rustc_traits/codegen.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
// This file contains various trait resolution methods used by codegen.
// They all assume regions can be erased and monomorphic types. It
// seems likely that they should eventually be merged into more
// general routines.
use rustc_infer::infer::TyCtxtInferExt;
use rustc_middle::bug;
use rustc_middle::traits::CodegenObligationError;
use rustc_middle::ty::{self, PseudoCanonicalInput, TyCtxt, TypeVisitableExt};
use rustc_trait_selection::error_reporting::InferCtxtErrorExt;
use rustc_trait_selection::traits::{
ImplSource, Obligation, ObligationCause, ObligationCtxt, ScrubbedTraitError, SelectionContext,
Unimplemented,
};
use tracing::debug;
/// Attempts to resolve an obligation to an `ImplSource`. The result is
/// a shallow `ImplSource` resolution, meaning that we do not
/// (necessarily) resolve all nested obligations on the impl. Note
/// that type check should guarantee to us that all nested
/// obligations *could be* resolved if we wanted to.
///
/// This also expects that `trait_ref` is fully normalized.
pub(crate) fn codegen_select_candidate<'tcx>(
tcx: TyCtxt<'tcx>,
key: PseudoCanonicalInput<'tcx, ty::TraitRef<'tcx>>,
) -> Result<&'tcx ImplSource<'tcx, ()>, CodegenObligationError> {
let PseudoCanonicalInput { typing_env, value: trait_ref } = key;
// We expect the input to be fully normalized.
debug_assert_eq!(trait_ref, tcx.normalize_erasing_regions(typing_env, trait_ref));
// Do the initial selection for the obligation. This yields the
// shallow result we are looking for -- that is, what specific impl.
let (infcx, param_env) = tcx.infer_ctxt().ignoring_regions().build_with_typing_env(typing_env);
let mut selcx = SelectionContext::new(&infcx);
let obligation_cause = ObligationCause::dummy();
let obligation = Obligation::new(tcx, obligation_cause, param_env, trait_ref);
let selection = match selcx.select(&obligation) {
Ok(Some(selection)) => selection,
Ok(None) => return Err(CodegenObligationError::Ambiguity),
Err(Unimplemented) => return Err(CodegenObligationError::Unimplemented),
Err(e) => {
bug!("Encountered error `{:?}` selecting `{:?}` during codegen", e, trait_ref)
}
};
debug!(?selection);
// Currently, we use a fulfillment context to completely resolve
// all nested obligations. This is because they can inform the
// inference of the impl's type parameters.
// FIXME(-Znext-solver): Doesn't need diagnostics if new solver.
let ocx = ObligationCtxt::new(&infcx);
let impl_source = selection.map(|obligation| {
ocx.register_obligation(obligation);
});
// In principle, we only need to do this so long as `impl_source`
// contains unbound type parameters. It could be a slight
// optimization to stop iterating early.
let errors = ocx.select_all_or_error();
if !errors.is_empty() {
// `rustc_monomorphize::collector` assumes there are no type errors.
// Cycle errors are the only post-monomorphization errors possible; emit them now so
// `rustc_ty_utils::resolve_associated_item` doesn't return `None` post-monomorphization.
for err in errors {
if let ScrubbedTraitError::Cycle(cycle) = err {
infcx.err_ctxt().report_overflow_obligation_cycle(&cycle);
}
}
return Err(CodegenObligationError::FulfillmentError);
}
let impl_source = infcx.resolve_vars_if_possible(impl_source);
let impl_source = infcx.tcx.erase_regions(impl_source);
if impl_source.has_infer() {
// Unused lifetimes on an impl get replaced with inference vars, but never resolved,
// causing the return value of a query to contain inference vars. We do not have a concept
// for this and will in fact ICE in stable hashing of the return value. So bail out instead.
infcx.tcx.dcx().has_errors().unwrap();
return Err(CodegenObligationError::FulfillmentError);
}
Ok(&*tcx.arena.alloc(impl_source))
}