1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
//! Generalized type folding mechanism. The setup is a bit convoluted
//! but allows for convenient usage. Let T be an instance of some
//! "foldable type" (one which implements `TypeFoldable`) and F be an
//! instance of a "folder" (a type which implements `TypeFolder`). Then
//! the setup is intended to be:
//!
//!     T.fold_with(F) --calls--> F.fold_T(T) --calls--> T.super_fold_with(F)
//!
//! This way, when you define a new folder F, you can override
//! `fold_T()` to customize the behavior, and invoke `T.super_fold_with()`
//! to get the original behavior. Meanwhile, to actually fold
//! something, you can just write `T.fold_with(F)`, which is
//! convenient. (Note that `fold_with` will also transparently handle
//! things like a `Vec<T>` where T is foldable and so on.)
//!
//! In this ideal setup, the only function that actually *does*
//! anything is `T.super_fold_with()`, which traverses the type `T`.
//! Moreover, `T.super_fold_with()` should only ever call `T.fold_with()`.
//!
//! In some cases, we follow a degenerate pattern where we do not have
//! a `fold_T` method. Instead, `T.fold_with` traverses the structure directly.
//! This is suboptimal because the behavior cannot be overridden, but it's
//! much less work to implement. If you ever *do* need an override that
//! doesn't exist, it's not hard to convert the degenerate pattern into the
//! proper thing.
//!
//! A `TypeFoldable` T can also be visited by a `TypeVisitor` V using similar setup:
//!
//!     T.visit_with(V) --calls--> V.visit_T(T) --calls--> T.super_visit_with(V).
//!
//! These methods return true to indicate that the visitor has found what it is
//! looking for, and does not need to visit anything else.

use crate::ty::structural_impls::PredicateVisitor;
use crate::ty::{self, flags::FlagComputation, Binder, Ty, TyCtxt, TypeFlags};
use rustc_hir as hir;
use rustc_hir::def_id::DefId;

use rustc_data_structures::fx::FxHashSet;
use std::collections::BTreeMap;
use std::fmt;

/// This trait is implemented for every type that can be folded.
/// Basically, every type that has a corresponding method in `TypeFolder`.
///
/// To implement this conveniently, use the derive macro located in librustc_macros.
pub trait TypeFoldable<'tcx>: fmt::Debug + Clone {
    fn super_fold_with<F: TypeFolder<'tcx>>(&self, folder: &mut F) -> Self;
    fn fold_with<F: TypeFolder<'tcx>>(&self, folder: &mut F) -> Self {
        self.super_fold_with(folder)
    }

    fn super_visit_with<V: TypeVisitor<'tcx>>(&self, visitor: &mut V) -> bool;
    fn visit_with<V: TypeVisitor<'tcx>>(&self, visitor: &mut V) -> bool {
        self.super_visit_with(visitor)
    }

    /// Returns `true` if `self` has any late-bound regions that are either
    /// bound by `binder` or bound by some binder outside of `binder`.
    /// If `binder` is `ty::INNERMOST`, this indicates whether
    /// there are any late-bound regions that appear free.
    fn has_vars_bound_at_or_above(&self, binder: ty::DebruijnIndex) -> bool {
        self.visit_with(&mut HasEscapingVarsVisitor { outer_index: binder })
    }

    /// Returns `true` if this `self` has any regions that escape `binder` (and
    /// hence are not bound by it).
    fn has_vars_bound_above(&self, binder: ty::DebruijnIndex) -> bool {
        self.has_vars_bound_at_or_above(binder.shifted_in(1))
    }

    fn has_escaping_bound_vars(&self) -> bool {
        self.has_vars_bound_at_or_above(ty::INNERMOST)
    }

    fn has_type_flags(&self, flags: TypeFlags) -> bool {
        self.visit_with(&mut HasTypeFlagsVisitor { flags })
    }
    fn has_projections(&self) -> bool {
        self.has_type_flags(TypeFlags::HAS_PROJECTION)
    }
    fn has_opaque_types(&self) -> bool {
        self.has_type_flags(TypeFlags::HAS_TY_OPAQUE)
    }
    fn references_error(&self) -> bool {
        self.has_type_flags(TypeFlags::HAS_ERROR)
    }
    fn has_param_types_or_consts(&self) -> bool {
        self.has_type_flags(TypeFlags::HAS_TY_PARAM | TypeFlags::HAS_CT_PARAM)
    }
    fn has_infer_regions(&self) -> bool {
        self.has_type_flags(TypeFlags::HAS_RE_INFER)
    }
    fn has_infer_types(&self) -> bool {
        self.has_type_flags(TypeFlags::HAS_TY_INFER)
    }
    fn has_infer_types_or_consts(&self) -> bool {
        self.has_type_flags(TypeFlags::HAS_TY_INFER | TypeFlags::HAS_CT_INFER)
    }
    fn has_infer_consts(&self) -> bool {
        self.has_type_flags(TypeFlags::HAS_CT_INFER)
    }
    fn needs_infer(&self) -> bool {
        self.has_type_flags(TypeFlags::NEEDS_INFER)
    }
    fn has_placeholders(&self) -> bool {
        self.has_type_flags(
            TypeFlags::HAS_RE_PLACEHOLDER
                | TypeFlags::HAS_TY_PLACEHOLDER
                | TypeFlags::HAS_CT_PLACEHOLDER,
        )
    }
    fn needs_subst(&self) -> bool {
        self.has_type_flags(TypeFlags::NEEDS_SUBST)
    }
    fn has_re_placeholders(&self) -> bool {
        self.has_type_flags(TypeFlags::HAS_RE_PLACEHOLDER)
    }
    /// "Free" regions in this context means that it has any region
    /// that is not (a) erased or (b) late-bound.
    fn has_free_regions(&self) -> bool {
        self.has_type_flags(TypeFlags::HAS_FREE_REGIONS)
    }

