -> Result<&mut V, E> {
158        match self.entry(k) {
159            IndexEntry::Occupied(e) => Ok(e.into_mut()),
160            IndexEntry::Vacant(e) => {
161                let v = vacant()?;
162                Ok(e.insert(v))
163            }
164        }
165    }
166}
167
168pub type CompileTimeInterpCx<'tcx> = InterpCx<'tcx, CompileTimeMachine<'tcx>>;
169
170#[derive(Debug, PartialEq, Eq, Copy, Clone)]
171pub enum MemoryKind {
172    Heap {
173        /// Indicates whether `make_global` was called on this allocation.
174        /// If this is `true`, the allocation must be immutable.
175        was_made_global: bool,
176    },
177}
178
179impl fmt::Display for MemoryKind {
180    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
181        match self {
182            MemoryKind::Heap { was_made_global } => {
183                write!(f, "heap allocation{}", if *was_made_global { " (made global)" } else { "" })
184            }
185        }
186    }
187}
188
189impl interpret::MayLeak for MemoryKind {
190    #[inline(always)]
191    fn may_leak(self) -> bool {
192        match self {
193            MemoryKind::Heap { was_made_global } => was_made_global,
194        }
195    }
196}
197
198impl interpret::MayLeak for ! {
199    #[inline(always)]
200    fn may_leak(self) -> bool {
201        // `self` is uninhabited
202        self
203    }
204}
205
206impl<'tcx> CompileTimeInterpCx<'tcx> {
207    fn location_triple_for_span(&self, span: Span) -> (Symbol, u32, u32) {
208        let topmost = span.ctxt().outer_expn().expansion_cause().unwrap_or(span);
209        let caller = self.tcx.sess.source_map().lookup_char_pos(topmost.lo());
210
211        use rustc_span::RemapPathScopeComponents;
212        (
213            Symbol::intern(
214                &caller.file.name.display(RemapPathScopeComponents::DIAGNOSTICS).to_string_lossy(),
215            ),
216            u32::try_from(caller.line).unwrap(),
217            u32::try_from(caller.col_display).unwrap().checked_add(1).unwrap(),
218        )
219    }
220
221    /// "Intercept" a function call, because we have something special to do for it.
222    /// All `#[rustc_do_not_const_check]` functions MUST be hooked here.
223    /// If this returns `Some` function, which may be `instance` or a different function with
224    /// compatible arguments, then evaluation should continue with that function.
225    /// If this returns `None`, the function call has been handled and the function has returned.
226    fn hook_special_const_fn(
227        &mut self,
228        instance: ty::Instance<'tcx>,
229        args: &[FnArg<'tcx>],
230        _dest: &PlaceTy<'tcx>,
231        _ret: Option<mir::BasicBlock>,
232    ) -> InterpResult<'tcx, Option<ty::Instance<'tcx>>> {
233        let def_id = instance.def_id();
234
235        if self.tcx.is_lang_item(def_id, LangItem::PanicDisplay)
236            || self.tcx.is_lang_item(def_id, LangItem::BeginPanic)
237        {
238            let args = self.copy_fn_args(args);
239            // &str or &&str
240            assert!(args.len() == 1);
241
242            let mut msg_place = self.deref_pointer(&args[0])?;
243            while msg_place.layout.ty.is_ref() {
244                msg_place = self.deref_pointer(&msg_place)?;
245            }
246
247            let msg = Symbol::intern(self.read_str(&msg_place)?);
248            let span = self.find_closest_untracked_caller_location();
249            let (file, line, col) = self.location_triple_for_span(span);
250            return Err(ConstEvalErrKind::Panic { msg, file, line, col }).into();
251        } else if self.tcx.is_lang_item(def_id, LangItem::PanicFmt) {
252            // For panic_fmt, call const_panic_fmt instead.
253            let const_def_id = self.tcx.require_lang_item(LangItem::ConstPanicFmt, self.tcx.span);
254            let new_instance = ty::Instance::expect_resolve(
255                *self.tcx,
256                self.typing_env(),
257                const_def_id,
258                instance.args,
259                self.cur_span(),
260            );
261
262            return interp_ok(Some(new_instance));
263        }
264        interp_ok(Some(instance))
265    }
266
267    /// See documentation on the `ptr_guaranteed_cmp` intrinsic.
