1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
//! Generalized type folding mechanism. The setup is a bit convoluted
//! but allows for convenient usage. Let T be an instance of some
//! "foldable type" (one which implements `TypeFoldable`) and F be an
//! instance of a "folder" (a type which implements `TypeFolder`). Then
//! the setup is intended to be:
//!
//!     T.fold_with(F) --calls--> F.fold_T(T) --calls--> T.super_fold_with(F)
//!
//! This way, when you define a new folder F, you can override
//! `fold_T()` to customize the behavior, and invoke `T.super_fold_with()`
//! to get the original behavior. Meanwhile, to actually fold
//! something, you can just write `T.fold_with(F)`, which is
//! convenient. (Note that `fold_with` will also transparently handle
//! things like a `Vec<T>` where T is foldable and so on.)
//!
//! In this ideal setup, the only function that actually *does*
//! anything is `T.super_fold_with()`, which traverses the type `T`.
//! Moreover, `T.super_fold_with()` should only ever call `T.fold_with()`.
//!
//! In some cases, we follow a degenerate pattern where we do not have
//! a `fold_T` method. Instead, `T.fold_with` traverses the structure directly.
//! This is suboptimal because the behavior cannot be overridden, but it's
//! much less work to implement. If you ever *do* need an override that
//! doesn't exist, it's not hard to convert the degenerate pattern into the
//! proper thing.
//!
//! A `TypeFoldable` T can also be visited by a `TypeVisitor` V using similar setup:
//!
//!     T.visit_with(V) --calls--> V.visit_T(T) --calls--> T.super_visit_with(V).
//!
//! These methods return true to indicate that the visitor has found what it is
//! looking for, and does not need to visit anything else.
use crate::ty::{self, flags::FlagComputation, Binder, Ty, TyCtxt, TypeFlags};
use rustc_hir as hir;
use rustc_hir::def_id::DefId;

use rustc_data_structures::fx::FxHashSet;
use std::collections::BTreeMap;
use std::fmt;

/// This trait is implemented for every type that can be folded.
/// Basically, every type that has a corresponding method in `TypeFolder`.
///
/// To implement this conveniently, use the derive macro located in librustc_macros.
pub trait TypeFoldable<'tcx>: fmt::Debug + Clone {
    fn super_fold_with<F: TypeFolder<'tcx>>(&self, folder: &mut F) -> Self;
    fn fold_with<F: TypeFolder<'tcx>>(&self, folder: &mut F) -> Self {
        self.super_fold_with(folder)
    }

    fn super_visit_with<V: TypeVisitor<'tcx>>(&self, visitor: &mut V) -> bool;
    fn visit_with<V: TypeVisitor<'tcx>>(&self, visitor: &mut V) -> bool {
        self.super_visit_with(visitor)
    }

    /// Returns `true` if `self` has any late-bound regions that are either
    /// bound by `binder` or bound by some binder outside of `binder`.
    /// If `binder` is `ty::INNERMOST`, this indicates whether
    /// there are any late-bound regions that appear free.
    fn has_vars_bound_at_or_above(&self, binder: ty::DebruijnIndex) -> bool {
        self.visit_with(&mut HasEscapingVarsVisitor { outer_index: binder })
    }

    /// Returns `true` if this `self` has any regions that escape `binder` (and
    /// hence are not bound by it).
    fn has_vars_bound_above(&self, binder: ty::DebruijnIndex) -> bool {
        self.has_vars_bound_at_or_above(binder.shifted_in(1))
    }

    fn has_escaping_bound_vars(&self) -> bool {
        self.has_vars_bound_at_or_above(ty::INNERMOST)
    }

    fn has_type_flags(&self, flags: TypeFlags) -> bool {
        self.visit_with(&mut HasTypeFlagsVisitor { flags })
    }
    fn has_projections(&self) -> bool {
        self.has_type_flags(TypeFlags::HAS_PROJECTION)
    }
    fn has_opaque_types(&self) -> bool {
        self.has_type_flags(TypeFlags::HAS_TY_OPAQUE)
    }
    fn references_error(&self) -> bool {
        self.has_type_flags(TypeFlags::HAS_ERROR)
    }
    fn has_param_types_or_consts(&self) -> bool {
        self.has_type_flags(TypeFlags::HAS_TY_PARAM | TypeFlags::HAS_CT_PARAM)
    }
    fn has_infer_regions(&self) -> bool {
        self.has_type_flags(TypeFlags::HAS_RE_INFER)
    }
    fn has_infer_types(&self) -> bool {
        self.has_type_flags(TypeFlags::HAS_TY_INFER)
    }
    fn has_infer_types_or_consts(&self) -> bool {
        self.has_type_flags(TypeFlags::HAS_TY_INFER | TypeFlags::HAS_CT_INFER)
    }
    fn needs_infer(&self) -> bool {
        self.has_type_flags(TypeFlags::NEEDS_INFER)
    }
    fn has_placeholders(&self) -> bool {
        self.has_type_flags(
            TypeFlags::HAS_RE_PLACEHOLDER
                | TypeFlags::HAS_TY_PLACEHOLDER
                | TypeFlags::HAS_CT_PLACEHOLDER,
        )
    }
    fn needs_subst(&self) -> bool {
        self.has_type_flags(TypeFlags::NEEDS_SUBST)
    }
    /// "Free" regions in this context means that it has any region
    /// that is not (a) erased or (b) late-bound.
    fn has_free_regions(&self) -> bool {
        self.has_type_flags(TypeFlags::HAS_FREE_REGIONS)
    }

