rustc_hir_analysis/check/region.rs
1//! This file builds up the `ScopeTree`, which describes
2//! the parent links in the region hierarchy.
3//!
4//! For more information about how MIR-based region-checking works,
5//! see the [rustc dev guide].
6//!
7//! [rustc dev guide]: https://rustc-dev-guide.rust-lang.org/borrow_check.html
8
9use std::mem;
10
11use rustc_data_structures::fx::FxHashMap;
12use rustc_hir as hir;
13use rustc_hir::def::{CtorKind, DefKind, Res};
14use rustc_hir::def_id::DefId;
15use rustc_hir::intravisit::{self, Visitor};
16use rustc_hir::{Arm, Block, Expr, LetStmt, Pat, PatKind, Stmt};
17use rustc_index::Idx;
18use rustc_middle::bug;
19use rustc_middle::middle::region::*;
20use rustc_middle::ty::TyCtxt;
21use rustc_session::lint;
22use rustc_span::source_map;
23use tracing::debug;
24
25#[derive(Debug, Copy, Clone)]
26struct Context {
27 /// The scope that contains any new variables declared.
28 var_parent: Option<Scope>,
29
30 /// Region parent of expressions, etc.
31 parent: Option<Scope>,
32}
33
34struct ScopeResolutionVisitor<'tcx> {
35 tcx: TyCtxt<'tcx>,
36
37 // The number of expressions and patterns visited in the current body.
38 expr_and_pat_count: usize,
39 // When this is `true`, we record the `Scopes` we encounter
40 // when processing a Yield expression. This allows us to fix
41 // up their indices.
42 pessimistic_yield: bool,
43 // Stores scopes when `pessimistic_yield` is `true`.
44 fixup_scopes: Vec<Scope>,
45 // The generated scope tree.
46 scope_tree: ScopeTree,
47
48 cx: Context,
49
50 extended_super_lets: FxHashMap<hir::ItemLocalId, Option<Scope>>,
51}
52
53/// Records the lifetime of a local variable as `cx.var_parent`
54fn record_var_lifetime(visitor: &mut ScopeResolutionVisitor<'_>, var_id: hir::ItemLocalId) {
55 match visitor.cx.var_parent {
56 None => {
57 // this can happen in extern fn declarations like
58 //
59 // extern fn isalnum(c: c_int) -> c_int
60 }
61 Some(parent_scope) => visitor.scope_tree.record_var_scope(var_id, parent_scope),
62 }
63}
64
65fn resolve_block<'tcx>(
66 visitor: &mut ScopeResolutionVisitor<'tcx>,
67 blk: &'tcx hir::Block<'tcx>,
68 terminating: bool,
69) {
70 debug!("resolve_block(blk.hir_id={:?})", blk.hir_id);
71
72 let prev_cx = visitor.cx;
73
74 // We treat the tail expression in the block (if any) somewhat
75 // differently from the statements. The issue has to do with
76 // temporary lifetimes. Consider the following:
77 //
78 // quux({
79 // let inner = ... (&bar()) ...;
80 //
81 // (... (&foo()) ...) // (the tail expression)
82 // }, other_argument());
83 //
84 // Each of the statements within the block is a terminating
85 // scope, and thus a temporary (e.g., the result of calling
86 // `bar()` in the initializer expression for `let inner = ...;`)
87 // will be cleaned up immediately after its corresponding
88 // statement (i.e., `let inner = ...;`) executes.
89 //
90 // On the other hand, temporaries associated with evaluating the
91 // tail expression for the block are assigned lifetimes so that
92 // they will be cleaned up as part of the terminating scope
93 // *surrounding* the block expression. Here, the terminating
94 // scope for the block expression is the `quux(..)` call; so
95 // those temporaries will only be cleaned up *after* both
96 // `other_argument()` has run and also the call to `quux(..)`
97 // itself has returned.
98
99 visitor.enter_node_scope_with_dtor(blk.hir_id.local_id, terminating);
100 visitor.cx.var_parent = visitor.cx.parent;
101
102 {
103 // This block should be kept approximately in sync with
104 // `intravisit::walk_block`. (We manually walk the block, rather
105 // than call `walk_block`, in order to maintain precise
106 // index information.)
107
108 for (i, statement) in blk.stmts.iter().enumerate() {
109 match statement.kind {
110 hir::StmtKind::Let(LetStmt { els: Some(els), .. }) => {
111 // Let-else has a special lexical structure for variables.
112 // First we take a checkpoint of the current scope context here.
113 let mut prev_cx = visitor.cx;
114
115 visitor.enter_scope(Scope {
116 local_id: blk.hir_id.local_id,
117 data: ScopeData::Remainder(FirstStatementIndex::new(i)),
118 });
119 visitor.cx.var_parent = visitor.cx.parent;
120 visitor.visit_stmt(statement);
121 // We need to back out temporarily to the last enclosing scope
122 // for the `else` block, so that even the temporaries receiving
123 // extended lifetime will be dropped inside this block.
