Skip to main content

rustc_middle/ty/
sty.rs

1//! This module contains `TyKind` and its major components.
2
3#![allow(rustc::usage_of_ty_tykind)]
4
5use std::borrow::Cow;
6use std::ops::{ControlFlow, Range};
7
8use hir::def::{CtorKind, DefKind};
9use rustc_abi::{FIRST_VARIANT, FieldIdx, ScalableElt, VariantIdx};
10use rustc_data_structures::debug_assert_matches;
11use rustc_errors::{ErrorGuaranteed, MultiSpan};
12use rustc_hir as hir;
13use rustc_hir::LangItem;
14use rustc_hir::def_id::DefId;
15use rustc_macros::{HashStable, TyDecodable, TyEncodable, TypeFoldable, extension};
16use rustc_span::{DUMMY_SP, Span, Symbol, kw, sym};
17use rustc_type_ir::TyKind::*;
18use rustc_type_ir::solve::SizedTraitKind;
19use rustc_type_ir::walk::TypeWalker;
20use rustc_type_ir::{self as ir, BoundVar, CollectAndApply, TypeVisitableExt, elaborate};
21use tracing::instrument;
22use ty::util::IntTypeExt;
23
24use super::GenericParamDefKind;
25use crate::infer::canonical::Canonical;
26use crate::traits::ObligationCause;
27use crate::ty::InferTy::*;
28use crate::ty::{
29    self, AdtDef, Discr, GenericArg, GenericArgs, GenericArgsRef, List, ParamEnv, Region, Ty,
30    TyCtxt, TypeFlags, TypeSuperVisitable, TypeVisitable, TypeVisitor, UintTy,
31};
32
33// Re-export and re-parameterize some `I = TyCtxt<'tcx>` types here
34#[rustc_diagnostic_item = "TyKind"]
35pub type TyKind<'tcx> = ir::TyKind<TyCtxt<'tcx>>;
36pub type TypeAndMut<'tcx> = ir::TypeAndMut<TyCtxt<'tcx>>;
37pub type AliasTy<'tcx> = ir::AliasTy<TyCtxt<'tcx>>;
38pub type FnSig<'tcx> = ir::FnSig<TyCtxt<'tcx>>;
39pub type Binder<'tcx, T> = ir::Binder<TyCtxt<'tcx>, T>;
40pub type EarlyBinder<'tcx, T> = ir::EarlyBinder<TyCtxt<'tcx>, T>;
41pub type TypingMode<'tcx> = ir::TypingMode<TyCtxt<'tcx>>;
42pub type Placeholder<'tcx, T> = ir::Placeholder<TyCtxt<'tcx>, T>;
43pub type PlaceholderRegion<'tcx> = ir::PlaceholderRegion<TyCtxt<'tcx>>;
44pub type PlaceholderType<'tcx> = ir::PlaceholderType<TyCtxt<'tcx>>;
45pub type PlaceholderConst<'tcx> = ir::PlaceholderConst<TyCtxt<'tcx>>;
46pub type BoundTy<'tcx> = ir::BoundTy<TyCtxt<'tcx>>;
47pub type BoundConst<'tcx> = ir::BoundConst<TyCtxt<'tcx>>;
48pub type BoundRegion<'tcx> = ir::BoundRegion<TyCtxt<'tcx>>;
49pub type BoundVariableKind<'tcx> = ir::BoundVariableKind<TyCtxt<'tcx>>;
50pub type BoundRegionKind<'tcx> = ir::BoundRegionKind<TyCtxt<'tcx>>;
51pub type BoundTyKind<'tcx> = ir::BoundTyKind<TyCtxt<'tcx>>;
52
53pub trait Article {
54    fn article(&self) -> &'static str;
55}
56
57impl<'tcx> Article for TyKind<'tcx> {
58    /// Get the article ("a" or "an") to use with this type.
59    fn article(&self) -> &'static str {
60        match self {
61            Int(_) | Float(_) | Array(_, _) => "an",
62            Adt(def, _) if def.is_enum() => "an",
63            // This should never happen, but ICEing and causing the user's code
64            // to not compile felt too harsh.
65            Error(_) => "a",
66            _ => "a",
67        }
68    }
69}
70
71impl<'tcx> CoroutineArgsExt<'tcx> for ty::CoroutineArgs<TyCtxt<'tcx>> {
    #[doc = " Coroutine has not been resumed yet."]
    const UNRESUMED: usize = 0;
    #[doc = " Coroutine has returned or is completed."]
    const RETURNED: usize = 1;
    #[doc = " Coroutine has been poisoned."]
    const POISONED: usize = 2;
    #[doc =
    " Number of variants to reserve in coroutine state. Corresponds to"]
    #[doc =
    " `UNRESUMED` (beginning of a coroutine) and `RETURNED`/`POISONED`"]
    #[doc = " (end of a coroutine) states."]
    const RESERVED_VARIANTS: usize = 3;
    const UNRESUMED_NAME: &'static str = "Unresumed";
    const RETURNED_NAME: &'static str = "Returned";
    const POISONED_NAME: &'static str = "Panicked";
    #[doc = " The valid variant indices of this coroutine."]
    #[inline]
    fn variant_range(&self, def_id: DefId, tcx: TyCtxt<'tcx>)
        -> Range<VariantIdx> {
        FIRST_VARIANT..tcx.coroutine_layout(def_id,
                            self.args).unwrap().variant_fields.next_index()
    }
    #[doc =
    " The discriminant for the given variant. Panics if the `variant_index` is"]
    #[doc = " out of range."]
    #[inline]
    fn discriminant_for_variant(&self, def_id: DefId, tcx: TyCtxt<'tcx>,
        variant_index: VariantIdx) -> Discr<'tcx> {
        if !self.variant_range(def_id, tcx).contains(&variant_index) {
            ::core::panicking::panic("assertion failed: self.variant_range(def_id, tcx).contains(&variant_index)")
        };
        Discr {
            val: variant_index.as_usize() as u128,
            ty: self.discr_ty(tcx),
        }
    }
    #[doc =
    " The set of all discriminants for the coroutine, enumerated with their"]
    #[doc = " variant indices."]
    #[inline]
    fn discriminants(self, def_id: DefId, tcx: TyCtxt<'tcx>)
        -> impl Iterator<Item = (VariantIdx, Discr<'tcx>)> {
        self.variant_range(def_id,
                tcx).map(move |index|
                {
                    (index,
                        Discr {
                            val: index.as_usize() as u128,
                            ty: self.discr_ty(tcx),
                        })
                })
    }
    #[doc =
    " Calls `f` with a reference to the name of the enumerator for the given"]
    #[doc = " variant `v`."]
    fn variant_name(v: VariantIdx) -> Cow<'static, str> {
        match v.as_usize() {
            Self::UNRESUMED => Cow::from(Self::UNRESUMED_NAME),
            Self::RETURNED => Cow::from(Self::RETURNED_NAME),
            Self::POISONED => Cow::from(Self::POISONED_NAME),
            _ =>
                Cow::from(::alloc::__export::must_use({
                            ::alloc::fmt::format(format_args!("Suspend{0}",
                                    v.as_usize() - Self::RESERVED_VARIANTS))
                        })),
        }
    }
    #[doc = " The type of the state discriminant used in the coroutine type."]