    fn has_erased_regions(&self) -> bool {
        self.has_type_flags(TypeFlags::HAS_RE_ERASED)
    }

    /// True if there are any un-erased free regions.
    fn has_erasable_regions(&self) -> bool {
        self.has_type_flags(TypeFlags::HAS_FREE_REGIONS)
    }

    /// Indicates whether this value references only 'global'
    /// generic parameters that are the same regardless of what fn we are
    /// in. This is used for caching.
    fn is_global(&self) -> bool {
        !self.has_type_flags(TypeFlags::HAS_FREE_LOCAL_NAMES)
    }

    /// True if there are any late-bound regions
    fn has_late_bound_regions(&self) -> bool {
        self.has_type_flags(TypeFlags::HAS_RE_LATE_BOUND)
    }

    /// Indicates whether this value still has parameters/placeholders/inference variables
    /// which could be replaced later, in a way that would change the results of `impl`
    /// specialization.
    fn still_further_specializable(&self) -> bool {
        self.has_type_flags(TypeFlags::STILL_FURTHER_SPECIALIZABLE)
    }

    /// A visitor that does not recurse into types, works like `fn walk_shallow` in `Ty`.
    fn visit_tys_shallow(&self, visit: impl FnMut(Ty<'tcx>) -> bool) -> bool {
        pub struct Visitor<F>(F);

        impl<'tcx, F: FnMut(Ty<'tcx>) -> bool> TypeVisitor<'tcx> for Visitor<F> {
            fn visit_ty(&mut self, ty: Ty<'tcx>) -> bool {
                self.0(ty)
            }
        }

        self.visit_with(&mut Visitor(visit))
    }
}

impl TypeFoldable<'tcx> for hir::Constness {
    fn super_fold_with<F: TypeFolder<'tcx>>(&self, _: &mut F) -> Self {
        *self
    }
    fn super_visit_with<V: TypeVisitor<'tcx>>(&self, _: &mut V) -> bool {
        false
    }
}

/// The `TypeFolder` trait defines the actual *folding*. There is a
/// method defined for every foldable type. Each of these has a
/// default implementation that does an "identity" fold. Within each
/// identity fold, it should invoke `foo.fold_with(self)` to fold each
/// sub-item.
pub trait TypeFolder<'tcx>: Sized {
    fn tcx<'a>(&'a self) -> TyCtxt<'tcx>;

    fn fold_binder<T>(&mut self, t: &Binder<T>) -> Binder<T>
    where
        T: TypeFoldable<'tcx>,
    {
        t.super_fold_with(self)
    }

    fn fold_ty(&mut self, t: Ty<'tcx>) -> Ty<'tcx> {
        t.super_fold_with(self)
    }

    fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> {
        r.super_fold_with(self)
    }

    fn fold_const(&mut self, c: &'tcx ty::Const<'tcx>) -> &'tcx ty::Const<'tcx> {
        c.super_fold_with(self)
    }
}

pub trait TypeVisitor<'tcx>: Sized {
    fn visit_binder<T: TypeFoldable<'tcx>>(&mut self, t: &Binder<T>) -> bool {
        t.super_visit_with(self)
    }

    fn visit_ty(&mut self, t: Ty<'tcx>) -> bool {
        t.super_visit_with(self)
    }

    fn visit_region(&mut self, r: ty::Region<'tcx>) -> bool {
        r.super_visit_with(self)
    }

    fn visit_const(&mut self, c: &'tcx ty::Const<'tcx>) -> bool {
        c.super_visit_with(self)
    }

    fn visit_predicate(&mut self, p: ty::Predicate<'tcx>) -> bool {
        p.super_visit_with(self)
    }
}