124 // We are visiting the `else` block in this order so that
125 // the sequence of visits agree with the order in the default
126 // `hir::intravisit` visitor.
127 mem::swap(&mut prev_cx, &mut visitor.cx);
128 resolve_block(visitor, els, true);
129 // From now on, we continue normally.
130 visitor.cx = prev_cx;
131 }
132 hir::StmtKind::Let(..) => {
133 // Each declaration introduces a subscope for bindings
134 // introduced by the declaration; this subscope covers a
135 // suffix of the block. Each subscope in a block has the
136 // previous subscope in the block as a parent, except for
137 // the first such subscope, which has the block itself as a
138 // parent.
139 visitor.enter_scope(Scope {
140 local_id: blk.hir_id.local_id,
141 data: ScopeData::Remainder(FirstStatementIndex::new(i)),
142 });
143 visitor.cx.var_parent = visitor.cx.parent;
144 visitor.visit_stmt(statement)
145 }
146 hir::StmtKind::Item(..) => {
147 // Don't create scopes for items, since they won't be
148 // lowered to THIR and MIR.
149 }
150 hir::StmtKind::Expr(..) | hir::StmtKind::Semi(..) => visitor.visit_stmt(statement),
151 }
152 }
153 if let Some(tail_expr) = blk.expr {
154 let local_id = tail_expr.hir_id.local_id;
155 let edition = blk.span.edition();
156 let terminating = edition.at_least_rust_2024();
157 if !terminating
158 && !visitor
159 .tcx
160 .lints_that_dont_need_to_run(())
161 .contains(&lint::LintId::of(lint::builtin::TAIL_EXPR_DROP_ORDER))
162 {
163 // If this temporary scope will be changing once the codebase adopts Rust 2024,
164 // and we are linting about possible semantic changes that would result,
165 // then record this node-id in the field `backwards_incompatible_scope`
166 // for future reference.
167 visitor
168 .scope_tree
169 .backwards_incompatible_scope
170 .insert(local_id, Scope { local_id, data: ScopeData::Node });
171 }
172 resolve_expr(visitor, tail_expr, terminating);
173 }
174 }
175
176 visitor.cx = prev_cx;
177}
178
179fn resolve_arm<'tcx>(visitor: &mut ScopeResolutionVisitor<'tcx>, arm: &'tcx hir::Arm<'tcx>) {
180 fn has_let_expr(expr: &Expr<'_>) -> bool {
181 match &expr.kind {
182 hir::ExprKind::Binary(_, lhs, rhs) => has_let_expr(lhs) || has_let_expr(rhs),
183 hir::ExprKind::Let(..) => true,
184 _ => false,
185 }
186 }
187
188 let prev_cx = visitor.cx;
189
190 visitor.enter_node_scope_with_dtor(arm.hir_id.local_id, true);
191 visitor.cx.var_parent = visitor.cx.parent;
192
193 resolve_pat(visitor, arm.pat);
194 if let Some(guard) = arm.guard {
195 resolve_expr(visitor, guard, !has_let_expr(guard));
196 }
197 resolve_expr(visitor, arm.body, false);
198
199 visitor.cx = prev_cx;
200}
201
202fn resolve_pat<'tcx>(visitor: &mut ScopeResolutionVisitor<'tcx>, pat: &'tcx hir::Pat<'tcx>) {
203 // If this is a binding then record the lifetime of that binding.
204 if let PatKind::Binding(..) = pat.kind {
205 record_var_lifetime(visitor, pat.hir_id.local_id);
206 }
207
208 debug!("resolve_pat - pre-increment {} pat = {:?}", visitor.expr_and_pat_count, pat);
209
210 intravisit::walk_pat(visitor, pat);
211
212 visitor.expr_and_pat_count += 1;
213
214 debug!("resolve_pat - post-increment {} pat = {:?}", visitor.expr_and_pat_count, pat);
215}
216
217fn resolve_stmt<'tcx>(visitor: &mut ScopeResolutionVisitor<'tcx>, stmt: &'tcx hir::Stmt<'tcx>) {
218 let stmt_id = stmt.hir_id.local_id;
219 debug!("resolve_stmt(stmt.id={:?})", stmt_id);
220
221 if let hir::StmtKind::Let(LetStmt { super_: Some(_), .. }) = stmt.kind {
222 // `super let` statement does not start a new scope, such that
223 //
224 // { super let x = identity(&temp()); &x }.method();
225 //
226 // behaves exactly as
227 //
228 // (&identity(&temp()).method();
229 intravisit::walk_stmt(visitor, stmt);
230 } else {
231 // Every statement will clean up the temporaries created during
232 // execution of that statement. Therefore each statement has an
233 // associated destruction scope that represents the scope of the
234 // statement plus its destructors, and thus the scope for which
235 // regions referenced by the destructors need to survive.