    #[inline]
    fn discr_ty(&self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> { tcx.types.u32 }
    #[doc =
    " This returns the types of the MIR locals which had to be stored across suspension points."]
    #[doc =
    " It is calculated in rustc_mir_transform::coroutine::StateTransform."]
    #[doc = " All the types here must be in the tuple in CoroutineInterior."]
    #[doc = ""]
    #[doc =
    " The locals are grouped by their variant number. Note that some locals may"]
    #[doc = " be repeated in multiple variants."]
    #[inline]
    fn state_tys(self, def_id: DefId, tcx: TyCtxt<'tcx>)
        -> impl Iterator<Item : Iterator<Item = Ty<'tcx>>> {
        let layout = tcx.coroutine_layout(def_id, self.args).unwrap();
        layout.variant_fields.iter().map(move |variant|
                {
                    variant.iter().map(move |field|
                            {
                                if tcx.is_async_drop_in_place_coroutine(def_id) {
                                    layout.field_tys[*field].ty
                                } else {
                                    ty::EarlyBinder::bind(layout.field_tys[*field].ty).instantiate(tcx,
                                        self.args)
                                }
                            })
                })
    }
    #[doc =
    " This is the types of the fields of a coroutine which are not stored in a"]
    #[doc = " variant."]
    #[inline]
    fn prefix_tys(self) -> &'tcx List<Ty<'tcx>> { self.upvar_tys() }
}#[extension(pub trait CoroutineArgsExt<'tcx>)]
72impl<'tcx> ty::CoroutineArgs<TyCtxt<'tcx>> {
73    /// Coroutine has not been resumed yet.
74    const UNRESUMED: usize = 0;
75    /// Coroutine has returned or is completed.
76    const RETURNED: usize = 1;
77    /// Coroutine has been poisoned.
78    const POISONED: usize = 2;
79    /// Number of variants to reserve in coroutine state. Corresponds to
80    /// `UNRESUMED` (beginning of a coroutine) and `RETURNED`/`POISONED`
81    /// (end of a coroutine) states.
82    const RESERVED_VARIANTS: usize = 3;
83
84    const UNRESUMED_NAME: &'static str = "Unresumed";
85    const RETURNED_NAME: &'static str = "Returned";
86    const POISONED_NAME: &'static str = "Panicked";
87
88    /// The valid variant indices of this coroutine.
89    #[inline]
90    fn variant_range(&self, def_id: DefId, tcx: TyCtxt<'tcx>) -> Range<VariantIdx> {
91        // FIXME requires optimized MIR
92        FIRST_VARIANT..tcx.coroutine_layout(def_id, self.args).unwrap().variant_fields.next_index()
93    }
94
95    /// The discriminant for the given variant. Panics if the `variant_index` is
96    /// out of range.
97    #[inline]
98    fn discriminant_for_variant(
99        &self,
100        def_id: DefId,
101        tcx: TyCtxt<'tcx>,
102        variant_index: VariantIdx,
103    ) -> Discr<'tcx> {
104        // Coroutines don't support explicit discriminant values, so they are
105        // the same as the variant index.
106        assert!(self.variant_range(def_id, tcx).contains(&variant_index));
107        Discr { val: variant_index.as_usize() as u128, ty: self.discr_ty(tcx) }
108    }
109
110    /// The set of all discriminants for the coroutine, enumerated with their
111    /// variant indices.
112    #[inline]
113    fn discriminants(
114        self,
115        def_id: DefId,
116        tcx: TyCtxt<'tcx>,
117    ) -> impl Iterator<Item = (VariantIdx, Discr<'tcx>)> {
118        self.variant_range(def_id, tcx).map(move |index| {
119            (index, Discr { val: index.as_usize() as u128, ty: self.discr_ty(tcx) })
120        })
121    }
122
123    /// Calls `f` with a reference to the name of the enumerator for the given
124    /// variant `v`.
125    fn variant_name(v: VariantIdx) -> Cow<'static, str> {
126        match v.as_usize() {
127            Self::UNRESUMED => Cow::from(Self::UNRESUMED_NAME),
128            Self::RETURNED => Cow::from(Self::RETURNED_NAME),
129            Self::POISONED => Cow::from(Self::POISONED_NAME),
130            _ => Cow::from(format!("Suspend{}", v.as_usize() - Self::RESERVED_VARIANTS)),
131        }
132    }
133
134    /// The type of the state discriminant used in the coroutine type.
135    #[inline]
136    fn discr_ty(&self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
137        tcx.types.u32
138    }
139
140    /// This returns the types of the MIR locals which had to be stored across suspension points.
141    /// It is calculated in rustc_mir_transform::coroutine::StateTransform.
142    /// All the types here must be in the tuple in CoroutineInterior.
143    ///
144    /// The locals are grouped by their variant number. Note that some locals may
145    /// be repeated in multiple variants.
146    #[inline]
147    fn state_tys(
148        self,
149        def_id: DefId,
150        tcx: TyCtxt<'tcx>,
151    ) -> impl Iterator<Item: Iterator<Item = Ty<'tcx>>> {
152        let layout = tcx.coroutine_layout(def_id, self.args).unwrap();
153        layout.variant_fields.iter().map(move |variant| {
154            variant.iter().map(move |field| {
155                if tcx.is_async_drop_in_place_coroutine(def_id) {
156                    layout.field_tys[*field].ty
157                } else {
158                    ty::EarlyBinder::bind(layout.field_tys[*field].ty).instantiate(tcx, self.args)
159                }
160            })
161        })
162    }
163
164    /// This is the types of the fields of a coroutine which are not stored in a
165    /// variant.