268    /// Returns `2` if the result is unknown.
269    /// Returns `1` if the pointers are guaranteed equal.
270    /// Returns `0` if the pointers are guaranteed inequal.
271    ///
272    /// Note that this intrinsic is exposed on stable for comparison with null. In other words, any
273    /// change to this function that affects comparison with null is insta-stable!
274    fn guaranteed_cmp(&mut self, a: Scalar, b: Scalar) -> InterpResult<'tcx, u8> {
275        interp_ok(match (a, b) {
276            // Comparisons between integers are always known.
277            (Scalar::Int(a), Scalar::Int(b)) => (a == b) as u8,
278            // Comparing a pointer `ptr` with an integer `int` is equivalent to comparing
279            // `ptr-int` with null, so we can reduce this case to a `scalar_may_be_null` test.
280            (Scalar::Int(int), Scalar::Ptr(ptr, _)) | (Scalar::Ptr(ptr, _), Scalar::Int(int)) => {
281                let int = int.to_target_usize(*self.tcx);
282                // The `wrapping_neg` here may produce a value that is not
283                // a valid target usize any more... but `wrapping_offset` handles that correctly.
284                let offset_ptr = ptr.wrapping_offset(Size::from_bytes(int.wrapping_neg()), self);
285                if !self.scalar_may_be_null(Scalar::from_pointer(offset_ptr, self))? {
286                    // `ptr.wrapping_sub(int)` is definitely not equal to `0`, so `ptr != int`
287                    0
288                } else {
289                    // `ptr.wrapping_sub(int)` could be equal to `0`, but might not be,
290                    // so we cannot know for sure if `ptr == int` or not
291                    2
292                }
293            }
294            (Scalar::Ptr(a, _), Scalar::Ptr(b, _)) => {
295                let (a_prov, a_offset) = a.prov_and_relative_offset();
296                let (b_prov, b_offset) = b.prov_and_relative_offset();
297                let a_allocid = a_prov.alloc_id();
298                let b_allocid = b_prov.alloc_id();
299                let a_info = self.get_alloc_info(a_allocid);
300                let b_info = self.get_alloc_info(b_allocid);
301
302                // Check if the pointers cannot be equal due to alignment
303                if a_info.align > Align::ONE && b_info.align > Align::ONE {
304                    let min_align = Ord::min(a_info.align.bytes(), b_info.align.bytes());
305                    let a_residue = a_offset.bytes() % min_align;
306                    let b_residue = b_offset.bytes() % min_align;
307                    if a_residue != b_residue {
308                        // If the two pointers have a different residue modulo their
309                        // common alignment, they cannot be equal.
310                        return interp_ok(0);
311                    }
312                    // The pointers have the same residue modulo their common alignment,
313                    // so they could be equal. Try the other checks.
314                }
315
316                if let (Some(GlobalAlloc::Static(a_did)), Some(GlobalAlloc::Static(b_did))) = (
317                    self.tcx.try_get_global_alloc(a_allocid),
318                    self.tcx.try_get_global_alloc(b_allocid),
319                ) {
320                    if a_allocid == b_allocid {
321                        debug_assert_eq!(
322                            a_did, b_did,
323                            "different static item DefIds had same AllocId? {a_allocid:?} == {b_allocid:?}, {a_did:?} != {b_did:?}"
324                        );
325                        // Comparing two pointers into the same static. As per
326                        // https://doc.rust-lang.org/nightly/reference/items/static-items.html#r-items.static.intro
327                        // a static cannot be duplicated, so if two pointers are into the same
328                        // static, they are equal if and only if their offsets are equal.
329                        (a_offset == b_offset) as u8
330                    } else {
331                        debug_assert_ne!(
332                            a_did, b_did,
333                            "same static item DefId had two different AllocIds? {a_allocid:?} != {b_allocid:?}, {a_did:?} == {b_did:?}"
334                        );
335                        // Comparing two pointers into the different statics.