///////////////////////////////////////////////////////////////////////////
// Some sample folders

pub struct BottomUpFolder<'tcx, F, G, H>
where
    F: FnMut(Ty<'tcx>) -> Ty<'tcx>,
    G: FnMut(ty::Region<'tcx>) -> ty::Region<'tcx>,
    H: FnMut(&'tcx ty::Const<'tcx>) -> &'tcx ty::Const<'tcx>,
{
    pub tcx: TyCtxt<'tcx>,
    pub ty_op: F,
    pub lt_op: G,
    pub ct_op: H,
}

impl<'tcx, F, G, H> TypeFolder<'tcx> for BottomUpFolder<'tcx, F, G, H>
where
    F: FnMut(Ty<'tcx>) -> Ty<'tcx>,
    G: FnMut(ty::Region<'tcx>) -> ty::Region<'tcx>,
    H: FnMut(&'tcx ty::Const<'tcx>) -> &'tcx ty::Const<'tcx>,
{
    fn tcx<'b>(&'b self) -> TyCtxt<'tcx> {
        self.tcx
    }

    fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
        let t = ty.super_fold_with(self);
        (self.ty_op)(t)
    }

    fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> {
        let r = r.super_fold_with(self);
        (self.lt_op)(r)
    }

    fn fold_const(&mut self, ct: &'tcx ty::Const<'tcx>) -> &'tcx ty::Const<'tcx> {
        let ct = ct.super_fold_with(self);
        (self.ct_op)(ct)
    }
}

///////////////////////////////////////////////////////////////////////////
// Region folder

impl<'tcx> TyCtxt<'tcx> {
    /// Folds the escaping and free regions in `value` using `f`, and
    /// sets `skipped_regions` to true if any late-bound region was found
    /// and skipped.
    pub fn fold_regions<T>(
        self,
        value: &T,
        skipped_regions: &mut bool,
        mut f: impl FnMut(ty::Region<'tcx>, ty::DebruijnIndex) -> ty::Region<'tcx>,
    ) -> T
    where
        T: TypeFoldable<'tcx>,
    {
        value.fold_with(&mut RegionFolder::new(self, skipped_regions, &mut f))
    }

    /// Invoke `callback` on every region appearing free in `value`.
    pub fn for_each_free_region(
        self,
        value: &impl TypeFoldable<'tcx>,
        mut callback: impl FnMut(ty::Region<'tcx>),
    ) {
        self.any_free_region_meets(value, |r| {
            callback(r);
            false
        });
    }

    /// Returns `true` if `callback` returns true for every region appearing free in `value`.
    pub fn all_free_regions_meet(
        self,
        value: &impl TypeFoldable<'tcx>,
        mut callback: impl FnMut(ty::Region<'tcx>) -> bool,
    ) -> bool {
        !self.any_free_region_meets(value, |r| !callback(r))
    }

    /// Returns `true` if `callback` returns true for some region appearing free in `value`.
    pub fn any_free_region_meets(
        self,
        value: &impl TypeFoldable<'tcx>,
        callback: impl FnMut(ty::Region<'tcx>) -> bool,
    ) -> bool {
        return value.visit_with(&mut RegionVisitor { outer_index: ty::INNERMOST, callback });

        struct RegionVisitor<F> {
            /// The index of a binder *just outside* the things we have
            /// traversed. If we encounter a bound region bound by this
            /// binder or one outer to it, it appears free. Example:
            ///
            /// ```
            ///    for<'a> fn(for<'b> fn(), T)
            /// ^          ^          ^     ^
            /// |          |          |     | here, would be shifted in 1
            /// |          |          | here, would be shifted in 2
            /// |          | here, would be `INNERMOST` shifted in by 1
            /// | here, initially, binder would be `INNERMOST`
            /// ```
            ///
            /// You see that, initially, *any* bound value is free,
            /// because we've not traversed any binders. As we pass
            /// through a binder, we shift the `outer_index` by 1 to
            /// account for the new binder that encloses us.
            outer_index: ty::DebruijnIndex,
            callback: F,
        }

        impl<'tcx, F> TypeVisitor<'tcx> for RegionVisitor<F>
        where
            F: FnMut(ty::Region<'tcx>) -> bool,
        {
            fn visit_binder<T: TypeFoldable<'tcx>>(&mut self, t: &Binder<T>) -> bool {
                self.outer_index.shift_in(1);
                let result = t.as_ref().skip_binder().visit_with(self);
                self.outer_index.shift_out(1);
                result
            }

            fn visit_region(&mut self, r: ty::Region<'tcx>) -> bool {
                match *r {
                    ty::ReLateBound(debruijn, _) if debruijn < self.outer_index => {
                        false // ignore bound regions, keep visiting
                    }
                    _ => (self.callback)(r),
                }
            }

            fn visit_ty(&mut self, ty: Ty<'tcx>) -> bool {
                // We're only interested in types involving regions
                if ty.flags().intersects(TypeFlags::HAS_FREE_REGIONS) {
                    ty.super_visit_with(self)
                } else {
                    false // keep visiting
                }
            }
        }
    }
}