166    #[inline]
167    fn prefix_tys(self) -> &'tcx List<Ty<'tcx>> {
168        self.upvar_tys()
169    }
170}
171
172#[derive(#[automatically_derived]
impl<'tcx> ::core::fmt::Debug for UpvarArgs<'tcx> {
    #[inline]
    fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
        match self {
            UpvarArgs::Closure(__self_0) =>
                ::core::fmt::Formatter::debug_tuple_field1_finish(f,
                    "Closure", &__self_0),
            UpvarArgs::Coroutine(__self_0) =>
                ::core::fmt::Formatter::debug_tuple_field1_finish(f,
                    "Coroutine", &__self_0),
            UpvarArgs::CoroutineClosure(__self_0) =>
                ::core::fmt::Formatter::debug_tuple_field1_finish(f,
                    "CoroutineClosure", &__self_0),
        }
    }
}Debug, #[automatically_derived]
impl<'tcx> ::core::marker::Copy for UpvarArgs<'tcx> { }Copy, #[automatically_derived]
impl<'tcx> ::core::clone::Clone for UpvarArgs<'tcx> {
    #[inline]
    fn clone(&self) -> UpvarArgs<'tcx> {
        let _: ::core::clone::AssertParamIsClone<GenericArgsRef<'tcx>>;
        let _: ::core::clone::AssertParamIsClone<GenericArgsRef<'tcx>>;
        let _: ::core::clone::AssertParamIsClone<GenericArgsRef<'tcx>>;
        *self
    }
}Clone, const _: () =
    {
        impl<'tcx, '__ctx>
            ::rustc_data_structures::stable_hasher::HashStable<::rustc_query_system::ich::StableHashingContext<'__ctx>>
            for UpvarArgs<'tcx> {
            #[inline]
            fn hash_stable(&self,
                __hcx:
                    &mut ::rustc_query_system::ich::StableHashingContext<'__ctx>,
                __hasher:
                    &mut ::rustc_data_structures::stable_hasher::StableHasher) {
                ::std::mem::discriminant(self).hash_stable(__hcx, __hasher);
                match *self {
                    UpvarArgs::Closure(ref __binding_0) => {
                        { __binding_0.hash_stable(__hcx, __hasher); }
                    }
                    UpvarArgs::Coroutine(ref __binding_0) => {
                        { __binding_0.hash_stable(__hcx, __hasher); }
                    }
                    UpvarArgs::CoroutineClosure(ref __binding_0) => {
                        { __binding_0.hash_stable(__hcx, __hasher); }
                    }
                }
            }
        }
    };HashStable, const _: () =
    {
        impl<'tcx>
            ::rustc_middle::ty::TypeFoldable<::rustc_middle::ty::TyCtxt<'tcx>>
            for UpvarArgs<'tcx> {
            fn try_fold_with<__F: ::rustc_middle::ty::FallibleTypeFolder<::rustc_middle::ty::TyCtxt<'tcx>>>(self,
                __folder: &mut __F) -> Result<Self, __F::Error> {
                Ok(match self {
                        UpvarArgs::Closure(__binding_0) => {
                            UpvarArgs::Closure(::rustc_middle::ty::TypeFoldable::try_fold_with(__binding_0,
                                        __folder)?)
                        }
                        UpvarArgs::Coroutine(__binding_0) => {
                            UpvarArgs::Coroutine(::rustc_middle::ty::TypeFoldable::try_fold_with(__binding_0,
                                        __folder)?)
                        }
                        UpvarArgs::CoroutineClosure(__binding_0) => {
                            UpvarArgs::CoroutineClosure(::rustc_middle::ty::TypeFoldable::try_fold_with(__binding_0,
                                        __folder)?)
                        }
                    })
            }
            fn fold_with<__F: ::rustc_middle::ty::TypeFolder<::rustc_middle::ty::TyCtxt<'tcx>>>(self,
                __folder: &mut __F) -> Self {
                match self {
                    UpvarArgs::Closure(__binding_0) => {
                        UpvarArgs::Closure(::rustc_middle::ty::TypeFoldable::fold_with(__binding_0,
                                __folder))
                    }
                    UpvarArgs::Coroutine(__binding_0) => {
                        UpvarArgs::Coroutine(::rustc_middle::ty::TypeFoldable::fold_with(__binding_0,
                                __folder))
                    }
                    UpvarArgs::CoroutineClosure(__binding_0) => {
                        UpvarArgs::CoroutineClosure(::rustc_middle::ty::TypeFoldable::fold_with(__binding_0,
                                __folder))
                    }
                }
            }
        }
    };TypeFoldable, const _: () =
    {
        impl<'tcx>
            ::rustc_middle::ty::TypeVisitable<::rustc_middle::ty::TyCtxt<'tcx>>
            for UpvarArgs<'tcx> {
            fn visit_with<__V: ::rustc_middle::ty::TypeVisitor<::rustc_middle::ty::TyCtxt<'tcx>>>(&self,
                __visitor: &mut __V) -> __V::Result {
                match *self {
                    UpvarArgs::Closure(ref __binding_0) => {
                        {
                            match ::rustc_middle::ty::VisitorResult::branch(::rustc_middle::ty::TypeVisitable::visit_with(__binding_0,
                                        __visitor)) {
                                ::core::ops::ControlFlow::Continue(()) => {}
                                ::core::ops::ControlFlow::Break(r) => {
                                    return ::rustc_middle::ty::VisitorResult::from_residual(r);
                                }
                            }
                        }
                    }
                    UpvarArgs::Coroutine(ref __binding_0) => {
                        {
                            match ::rustc_middle::ty::VisitorResult::branch(::rustc_middle::ty::TypeVisitable::visit_with(__binding_0,
                                        __visitor)) {
                                ::core::ops::ControlFlow::Continue(()) => {}
                                ::core::ops::ControlFlow::Break(r) => {
                                    return ::rustc_middle::ty::VisitorResult::from_residual(r);
                                }
                            }
                        }
                    }
                    UpvarArgs::CoroutineClosure(ref __binding_0) => {
                        {
                            match ::rustc_middle::ty::VisitorResult::branch(::rustc_middle::ty::TypeVisitable::visit_with(__binding_0,
                                        __visitor)) {
                                ::core::ops::ControlFlow::Continue(()) => {}
                                ::core::ops::ControlFlow::Break(r) => {
                                    return ::rustc_middle::ty::VisitorResult::from_residual(r);
                                }
                            }
                        }
                    }
                }
                <__V::Result as ::rustc_middle::ty::VisitorResult>::output()
            }
        }
    };TypeVisitable)]
173pub enum UpvarArgs<'tcx> {
174    Closure(GenericArgsRef<'tcx>),
175    Coroutine(GenericArgsRef<'tcx>),
176    CoroutineClosure(GenericArgsRef<'tcx>),
177}
178
179impl<'tcx> UpvarArgs<'tcx> {
180    /// Returns an iterator over the list of types of captured paths by the closure/coroutine.
181    /// In case there was a type error in figuring out the types of the captured path, an
182    /// empty iterator is returned.
183    #[inline]
184    pub fn upvar_tys(self) -> &'tcx List<Ty<'tcx>> {
185        let tupled_tys = match self {
186            UpvarArgs::Closure(args) => args.as_closure().tupled_upvars_ty(),
187            UpvarArgs::Coroutine(args) => args.as_coroutine().tupled_upvars_ty(),
188            UpvarArgs::CoroutineClosure(args) => args.as_coroutine_closure().tupled_upvars_ty(),
189        };
190
191        match tupled_tys.kind() {
192            TyKind::Error(_) => ty::List::empty(),
193            TyKind::Tuple(..) => self.tupled_upvars_ty().tuple_fields(),
194            TyKind::Infer(_) => crate::util::bug::bug_fmt(format_args!("upvar_tys called before capture types are inferred"))bug!("upvar_tys called before capture types are inferred"),
195            ty => crate::util::bug::bug_fmt(format_args!("Unexpected representation of upvar types tuple {0:?}",
        ty))bug!("Unexpected representation of upvar types tuple {:?}", ty),
196        }
197    }
198
199    #[inline]
200    pub fn tupled_upvars_ty(self) -> Ty<'tcx> {
201        match self {
202            UpvarArgs::Closure(args) => args.as_closure().tupled_upvars_ty(),
203            UpvarArgs::Coroutine(args) => args.as_coroutine().tupled_upvars_ty(),
204            UpvarArgs::CoroutineClosure(args) => args.as_coroutine_closure().tupled_upvars_ty(),
205        }
206    }
207}
208
209/// An inline const is modeled like
210/// ```ignore (illustrative)
211/// const InlineConst<'l0...'li, T0...Tj, R>: R;
212/// ```
213/// where:
214///
215/// - 'l0...'li and T0...Tj are the generic parameters
216///   inherited from the item that defined the inline const,
217/// - R represents the type of the constant.