336                        // We can never determine for sure that two pointers into different statics
337                        // are *equal*, but we can know that they are *inequal* if they are both
338                        // strictly in-bounds (i.e. in-bounds and not one-past-the-end) of
339                        // their respective static, as different non-zero-sized statics cannot
340                        // overlap or be deduplicated as per
341                        // https://doc.rust-lang.org/nightly/reference/items/static-items.html#r-items.static.intro
342                        // (non-deduplication), and
343                        // https://doc.rust-lang.org/nightly/reference/items/static-items.html#r-items.static.storage-disjointness
344                        // (non-overlapping).
345                        if a_offset < a_info.size && b_offset < b_info.size {
346                            0
347                        } else {
348                            // Otherwise, conservatively say we don't know.
349                            // There are some cases we could still return `0` for, e.g.
350                            // if the pointers being equal would require their statics to overlap
351                            // one or more bytes, but for simplicity we currently only check
352                            // strictly in-bounds pointers.
353                            2
354                        }
355                    }
356                } else {
357                    // All other cases we conservatively say we don't know.
358                    //
359                    // For comparing statics to non-statics, as per https://doc.rust-lang.org/nightly/reference/items/static-items.html#r-items.static.storage-disjointness
360                    // immutable statics can overlap with other kinds of allocations sometimes.
361                    //
362                    // FIXME: We could be more decisive for (non-zero-sized) mutable statics,
363                    // which cannot overlap with other kinds of allocations.
364                    //
365                    // Functions and vtables can be duplicated and deduplicated, so we
366                    // cannot be sure of runtime equality of pointers to the same one, or the
367                    // runtime inequality of pointers to different ones (see e.g. #73722),
368                    // so comparing those should return 2, whether they are the same allocation
369                    // or not.
370                    //
371                    // `GlobalAlloc::TypeId` exists mostly to prevent consteval from comparing
372                    // `TypeId`s, so comparing those should always return 2, whether they are the
373                    // same allocation or not.
374                    //
375                    // FIXME: We could revisit comparing pointers into the same
376                    // `GlobalAlloc::Memory` once https://github.com/rust-lang/rust/issues/128775
377                    // is fixed (but they can be deduplicated, so comparing pointers into different
378                    // ones should return 2).
379                    2
380                }
381            }
382        })
383    }
384}
385
386impl<'tcx> CompileTimeMachine<'tcx> {
387    #[inline(always)]
388    /// Find the first stack frame that is within the current crate, if any.
389    /// Otherwise, return the crate's HirId
390    pub fn best_lint_scope(&self, tcx: TyCtxt<'tcx>) -> hir::HirId {
391        self.stack.iter().find_map(|frame| frame.lint_root(tcx)).unwrap_or(CRATE_HIR_ID)
392    }
393}
394
395impl<'tcx> interpret::Machine<'tcx> for CompileTimeMachine<'tcx> {
396    compile_time_machine!(<'tcx>);
397
398    const PANIC_ON_ALLOC_FAIL: bool = false; // will be raised as a proper error
399
400    #[inline(always)]
401    fn enforce_alignment(ecx: &InterpCx<'tcx, Self>) -> bool {
402        matches!(ecx.machine.check_alignment, CheckAlignment::Error)
403    }
404
405    #[inline(always)]
406    fn enforce_validity(ecx: &InterpCx<'tcx, Self>, layout: TyAndLayout<'tcx>) -> bool {
407        ecx.tcx.sess.opts.unstable_opts.extra_const_ub_checks || layout.is_uninhabited()
408    }
409
410    fn load_mir(
411        ecx: &InterpCx<'tcx, Self>,
412        instance: ty::InstanceKind<'tcx>,
413    ) -> &'tcx mir::Body<'tcx> {
414        match instance {
415            ty::InstanceKind::Item(def) => ecx.tcx.mir_for_ctfe(def),
416            _ => ecx.tcx.instance_mir(instance),
417        }
418    }
419
420    fn find_mir_or_eval_fn(
421        ecx: &mut InterpCx<'tcx, Self>,
422        orig_instance: ty::Instance<'tcx>,
423        _abi: &FnAbi<'tcx, Ty<'tcx>>,
424        args: &[FnArg<'tcx>],
425        dest: &PlaceTy<'tcx>,
426        ret: Option<mir::BasicBlock>,
427        _unwind: mir::UnwindAction, // unwinding is not supported in consts
428    ) -> InterpResult<'tcx, Option<(&'tcx mir::Body<'tcx>, ty::Instance<'tcx>)>> {
429        debug!("find_mir_or_eval_fn: {:?}", orig_instance);
430
431        // Replace some functions.