236
237 let prev_parent = visitor.cx.parent;
238 visitor.enter_node_scope_with_dtor(stmt_id, true);
239
240 intravisit::walk_stmt(visitor, stmt);
241
242 visitor.cx.parent = prev_parent;
243 }
244}
245
246fn resolve_expr<'tcx>(
247 visitor: &mut ScopeResolutionVisitor<'tcx>,
248 expr: &'tcx hir::Expr<'tcx>,
249 terminating: bool,
250) {
251 debug!("resolve_expr - pre-increment {} expr = {:?}", visitor.expr_and_pat_count, expr);
252
253 let prev_cx = visitor.cx;
254 visitor.enter_node_scope_with_dtor(expr.hir_id.local_id, terminating);
255
256 let prev_pessimistic = visitor.pessimistic_yield;
257
258 // Ordinarily, we can rely on the visit order of HIR intravisit
259 // to correspond to the actual execution order of statements.
260 // However, there's a weird corner case with compound assignment
261 // operators (e.g. `a += b`). The evaluation order depends on whether
262 // or not the operator is overloaded (e.g. whether or not a trait
263 // like AddAssign is implemented).
264
265 // For primitive types (which, despite having a trait impl, don't actually
266 // end up calling it), the evaluation order is right-to-left. For example,
267 // the following code snippet:
268 //
269 // let y = &mut 0;
270 // *{println!("LHS!"); y} += {println!("RHS!"); 1};
271 //
272 // will print:
273 //
274 // RHS!
275 // LHS!
276 //
277 // However, if the operator is used on a non-primitive type,
278 // the evaluation order will be left-to-right, since the operator
279 // actually get desugared to a method call. For example, this
280 // nearly identical code snippet:
281 //
282 // let y = &mut String::new();
283 // *{println!("LHS String"); y} += {println!("RHS String"); "hi"};
284 //
285 // will print:
286 // LHS String
287 // RHS String
288 //
289 // To determine the actual execution order, we need to perform
290 // trait resolution. Unfortunately, we need to be able to compute
291 // yield_in_scope before type checking is even done, as it gets
292 // used by AST borrowcheck.
293 //
294 // Fortunately, we don't need to know the actual execution order.
295 // It suffices to know the 'worst case' order with respect to yields.
296 // Specifically, we need to know the highest 'expr_and_pat_count'
297 // that we could assign to the yield expression. To do this,
298 // we pick the greater of the two values from the left-hand
299 // and right-hand expressions. This makes us overly conservative
300 // about what types could possibly live across yield points,
301 // but we will never fail to detect that a type does actually
302 // live across a yield point. The latter part is critical -
303 // we're already overly conservative about what types will live
304 // across yield points, as the generated MIR will determine
305 // when things are actually live. However, for typecheck to work
306 // properly, we can't miss any types.
307
308 match expr.kind {
309 // Conditional or repeating scopes are always terminating
310 // scopes, meaning that temporaries cannot outlive them.
311 // This ensures fixed size stacks.
312 hir::ExprKind::Binary(
313 source_map::Spanned { node: hir::BinOpKind::And | hir::BinOpKind::Or, .. },
314 left,
315 right,
316 ) => {
317 // expr is a short circuiting operator (|| or &&). As its
318 // functionality can't be overridden by traits, it always
319 // processes bool sub-expressions. bools are Copy and thus we
320 // can drop any temporaries in evaluation (read) order
321 // (with the exception of potentially failing let expressions).
322 // We achieve this by enclosing the operands in a terminating
323 // scope, both the LHS and the RHS.
324
325 // We optimize this a little in the presence of chains.
326 // Chains like a && b && c get lowered to AND(AND(a, b), c).
327 // In here, b and c are RHS, while a is the only LHS operand in
328 // that chain. This holds true for longer chains as well: the
329 // leading operand is always the only LHS operand that is not a
330 // binop itself. Putting a binop like AND(a, b) into a
331 // terminating scope is not useful, thus we only put the LHS
332 // into a terminating scope if it is not a binop.
333
334 let terminate_lhs = match left.kind {
335 // let expressions can create temporaries that live on
336 hir::ExprKind::Let(_) => false,
337 // binops already drop their temporaries, so there is no
338 // need to put them into a terminating scope.
339 // This is purely an optimization to reduce the number of
340 // terminating scopes.
341 hir::ExprKind::Binary(
342 source_map::Spanned { node: hir::BinOpKind::And | hir::BinOpKind::Or, .. },
343 ..,
344 ) => false,
345 // otherwise: mark it as terminating
346 _ => true,
347 };
348
349 // `Let` expressions (in a let-chain) shouldn't be terminating, as their temporaries
350 // should live beyond the immediate expression
351 let terminate_rhs = !matches!(right.kind, hir::ExprKind::Let(_));
352
353 resolve_expr(visitor, left, terminate_lhs);
354 resolve_expr(visitor, right, terminate_rhs);
355 }
356 // Manually recurse over closures, because they are nested bodies
357 // that share the parent environment. We handle const blocks in
358 // `visit_inline_const`.