218///
219/// When the inline const is instantiated, `R` is instantiated as the actual inferred
220/// type of the constant. The reason that `R` is represented as an extra type parameter
221/// is the same reason that [`ty::ClosureArgs`] have `CS` and `U` as type parameters:
222/// inline const can reference lifetimes that are internal to the creating function.
223#[derive(#[automatically_derived]
impl<'tcx> ::core::marker::Copy for InlineConstArgs<'tcx> { }Copy, #[automatically_derived]
impl<'tcx> ::core::clone::Clone for InlineConstArgs<'tcx> {
    #[inline]
    fn clone(&self) -> InlineConstArgs<'tcx> {
        let _: ::core::clone::AssertParamIsClone<GenericArgsRef<'tcx>>;
        *self
    }
}Clone, #[automatically_derived]
impl<'tcx> ::core::fmt::Debug for InlineConstArgs<'tcx> {
    #[inline]
    fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
        ::core::fmt::Formatter::debug_struct_field1_finish(f,
            "InlineConstArgs", "args", &&self.args)
    }
}Debug)]
224pub struct InlineConstArgs<'tcx> {
225    /// Generic parameters from the enclosing item,
226    /// concatenated with the inferred type of the constant.
227    pub args: GenericArgsRef<'tcx>,
228}
229
230/// Struct returned by `split()`.
231pub struct InlineConstArgsParts<'tcx, T> {
232    pub parent_args: &'tcx [GenericArg<'tcx>],
233    pub ty: T,
234}
235
236impl<'tcx> InlineConstArgs<'tcx> {
237    /// Construct `InlineConstArgs` from `InlineConstArgsParts`.
238    pub fn new(
239        tcx: TyCtxt<'tcx>,
240        parts: InlineConstArgsParts<'tcx, Ty<'tcx>>,
241    ) -> InlineConstArgs<'tcx> {
242        InlineConstArgs {
243            args: tcx.mk_args_from_iter(
244                parts.parent_args.iter().copied().chain(std::iter::once(parts.ty.into())),
245            ),
246        }
247    }
248
249    /// Divides the inline const args into their respective components.
250    /// The ordering assumed here must match that used by `InlineConstArgs::new` above.
251    fn split(self) -> InlineConstArgsParts<'tcx, GenericArg<'tcx>> {
252        match self.args[..] {
253            [ref parent_args @ .., ty] => InlineConstArgsParts { parent_args, ty },
254            _ => crate::util::bug::bug_fmt(format_args!("inline const args missing synthetics"))bug!("inline const args missing synthetics"),
255        }
256    }
257
258    /// Returns the generic parameters of the inline const's parent.
259    pub fn parent_args(self) -> &'tcx [GenericArg<'tcx>] {
260        self.split().parent_args
261    }
262
263    /// Returns the type of this inline const.
264    pub fn ty(self) -> Ty<'tcx> {
265        self.split().ty.expect_ty()
266    }
267}
268
269pub type PolyFnSig<'tcx> = Binder<'tcx, FnSig<'tcx>>;
270pub type CanonicalPolyFnSig<'tcx> = Canonical<'tcx, Binder<'tcx, FnSig<'tcx>>>;
271
272#[derive(#[automatically_derived]
impl ::core::clone::Clone for ParamTy {
    #[inline]
    fn clone(&self) -> ParamTy {
        let _: ::core::clone::AssertParamIsClone<u32>;
        let _: ::core::clone::AssertParamIsClone<Symbol>;
        *self
    }
}Clone, #[automatically_derived]
impl ::core::marker::Copy for ParamTy { }Copy, #[automatically_derived]
impl ::core::cmp::PartialEq for ParamTy {
    #[inline]
    fn eq(&self, other: &ParamTy) -> bool {
        self.index == other.index && self.name == other.name
    }
}PartialEq, #[automatically_derived]
impl ::core::cmp::Eq for ParamTy {
    #[inline]
    #[doc(hidden)]
    #[coverage(off)]
    fn assert_receiver_is_total_eq(&self) {
        let _: ::core::cmp::AssertParamIsEq<u32>;
        let _: ::core::cmp::AssertParamIsEq<Symbol>;
    }
}Eq, #[automatically_derived]
impl ::core::cmp::PartialOrd for ParamTy {
    #[inline]
    fn partial_cmp(&self, other: &ParamTy)
        -> ::core::option::Option<::core::cmp::Ordering> {
        match ::core::cmp::PartialOrd::partial_cmp(&self.index, &other.index)
            {
            ::core::option::Option::Some(::core::cmp::Ordering::Equal) =>
                ::core::cmp::PartialOrd::partial_cmp(&self.name, &other.name),
            cmp => cmp,
        }
    }
}PartialOrd, #[automatically_derived]
impl ::core::cmp::Ord for ParamTy {
    #[inline]
    fn cmp(&self, other: &ParamTy) -> ::core::cmp::Ordering {
        match ::core::cmp::Ord::cmp(&self.index, &other.index) {
            ::core::cmp::Ordering::Equal =>
                ::core::cmp::Ord::cmp(&self.name, &other.name),
            cmp => cmp,
        }
    }
}Ord, #[automatically_derived]
impl ::core::hash::Hash for ParamTy {
    #[inline]
    fn hash<__H: ::core::hash::Hasher>(&self, state: &mut __H) {
        ::core::hash::Hash::hash(&self.index, state);
        ::core::hash::Hash::hash(&self.name, state)
    }
}Hash, const _: () =
    {
        impl<'tcx, __E: ::rustc_middle::ty::codec::TyEncoder<'tcx>>
            ::rustc_serialize::Encodable<__E> for ParamTy {
            fn encode(&self, __encoder: &mut __E) {
                match *self {
                    ParamTy { index: ref __binding_0, name: ref __binding_1 } =>
                        {
                        ::rustc_serialize::Encodable::<__E>::encode(__binding_0,
                            __encoder);
                        ::rustc_serialize::Encodable::<__E>::encode(__binding_1,
                            __encoder);
                    }
                }
            }
        }
    };TyEncodable, const _: () =
    {
        impl<'tcx, __D: ::rustc_middle::ty::codec::TyDecoder<'tcx>>
            ::rustc_serialize::Decodable<__D> for ParamTy {
            fn decode(__decoder: &mut __D) -> Self {
                ParamTy {
                    index: ::rustc_serialize::Decodable::decode(__decoder),
                    name: ::rustc_serialize::Decodable::decode(__decoder),
                }
            }
        }
    };TyDecodable)]
273#[derive(const _: () =
    {
        impl<'__ctx>
            ::rustc_data_structures::stable_hasher::HashStable<::rustc_query_system::ich::StableHashingContext<'__ctx>>
            for ParamTy {
            #[inline]
            fn hash_stable(&self,
                __hcx:
                    &mut ::rustc_query_system::ich::StableHashingContext<'__ctx>,
                __hasher:
                    &mut ::rustc_data_structures::stable_hasher::StableHasher) {
                match *self {
                    ParamTy { index: ref __binding_0, name: ref __binding_1 } =>
                        {
                        { __binding_0.hash_stable(__hcx, __hasher); }
                        { __binding_1.hash_stable(__hcx, __hasher); }
                    }
                }
            }
        }
    };HashStable)]
274pub struct ParamTy {
275    pub index: u32,
276    pub name: Symbol,
277}
278
279impl rustc_type_ir::inherent::ParamLike for ParamTy {
280    fn index(self) -> u32 {
281        self.index
282    }
283}
284