432        let Some(instance) = ecx.hook_special_const_fn(orig_instance, args, dest, ret)? else {
433            // Call has already been handled.
434            return interp_ok(None);
435        };
436
437        // Only check non-glue functions
438        if let ty::InstanceKind::Item(def) = instance.def {
439            // Execution might have wandered off into other crates, so we cannot do a stability-
440            // sensitive check here. But we can at least rule out functions that are not const at
441            // all. That said, we have to allow calling functions inside a `const trait`. These
442            // *are* const-checked!
443            if !ecx.tcx.is_const_fn(def) || ecx.tcx.has_attr(def, sym::rustc_do_not_const_check) {
444                // We certainly do *not* want to actually call the fn
445                // though, so be sure we return here.
446                throw_unsup_format!("calling non-const function `{}`", instance)
447            }
448        }
449
450        // This is a const fn. Call it.
451        // In case of replacement, we return the *original* instance to make backtraces work out
452        // (and we hope this does not confuse the FnAbi checks too much).
453        interp_ok(Some((ecx.load_mir(instance.def, None)?, orig_instance)))
454    }
455
456    fn panic_nounwind(ecx: &mut InterpCx<'tcx, Self>, msg: &str) -> InterpResult<'tcx> {
457        let msg = Symbol::intern(msg);
458        let span = ecx.find_closest_untracked_caller_location();
459        let (file, line, col) = ecx.location_triple_for_span(span);
460        Err(ConstEvalErrKind::Panic { msg, file, line, col }).into()
461    }
462
463    fn call_intrinsic(
464        ecx: &mut InterpCx<'tcx, Self>,
465        instance: ty::Instance<'tcx>,
466        args: &[OpTy<'tcx>],
467        dest: &PlaceTy<'tcx, Self::Provenance>,
468        target: Option<mir::BasicBlock>,
469        _unwind: mir::UnwindAction,
470    ) -> InterpResult<'tcx, Option<ty::Instance<'tcx>>> {
471        // Shared intrinsics.
472        if ecx.eval_intrinsic(instance, args, dest, target)? {
473            return interp_ok(None);
474        }
475        let intrinsic_name = ecx.tcx.item_name(instance.def_id());
476
477        // CTFE-specific intrinsics.
478        match intrinsic_name {
479            sym::ptr_guaranteed_cmp => {
480                let a = ecx.read_scalar(&args[0])?;
481                let b = ecx.read_scalar(&args[1])?;
482                let cmp = ecx.guaranteed_cmp(a, b)?;
483                ecx.write_scalar(Scalar::from_u8(cmp), dest)?;
484            }
485            sym::const_allocate => {
486                let size = ecx.read_scalar(&args[0])?.to_target_usize(ecx)?;
487                let align = ecx.read_scalar(&args[1])?.to_target_usize(ecx)?;
488
489                let align = match Align::from_bytes(align) {
490                    Ok(a) => a,
491                    Err(err) => throw_ub_custom!(
492                        fluent::const_eval_invalid_align_details,
493                        name = "const_allocate",
494                        err_kind = err.diag_ident(),
495                        align = err.align()
496                    ),
497                };
498
499                let ptr = ecx.allocate_ptr(
500                    Size::from_bytes(size),
501                    align,
502                    interpret::MemoryKind::Machine(MemoryKind::Heap { was_made_global: false }),
503                    AllocInit::Uninit,
504                )?;
505                ecx.write_pointer(ptr, dest)?;
506            }
507            sym::const_deallocate => {
508                let ptr = ecx.read_pointer(&args[0])?;
509                let size = ecx.read_scalar(&args[1])?.to_target_usize(ecx)?;
510                let align = ecx.read_scalar(&args[2])?.to_target_usize(ecx)?;
511
512                let size = Size::from_bytes(size);
513                let align = match Align::from_bytes(align) {
514                    Ok(a) => a,
515                    Err(err) => throw_ub_custom!(
516                        fluent::const_eval_invalid_align_details,
517                        name = "const_deallocate",
518                        err_kind = err.diag_ident(),
519                        align = err.align()
520                    ),
521                };
522
523                // If an allocation is created in an another const,
524                // we don't deallocate it.