    fn has_erased_regions(&self) -> bool {
        self.has_type_flags(TypeFlags::HAS_RE_ERASED)
    }

    /// True if there are any un-erased free regions.
    fn has_erasable_regions(&self) -> bool {
        self.has_type_flags(TypeFlags::HAS_FREE_REGIONS)
    }

    /// Indicates whether this value references only 'global'
    /// generic parameters that are the same regardless of what fn we are
    /// in. This is used for caching.
    fn is_global(&self) -> bool {
        !self.has_type_flags(TypeFlags::HAS_FREE_LOCAL_NAMES)
    }

    /// True if there are any late-bound regions
    fn has_late_bound_regions(&self) -> bool {
        self.has_type_flags(TypeFlags::HAS_RE_LATE_BOUND)
    }

    /// Indicates whether this value still has parameters/placeholders/inference variables
    /// which could be replaced later, in a way that would change the results of `impl`
    /// specialization.
    fn still_further_specializable(&self) -> bool {
        self.has_type_flags(TypeFlags::STILL_FURTHER_SPECIALIZABLE)
    }

    /// Does this value contain closures, generators or functions such that it may require
    /// polymorphization?
    fn may_polymorphize(&self) -> bool {
        self.has_type_flags(TypeFlags::MAY_POLYMORPHIZE)
    }

    /// A visitor that does not recurse into types, works like `fn walk_shallow` in `Ty`.
    fn visit_tys_shallow(&self, visit: impl FnMut(Ty<'tcx>) -> bool) -> bool {
        pub struct Visitor<F>(F);

        impl<'tcx, F: FnMut(Ty<'tcx>) -> bool> TypeVisitor<'tcx> for Visitor<F> {
            fn visit_ty(&mut self, ty: Ty<'tcx>) -> bool {
                self.0(ty)
            }
        }

        self.visit_with(&mut Visitor(visit))
    }
}

impl TypeFoldable<'tcx> for hir::Constness {
    fn super_fold_with<F: TypeFolder<'tcx>>(&self, _: &mut F) -> Self {
        *self
    }
    fn super_visit_with<V: TypeVisitor<'tcx>>(&self, _: &mut V) -> bool {
        false
    }
}

/// The `TypeFolder` trait defines the actual *folding*. There is a
/// method defined for every foldable type. Each of these has a
/// default implementation that does an "identity" fold. Within each
/// identity fold, it should invoke `foo.fold_with(self)` to fold each
/// sub-item.
pub trait TypeFolder<'tcx>: Sized {
    fn tcx<'a>(&'a self) -> TyCtxt<'tcx>;

    fn fold_binder<T>(&mut self, t: &Binder<T>) -> Binder<T>
    where
        T: TypeFoldable<'tcx>,
    {
        t.super_fold_with(self)
    }

    fn fold_ty(&mut self, t: Ty<'tcx>) -> Ty<'tcx> {
        t.super_fold_with(self)
    }

    fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> {
        r.super_fold_with(self)
    }

    fn fold_const(&mut self, c: &'tcx ty::Const<'tcx>) -> &'tcx ty::Const<'tcx> {
        c.super_fold_with(self)
    }
}

pub trait TypeVisitor<'tcx>: Sized {
    fn visit_binder<T: TypeFoldable<'tcx>>(&mut self, t: &Binder<T>) -> bool {
        t.super_visit_with(self)
    }

    fn visit_ty(&mut self, t: Ty<'tcx>) -> bool {
        t.super_visit_with(self)
    }

    fn visit_region(&mut self, r: ty::Region<'tcx>) -> bool {
        r.super_visit_with(self)
    }

    fn visit_const(&mut self, c: &'tcx ty::Const<'tcx>) -> bool {
        c.super_visit_with(self)
    }
}