285impl<'tcx> ParamTy {
286    pub fn new(index: u32, name: Symbol) -> ParamTy {
287        ParamTy { index, name }
288    }
289
290    pub fn for_def(def: &ty::GenericParamDef) -> ParamTy {
291        ParamTy::new(def.index, def.name)
292    }
293
294    #[inline]
295    pub fn to_ty(self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
296        Ty::new_param(tcx, self.index, self.name)
297    }
298
299    pub fn span_from_generics(self, tcx: TyCtxt<'tcx>, item_with_generics: DefId) -> Span {
300        let generics = tcx.generics_of(item_with_generics);
301        let type_param = generics.type_param(self, tcx);
302        tcx.def_span(type_param.def_id)
303    }
304}
305
306#[derive(#[automatically_derived]
impl ::core::marker::Copy for ParamConst { }Copy, #[automatically_derived]
impl ::core::clone::Clone for ParamConst {
    #[inline]
    fn clone(&self) -> ParamConst {
        let _: ::core::clone::AssertParamIsClone<u32>;
        let _: ::core::clone::AssertParamIsClone<Symbol>;
        *self
    }
}Clone, #[automatically_derived]
impl ::core::hash::Hash for ParamConst {
    #[inline]
    fn hash<__H: ::core::hash::Hasher>(&self, state: &mut __H) {
        ::core::hash::Hash::hash(&self.index, state);
        ::core::hash::Hash::hash(&self.name, state)
    }
}Hash, const _: () =
    {
        impl<'tcx, __E: ::rustc_middle::ty::codec::TyEncoder<'tcx>>
            ::rustc_serialize::Encodable<__E> for ParamConst {
            fn encode(&self, __encoder: &mut __E) {
                match *self {
                    ParamConst { index: ref __binding_0, name: ref __binding_1 }
                        => {
                        ::rustc_serialize::Encodable::<__E>::encode(__binding_0,
                            __encoder);
                        ::rustc_serialize::Encodable::<__E>::encode(__binding_1,
                            __encoder);
                    }
                }
            }
        }
    };TyEncodable, const _: () =
    {
        impl<'tcx, __D: ::rustc_middle::ty::codec::TyDecoder<'tcx>>
            ::rustc_serialize::Decodable<__D> for ParamConst {
            fn decode(__decoder: &mut __D) -> Self {
                ParamConst {
                    index: ::rustc_serialize::Decodable::decode(__decoder),
                    name: ::rustc_serialize::Decodable::decode(__decoder),
                }
            }
        }
    };TyDecodable, #[automatically_derived]
impl ::core::cmp::Eq for ParamConst {
    #[inline]
    #[doc(hidden)]
    #[coverage(off)]
    fn assert_receiver_is_total_eq(&self) {
        let _: ::core::cmp::AssertParamIsEq<u32>;
        let _: ::core::cmp::AssertParamIsEq<Symbol>;
    }
}Eq, #[automatically_derived]
impl ::core::cmp::PartialEq for ParamConst {
    #[inline]
    fn eq(&self, other: &ParamConst) -> bool {
        self.index == other.index && self.name == other.name
    }
}PartialEq, #[automatically_derived]
impl ::core::cmp::Ord for ParamConst {
    #[inline]
    fn cmp(&self, other: &ParamConst) -> ::core::cmp::Ordering {
        match ::core::cmp::Ord::cmp(&self.index, &other.index) {
            ::core::cmp::Ordering::Equal =>
                ::core::cmp::Ord::cmp(&self.name, &other.name),
            cmp => cmp,
        }
    }
}Ord, #[automatically_derived]
impl ::core::cmp::PartialOrd for ParamConst {
    #[inline]
    fn partial_cmp(&self, other: &ParamConst)
        -> ::core::option::Option<::core::cmp::Ordering> {
        match ::core::cmp::PartialOrd::partial_cmp(&self.index, &other.index)
            {
            ::core::option::Option::Some(::core::cmp::Ordering::Equal) =>
                ::core::cmp::PartialOrd::partial_cmp(&self.name, &other.name),
            cmp => cmp,
        }
    }
}PartialOrd)]
307#[derive(const _: () =
    {
        impl<'__ctx>
            ::rustc_data_structures::stable_hasher::HashStable<::rustc_query_system::ich::StableHashingContext<'__ctx>>
            for ParamConst {
            #[inline]
            fn hash_stable(&self,
                __hcx:
                    &mut ::rustc_query_system::ich::StableHashingContext<'__ctx>,
                __hasher:
                    &mut ::rustc_data_structures::stable_hasher::StableHasher) {
                match *self {
                    ParamConst { index: ref __binding_0, name: ref __binding_1 }
                        => {
                        { __binding_0.hash_stable(__hcx, __hasher); }
                        { __binding_1.hash_stable(__hcx, __hasher); }
                    }
                }
            }
        }
    };HashStable)]
308pub struct ParamConst {
309    pub index: u32,
310    pub name: Symbol,
311}
312
313impl rustc_type_ir::inherent::ParamLike for ParamConst {
314    fn index(self) -> u32 {
315        self.index
316    }
317}
318
319impl ParamConst {
320    pub fn new(index: u32, name: Symbol) -> ParamConst {
321        ParamConst { index, name }
322    }
323
324    pub fn for_def(def: &ty::GenericParamDef) -> ParamConst {
325        ParamConst::new(def.index, def.name)
326    }
327
328    #[allow(clippy :: suspicious_else_formatting)]
{
    let __tracing_attr_span;
    let __tracing_attr_guard;
    if ::tracing::Level::DEBUG <= ::tracing::level_filters::STATIC_MAX_LEVEL
                &&
                ::tracing::Level::DEBUG <=
                    ::tracing::level_filters::LevelFilter::current() ||
            { false } {
        __tracing_attr_span =
            {
                use ::tracing::__macro_support::Callsite as _;
                static __CALLSITE: ::tracing::callsite::DefaultCallsite =
                    {
                        static META: ::tracing::Metadata<'static> =
                            {
                                ::tracing_core::metadata::Metadata::new("find_const_ty_from_env",
                                    "rustc_middle::ty::sty", ::tracing::Level::DEBUG,
                                    ::tracing_core::__macro_support::Option::Some("compiler/rustc_middle/src/ty/sty.rs"),
                                    ::tracing_core::__macro_support::Option::Some(328u32),
                                    ::tracing_core::__macro_support::Option::Some("rustc_middle::ty::sty"),
                                    ::tracing_core::field::FieldSet::new(&["self", "env"],
                                        ::tracing_core::callsite::Identifier(&__CALLSITE)),
                                    ::tracing::metadata::Kind::SPAN)
                            };
                        ::tracing::callsite::DefaultCallsite::new(&META)
                    };
                let mut interest = ::tracing::subscriber::Interest::never();
                if ::tracing::Level::DEBUG <=
                                    ::tracing::level_filters::STATIC_MAX_LEVEL &&
                                ::tracing::Level::DEBUG <=