/// Folds over the substructure of a type, visiting its component
/// types and all regions that occur *free* within it.
///
/// That is, `Ty` can contain function or method types that bind
/// regions at the call site (`ReLateBound`), and occurrences of
/// regions (aka "lifetimes") that are bound within a type are not
/// visited by this folder; only regions that occur free will be
/// visited by `fld_r`.

pub struct RegionFolder<'a, 'tcx> {
    tcx: TyCtxt<'tcx>,
    skipped_regions: &'a mut bool,

    /// Stores the index of a binder *just outside* the stuff we have
    /// visited.  So this begins as INNERMOST; when we pass through a
    /// binder, it is incremented (via `shift_in`).
    current_index: ty::DebruijnIndex,

    /// Callback invokes for each free region. The `DebruijnIndex`
    /// points to the binder *just outside* the ones we have passed
    /// through.
    fold_region_fn:
        &'a mut (dyn FnMut(ty::Region<'tcx>, ty::DebruijnIndex) -> ty::Region<'tcx> + 'a),
}

impl<'a, 'tcx> RegionFolder<'a, 'tcx> {
    #[inline]
    pub fn new(
        tcx: TyCtxt<'tcx>,
        skipped_regions: &'a mut bool,
        fold_region_fn: &'a mut dyn FnMut(ty::Region<'tcx>, ty::DebruijnIndex) -> ty::Region<'tcx>,
    ) -> RegionFolder<'a, 'tcx> {
        RegionFolder { tcx, skipped_regions, current_index: ty::INNERMOST, fold_region_fn }
    }
}

impl<'a, 'tcx> TypeFolder<'tcx> for RegionFolder<'a, 'tcx> {
    fn tcx<'b>(&'b self) -> TyCtxt<'tcx> {
        self.tcx
    }

    fn fold_binder<T: TypeFoldable<'tcx>>(&mut self, t: &ty::Binder<T>) -> ty::Binder<T> {
        self.current_index.shift_in(1);
        let t = t.super_fold_with(self);
        self.current_index.shift_out(1);
        t
    }

    fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> {
        match *r {
            ty::ReLateBound(debruijn, _) if debruijn < self.current_index => {
                debug!(
                    "RegionFolder.fold_region({:?}) skipped bound region (current index={:?})",
                    r, self.current_index
                );
                *self.skipped_regions = true;
                r
            }
            _ => {
                debug!(
                    "RegionFolder.fold_region({:?}) folding free region (current_index={:?})",
                    r, self.current_index
                );
                (self.fold_region_fn)(r, self.current_index)
            }
        }
    }
}

///////////////////////////////////////////////////////////////////////////
// Bound vars replacer

/// Replaces the escaping bound vars (late bound regions or bound types) in a type.
struct BoundVarReplacer<'a, 'tcx> {
    tcx: TyCtxt<'tcx>,

    /// As with `RegionFolder`, represents the index of a binder *just outside*
    /// the ones we have visited.
    current_index: ty::DebruijnIndex,

    fld_r: &'a mut (dyn FnMut(ty::BoundRegion) -> ty::Region<'tcx> + 'a),
    fld_t: &'a mut (dyn FnMut(ty::BoundTy) -> Ty<'tcx> + 'a),
    fld_c: &'a mut (dyn FnMut(ty::BoundVar, Ty<'tcx>) -> &'tcx ty::Const<'tcx> + 'a),
}

impl<'a, 'tcx> BoundVarReplacer<'a, 'tcx> {
    fn new<F, G, H>(tcx: TyCtxt<'tcx>, fld_r: &'a mut F, fld_t: &'a mut G, fld_c: &'a mut H) -> Self
    where
        F: FnMut(ty::BoundRegion) -> ty::Region<'tcx>,
        G: FnMut(ty::BoundTy) -> Ty<'tcx>,
        H: FnMut(ty::BoundVar, Ty<'tcx>) -> &'tcx ty::Const<'tcx>,
    {
        BoundVarReplacer { tcx, current_index: ty::INNERMOST, fld_r, fld_t, fld_c }
    }
}

impl<'a, 'tcx> TypeFolder<'tcx> for BoundVarReplacer<'a, 'tcx> {
    fn tcx<'b>(&'b self) -> TyCtxt<'tcx> {
        self.tcx
    }

    fn fold_binder<T: TypeFoldable<'tcx>>(&mut self, t: &ty::Binder<T>) -> ty::Binder<T> {
        self.current_index.shift_in(1);
        let t = t.super_fold_with(self);
        self.current_index.shift_out(1);
        t
    }