359 hir::ExprKind::Closure(&hir::Closure { body, .. }) => {
360 let body = visitor.tcx.hir_body(body);
361 visitor.visit_body(body);
362 }
363 hir::ExprKind::AssignOp(_, left_expr, right_expr) => {
364 debug!(
365 "resolve_expr - enabling pessimistic_yield, was previously {}",
366 prev_pessimistic
367 );
368
369 let start_point = visitor.fixup_scopes.len();
370 visitor.pessimistic_yield = true;
371
372 // If the actual execution order turns out to be right-to-left,
373 // then we're fine. However, if the actual execution order is left-to-right,
374 // then we'll assign too low a count to any `yield` expressions
375 // we encounter in 'right_expression' - they should really occur after all of the
376 // expressions in 'left_expression'.
377 visitor.visit_expr(right_expr);
378 visitor.pessimistic_yield = prev_pessimistic;
379
380 debug!("resolve_expr - restoring pessimistic_yield to {}", prev_pessimistic);
381 visitor.visit_expr(left_expr);
382 debug!("resolve_expr - fixing up counts to {}", visitor.expr_and_pat_count);
383
384 // Remove and process any scopes pushed by the visitor
385 let target_scopes = visitor.fixup_scopes.drain(start_point..);
386
387 for scope in target_scopes {
388 let yield_data =
389 visitor.scope_tree.yield_in_scope.get_mut(&scope).unwrap().last_mut().unwrap();
390 let count = yield_data.expr_and_pat_count;
391 let span = yield_data.span;
392
393 // expr_and_pat_count never decreases. Since we recorded counts in yield_in_scope
394 // before walking the left-hand side, it should be impossible for the recorded
395 // count to be greater than the left-hand side count.
396 if count > visitor.expr_and_pat_count {
397 bug!(
398 "Encountered greater count {} at span {:?} - expected no greater than {}",
399 count,
400 span,
401 visitor.expr_and_pat_count
402 );
403 }
404 let new_count = visitor.expr_and_pat_count;
405 debug!(
406 "resolve_expr - increasing count for scope {:?} from {} to {} at span {:?}",
407 scope, count, new_count, span
408 );
409
410 yield_data.expr_and_pat_count = new_count;
411 }
412 }
413
414 hir::ExprKind::If(cond, then, Some(otherwise)) => {
415 let expr_cx = visitor.cx;
416 let data = if expr.span.at_least_rust_2024() {
417 ScopeData::IfThenRescope
418 } else {
419 ScopeData::IfThen
420 };
421 visitor.enter_scope(Scope { local_id: then.hir_id.local_id, data });
422 visitor.cx.var_parent = visitor.cx.parent;
423 visitor.visit_expr(cond);
424 resolve_expr(visitor, then, true);
425 visitor.cx = expr_cx;
426 resolve_expr(visitor, otherwise, true);
427 }
428
429 hir::ExprKind::If(cond, then, None) => {
430 let expr_cx = visitor.cx;
431 let data = if expr.span.at_least_rust_2024() {
432 ScopeData::IfThenRescope
433 } else {
434 ScopeData::IfThen
435 };
436 visitor.enter_scope(Scope { local_id: then.hir_id.local_id, data });
437 visitor.cx.var_parent = visitor.cx.parent;
438 visitor.visit_expr(cond);
439 resolve_expr(visitor, then, true);
440 visitor.cx = expr_cx;
441 }
442
443 hir::ExprKind::Loop(body, _, _, _) => {
444 resolve_block(visitor, body, true);
445 }
446
447 hir::ExprKind::DropTemps(expr) => {
448 // `DropTemps(expr)` does not denote a conditional scope.
449 // Rather, we want to achieve the same behavior as `{ let _t = expr; _t }`.
450 resolve_expr(visitor, expr, true);
451 }
452
453 _ => intravisit::walk_expr(visitor, expr),
454 }
455
456 visitor.expr_and_pat_count += 1;
457
458 debug!("resolve_expr post-increment {}, expr = {:?}", visitor.expr_and_pat_count, expr);
459
460 if let hir::ExprKind::Yield(_, source) = &expr.kind {
461 // Mark this expr's scope and all parent scopes as containing `yield`.