///////////////////////////////////////////////////////////////////////////
// Some sample folders

pub struct BottomUpFolder<'tcx, F, G, H>
where
    F: FnMut(Ty<'tcx>) -> Ty<'tcx>,
    G: FnMut(ty::Region<'tcx>) -> ty::Region<'tcx>,
    H: FnMut(&'tcx ty::Const<'tcx>) -> &'tcx ty::Const<'tcx>,
{
    pub tcx: TyCtxt<'tcx>,
    pub ty_op: F,
    pub lt_op: G,
    pub ct_op: H,
}

impl<'tcx, F, G, H> TypeFolder<'tcx> for BottomUpFolder<'tcx, F, G, H>
where
    F: FnMut(Ty<'tcx>) -> Ty<'tcx>,
    G: FnMut(ty::Region<'tcx>) -> ty::Region<'tcx>,
    H: FnMut(&'tcx ty::Const<'tcx>) -> &'tcx ty::Const<'tcx>,
{
    fn tcx<'b>(&'b self) -> TyCtxt<'tcx> {
        self.tcx
    }

    fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
        let t = ty.super_fold_with(self);
        (self.ty_op)(t)
    }

    fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> {
        let r = r.super_fold_with(self);
        (self.lt_op)(r)
    }

    fn fold_const(&mut self, ct: &'tcx ty::Const<'tcx>) -> &'tcx ty::Const<'tcx> {
        let ct = ct.super_fold_with(self);
        (self.ct_op)(ct)
    }
}

///////////////////////////////////////////////////////////////////////////
// Region folder

impl<'tcx> TyCtxt<'tcx> {
    /// Folds the escaping and free regions in `value` using `f`, and
    /// sets `skipped_regions` to true if any late-bound region was found
    /// and skipped.
    pub fn fold_regions<T>(
        self,
        value: &T,
        skipped_regions: &mut bool,
        mut f: impl FnMut(ty::Region<'tcx>, ty::DebruijnIndex) -> ty::Region<'tcx>,
    ) -> T
    where
        T: TypeFoldable<'tcx>,
    {
        value.fold_with(&mut RegionFolder::new(self, skipped_regions, &mut f))
    }

    /// Invoke `callback` on every region appearing free in `value`.
    pub fn for_each_free_region(
        self,
        value: &impl TypeFoldable<'tcx>,
        mut callback: impl FnMut(ty::Region<'tcx>),
    ) {
        self.any_free_region_meets(value, |r| {
            callback(r);
            false
        });
    }

    /// Returns `true` if `callback` returns true for every region appearing free in `value`.
    pub fn all_free_regions_meet(
        self,
        value: &impl TypeFoldable<'tcx>,
        mut callback: impl FnMut(ty::Region<'tcx>) -> bool,
    ) -> bool {
        !self.any_free_region_meets(value, |r| !callback(r))
    }

    /// Returns `true` if `callback` returns true for some region appearing free in `value`.
    pub fn any_free_region_meets(
        self,
        value: &impl TypeFoldable<'tcx>,
        callback: impl FnMut(ty::Region<'tcx>) -> bool,
    ) -> bool {
        return value.visit_with(&mut RegionVisitor { outer_index: ty::INNERMOST, callback });

        struct RegionVisitor<F> {
            /// The index of a binder *just outside* the things we have
            /// traversed. If we encounter a bound region bound by this
            /// binder or one outer to it, it appears free. Example:
            ///
            /// ```
            ///    for<'a> fn(for<'b> fn(), T)
            /// ^          ^          ^     ^
            /// |          |          |     | here, would be shifted in 1
            /// |          |          | here, would be shifted in 2
            /// |          | here, would be `INNERMOST` shifted in by 1
            /// | here, initially, binder would be `INNERMOST`
            /// ```
            ///
            /// You see that, initially, *any* bound value is free,
            /// because we've not traversed any binders. As we pass
            /// through a binder, we shift the `outer_index` by 1 to
            /// account for the new binder that encloses us.
            outer_index: ty::DebruijnIndex,
            callback: F,
        }

        impl<'tcx, F> TypeVisitor<'tcx> for RegionVisitor<F>
        where
            F: FnMut(ty::Region<'tcx>) -> bool,
        {
            fn visit_binder<T: TypeFoldable<'tcx>>(&mut self, t: &Binder<T>) -> bool {
                self.outer_index.shift_in(1);
                let result = t.as_ref().skip_binder().visit_with(self);
                self.outer_index.shift_out(1);
                result
            }

            fn visit_region(&mut self, r: ty::Region<'tcx>) -> bool {
                match *r {
                    ty::ReLateBound(debruijn, _) if debruijn < self.outer_index => {
                        false // ignore bound regions, keep visiting
                    }
                    _ => (self.callback)(r),
                }
            }

            fn visit_ty(&mut self, ty: Ty<'tcx>) -> bool {
                // We're only interested in types involving regions
                if ty.flags.intersects(TypeFlags::HAS_FREE_REGIONS) {
                    ty.super_visit_with(self)
                } else {
                    false // keep visiting
                }
            }
        }
    }
}