    fn fold_ty(&mut self, t: Ty<'tcx>) -> Ty<'tcx> {
        match *t.kind() {
            ty::Bound(debruijn, bound_ty) => {
                if debruijn == self.current_index {
                    let fld_t = &mut self.fld_t;
                    let ty = fld_t(bound_ty);
                    ty::fold::shift_vars(self.tcx, &ty, self.current_index.as_u32())
                } else {
                    t
                }
            }
            _ => {
                if !t.has_vars_bound_at_or_above(self.current_index) {
                    // Nothing more to substitute.
                    t
                } else {
                    t.super_fold_with(self)
                }
            }
        }
    }

    fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> {
        match *r {
            ty::ReLateBound(debruijn, br) if debruijn == self.current_index => {
                let fld_r = &mut self.fld_r;
                let region = fld_r(br);
                if let ty::ReLateBound(debruijn1, br) = *region {
                    // If the callback returns a late-bound region,
                    // that region should always use the INNERMOST
                    // debruijn index. Then we adjust it to the
                    // correct depth.
                    assert_eq!(debruijn1, ty::INNERMOST);
                    self.tcx.mk_region(ty::ReLateBound(debruijn, br))
                } else {
                    region
                }
            }
            _ => r,
        }
    }

    fn fold_const(&mut self, ct: &'tcx ty::Const<'tcx>) -> &'tcx ty::Const<'tcx> {
        if let ty::Const { val: ty::ConstKind::Bound(debruijn, bound_const), ty } = *ct {
            if debruijn == self.current_index {
                let fld_c = &mut self.fld_c;
                let ct = fld_c(bound_const, ty);
                ty::fold::shift_vars(self.tcx, &ct, self.current_index.as_u32())
            } else {
                ct
            }
        } else {
            if !ct.has_vars_bound_at_or_above(self.current_index) {
                // Nothing more to substitute.
                ct
            } else {
                ct.super_fold_with(self)
            }
        }
    }
}

impl<'tcx> TyCtxt<'tcx> {
    /// Replaces all regions bound by the given `Binder` with the
    /// results returned by the closure; the closure is expected to
    /// return a free region (relative to this binder), and hence the
    /// binder is removed in the return type. The closure is invoked
    /// once for each unique `BoundRegion`; multiple references to the
    /// same `BoundRegion` will reuse the previous result. A map is
    /// returned at the end with each bound region and the free region
    /// that replaced it.
    ///
    /// This method only replaces late bound regions and the result may still
    /// contain escaping bound types.
    pub fn replace_late_bound_regions<T, F>(
        self,
        value: &Binder<T>,
        fld_r: F,
    ) -> (T, BTreeMap<ty::BoundRegion, ty::Region<'tcx>>)
    where
        F: FnMut(ty::BoundRegion) -> ty::Region<'tcx>,
        T: TypeFoldable<'tcx>,
    {
        // identity for bound types and consts
        let fld_t = |bound_ty| self.mk_ty(ty::Bound(ty::INNERMOST, bound_ty));
        let fld_c = |bound_ct, ty| {
            self.mk_const(ty::Const { val: ty::ConstKind::Bound(ty::INNERMOST, bound_ct), ty })
        };
        self.replace_escaping_bound_vars(value.as_ref().skip_binder(), fld_r, fld_t, fld_c)
    }

    /// Replaces all escaping bound vars. The `fld_r` closure replaces escaping
    /// bound regions; the `fld_t` closure replaces escaping bound types and the `fld_c`
    /// closure replaces escaping bound consts.
    pub fn replace_escaping_bound_vars<T, F, G, H>(
        self,
        value: &T,
        mut fld_r: F,
        mut fld_t: G,
        mut fld_c: H,
    ) -> (T, BTreeMap<ty::BoundRegion, ty::Region<'tcx>>)
    where
        F: FnMut(ty::BoundRegion) -> ty::Region<'tcx>,
        G: FnMut(ty::BoundTy) -> Ty<'tcx>,
        H: FnMut(ty::BoundVar, Ty<'tcx>) -> &'tcx ty::Const<'tcx>,
        T: TypeFoldable<'tcx>,
    {
        use rustc_data_structures::fx::FxHashMap;

        let mut region_map = BTreeMap::new();
        let mut type_map = FxHashMap::default();
        let mut const_map = FxHashMap::default();

        if !value.has_escaping_bound_vars() {
            (value.clone(), region_map)
        } else {
            let mut real_fld_r = |br| *region_map.entry(br).or_insert_with(|| fld_r(br));

            let mut real_fld_t =
                |bound_ty| *type_map.entry(bound_ty).or_insert_with(|| fld_t(bound_ty));

            let mut real_fld_c =
                |bound_ct, ty| *const_map.entry(bound_ct).or_insert_with(|| fld_c(bound_ct, ty));

            let mut replacer =
                BoundVarReplacer::new(self, &mut real_fld_r, &mut real_fld_t, &mut real_fld_c);
            let result = value.fold_with(&mut replacer);
            (result, region_map)
        }
    }