525                let (alloc_id, _, _) = ecx.ptr_get_alloc_id(ptr, 0)?;
526                let is_allocated_in_another_const = matches!(
527                    ecx.tcx.try_get_global_alloc(alloc_id),
528                    Some(interpret::GlobalAlloc::Memory(_))
529                );
530
531                if !is_allocated_in_another_const {
532                    ecx.deallocate_ptr(
533                        ptr,
534                        Some((size, align)),
535                        interpret::MemoryKind::Machine(MemoryKind::Heap { was_made_global: false }),
536                    )?;
537                }
538            }
539
540            sym::const_make_global => {
541                let ptr = ecx.read_pointer(&args[0])?;
542                ecx.make_const_heap_ptr_global(ptr)?;
543                ecx.write_pointer(ptr, dest)?;
544            }
545
546            // The intrinsic represents whether the value is known to the optimizer (LLVM).
547            // We're not doing any optimizations here, so there is no optimizer that could know the value.
548            // (We know the value here in the machine of course, but this is the runtime of that code,
549            // not the optimization stage.)
550            sym::is_val_statically_known => ecx.write_scalar(Scalar::from_bool(false), dest)?,
551
552            // We handle these here since Miri does not want to have them.
553            sym::assert_inhabited
554            | sym::assert_zero_valid
555            | sym::assert_mem_uninitialized_valid => {
556                let ty = instance.args.type_at(0);
557                let requirement = ValidityRequirement::from_intrinsic(intrinsic_name).unwrap();
558
559                let should_panic = !ecx
560                    .tcx
561                    .check_validity_requirement((requirement, ecx.typing_env().as_query_input(ty)))
562                    .map_err(|_| err_inval!(TooGeneric))?;
563
564                if should_panic {
565                    let layout = ecx.layout_of(ty)?;
566
567                    let msg = match requirement {
568                        // For *all* intrinsics we first check `is_uninhabited` to give a more specific
569                        // error message.
570                        _ if layout.is_uninhabited() => format!(
571                            "aborted execution: attempted to instantiate uninhabited type `{ty}`"
572                        ),
573                        ValidityRequirement::Inhabited => bug!("handled earlier"),
574                        ValidityRequirement::Zero => format!(
575                            "aborted execution: attempted to zero-initialize type `{ty}`, which is invalid"
576                        ),
577                        ValidityRequirement::UninitMitigated0x01Fill => format!(
578                            "aborted execution: attempted to leave type `{ty}` uninitialized, which is invalid"
579                        ),
580                        ValidityRequirement::Uninit => bug!("assert_uninit_valid doesn't exist"),
581                    };
582
583                    Self::panic_nounwind(ecx, &msg)?;
584                    // Skip the `return_to_block` at the end (we panicked, we do not return).
585                    return interp_ok(None);
586                }
587            }
588
589            _ => {
590                // We haven't handled the intrinsic, let's see if we can use a fallback body.
591                if ecx.tcx.intrinsic(instance.def_id()).unwrap().must_be_overridden {
592                    throw_unsup_format!(
593                        "intrinsic `{intrinsic_name}` is not supported at compile-time"
594                    );
595                }
596                return interp_ok(Some(ty::Instance {
597                    def: ty::InstanceKind::Item(instance.def_id()),
598                    args: instance.args,
599                }));
600            }
601        }
602
603        // Intrinsic is done, jump to next block.