/// Folds over the substructure of a type, visiting its component
/// types and all regions that occur *free* within it.
///
/// That is, `Ty` can contain function or method types that bind
/// regions at the call site (`ReLateBound`), and occurrences of
/// regions (aka "lifetimes") that are bound within a type are not
/// visited by this folder; only regions that occur free will be
/// visited by `fld_r`.

pub struct RegionFolder<'a, 'tcx> {
    tcx: TyCtxt<'tcx>,
    skipped_regions: &'a mut bool,

    /// Stores the index of a binder *just outside* the stuff we have
    /// visited.  So this begins as INNERMOST; when we pass through a
    /// binder, it is incremented (via `shift_in`).
    current_index: ty::DebruijnIndex,

    /// Callback invokes for each free region. The `DebruijnIndex`
    /// points to the binder *just outside* the ones we have passed
    /// through.
    fold_region_fn:
        &'a mut (dyn FnMut(ty::Region<'tcx>, ty::DebruijnIndex) -> ty::Region<'tcx> + 'a),
}

impl<'a, 'tcx> RegionFolder<'a, 'tcx> {
    #[inline]
    pub fn new(
        tcx: TyCtxt<'tcx>,
        skipped_regions: &'a mut bool,
        fold_region_fn: &'a mut dyn FnMut(ty::Region<'tcx>, ty::DebruijnIndex) -> ty::Region<'tcx>,
    ) -> RegionFolder<'a, 'tcx> {
        RegionFolder { tcx, skipped_regions, current_index: ty::INNERMOST, fold_region_fn }
    }
}

impl<'a, 'tcx> TypeFolder<'tcx> for RegionFolder<'a, 'tcx> {
    fn tcx<'b>(&'b self) -> TyCtxt<'tcx> {
        self.tcx
    }

    fn fold_binder<T: TypeFoldable<'tcx>>(&mut self, t: &ty::Binder<T>) -> ty::Binder<T> {
        self.current_index.shift_in(1);
        let t = t.super_fold_with(self);
        self.current_index.shift_out(1);
        t
    }

    fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> {
        match *r {
            ty::ReLateBound(debruijn, _) if debruijn < self.current_index => {
                debug!(
                    "RegionFolder.fold_region({:?}) skipped bound region (current index={:?})",
                    r, self.current_index
                );
                *self.skipped_regions = true;
                r
            }
            _ => {
                debug!(
                    "RegionFolder.fold_region({:?}) folding free region (current_index={:?})",
                    r, self.current_index
                );
                (self.fold_region_fn)(r, self.current_index)
            }
        }
    }
}

///////////////////////////////////////////////////////////////////////////
// Bound vars replacer

/// Replaces the escaping bound vars (late bound regions or bound types) in a type.
struct BoundVarReplacer<'a, 'tcx> {
    tcx: TyCtxt<'tcx>,

    /// As with `RegionFolder`, represents the index of a binder *just outside*
    /// the ones we have visited.
    current_index: ty::DebruijnIndex,

    fld_r: &'a mut (dyn FnMut(ty::BoundRegion) -> ty::Region<'tcx> + 'a),
    fld_t: &'a mut (dyn FnMut(ty::BoundTy) -> Ty<'tcx> + 'a),
    fld_c: &'a mut (dyn FnMut(ty::BoundVar, Ty<'tcx>) -> &'tcx ty::Const<'tcx> + 'a),
}

impl<'a, 'tcx> BoundVarReplacer<'a, 'tcx> {
    fn new<F, G, H>(tcx: TyCtxt<'tcx>, fld_r: &'a mut F, fld_t: &'a mut G, fld_c: &'a mut H) -> Self
    where
        F: FnMut(ty::BoundRegion) -> ty::Region<'tcx>,
        G: FnMut(ty::BoundTy) -> Ty<'tcx>,
        H: FnMut(ty::BoundVar, Ty<'tcx>) -> &'tcx ty::Const<'tcx>,
    {
        BoundVarReplacer { tcx, current_index: ty::INNERMOST, fld_r, fld_t, fld_c }
    }
}

impl<'a, 'tcx> TypeFolder<'tcx> for BoundVarReplacer<'a, 'tcx> {
    fn tcx<'b>(&'b self) -> TyCtxt<'tcx> {
        self.tcx
    }

    fn fold_binder<T: TypeFoldable<'tcx>>(&mut self, t: &ty::Binder<T>) -> ty::Binder<T> {
        self.current_index.shift_in(1);
        let t = t.super_fold_with(self);
        self.current_index.shift_out(1);
        t
    }

    fn fold_ty(&mut self, t: Ty<'tcx>) -> Ty<'tcx> {
        match t.kind {
            ty::Bound(debruijn, bound_ty) => {
                if debruijn == self.current_index {
                    let fld_t = &mut self.fld_t;
                    let ty = fld_t(bound_ty);
                    ty::fold::shift_vars(self.tcx, &ty, self.current_index.as_u32())
                } else {
                    t
                }
            }
            _ => {
                if !t.has_vars_bound_at_or_above(self.current_index) {
                    // Nothing more to substitute.
                    t
                } else {
                    t.super_fold_with(self)
                }
            }
        }
    }

    fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> {
        match *r {
            ty::ReLateBound(debruijn, br) if debruijn == self.current_index => {
                let fld_r = &mut self.fld_r;
                let region = fld_r(br);
                if let ty::ReLateBound(debruijn1, br) = *region {
                    // If the callback returns a late-bound region,
                    // that region should always use the INNERMOST
                    // debruijn index. Then we adjust it to the
                    // correct depth.
                    assert_eq!(debruijn1, ty::INNERMOST);
                    self.tcx.mk_region(ty::ReLateBound(debruijn, br))
                } else {
                    region
                }
            }
            _ => r,
        }
    }

    fn fold_const(&mut self, ct: &'tcx ty::Const<'tcx>) -> &'tcx ty::Const<'tcx> {
        if let ty::Const { val: ty::ConstKind::Bound(debruijn, bound_const), ty } = *ct {
            if debruijn == self.current_index {
                let fld_c = &mut self.fld_c;
                let ct = fld_c(bound_const, ty);
                ty::fold::shift_vars(self.tcx, &ct, self.current_index.as_u32())
            } else {
                ct
            }
        } else {
            if !ct.has_vars_bound_at_or_above(self.current_index) {
                // Nothing more to substitute.
                ct
            } else {
                ct.super_fold_with(self)
            }
        }
    }
}

impl<'tcx> TyCtxt<'tcx> {
    /// Replaces all regions bound by the given `Binder` with the
    /// results returned by the closure; the closure is expected to
    /// return a free region (relative to this binder), and hence the
    /// binder is removed in the return type. The closure is invoked
    /// once for each unique `BoundRegion`; multiple references to the
    /// same `BoundRegion` will reuse the previous result. A map is
    /// returned at the end with each bound region and the free region
    /// that replaced it.
    ///
    /// This method only replaces late bound regions and the result may still
    /// contain escaping bound types.
    pub fn replace_late_bound_regions<T, F>(
        self,
        value: &Binder<T>,
        fld_r: F,
    ) -> (T, BTreeMap<ty::BoundRegion, ty::Region<'tcx>>)
    where
        F: FnMut(ty::BoundRegion) -> ty::Region<'tcx>,
        T: TypeFoldable<'tcx>,
    {
        // identity for bound types and consts
        let fld_t = |bound_ty| self.mk_ty(ty::Bound(ty::INNERMOST, bound_ty));
        let fld_c = |bound_ct, ty| {
            self.mk_const(ty::Const { val: ty::ConstKind::Bound(ty::INNERMOST, bound_ct), ty })
        };
        self.replace_escaping_bound_vars(value.as_ref().skip_binder(), fld_r, fld_t, fld_c)
    }

    /// Replaces all escaping bound vars. The `fld_r` closure replaces escaping
    /// bound regions; the `fld_t` closure replaces escaping bound types and the `fld_c`
    /// closure replaces escaping bound consts.
    pub fn replace_escaping_bound_vars<T, F, G, H>(
        self,
        value: &T,
        mut fld_r: F,
        mut fld_t: G,
        mut fld_c: H,
    ) -> (T, BTreeMap<ty::BoundRegion, ty::Region<'tcx>>)
    where
        F: FnMut(ty::BoundRegion) -> ty::Region<'tcx>,
        G: FnMut(ty::BoundTy) -> Ty<'tcx>,
        H: FnMut(ty::BoundVar, Ty<'tcx>) -> &'tcx ty::Const<'tcx>,
        T: TypeFoldable<'tcx>,
    {
        use rustc_data_structures::fx::FxHashMap;

        let mut region_map = BTreeMap::new();
        let mut type_map = FxHashMap::default();
        let mut const_map = FxHashMap::default();

        if !value.has_escaping_bound_vars() {
            (value.clone(), region_map)
        } else {
            let mut real_fld_r = |br| *region_map.entry(br).or_insert_with(|| fld_r(br));

            let mut real_fld_t =
                |bound_ty| *type_map.entry(bound_ty).or_insert_with(|| fld_t(bound_ty));

            let mut real_fld_c =
                |bound_ct, ty| *const_map.entry(bound_ct).or_insert_with(|| fld_c(bound_ct, ty));

            let mut replacer =
                BoundVarReplacer::new(self, &mut real_fld_r, &mut real_fld_t, &mut real_fld_c);
            let result = value.fold_with(&mut replacer);
            (result, region_map)
        }
    }

    /// Replaces all types or regions bound by the given `Binder`. The `fld_r`
    /// closure replaces bound regions while the `fld_t` closure replaces bound
    /// types.
    pub fn replace_bound_vars<T, F, G, H>(
        self,
        value: &Binder<T>,
        fld_r: F,
        fld_t: G,
        fld_c: H,
    ) -> (T, BTreeMap<ty::BoundRegion, ty::Region<'tcx>>)
    where
        F: FnMut(ty::BoundRegion) -> ty::Region<'tcx>,
        G: FnMut(ty::BoundTy) -> Ty<'tcx>,
        H: FnMut(ty::BoundVar, Ty<'tcx>) -> &'tcx ty::Const<'tcx>,
        T: TypeFoldable<'tcx>,
    {
        self.replace_escaping_bound_vars(value.as_ref().skip_binder(), fld_r, fld_t, fld_c)
    }