462 let mut scope = Scope { local_id: expr.hir_id.local_id, data: ScopeData::Node };
463 loop {
464 let data = YieldData {
465 span: expr.span,
466 expr_and_pat_count: visitor.expr_and_pat_count,
467 source: *source,
468 };
469 match visitor.scope_tree.yield_in_scope.get_mut(&scope) {
470 Some(yields) => yields.push(data),
471 None => {
472 visitor.scope_tree.yield_in_scope.insert(scope, vec![data]);
473 }
474 }
475
476 if visitor.pessimistic_yield {
477 debug!("resolve_expr in pessimistic_yield - marking scope {:?} for fixup", scope);
478 visitor.fixup_scopes.push(scope);
479 }
480
481 // Keep traversing up while we can.
482 match visitor.scope_tree.parent_map.get(&scope) {
483 // Don't cross from closure bodies to their parent.
484 Some(&superscope) => match superscope.data {
485 ScopeData::CallSite => break,
486 _ => scope = superscope,
487 },
488 None => break,
489 }
490 }
491 }
492
493 visitor.cx = prev_cx;
494}
495
496#[derive(Copy, Clone, PartialEq, Eq, Debug)]
497enum LetKind {
498 Regular,
499 Super,
500}
501
502fn resolve_local<'tcx>(
503 visitor: &mut ScopeResolutionVisitor<'tcx>,
504 pat: Option<&'tcx hir::Pat<'tcx>>,
505 init: Option<&'tcx hir::Expr<'tcx>>,
506 let_kind: LetKind,
507) {
508 debug!("resolve_local(pat={:?}, init={:?}, let_kind={:?})", pat, init, let_kind);
509
510 // As an exception to the normal rules governing temporary
511 // lifetimes, initializers in a let have a temporary lifetime
512 // of the enclosing block. This means that e.g., a program
513 // like the following is legal:
514 //
515 // let ref x = HashMap::new();
516 //
517 // Because the hash map will be freed in the enclosing block.
518 //
519 // We express the rules more formally based on 3 grammars (defined
520 // fully in the helpers below that implement them):
521 //
522 // 1. `E&`, which matches expressions like `&<rvalue>` that
523 // own a pointer into the stack.
524 //
525 // 2. `P&`, which matches patterns like `ref x` or `(ref x, ref
526 // y)` that produce ref bindings into the value they are
527 // matched against or something (at least partially) owned by
528 // the value they are matched against. (By partially owned,
529 // I mean that creating a binding into a ref-counted or managed value
530 // would still count.)
531 //
532 // 3. `ET`, which matches both rvalues like `foo()` as well as places
533 // based on rvalues like `foo().x[2].y`.
534 //
535 // A subexpression `<rvalue>` that appears in a let initializer
536 // `let pat [: ty] = expr` has an extended temporary lifetime if
537 // any of the following conditions are met:
538 //
539 // A. `pat` matches `P&` and `expr` matches `ET`
540 // (covers cases where `pat` creates ref bindings into an rvalue
541 // produced by `expr`)
542 // B. `ty` is a borrowed pointer and `expr` matches `ET`
543 // (covers cases where coercion creates a borrow)
544 // C. `expr` matches `E&`
545 // (covers cases `expr` borrows an rvalue that is then assigned
546 // to memory (at least partially) owned by the binding)
547 //
548 // Here are some examples hopefully giving an intuition where each
549 // rule comes into play and why:
550 //
551 // Rule A. `let (ref x, ref y) = (foo().x, 44)`. The rvalue `(22, 44)`
552 // would have an extended lifetime, but not `foo()`.
553 //
554 // Rule B. `let x = &foo().x`. The rvalue `foo()` would have extended
555 // lifetime.
556 //
557 // In some cases, multiple rules may apply (though not to the same
558 // rvalue). For example:
559 //
560 // let ref x = [&a(), &b()];
561 //
562 // Here, the expression `[...]` has an extended lifetime due to rule
563 // A, but the inner rvalues `a()` and `b()` have an extended lifetime
564 // due to rule C.
565
566 if let_kind == LetKind::Super {
567 if let Some(scope) = visitor.extended_super_lets.remove(&pat.unwrap().hir_id.local_id) {
568 // This expression was lifetime-extended by a parent let binding. E.g.
569 //
570 // let a = {
571 // super let b = temp();
572 // &b
573 // };
574 //
575 // (Which needs to behave exactly as: let a = &temp();)
576 //
577 // Processing of `let a` will have already decided to extend the lifetime of this
578 // `super let` to its own var_scope. We use that scope.
579 visitor.cx.var_parent = scope;
580 } else {
581 // This `super let` is not subject to lifetime extension from a parent let binding. E.g.
582 //
583 // identity({ super let x = temp(); &x }).method();
584 //
585 // (Which needs to behave exactly as: identity(&temp()).method();)
586 //
587 // Iterate up to the enclosing destruction scope to find the same scope that will also
588 // be used for the result of the block itself.