    /// Replaces all types or regions bound by the given `Binder`. The `fld_r`
    /// closure replaces bound regions while the `fld_t` closure replaces bound
    /// types.
    pub fn replace_bound_vars<T, F, G, H>(
        self,
        value: &Binder<T>,
        fld_r: F,
        fld_t: G,
        fld_c: H,
    ) -> (T, BTreeMap<ty::BoundRegion, ty::Region<'tcx>>)
    where
        F: FnMut(ty::BoundRegion) -> ty::Region<'tcx>,
        G: FnMut(ty::BoundTy) -> Ty<'tcx>,
        H: FnMut(ty::BoundVar, Ty<'tcx>) -> &'tcx ty::Const<'tcx>,
        T: TypeFoldable<'tcx>,
    {
        self.replace_escaping_bound_vars(value.as_ref().skip_binder(), fld_r, fld_t, fld_c)
    }

    /// Replaces any late-bound regions bound in `value` with
    /// free variants attached to `all_outlive_scope`.
    pub fn liberate_late_bound_regions<T>(
        self,
        all_outlive_scope: DefId,
        value: &ty::Binder<T>,
    ) -> T
    where
        T: TypeFoldable<'tcx>,
    {
        self.replace_late_bound_regions(value, |br| {
            self.mk_region(ty::ReFree(ty::FreeRegion {
                scope: all_outlive_scope,
                bound_region: br,
            }))
        })
        .0
    }

    /// Returns a set of all late-bound regions that are constrained
    /// by `value`, meaning that if we instantiate those LBR with
    /// variables and equate `value` with something else, those
    /// variables will also be equated.
    pub fn collect_constrained_late_bound_regions<T>(
        self,
        value: &Binder<T>,
    ) -> FxHashSet<ty::BoundRegion>
    where
        T: TypeFoldable<'tcx>,
    {
        self.collect_late_bound_regions(value, true)
    }

    /// Returns a set of all late-bound regions that appear in `value` anywhere.
    pub fn collect_referenced_late_bound_regions<T>(
        self,
        value: &Binder<T>,
    ) -> FxHashSet<ty::BoundRegion>
    where
        T: TypeFoldable<'tcx>,
    {
        self.collect_late_bound_regions(value, false)
    }

    fn collect_late_bound_regions<T>(
        self,
        value: &Binder<T>,
        just_constraint: bool,
    ) -> FxHashSet<ty::BoundRegion>
    where
        T: TypeFoldable<'tcx>,
    {
        let mut collector = LateBoundRegionsCollector::new(just_constraint);
        let result = value.as_ref().skip_binder().visit_with(&mut collector);
        assert!(!result); // should never have stopped early
        collector.regions
    }

    /// Replaces any late-bound regions bound in `value` with `'erased`. Useful in codegen but also
    /// method lookup and a few other places where precise region relationships are not required.
    pub fn erase_late_bound_regions<T>(self, value: &Binder<T>) -> T
    where
        T: TypeFoldable<'tcx>,
    {
        self.replace_late_bound_regions(value, |_| self.lifetimes.re_erased).0
    }

    /// Rewrite any late-bound regions so that they are anonymous. Region numbers are
    /// assigned starting at 1 and increasing monotonically in the order traversed
    /// by the fold operation.
    ///
    /// The chief purpose of this function is to canonicalize regions so that two
    /// `FnSig`s or `TraitRef`s which are equivalent up to region naming will become
    /// structurally identical. For example, `for<'a, 'b> fn(&'a isize, &'b isize)` and
    /// `for<'a, 'b> fn(&'b isize, &'a isize)` will become identical after anonymization.
    pub fn anonymize_late_bound_regions<T>(self, sig: &Binder<T>) -> Binder<T>
    where
        T: TypeFoldable<'tcx>,
    {
        let mut counter = 0;
        Binder::bind(
            self.replace_late_bound_regions(sig, |_| {
                counter += 1;
                self.mk_region(ty::ReLateBound(ty::INNERMOST, ty::BrAnon(counter)))
            })
            .0,
        )
    }
}

///////////////////////////////////////////////////////////////////////////
// Shifter
//
// Shifts the De Bruijn indices on all escaping bound vars by a
// fixed amount. Useful in substitution or when otherwise introducing
// a binding level that is not intended to capture the existing bound
// vars. See comment on `shift_vars_through_binders` method in
// `subst.rs` for more details.