                                    ::tracing::level_filters::LevelFilter::current() &&
                            { interest = __CALLSITE.interest(); !interest.is_never() }
                        &&
                        ::tracing::__macro_support::__is_enabled(__CALLSITE.metadata(),
                            interest) {
                    let meta = __CALLSITE.metadata();
                    ::tracing::Span::new(meta,
                        &{
                                #[allow(unused_imports)]
                                use ::tracing::field::{debug, display, Value};
                                let mut iter = meta.fields().iter();
                                meta.fields().value_set(&[(&::tracing::__macro_support::Iterator::next(&mut iter).expect("FieldSet corrupted (this is a bug)"),
                                                    ::tracing::__macro_support::Option::Some(&::tracing::field::debug(&self)
                                                            as &dyn Value)),
                                                (&::tracing::__macro_support::Iterator::next(&mut iter).expect("FieldSet corrupted (this is a bug)"),
                                                    ::tracing::__macro_support::Option::Some(&::tracing::field::debug(&env)
                                                            as &dyn Value))])
                            })
                } else {
                    let span =
                        ::tracing::__macro_support::__disabled_span(__CALLSITE.metadata());
                    {};
                    span
                }
            };
        __tracing_attr_guard = __tracing_attr_span.enter();
    }

    #[warn(clippy :: suspicious_else_formatting)]
    {

        #[allow(unknown_lints, unreachable_code, clippy ::
        diverging_sub_expression, clippy :: empty_loop, clippy ::
        let_unit_value, clippy :: let_with_type_underscore, clippy ::
        needless_return, clippy :: unreachable)]
        if false {
            let __tracing_attr_fake_return: Ty<'tcx> = loop {};
            return __tracing_attr_fake_return;
        }
        {
            let mut candidates =
                env.caller_bounds().iter().filter_map(|clause|
                        {
                            match clause.kind().skip_binder() {
                                ty::ClauseKind::ConstArgHasType(param_ct, ty) => {
                                    if !!(param_ct, ty).has_escaping_bound_vars() {
                                        ::core::panicking::panic("assertion failed: !(param_ct, ty).has_escaping_bound_vars()")
                                    };
                                    match param_ct.kind() {
                                        ty::ConstKind::Param(param_ct) if
                                            param_ct.index == self.index => Some(ty),
                                        _ => None,
                                    }
                                }
                                _ => None,
                            }
                        });
            let ty =
                candidates.next().unwrap_or_else(||
                        {
                            crate::util::bug::bug_fmt(format_args!("cannot find `{0:?}` in param-env: {1:#?}",
                                    self, env));
                        });
            if !candidates.next().is_none() {
                {
                    ::core::panicking::panic_fmt(format_args!("did not expect duplicate `ConstParamHasTy` for `{0:?}` in param-env: {1:#?}",
                            self, env));
                }
            };
            ty
        }
    }
}#[instrument(level = "debug")]
329    pub fn find_const_ty_from_env<'tcx>(self, env: ParamEnv<'tcx>) -> Ty<'tcx> {
330        let mut candidates = env.caller_bounds().iter().filter_map(|clause| {
331            // `ConstArgHasType` are never desugared to be higher ranked.
332            match clause.kind().skip_binder() {
333                ty::ClauseKind::ConstArgHasType(param_ct, ty) => {
334                    assert!(!(param_ct, ty).has_escaping_bound_vars());
335
336                    match param_ct.kind() {
337                        ty::ConstKind::Param(param_ct) if param_ct.index == self.index => Some(ty),
338                        _ => None,
339                    }
340                }
341                _ => None,
342            }
343        });
344
345        // N.B. it may be tempting to fix ICEs by making this function return
346        // `Option<Ty<'tcx>>` instead of `Ty<'tcx>`; however, this is generally
347        // considered to be a bandaid solution, since it hides more important
348        // underlying issues with how we construct generics and predicates of
349        // items. It's advised to fix the underlying issue rather than trying
350        // to modify this function.
351        let ty = candidates.next().unwrap_or_else(|| {
352            bug!("cannot find `{self:?}` in param-env: {env:#?}");
353        });
354        assert!(
355            candidates.next().is_none(),
356            "did not expect duplicate `ConstParamHasTy` for `{self:?}` in param-env: {env:#?}"
357        );
358        ty
359    }
360}
361
362/// Constructors for `Ty`
363impl<'tcx> Ty<'tcx> {
364    /// Avoid using this in favour of more specific `new_*` methods, where possible.
365    /// The more specific methods will often optimize their creation.
366    #[allow(rustc::usage_of_ty_tykind)]
367    #[inline]
368    fn new(tcx: TyCtxt<'tcx>, st: TyKind<'tcx>) -> Ty<'tcx> {
369        tcx.mk_ty_from_kind(st)
370    }
371
372    #[inline]
373    pub fn new_infer(tcx: TyCtxt<'tcx>, infer: ty::InferTy) -> Ty<'tcx> {
374        Ty::new(tcx, TyKind::Infer(infer))
375    }
376
377    #[inline]
378    pub fn new_var(tcx: TyCtxt<'tcx>, v: ty::TyVid) -> Ty<'tcx> {
379        // Use a pre-interned one when possible.
380        tcx.types
381            .ty_vars
382            .get(v.as_usize())
383            .copied()
384            .unwrap_or_else(|| Ty::new(tcx, Infer(TyVar(v))))
385    }
386
387    #[inline]
388    pub fn new_int_var(tcx: TyCtxt<'tcx>, v: ty::IntVid) -> Ty<'tcx> {
389        Ty::new_infer(tcx, IntVar(v))
390    }
391
392    #[inline]
393    pub fn new_float_var(tcx: TyCtxt<'tcx>, v: ty::FloatVid) -> Ty<'tcx> {
394        Ty::new_infer(tcx, FloatVar(v))
395    }
396
397    #[inline]
398    pub fn new_fresh(tcx: TyCtxt<'tcx>, n: u32) -> Ty<'tcx> {
399        // Use a pre-interned one when possible.
400        tcx.types
401            .fresh_tys
402            .get(n as usize)
403            .copied()
404            .unwrap_or_else(|| Ty::new_infer(tcx, ty::FreshTy(n)))
405    }
406
407    #[inline]
408    pub fn new_fresh_int(tcx: TyCtxt<'tcx>, n: u32) -> Ty<'tcx> {
409        // Use a pre-interned one when possible.