    /// Replaces any late-bound regions bound in `value` with
    /// free variants attached to `all_outlive_scope`.
    pub fn liberate_late_bound_regions<T>(
        &self,
        all_outlive_scope: DefId,
        value: &ty::Binder<T>,
    ) -> T
    where
        T: TypeFoldable<'tcx>,
    {
        self.replace_late_bound_regions(value, |br| {
            self.mk_region(ty::ReFree(ty::FreeRegion {
                scope: all_outlive_scope,
                bound_region: br,
            }))
        })
        .0
    }

    /// Returns a set of all late-bound regions that are constrained
    /// by `value`, meaning that if we instantiate those LBR with
    /// variables and equate `value` with something else, those
    /// variables will also be equated.
    pub fn collect_constrained_late_bound_regions<T>(
        &self,
        value: &Binder<T>,
    ) -> FxHashSet<ty::BoundRegion>
    where
        T: TypeFoldable<'tcx>,
    {
        self.collect_late_bound_regions(value, true)
    }

    /// Returns a set of all late-bound regions that appear in `value` anywhere.
    pub fn collect_referenced_late_bound_regions<T>(
        &self,
        value: &Binder<T>,
    ) -> FxHashSet<ty::BoundRegion>
    where
        T: TypeFoldable<'tcx>,
    {
        self.collect_late_bound_regions(value, false)
    }

    fn collect_late_bound_regions<T>(
        &self,
        value: &Binder<T>,
        just_constraint: bool,
    ) -> FxHashSet<ty::BoundRegion>
    where
        T: TypeFoldable<'tcx>,
    {
        let mut collector = LateBoundRegionsCollector::new(just_constraint);
        let result = value.as_ref().skip_binder().visit_with(&mut collector);
        assert!(!result); // should never have stopped early
        collector.regions
    }

    /// Replaces any late-bound regions bound in `value` with `'erased`. Useful in codegen but also
    /// method lookup and a few other places where precise region relationships are not required.
    pub fn erase_late_bound_regions<T>(self, value: &Binder<T>) -> T
    where
        T: TypeFoldable<'tcx>,
    {
        self.replace_late_bound_regions(value, |_| self.lifetimes.re_erased).0
    }

    /// Rewrite any late-bound regions so that they are anonymous. Region numbers are
    /// assigned starting at 1 and increasing monotonically in the order traversed
    /// by the fold operation.
    ///
    /// The chief purpose of this function is to canonicalize regions so that two
    /// `FnSig`s or `TraitRef`s which are equivalent up to region naming will become
    /// structurally identical. For example, `for<'a, 'b> fn(&'a isize, &'b isize)` and
    /// `for<'a, 'b> fn(&'b isize, &'a isize)` will become identical after anonymization.
    pub fn anonymize_late_bound_regions<T>(self, sig: &Binder<T>) -> Binder<T>
    where
        T: TypeFoldable<'tcx>,
    {
        let mut counter = 0;
        Binder::bind(
            self.replace_late_bound_regions(sig, |_| {
                counter += 1;
                self.mk_region(ty::ReLateBound(ty::INNERMOST, ty::BrAnon(counter)))
            })
            .0,
        )
    }
}

///////////////////////////////////////////////////////////////////////////
// Shifter
//
// Shifts the De Bruijn indices on all escaping bound vars by a
// fixed amount. Useful in substitution or when otherwise introducing
// a binding level that is not intended to capture the existing bound
// vars. See comment on `shift_vars_through_binders` method in
// `subst.rs` for more details.

enum Direction {
    In,
    Out,
}

struct Shifter<'tcx> {
    tcx: TyCtxt<'tcx>,
    current_index: ty::DebruijnIndex,
    amount: u32,
    direction: Direction,
}

impl Shifter<'tcx> {
    pub fn new(tcx: TyCtxt<'tcx>, amount: u32, direction: Direction) -> Self {
        Shifter { tcx, current_index: ty::INNERMOST, amount, direction }
    }
}

impl TypeFolder<'tcx> for Shifter<'tcx> {
    fn tcx<'b>(&'b self) -> TyCtxt<'tcx> {
        self.tcx
    }

    fn fold_binder<T: TypeFoldable<'tcx>>(&mut self, t: &ty::Binder<T>) -> ty::Binder<T> {
        self.current_index.shift_in(1);
        let t = t.super_fold_with(self);
        self.current_index.shift_out(1);
        t
    }

    fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> {
        match *r {
            ty::ReLateBound(debruijn, br) => {
                if self.amount == 0 || debruijn < self.current_index {
                    r
                } else {
                    let debruijn = match self.direction {
                        Direction::In => debruijn.shifted_in(self.amount),
                        Direction::Out => {
                            assert!(debruijn.as_u32() >= self.amount);
                            debruijn.shifted_out(self.amount)
                        }
                    };
                    let shifted = ty::ReLateBound(debruijn, br);
                    self.tcx.mk_region(shifted)
                }
            }
            _ => r,
        }
    }

    fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
        match ty.kind {
            ty::Bound(debruijn, bound_ty) => {
                if self.amount == 0 || debruijn < self.current_index {
                    ty
                } else {
                    let debruijn = match self.direction {
                        Direction::In => debruijn.shifted_in(self.amount),
                        Direction::Out => {
                            assert!(debruijn.as_u32() >= self.amount);
                            debruijn.shifted_out(self.amount)
                        }
                    };
                    self.tcx.mk_ty(ty::Bound(debruijn, bound_ty))
                }
            }

            _ => ty.super_fold_with(self),
        }
    }

    fn fold_const(&mut self, ct: &'tcx ty::Const<'tcx>) -> &'tcx ty::Const<'tcx> {
        if let ty::Const { val: ty::ConstKind::Bound(debruijn, bound_ct), ty } = *ct {
            if self.amount == 0 || debruijn < self.current_index {
                ct
            } else {
                let debruijn = match self.direction {
                    Direction::In => debruijn.shifted_in(self.amount),
                    Direction::Out => {
                        assert!(debruijn.as_u32() >= self.amount);
                        debruijn.shifted_out(self.amount)
                    }
                };
                self.tcx.mk_const(ty::Const { val: ty::ConstKind::Bound(debruijn, bound_ct), ty })
            }
        } else {
            ct.super_fold_with(self)
        }
    }
}

pub fn shift_region<'tcx>(
    tcx: TyCtxt<'tcx>,
    region: ty::Region<'tcx>,
    amount: u32,
) -> ty::Region<'tcx> {
    match region {
        ty::ReLateBound(debruijn, br) if amount > 0 => {
            tcx.mk_region(ty::ReLateBound(debruijn.shifted_in(amount), *br))
        }
        _ => region,
    }
}

pub fn shift_vars<'tcx, T>(tcx: TyCtxt<'tcx>, value: &T, amount: u32) -> T
where
    T: TypeFoldable<'tcx>,
{
    debug!("shift_vars(value={:?}, amount={})", value, amount);

    value.fold_with(&mut Shifter::new(tcx, amount, Direction::In))
}

pub fn shift_out_vars<'tcx, T>(tcx: TyCtxt<'tcx>, value: &T, amount: u32) -> T
where
    T: TypeFoldable<'tcx>,
{
    debug!("shift_out_vars(value={:?}, amount={})", value, amount);

    value.fold_with(&mut Shifter::new(tcx, amount, Direction::Out))
}

/// An "escaping var" is a bound var whose binder is not part of `t`. A bound var can be a
/// bound region or a bound type.
///
/// So, for example, consider a type like the following, which has two binders:
///
///    for<'a> fn(x: for<'b> fn(&'a isize, &'b isize))
///    ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ outer scope
///                  ^~~~~~~~~~~~~~~~~~~~~~~~~~~~  inner scope
///
/// This type has *bound regions* (`'a`, `'b`), but it does not have escaping regions, because the
/// binders of both `'a` and `'b` are part of the type itself. However, if we consider the *inner
/// fn type*, that type has an escaping region: `'a`.
///
/// Note that what I'm calling an "escaping var" is often just called a "free var". However,
/// we already use the term "free var". It refers to the regions or types that we use to represent
/// bound regions or type params on a fn definition while we are type checking its body.
///
/// To clarify, conceptually there is no particular difference between
/// an "escaping" var and a "free" var. However, there is a big
/// difference in practice. Basically, when "entering" a binding
/// level, one is generally required to do some sort of processing to
/// a bound var, such as replacing it with a fresh/placeholder
/// var, or making an entry in the environment to represent the
/// scope to which it is attached, etc. An escaping var represents
/// a bound var for which this processing has not yet been done.
struct HasEscapingVarsVisitor {
    /// Anything bound by `outer_index` or "above" is escaping.
    outer_index: ty::DebruijnIndex,
}

impl<'tcx> TypeVisitor<'tcx> for HasEscapingVarsVisitor {
    fn visit_binder<T: TypeFoldable<'tcx>>(&mut self, t: &Binder<T>) -> bool {
        self.outer_index.shift_in(1);
        let result = t.super_visit_with(self);
        self.outer_index.shift_out(1);
        result
    }

    fn visit_ty(&mut self, t: Ty<'tcx>) -> bool {
        // If the outer-exclusive-binder is *strictly greater* than
        // `outer_index`, that means that `t` contains some content
        // bound at `outer_index` or above (because
        // `outer_exclusive_binder` is always 1 higher than the
        // content in `t`). Therefore, `t` has some escaping vars.
        t.outer_exclusive_binder > self.outer_index
    }