struct Shifter<'tcx> {
    tcx: TyCtxt<'tcx>,
    current_index: ty::DebruijnIndex,
    amount: u32,
}

impl Shifter<'tcx> {
    pub fn new(tcx: TyCtxt<'tcx>, amount: u32) -> Self {
        Shifter { tcx, current_index: ty::INNERMOST, amount }
    }
}

impl TypeFolder<'tcx> for Shifter<'tcx> {
    fn tcx<'b>(&'b self) -> TyCtxt<'tcx> {
        self.tcx
    }

    fn fold_binder<T: TypeFoldable<'tcx>>(&mut self, t: &ty::Binder<T>) -> ty::Binder<T> {
        self.current_index.shift_in(1);
        let t = t.super_fold_with(self);
        self.current_index.shift_out(1);
        t
    }

    fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> {
        match *r {
            ty::ReLateBound(debruijn, br) => {
                if self.amount == 0 || debruijn < self.current_index {
                    r
                } else {
                    let debruijn = debruijn.shifted_in(self.amount);
                    let shifted = ty::ReLateBound(debruijn, br);
                    self.tcx.mk_region(shifted)
                }
            }
            _ => r,
        }
    }

    fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
        match *ty.kind() {
            ty::Bound(debruijn, bound_ty) => {
                if self.amount == 0 || debruijn < self.current_index {
                    ty
                } else {
                    let debruijn = debruijn.shifted_in(self.amount);
                    self.tcx.mk_ty(ty::Bound(debruijn, bound_ty))
                }
            }

            _ => ty.super_fold_with(self),
        }
    }

    fn fold_const(&mut self, ct: &'tcx ty::Const<'tcx>) -> &'tcx ty::Const<'tcx> {
        if let ty::Const { val: ty::ConstKind::Bound(debruijn, bound_ct), ty } = *ct {
            if self.amount == 0 || debruijn < self.current_index {
                ct
            } else {
                let debruijn = debruijn.shifted_in(self.amount);
                self.tcx.mk_const(ty::Const { val: ty::ConstKind::Bound(debruijn, bound_ct), ty })
            }
        } else {
            ct.super_fold_with(self)
        }
    }
}

pub fn shift_region<'tcx>(
    tcx: TyCtxt<'tcx>,
    region: ty::Region<'tcx>,
    amount: u32,
) -> ty::Region<'tcx> {
    match region {
        ty::ReLateBound(debruijn, br) if amount > 0 => {
            tcx.mk_region(ty::ReLateBound(debruijn.shifted_in(amount), *br))
        }
        _ => region,
    }
}

pub fn shift_vars<'tcx, T>(tcx: TyCtxt<'tcx>, value: &T, amount: u32) -> T
where
    T: TypeFoldable<'tcx>,
{
    debug!("shift_vars(value={:?}, amount={})", value, amount);

    value.fold_with(&mut Shifter::new(tcx, amount))
}

/// An "escaping var" is a bound var whose binder is not part of `t`. A bound var can be a
/// bound region or a bound type.
///
/// So, for example, consider a type like the following, which has two binders:
///
///    for<'a> fn(x: for<'b> fn(&'a isize, &'b isize))
///    ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ outer scope
///                  ^~~~~~~~~~~~~~~~~~~~~~~~~~~~  inner scope
///
/// This type has *bound regions* (`'a`, `'b`), but it does not have escaping regions, because the
/// binders of both `'a` and `'b` are part of the type itself. However, if we consider the *inner
/// fn type*, that type has an escaping region: `'a`.
///
/// Note that what I'm calling an "escaping var" is often just called a "free var". However,
/// we already use the term "free var". It refers to the regions or types that we use to represent
/// bound regions or type params on a fn definition while we are type checking its body.
///
/// To clarify, conceptually there is no particular difference between
/// an "escaping" var and a "free" var. However, there is a big
/// difference in practice. Basically, when "entering" a binding
/// level, one is generally required to do some sort of processing to
/// a bound var, such as replacing it with a fresh/placeholder
/// var, or making an entry in the environment to represent the
/// scope to which it is attached, etc. An escaping var represents
/// a bound var for which this processing has not yet been done.
struct HasEscapingVarsVisitor {
    /// Anything bound by `outer_index` or "above" is escaping.
    outer_index: ty::DebruijnIndex,
}

impl<'tcx> TypeVisitor<'tcx> for HasEscapingVarsVisitor {
    fn visit_binder<T: TypeFoldable<'tcx>>(&mut self, t: &Binder<T>) -> bool {
        self.outer_index.shift_in(1);
        let result = t.super_visit_with(self);
        self.outer_index.shift_out(1);
        result
    }

    fn visit_ty(&mut self, t: Ty<'tcx>) -> bool {
        // If the outer-exclusive-binder is *strictly greater* than
        // `outer_index`, that means that `t` contains some content
        // bound at `outer_index` or above (because
        // `outer_exclusive_binder` is always 1 higher than the
        // content in `t`). Therefore, `t` has some escaping vars.
        t.outer_exclusive_binder > self.outer_index
    }