604        ecx.return_to_block(target)?;
605        interp_ok(None)
606    }
607
608    fn assert_panic(
609        ecx: &mut InterpCx<'tcx, Self>,
610        msg: &AssertMessage<'tcx>,
611        _unwind: mir::UnwindAction,
612    ) -> InterpResult<'tcx> {
613        use rustc_middle::mir::AssertKind::*;
614        // Convert `AssertKind<Operand>` to `AssertKind<Scalar>`.
615        let eval_to_int =
616            |op| ecx.read_immediate(&ecx.eval_operand(op, None)?).map(|x| x.to_const_int());
617        let err = match msg {
618            BoundsCheck { len, index } => {
619                let len = eval_to_int(len)?;
620                let index = eval_to_int(index)?;
621                BoundsCheck { len, index }
622            }
623            Overflow(op, l, r) => Overflow(*op, eval_to_int(l)?, eval_to_int(r)?),
624            OverflowNeg(op) => OverflowNeg(eval_to_int(op)?),
625            DivisionByZero(op) => DivisionByZero(eval_to_int(op)?),
626            RemainderByZero(op) => RemainderByZero(eval_to_int(op)?),
627            ResumedAfterReturn(coroutine_kind) => ResumedAfterReturn(*coroutine_kind),
628            ResumedAfterPanic(coroutine_kind) => ResumedAfterPanic(*coroutine_kind),
629            ResumedAfterDrop(coroutine_kind) => ResumedAfterDrop(*coroutine_kind),
630            MisalignedPointerDereference { required, found } => MisalignedPointerDereference {
631                required: eval_to_int(required)?,
632                found: eval_to_int(found)?,
633            },
634            NullPointerDereference => NullPointerDereference,
635            InvalidEnumConstruction(source) => InvalidEnumConstruction(eval_to_int(source)?),
636        };
637        Err(ConstEvalErrKind::AssertFailure(err)).into()
638    }
639
640    fn binary_ptr_op(
641        _ecx: &InterpCx<'tcx, Self>,
642        _bin_op: mir::BinOp,
643        _left: &ImmTy<'tcx>,
644        _right: &ImmTy<'tcx>,
645    ) -> InterpResult<'tcx, ImmTy<'tcx>> {
646        throw_unsup_format!("pointer arithmetic or comparison is not supported at compile-time");
647    }
648
649    fn increment_const_eval_counter(ecx: &mut InterpCx<'tcx, Self>) -> InterpResult<'tcx> {
650        // The step limit has already been hit in a previous call to `increment_const_eval_counter`.
651
652        if let Some(new_steps) = ecx.machine.num_evaluated_steps.checked_add(1) {
653            let (limit, start) = if ecx.tcx.sess.opts.unstable_opts.tiny_const_eval_limit {
654                (TINY_LINT_TERMINATOR_LIMIT, TINY_LINT_TERMINATOR_LIMIT)
655            } else {
656                (LINT_TERMINATOR_LIMIT, PROGRESS_INDICATOR_START)
657            };
658
659            ecx.machine.num_evaluated_steps = new_steps;
660            // By default, we have a *deny* lint kicking in after some time
661            // to ensure `loop {}` doesn't just go forever.
662            // In case that lint got reduced, in particular for `--cap-lint` situations, we also
663            // have a hard warning shown every now and then for really long executions.
664            if new_steps == limit {
665                // By default, we stop after a million steps, but the user can disable this lint
666                // to be able to run until the heat death of the universe or power loss, whichever
667                // comes first.
668                let hir_id = ecx.machine.best_lint_scope(*ecx.tcx);
669                let is_error = ecx
670                    .tcx
671                    .lint_level_at_node(
672                        rustc_session::lint::builtin::LONG_RUNNING_CONST_EVAL,
673                        hir_id,
674                    )
675                    .level
676                    .is_error();
677                let span = ecx.cur_span();
678                ecx.tcx.emit_node_span_lint(
679                    rustc_session::lint::builtin::LONG_RUNNING_CONST_EVAL,
680                    hir_id,
681                    span,
682                    LongRunning { item_span: ecx.tcx.span },
683                );
684                // If this was a hard error, don't bother continuing evaluation.