589 while let Some(s) = visitor.cx.var_parent {
590 let parent = visitor.scope_tree.parent_map.get(&s).cloned();
591 if let Some(Scope { data: ScopeData::Destruction, .. }) = parent {
592 break;
593 }
594 visitor.cx.var_parent = parent;
595 }
596 }
597 }
598
599 if let Some(expr) = init {
600 record_rvalue_scope_if_borrow_expr(visitor, expr, visitor.cx.var_parent);
601
602 if let Some(pat) = pat {
603 if is_binding_pat(pat) {
604 visitor.scope_tree.record_rvalue_candidate(
605 expr.hir_id,
606 RvalueCandidate {
607 target: expr.hir_id.local_id,
608 lifetime: visitor.cx.var_parent,
609 },
610 );
611 }
612 }
613 }
614
615 // Make sure we visit the initializer first, so expr_and_pat_count remains correct.
616 // The correct order, as shared between coroutine_interior, drop_ranges and intravisitor,
617 // is to walk initializer, followed by pattern bindings, finally followed by the `else` block.
618 if let Some(expr) = init {
619 visitor.visit_expr(expr);
620 }
621
622 if let Some(pat) = pat {
623 visitor.visit_pat(pat);
624 }
625
626 /// Returns `true` if `pat` match the `P&` non-terminal.
627 ///
628 /// ```text
629 /// P& = ref X
630 /// | StructName { ..., P&, ... }
631 /// | VariantName(..., P&, ...)
632 /// | [ ..., P&, ... ]
633 /// | ( ..., P&, ... )
634 /// | ... "|" P& "|" ...
635 /// | box P&
636 /// | P& if ...
637 /// ```
638 fn is_binding_pat(pat: &hir::Pat<'_>) -> bool {
639 // Note that the code below looks for *explicit* refs only, that is, it won't
640 // know about *implicit* refs as introduced in #42640.
641 //
642 // This is not a problem. For example, consider
643 //
644 // let (ref x, ref y) = (Foo { .. }, Bar { .. });
645 //
646 // Due to the explicit refs on the left hand side, the below code would signal
647 // that the temporary value on the right hand side should live until the end of
648 // the enclosing block (as opposed to being dropped after the let is complete).
649 //
650 // To create an implicit ref, however, you must have a borrowed value on the RHS
651 // already, as in this example (which won't compile before #42640):
652 //
653 // let Foo { x, .. } = &Foo { x: ..., ... };
654 //
655 // in place of
656 //
657 // let Foo { ref x, .. } = Foo { ... };
658 //
659 // In the former case (the implicit ref version), the temporary is created by the
660 // & expression, and its lifetime would be extended to the end of the block (due
661 // to a different rule, not the below code).
662 match pat.kind {
663 PatKind::Binding(hir::BindingMode(hir::ByRef::Yes(_), _), ..) => true,
664
665 PatKind::Struct(_, field_pats, _) => field_pats.iter().any(|fp| is_binding_pat(fp.pat)),
666
667 PatKind::Slice(pats1, pats2, pats3) => {
668 pats1.iter().any(|p| is_binding_pat(p))
669 || pats2.iter().any(|p| is_binding_pat(p))
670 || pats3.iter().any(|p| is_binding_pat(p))
671 }
672
673 PatKind::Or(subpats)
674 | PatKind::TupleStruct(_, subpats, _)
675 | PatKind::Tuple(subpats, _) => subpats.iter().any(|p| is_binding_pat(p)),
676
677 PatKind::Box(subpat) | PatKind::Deref(subpat) | PatKind::Guard(subpat, _) => {
678 is_binding_pat(subpat)
679 }
680
681 PatKind::Ref(_, _)
682 | PatKind::Binding(hir::BindingMode(hir::ByRef::No, _), ..)
683 | PatKind::Missing
684 | PatKind::Wild
685 | PatKind::Never
686 | PatKind::Expr(_)
687 | PatKind::Range(_, _, _)
688 | PatKind::Err(_) => false,
689 }
690 }
691
692 /// If `expr` matches the `E&` grammar, then records an extended rvalue scope as appropriate:
693 ///
694 /// ```text
695 /// E& = & ET
696 /// | StructName { ..., f: E&, ... }
697 /// | [ ..., E&, ... ]
698 /// | ( ..., E&, ... )
699 /// | {...; E&}
700 /// | { super let ... = E&; ... }
701 /// | if _ { ...; E& } else { ...; E& }
702 /// | match _ { ..., _ => E&, ... }
703 /// | box E&
704 /// | E& as ...