410        tcx.types
411            .fresh_int_tys
412            .get(n as usize)
413            .copied()
414            .unwrap_or_else(|| Ty::new_infer(tcx, ty::FreshIntTy(n)))
415    }
416
417    #[inline]
418    pub fn new_fresh_float(tcx: TyCtxt<'tcx>, n: u32) -> Ty<'tcx> {
419        // Use a pre-interned one when possible.
420        tcx.types
421            .fresh_float_tys
422            .get(n as usize)
423            .copied()
424            .unwrap_or_else(|| Ty::new_infer(tcx, ty::FreshFloatTy(n)))
425    }
426
427    #[inline]
428    pub fn new_param(tcx: TyCtxt<'tcx>, index: u32, name: Symbol) -> Ty<'tcx> {
429        Ty::new(tcx, Param(ParamTy { index, name }))
430    }
431
432    #[inline]
433    pub fn new_bound(
434        tcx: TyCtxt<'tcx>,
435        index: ty::DebruijnIndex,
436        bound_ty: ty::BoundTy<'tcx>,
437    ) -> Ty<'tcx> {
438        // Use a pre-interned one when possible.
439        if let ty::BoundTy { var, kind: ty::BoundTyKind::Anon } = bound_ty
440            && let Some(inner) = tcx.types.anon_bound_tys.get(index.as_usize())
441            && let Some(ty) = inner.get(var.as_usize()).copied()
442        {
443            ty
444        } else {
445            Ty::new(tcx, Bound(ty::BoundVarIndexKind::Bound(index), bound_ty))
446        }
447    }
448
449    #[inline]
450    pub fn new_canonical_bound(tcx: TyCtxt<'tcx>, var: BoundVar) -> Ty<'tcx> {
451        // Use a pre-interned one when possible.
452        if let Some(ty) = tcx.types.anon_canonical_bound_tys.get(var.as_usize()).copied() {
453            ty
454        } else {
455            Ty::new(
456                tcx,
457                Bound(
458                    ty::BoundVarIndexKind::Canonical,
459                    ty::BoundTy { var, kind: ty::BoundTyKind::Anon },
460                ),
461            )
462        }
463    }
464
465    #[inline]
466    pub fn new_placeholder(tcx: TyCtxt<'tcx>, placeholder: ty::PlaceholderType<'tcx>) -> Ty<'tcx> {
467        Ty::new(tcx, Placeholder(placeholder))
468    }
469
470    #[inline]
471    pub fn new_alias(
472        tcx: TyCtxt<'tcx>,
473        kind: ty::AliasTyKind,
474        alias_ty: ty::AliasTy<'tcx>,
475    ) -> Ty<'tcx> {
476        if true {
    match (kind, tcx.def_kind(alias_ty.def_id)) {
        (ty::Opaque, DefKind::OpaqueTy) |
            (ty::Projection | ty::Inherent, DefKind::AssocTy) |
            (ty::Free, DefKind::TyAlias) => {}
        ref left_val => {
            ::core::panicking::assert_matches_failed(left_val,
                "(ty::Opaque, DefKind::OpaqueTy) |\n(ty::Projection | ty::Inherent, DefKind::AssocTy) |\n(ty::Free, DefKind::TyAlias)",
                ::core::option::Option::None);
        }
    };
};debug_assert_matches!(
477            (kind, tcx.def_kind(alias_ty.def_id)),
478            (ty::Opaque, DefKind::OpaqueTy)
479                | (ty::Projection | ty::Inherent, DefKind::AssocTy)
480                | (ty::Free, DefKind::TyAlias)
481        );
482        Ty::new(tcx, Alias(kind, alias_ty))
483    }
484
485    #[inline]
486    pub fn new_pat(tcx: TyCtxt<'tcx>, base: Ty<'tcx>, pat: ty::Pattern<'tcx>) -> Ty<'tcx> {
487        Ty::new(tcx, Pat(base, pat))
488    }
489
490    #[inline]
491    #[allow(clippy :: suspicious_else_formatting)]
{
    let __tracing_attr_span;
    let __tracing_attr_guard;
    if ::tracing::Level::DEBUG <= ::tracing::level_filters::STATIC_MAX_LEVEL
                &&
                ::tracing::Level::DEBUG <=
                    ::tracing::level_filters::LevelFilter::current() ||
            { false } {
        __tracing_attr_span =
            {
                use ::tracing::__macro_support::Callsite as _;
                static __CALLSITE: ::tracing::callsite::DefaultCallsite =
                    {
                        static META: ::tracing::Metadata<'static> =
                            {
                                ::tracing_core::metadata::Metadata::new("new_opaque",
                                    "rustc_middle::ty::sty", ::tracing::Level::DEBUG,
                                    ::tracing_core::__macro_support::Option::Some("compiler/rustc_middle/src/ty/sty.rs"),
                                    ::tracing_core::__macro_support::Option::Some(491u32),
                                    ::tracing_core::__macro_support::Option::Some("rustc_middle::ty::sty"),
                                    ::tracing_core::field::FieldSet::new(&["def_id", "args"],
                                        ::tracing_core::callsite::Identifier(&__CALLSITE)),
                                    ::tracing::metadata::Kind::SPAN)
                            };
                        ::tracing::callsite::DefaultCallsite::new(&META)
                    };
                let mut interest = ::tracing::subscriber::Interest::never();
                if ::tracing::Level::DEBUG <=
                                    ::tracing::level_filters::STATIC_MAX_LEVEL &&
                                ::tracing::Level::DEBUG <=
                                    ::tracing::level_filters::LevelFilter::current() &&
                            { interest = __CALLSITE.interest(); !interest.is_never() }
                        &&
                        ::tracing::__macro_support::__is_enabled(__CALLSITE.metadata(),
                            interest) {
                    let meta = __CALLSITE.metadata();
                    ::tracing::Span::new(meta,
                        &{
                                #[allow(unused_imports)]
                                use ::tracing::field::{debug, display, Value};
                                let mut iter = meta.fields().iter();
                                meta.fields().value_set(&[(&::tracing::__macro_support::Iterator::next(&mut iter).expect("FieldSet corrupted (this is a bug)"),
                                                    ::tracing::__macro_support::Option::Some(&::tracing::field::debug(&def_id)
                                                            as &dyn Value)),
                                                (&::tracing::__macro_support::Iterator::next(&mut iter).expect("FieldSet corrupted (this is a bug)"),
                                                    ::tracing::__macro_support::Option::Some(&::tracing::field::debug(&args)
                                                            as &dyn Value))])
                            })
                } else {
                    let span =
                        ::tracing::__macro_support::__disabled_span(__CALLSITE.metadata());
                    {};
                    span
                }
            };
        __tracing_attr_guard = __tracing_attr_span.enter();
    }

    #[warn(clippy :: suspicious_else_formatting)]
    {

        #[allow(unknown_lints, unreachable_code, clippy ::
        diverging_sub_expression, clippy :: empty_loop, clippy ::
        let_unit_value, clippy :: let_with_type_underscore, clippy ::
        needless_return, clippy :: unreachable)]
        if false {
            let __tracing_attr_fake_return: Ty<'tcx> = loop {};
            return __tracing_attr_fake_return;
        }
        {
            Ty::new_alias(tcx, ty::Opaque,
                AliasTy::new_from_args(tcx, def_id, args))
        }
    }
}#[instrument(level = "debug", skip(tcx))]
492    pub fn new_opaque(tcx: TyCtxt<'tcx>, def_id: DefId, args: GenericArgsRef<'tcx>) -> Ty<'tcx> {
493        Ty::new_alias(tcx, ty::Opaque, AliasTy::new_from_args(tcx, def_id, args))
494    }
495
496    /// Constructs a `TyKind::Error` type with current `ErrorGuaranteed`
497    pub fn new_error(tcx: TyCtxt<'tcx>, guar: ErrorGuaranteed) -> Ty<'tcx> {
498        Ty::new(tcx, Error(guar))
499    }
500
501    /// Constructs a `TyKind::Error` type and registers a `span_delayed_bug` to ensure it gets used.