685                if is_error {
686                    let guard = ecx
687                        .tcx
688                        .dcx()
689                        .span_delayed_bug(span, "The deny lint should have already errored");
690                    throw_inval!(AlreadyReported(ReportedErrorInfo::allowed_in_infallible(guard)));
691                }
692            } else if new_steps > start && new_steps.is_power_of_two() {
693                // Only report after a certain number of terminators have been evaluated and the
694                // current number of evaluated terminators is a power of 2. The latter gives us a cheap
695                // way to implement exponential backoff.
696                let span = ecx.cur_span();
697                // We store a unique number in `force_duplicate` to evade `-Z deduplicate-diagnostics`.
698                // `new_steps` is guaranteed to be unique because `ecx.machine.num_evaluated_steps` is
699                // always increasing.
700                ecx.tcx.dcx().emit_warn(LongRunningWarn {
701                    span,
702                    item_span: ecx.tcx.span,
703                    force_duplicate: new_steps,
704                });
705            }
706        }
707
708        interp_ok(())
709    }
710
711    #[inline(always)]
712    fn expose_provenance(
713        _ecx: &InterpCx<'tcx, Self>,
714        _provenance: Self::Provenance,
715    ) -> InterpResult<'tcx> {
716        // This is only reachable with -Zunleash-the-miri-inside-of-you.
717        throw_unsup_format!("exposing pointers is not possible at compile-time")
718    }
719
720    #[inline(always)]
721    fn init_frame(
722        ecx: &mut InterpCx<'tcx, Self>,
723        frame: Frame<'tcx>,
724    ) -> InterpResult<'tcx, Frame<'tcx>> {
725        // Enforce stack size limit. Add 1 because this is run before the new frame is pushed.
726        if !ecx.recursion_limit.value_within_limit(ecx.stack().len() + 1) {
727            throw_exhaust!(StackFrameLimitReached)
728        } else {
729            interp_ok(frame)
730        }
731    }
732
733    #[inline(always)]
734    fn stack<'a>(
735        ecx: &'a InterpCx<'tcx, Self>,
736    ) -> &'a [Frame<'tcx, Self::Provenance, Self::FrameExtra>] {
737        &ecx.machine.stack
738    }
739
740    #[inline(always)]
741    fn stack_mut<'a>(
742        ecx: &'a mut InterpCx<'tcx, Self>,
743    ) -> &'a mut Vec<Frame<'tcx, Self::Provenance, Self::FrameExtra>> {
744        &mut ecx.machine.stack
745    }
746
747    fn before_access_global(
748        _tcx: TyCtxtAt<'tcx>,
749        machine: &Self,
750        alloc_id: AllocId,
751        alloc: ConstAllocation<'tcx>,
752        _static_def_id: Option<DefId>,
753        is_write: bool,
754    ) -> InterpResult<'tcx> {
755        let alloc = alloc.inner();
756        if is_write {
757            // Write access. These are never allowed, but we give a targeted error message.
758            match alloc.mutability {
759                Mutability::Not => throw_ub!(WriteToReadOnly(alloc_id)),
760                Mutability::Mut => Err(ConstEvalErrKind::ModifiedGlobal).into(),
761            }
762        } else {
763            // Read access. These are usually allowed, with some exceptions.
764            if machine.can_access_mut_global == CanAccessMutGlobal::Yes {
765                // Machine configuration allows us read from anything (e.g., `static` initializer).
766                interp_ok(())
767            } else if alloc.mutability == Mutability::Mut {
768                // Machine configuration does not allow us to read statics (e.g., `const`
769                // initializer).
770                Err(ConstEvalErrKind::ConstAccessesMutGlobal).into()
771            } else {
772                // Immutable global, this read is fine.
773                assert_eq!(alloc.mutability, Mutability::Not);
774                interp_ok(())
775            }
776        }
777    }
778
779    fn retag_ptr_value(
780        ecx: &mut InterpCx<'tcx, Self>,
781        _kind: mir::RetagKind,
782        val: &ImmTy<'tcx, CtfeProvenance>,
783    ) -> InterpResult<'tcx, ImmTy<'tcx, CtfeProvenance>> {
784        // If it's a frozen shared reference that's not already immutable, potentially make it immutable.