705 /// | ( E& )
706 /// ```
707 fn record_rvalue_scope_if_borrow_expr<'tcx>(
708 visitor: &mut ScopeResolutionVisitor<'tcx>,
709 expr: &hir::Expr<'_>,
710 blk_id: Option<Scope>,
711 ) {
712 match expr.kind {
713 hir::ExprKind::AddrOf(_, _, subexpr) => {
714 record_rvalue_scope_if_borrow_expr(visitor, subexpr, blk_id);
715 visitor.scope_tree.record_rvalue_candidate(
716 subexpr.hir_id,
717 RvalueCandidate { target: subexpr.hir_id.local_id, lifetime: blk_id },
718 );
719 }
720 hir::ExprKind::Struct(_, fields, _) => {
721 for field in fields {
722 record_rvalue_scope_if_borrow_expr(visitor, field.expr, blk_id);
723 }
724 }
725 hir::ExprKind::Array(subexprs) | hir::ExprKind::Tup(subexprs) => {
726 for subexpr in subexprs {
727 record_rvalue_scope_if_borrow_expr(visitor, subexpr, blk_id);
728 }
729 }
730 hir::ExprKind::Cast(subexpr, _) => {
731 record_rvalue_scope_if_borrow_expr(visitor, subexpr, blk_id)
732 }
733 hir::ExprKind::Block(block, _) => {
734 if let Some(subexpr) = block.expr {
735 record_rvalue_scope_if_borrow_expr(visitor, subexpr, blk_id);
736 }
737 for stmt in block.stmts {
738 if let hir::StmtKind::Let(local) = stmt.kind
739 && let Some(_) = local.super_
740 {
741 visitor.extended_super_lets.insert(local.pat.hir_id.local_id, blk_id);
742 }
743 }
744 }
745 hir::ExprKind::If(_, then_block, else_block) => {
746 record_rvalue_scope_if_borrow_expr(visitor, then_block, blk_id);
747 if let Some(else_block) = else_block {
748 record_rvalue_scope_if_borrow_expr(visitor, else_block, blk_id);
749 }
750 }
751 hir::ExprKind::Match(_, arms, _) => {
752 for arm in arms {
753 record_rvalue_scope_if_borrow_expr(visitor, arm.body, blk_id);
754 }
755 }
756 hir::ExprKind::Call(func, args) => {
757 // Recurse into tuple constructors, such as `Some(&temp())`.
758 //
759 // That way, there is no difference between `Some(..)` and `Some { 0: .. }`,
760 // even though the former is syntactically a function call.
761 if let hir::ExprKind::Path(path) = &func.kind
762 && let hir::QPath::Resolved(None, path) = path
763 && let Res::SelfCtor(_) | Res::Def(DefKind::Ctor(_, CtorKind::Fn), _) = path.res
764 {
765 for arg in args {
766 record_rvalue_scope_if_borrow_expr(visitor, arg, blk_id);
767 }
768 }
769 }
770 _ => {}
771 }
772 }
773}
774
775impl<'tcx> ScopeResolutionVisitor<'tcx> {
776 /// Records the current parent (if any) as the parent of `child_scope`.
777 fn record_child_scope(&mut self, child_scope: Scope) {
778 let parent = self.cx.parent;
779 self.scope_tree.record_scope_parent(child_scope, parent);
780 }
781
782 /// Records the current parent (if any) as the parent of `child_scope`,
783 /// and sets `child_scope` as the new current parent.
784 fn enter_scope(&mut self, child_scope: Scope) {
785 self.record_child_scope(child_scope);
786 self.cx.parent = Some(child_scope);
787 }
788
789 fn enter_node_scope_with_dtor(&mut self, id: hir::ItemLocalId, terminating: bool) {
790 // If node was previously marked as a terminating scope during the
791 // recursive visit of its parent node in the HIR, then we need to
792 // account for the destruction scope representing the scope of
793 // the destructors that run immediately after it completes.
794 if terminating {
795 self.enter_scope(Scope { local_id: id, data: ScopeData::Destruction });
796 }
797 self.enter_scope(Scope { local_id: id, data: ScopeData::Node });
798 }
799
800 fn enter_body(&mut self, hir_id: hir::HirId, f: impl FnOnce(&mut Self)) {
801 // Save all state that is specific to the outer function
802 // body. These will be restored once down below, once we've
803 // visited the body.
804 let outer_ec = mem::replace(&mut self.expr_and_pat_count, 0);
805 let outer_cx = self.cx;
806 // The 'pessimistic yield' flag is set to true when we are
807 // processing a `+=` statement and have to make pessimistic
808 // control flow assumptions. This doesn't apply to nested
809 // bodies within the `+=` statements. See #69307.
810 let outer_pessimistic_yield = mem::replace(&mut self.pessimistic_yield, false);
811
812 self.enter_scope(Scope { local_id: hir_id.local_id, data: ScopeData::CallSite });
813 self.enter_scope(Scope { local_id: hir_id.local_id, data: ScopeData::Arguments });
814
815 f(self);
816
817 // Restore context we had at the start.