    fn visit_region(&mut self, r: ty::Region<'tcx>) -> bool {
        // If the region is bound by `outer_index` or anything outside
        // of outer index, then it escapes the binders we have
        // visited.
        r.bound_at_or_above_binder(self.outer_index)
    }

    fn visit_const(&mut self, ct: &'tcx ty::Const<'tcx>) -> bool {
        // we don't have a `visit_infer_const` callback, so we have to
        // hook in here to catch this case (annoying...), but
        // otherwise we do want to remember to visit the rest of the
        // const, as it has types/regions embedded in a lot of other
        // places.
        match ct.val {
            ty::ConstKind::Bound(debruijn, _) if debruijn >= self.outer_index => true,
            _ => ct.super_visit_with(self),
        }
    }
}

impl<'tcx> PredicateVisitor<'tcx> for HasEscapingVarsVisitor {
    fn visit_predicate(&mut self, predicate: ty::Predicate<'tcx>) -> bool {
        predicate.inner.outer_exclusive_binder > self.outer_index
    }
}

// FIXME: Optimize for checking for infer flags
struct HasTypeFlagsVisitor {
    flags: ty::TypeFlags,
}

impl<'tcx> TypeVisitor<'tcx> for HasTypeFlagsVisitor {
    fn visit_ty(&mut self, t: Ty<'_>) -> bool {
        debug!("HasTypeFlagsVisitor: t={:?} t.flags={:?} self.flags={:?}", t, t.flags, self.flags);
        t.flags.intersects(self.flags)
    }

    fn visit_region(&mut self, r: ty::Region<'tcx>) -> bool {
        let flags = r.type_flags();
        debug!("HasTypeFlagsVisitor: r={:?} r.flags={:?} self.flags={:?}", r, flags, self.flags);
        flags.intersects(self.flags)
    }

    fn visit_const(&mut self, c: &'tcx ty::Const<'tcx>) -> bool {
        let flags = FlagComputation::for_const(c);
        debug!("HasTypeFlagsVisitor: c={:?} c.flags={:?} self.flags={:?}", c, flags, self.flags);
        flags.intersects(self.flags)
    }
}

impl<'tcx> PredicateVisitor<'tcx> for HasTypeFlagsVisitor {
    fn visit_predicate(&mut self, predicate: ty::Predicate<'tcx>) -> bool {
        debug!(
            "HasTypeFlagsVisitor: predicate={:?} predicate.flags={:?} self.flags={:?}",
            predicate, predicate.inner.flags, self.flags
        );
        predicate.inner.flags.intersects(self.flags)
    }
}
/// Collects all the late-bound regions at the innermost binding level
/// into a hash set.
struct LateBoundRegionsCollector {
    current_index: ty::DebruijnIndex,
    regions: FxHashSet<ty::BoundRegion>,

    /// `true` if we only want regions that are known to be
    /// "constrained" when you equate this type with another type. In
    /// particular, if you have e.g., `&'a u32` and `&'b u32`, equating
    /// them constraints `'a == 'b`. But if you have `<&'a u32 as
    /// Trait>::Foo` and `<&'b u32 as Trait>::Foo`, normalizing those
    /// types may mean that `'a` and `'b` don't appear in the results,
    /// so they are not considered *constrained*.
    just_constrained: bool,
}

impl LateBoundRegionsCollector {
    fn new(just_constrained: bool) -> Self {
        LateBoundRegionsCollector {
            current_index: ty::INNERMOST,
            regions: Default::default(),
            just_constrained,
        }
    }
}

impl<'tcx> TypeVisitor<'tcx> for LateBoundRegionsCollector {
    fn visit_binder<T: TypeFoldable<'tcx>>(&mut self, t: &Binder<T>) -> bool {
        self.current_index.shift_in(1);
        let result = t.super_visit_with(self);
        self.current_index.shift_out(1);
        result
    }

    fn visit_ty(&mut self, t: Ty<'tcx>) -> bool {
        // if we are only looking for "constrained" region, we have to
        // ignore the inputs to a projection, as they may not appear
        // in the normalized form
        if self.just_constrained {
            if let ty::Projection(..) | ty::Opaque(..) = t.kind {
                return false;
            }
        }

        t.super_visit_with(self)
    }

    fn visit_const(&mut self, c: &'tcx ty::Const<'tcx>) -> bool {
        // if we are only looking for "constrained" region, we have to
        // ignore the inputs of an unevaluated const, as they may not appear
        // in the normalized form
        if self.just_constrained {
            if let ty::ConstKind::Unevaluated(..) = c.val {
                return false;
            }
        }

        c.super_visit_with(self)
    }

    fn visit_region(&mut self, r: ty::Region<'tcx>) -> bool {
        if let ty::ReLateBound(debruijn, br) = *r {
            if debruijn == self.current_index {
                self.regions.insert(br);
            }
        }
        false
    }
}