785        // (Do nothing on `None` provenance, that cannot store immutability anyway.)
786        if let ty::Ref(_, ty, mutbl) = val.layout.ty.kind()
787            && *mutbl == Mutability::Not
788            && val
789                .to_scalar_and_meta()
790                .0
791                .to_pointer(ecx)?
792                .provenance
793                .is_some_and(|p| !p.immutable())
794        {
795            // That next check is expensive, that's why we have all the guards above.
796            let is_immutable = ty.is_freeze(*ecx.tcx, ecx.typing_env());
797            let place = ecx.ref_to_mplace(val)?;
798            let new_place = if is_immutable {
799                place.map_provenance(CtfeProvenance::as_immutable)
800            } else {
801                // Even if it is not immutable, remember that it is a shared reference.
802                // This allows it to become part of the final value of the constant.
803                // (See <https://github.com/rust-lang/rust/pull/128543> for why we allow this
804                // even when there is interior mutability.)
805                place.map_provenance(CtfeProvenance::as_shared_ref)
806            };
807            interp_ok(ImmTy::from_immediate(new_place.to_ref(ecx), val.layout))
808        } else {
809            interp_ok(val.clone())
810        }
811    }
812
813    fn before_memory_write(
814        _tcx: TyCtxtAt<'tcx>,
815        _machine: &mut Self,
816        _alloc_extra: &mut Self::AllocExtra,
817        _ptr: Pointer<Option<Self::Provenance>>,
818        (_alloc_id, immutable): (AllocId, bool),
819        range: AllocRange,
820    ) -> InterpResult<'tcx> {
821        if range.size == Size::ZERO {
822            // Nothing to check.
823            return interp_ok(());
824        }
825        // Reject writes through immutable pointers.
826        if immutable {
827            return Err(ConstEvalErrKind::WriteThroughImmutablePointer).into();
828        }
829        // Everything else is fine.
830        interp_ok(())
831    }
832
833    fn before_alloc_access(
834        tcx: TyCtxtAt<'tcx>,
835        machine: &Self,
836        alloc_id: AllocId,
837    ) -> InterpResult<'tcx> {
838        if machine.stack.is_empty() {
839            // Get out of the way for the final copy.
840            return interp_ok(());
841        }
842        // Check if this is the currently evaluated static.
843        if Some(alloc_id) == machine.static_root_ids.map(|(id, _)| id) {
844            return Err(ConstEvalErrKind::RecursiveStatic).into();
845        }
846        // If this is another static, make sure we fire off the query to detect cycles.
847        // But only do that when checks for static recursion are enabled.
848        if machine.static_root_ids.is_some() {
849            if let Some(GlobalAlloc::Static(def_id)) = tcx.try_get_global_alloc(alloc_id) {
850                if tcx.is_foreign_item(def_id) {
851                    throw_unsup!(ExternStatic(def_id));
852                }
853                tcx.eval_static_initializer(def_id)?;
854            }
855        }
856        interp_ok(())
857    }
858
859    fn cached_union_data_range<'e>(
860        ecx: &'e mut InterpCx<'tcx, Self>,
861        ty: Ty<'tcx>,
862        compute_range: impl FnOnce() -> RangeSet,
863    ) -> Cow<'e, RangeSet> {
864        if ecx.tcx.sess.opts.unstable_opts.extra_const_ub_checks {
865            Cow::Borrowed(ecx.machine.union_data_ranges.entry(ty).or_insert_with(compute_range))
866        } else {
867            // Don't bother caching, we're only doing one validation at the end anyway.
868            Cow::Owned(compute_range())
869        }
870    }
871
872    fn get_default_alloc_params(&self) -> <Self::Bytes as mir::interpret::AllocBytes>::AllocParams {
873    }
874}
875
876// Please do not add any code below the above `Machine` trait impl. I (oli-obk) plan more cleanups
877// so we can end up having a file with just that impl, but for now, let's keep the impl discoverable
878// at the bottom of this file.