818 self.expr_and_pat_count = outer_ec;
819 self.cx = outer_cx;
820 self.pessimistic_yield = outer_pessimistic_yield;
821 }
822}
823
824impl<'tcx> Visitor<'tcx> for ScopeResolutionVisitor<'tcx> {
825 fn visit_block(&mut self, b: &'tcx Block<'tcx>) {
826 resolve_block(self, b, false);
827 }
828
829 fn visit_body(&mut self, body: &hir::Body<'tcx>) {
830 let body_id = body.id();
831 let owner_id = self.tcx.hir_body_owner_def_id(body_id);
832
833 debug!(
834 "visit_body(id={:?}, span={:?}, body.id={:?}, cx.parent={:?})",
835 owner_id,
836 self.tcx.sess.source_map().span_to_diagnostic_string(body.value.span),
837 body_id,
838 self.cx.parent
839 );
840
841 self.enter_body(body.value.hir_id, |this| {
842 if this.tcx.hir_body_owner_kind(owner_id).is_fn_or_closure() {
843 // The arguments and `self` are parented to the fn.
844 this.cx.var_parent = this.cx.parent;
845 for param in body.params {
846 this.visit_pat(param.pat);
847 }
848
849 // The body of the every fn is a root scope.
850 resolve_expr(this, body.value, true);
851 } else {
852 // Only functions have an outer terminating (drop) scope, while
853 // temporaries in constant initializers may be 'static, but only
854 // according to rvalue lifetime semantics, using the same
855 // syntactical rules used for let initializers.
856 //
857 // e.g., in `let x = &f();`, the temporary holding the result from
858 // the `f()` call lives for the entirety of the surrounding block.
859 //
860 // Similarly, `const X: ... = &f();` would have the result of `f()`
861 // live for `'static`, implying (if Drop restrictions on constants
862 // ever get lifted) that the value *could* have a destructor, but
863 // it'd get leaked instead of the destructor running during the
864 // evaluation of `X` (if at all allowed by CTFE).
865 //
866 // However, `const Y: ... = g(&f());`, like `let y = g(&f());`,
867 // would *not* let the `f()` temporary escape into an outer scope
868 // (i.e., `'static`), which means that after `g` returns, it drops,
869 // and all the associated destruction scope rules apply.
870 this.cx.var_parent = None;
871 this.enter_scope(Scope {
872 local_id: body.value.hir_id.local_id,
873 data: ScopeData::Destruction,
874 });
875 resolve_local(this, None, Some(body.value), LetKind::Regular);
876 }
877 })
878 }
879
880 fn visit_arm(&mut self, a: &'tcx Arm<'tcx>) {
881 resolve_arm(self, a);
882 }
883 fn visit_pat(&mut self, p: &'tcx Pat<'tcx>) {
884 resolve_pat(self, p);
885 }
886 fn visit_stmt(&mut self, s: &'tcx Stmt<'tcx>) {
887 resolve_stmt(self, s);
888 }
889 fn visit_expr(&mut self, ex: &'tcx Expr<'tcx>) {
890 resolve_expr(self, ex, false);
891 }
892 fn visit_local(&mut self, l: &'tcx LetStmt<'tcx>) {
893 let let_kind = match l.super_ {
894 Some(_) => LetKind::Super,
895 None => LetKind::Regular,
896 };
897 resolve_local(self, Some(l.pat), l.init, let_kind);
898 }
899 fn visit_inline_const(&mut self, c: &'tcx hir::ConstBlock) {
900 let body = self.tcx.hir_body(c.body);
901 self.visit_body(body);
902 }
903}
904
905/// Per-body `region::ScopeTree`. The `DefId` should be the owner `DefId` for the body;
906/// in the case of closures, this will be redirected to the enclosing function.
907///
908/// Performance: This is a query rather than a simple function to enable
909/// re-use in incremental scenarios. We may sometimes need to rerun the
910/// type checker even when the HIR hasn't changed, and in those cases
911/// we can avoid reconstructing the region scope tree.
912pub(crate) fn region_scope_tree(tcx: TyCtxt<'_>, def_id: DefId) -> &ScopeTree {
913 let typeck_root_def_id = tcx.typeck_root_def_id(def_id);
914 if typeck_root_def_id != def_id {
915 return tcx.region_scope_tree(typeck_root_def_id);
916 }
917
918 let scope_tree = if let Some(body) = tcx.hir_maybe_body_owned_by(def_id.expect_local()) {
919 let mut visitor = ScopeResolutionVisitor {
920 tcx,
921 scope_tree: ScopeTree::default(),
922 expr_and_pat_count: 0,
923 cx: Context { parent: None, var_parent: None },
924 pessimistic_yield: false,
925 fixup_scopes: vec![],
926 extended_super_lets: Default::default(),
927 };
928
929 visitor.scope_tree.root_body = Some(body.value.hir_id);
930 visitor.visit_body(&body);
931 visitor.scope_tree
932 } else {
933 ScopeTree::default()
934 };
935
936 tcx.arena.alloc(scope_tree)
937}