    fn visit_region(&mut self, r: ty::Region<'tcx>) -> bool {
        // If the region is bound by `outer_index` or anything outside
        // of outer index, then it escapes the binders we have
        // visited.
        r.bound_at_or_above_binder(self.outer_index)
    }

    fn visit_const(&mut self, ct: &'tcx ty::Const<'tcx>) -> bool {
        // we don't have a `visit_infer_const` callback, so we have to
        // hook in here to catch this case (annoying...), but
        // otherwise we do want to remember to visit the rest of the
        // const, as it has types/regions embedded in a lot of other
        // places.
        match ct.val {
            ty::ConstKind::Bound(debruijn, _) if debruijn >= self.outer_index => true,
            _ => ct.super_visit_with(self),
        }
    }

    fn visit_predicate(&mut self, predicate: ty::Predicate<'tcx>) -> bool {
        predicate.inner.outer_exclusive_binder > self.outer_index
    }
}

// FIXME: Optimize for checking for infer flags
struct HasTypeFlagsVisitor {
    flags: ty::TypeFlags,
}

impl<'tcx> TypeVisitor<'tcx> for HasTypeFlagsVisitor {
    fn visit_ty(&mut self, t: Ty<'_>) -> bool {
        debug!(
            "HasTypeFlagsVisitor: t={:?} t.flags={:?} self.flags={:?}",
            t,
            t.flags(),
            self.flags
        );
        t.flags().intersects(self.flags)
    }

    fn visit_region(&mut self, r: ty::Region<'tcx>) -> bool {
        let flags = r.type_flags();
        debug!("HasTypeFlagsVisitor: r={:?} r.flags={:?} self.flags={:?}", r, flags, self.flags);
        flags.intersects(self.flags)
    }

    fn visit_const(&mut self, c: &'tcx ty::Const<'tcx>) -> bool {
        let flags = FlagComputation::for_const(c);
        debug!("HasTypeFlagsVisitor: c={:?} c.flags={:?} self.flags={:?}", c, flags, self.flags);
        flags.intersects(self.flags)
    }

    fn visit_predicate(&mut self, predicate: ty::Predicate<'tcx>) -> bool {
        debug!(
            "HasTypeFlagsVisitor: predicate={:?} predicate.flags={:?} self.flags={:?}",
            predicate, predicate.inner.flags, self.flags
        );
        predicate.inner.flags.intersects(self.flags)
    }
}

/// Collects all the late-bound regions at the innermost binding level
/// into a hash set.
struct LateBoundRegionsCollector {
    current_index: ty::DebruijnIndex,
    regions: FxHashSet<ty::BoundRegion>,

    /// `true` if we only want regions that are known to be
    /// "constrained" when you equate this type with another type. In
    /// particular, if you have e.g., `&'a u32` and `&'b u32`, equating
    /// them constraints `'a == 'b`. But if you have `<&'a u32 as
    /// Trait>::Foo` and `<&'b u32 as Trait>::Foo`, normalizing those
    /// types may mean that `'a` and `'b` don't appear in the results,
    /// so they are not considered *constrained*.
    just_constrained: bool,
}

impl LateBoundRegionsCollector {
    fn new(just_constrained: bool) -> Self {
        LateBoundRegionsCollector {
            current_index: ty::INNERMOST,
            regions: Default::default(),
            just_constrained,
        }
    }
}

impl<'tcx> TypeVisitor<'tcx> for LateBoundRegionsCollector {
    fn visit_binder<T: TypeFoldable<'tcx>>(&mut self, t: &Binder<T>) -> bool {
        self.current_index.shift_in(1);
        let result = t.super_visit_with(self);
        self.current_index.shift_out(1);
        result
    }

    fn visit_ty(&mut self, t: Ty<'tcx>) -> bool {
        // if we are only looking for "constrained" region, we have to
        // ignore the inputs to a projection, as they may not appear
        // in the normalized form
        if self.just_constrained {
            if let ty::Projection(..) | ty::Opaque(..) = t.kind() {
                return false;
            }
        }

        t.super_visit_with(self)
    }

    fn visit_const(&mut self, c: &'tcx ty::Const<'tcx>) -> bool {
        // if we are only looking for "constrained" region, we have to
        // ignore the inputs of an unevaluated const, as they may not appear
        // in the normalized form
        if self.just_constrained {
            if let ty::ConstKind::Unevaluated(..) = c.val {
                return false;
            }
        }

        c.super_visit_with(self)
    }

    fn visit_region(&mut self, r: ty::Region<'tcx>) -> bool {
        if let ty::ReLateBound(debruijn, br) = *r {
            if debruijn == self.current_index {
                self.regions.insert(br);
            }
        }
        false
    }
}