502    #[track_caller]
503    pub fn new_misc_error(tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
504        Ty::new_error_with_message(tcx, DUMMY_SP, "TyKind::Error constructed but no error reported")
505    }
506
507    /// Constructs a `TyKind::Error` type and registers a `span_delayed_bug` with the given `msg` to
508    /// ensure it gets used.
509    #[track_caller]
510    pub fn new_error_with_message<S: Into<MultiSpan>>(
511        tcx: TyCtxt<'tcx>,
512        span: S,
513        msg: impl Into<Cow<'static, str>>,
514    ) -> Ty<'tcx> {
515        let reported = tcx.dcx().span_delayed_bug(span, msg);
516        Ty::new(tcx, Error(reported))
517    }
518
519    #[inline]
520    pub fn new_int(tcx: TyCtxt<'tcx>, i: ty::IntTy) -> Ty<'tcx> {
521        use ty::IntTy::*;
522        match i {
523            Isize => tcx.types.isize,
524            I8 => tcx.types.i8,
525            I16 => tcx.types.i16,
526            I32 => tcx.types.i32,
527            I64 => tcx.types.i64,
528            I128 => tcx.types.i128,
529        }
530    }
531
532    #[inline]
533    pub fn new_uint(tcx: TyCtxt<'tcx>, ui: ty::UintTy) -> Ty<'tcx> {
534        use ty::UintTy::*;
535        match ui {
536            Usize => tcx.types.usize,
537            U8 => tcx.types.u8,
538            U16 => tcx.types.u16,
539            U32 => tcx.types.u32,
540            U64 => tcx.types.u64,
541            U128 => tcx.types.u128,
542        }
543    }
544
545    #[inline]
546    pub fn new_float(tcx: TyCtxt<'tcx>, f: ty::FloatTy) -> Ty<'tcx> {
547        use ty::FloatTy::*;
548        match f {
549            F16 => tcx.types.f16,
550            F32 => tcx.types.f32,
551            F64 => tcx.types.f64,
552            F128 => tcx.types.f128,
553        }
554    }
555
556    #[inline]
557    pub fn new_ref(
558        tcx: TyCtxt<'tcx>,
559        r: Region<'tcx>,
560        ty: Ty<'tcx>,
561        mutbl: ty::Mutability,
562    ) -> Ty<'tcx> {
563        Ty::new(tcx, Ref(r, ty, mutbl))
564    }
565
566    #[inline]
567    pub fn new_mut_ref(tcx: TyCtxt<'tcx>, r: Region<'tcx>, ty: Ty<'tcx>) -> Ty<'tcx> {
568        Ty::new_ref(tcx, r, ty, hir::Mutability::Mut)
569    }
570
571    #[inline]
572    pub fn new_imm_ref(tcx: TyCtxt<'tcx>, r: Region<'tcx>, ty: Ty<'tcx>) -> Ty<'tcx> {
573        Ty::new_ref(tcx, r, ty, hir::Mutability::Not)
574    }
575
576    pub fn new_pinned_ref(
577        tcx: TyCtxt<'tcx>,
578        r: Region<'tcx>,
579        ty: Ty<'tcx>,
580        mutbl: ty::Mutability,
581    ) -> Ty<'tcx> {
582        let pin = tcx.adt_def(tcx.require_lang_item(LangItem::Pin, DUMMY_SP));
583        Ty::new_adt(tcx, pin, tcx.mk_args(&[Ty::new_ref(tcx, r, ty, mutbl).into()]))
584    }
585
586    #[inline]
587    pub fn new_ptr(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>, mutbl: ty::Mutability) -> Ty<'tcx> {
588        Ty::new(tcx, ty::RawPtr(ty, mutbl))
589    }
590
591    #[inline]
592    pub fn new_mut_ptr(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> Ty<'tcx> {
593        Ty::new_ptr(tcx, ty, hir::Mutability::Mut)
594    }
595
596    #[inline]
597    pub fn new_imm_ptr(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> Ty<'tcx> {
598        Ty::new_ptr(tcx, ty, hir::Mutability::Not)
599    }
600
601    #[inline]
602    pub fn new_adt(tcx: TyCtxt<'tcx>, def: AdtDef<'tcx>, args: GenericArgsRef<'tcx>) -> Ty<'tcx> {
603        tcx.debug_assert_args_compatible(def.did(), args);
604        if truecfg!(debug_assertions) {
605            match tcx.def_kind(def.did()) {
606                DefKind::Struct | DefKind::Union | DefKind::Enum => {}
607                DefKind::Mod
608                | DefKind::Variant
609                | DefKind::Trait
610                | DefKind::TyAlias
611                | DefKind::ForeignTy
612                | DefKind::TraitAlias
613                | DefKind::AssocTy
614                | DefKind::TyParam
615                | DefKind::Fn
616                | DefKind::Const
617                | DefKind::ConstParam
618                | DefKind::Static { .. }
619                | DefKind::Ctor(..)
620                | DefKind::AssocFn
621                | DefKind::AssocConst
622                | DefKind::Macro(..)
623                | DefKind::ExternCrate
624                | DefKind::Use
625                | DefKind::ForeignMod
626                | DefKind::AnonConst
627                | DefKind::InlineConst
628                | DefKind::OpaqueTy
629                | DefKind::Field
630                | DefKind::LifetimeParam
631                | DefKind::GlobalAsm
632                | DefKind::Impl { .. }
633                | DefKind::Closure
634                | DefKind::SyntheticCoroutineBody => {
635                    crate::util::bug::bug_fmt(format_args!("not an adt: {1:?} ({0:?})",
        tcx.def_kind(def.did()), def))bug!("not an adt: {def:?} ({:?})", tcx.def_kind(def.did()))
636                }
637            }
638        }
639        Ty::new(tcx, Adt(def, args))
640    }
641
642    #[inline]
643    pub fn new_foreign(tcx: TyCtxt<'tcx>, def_id: DefId) -> Ty<'tcx> {
644        Ty::new(tcx, Foreign(def_id))
645    }
646
647    #[inline]
648    pub fn new_array(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>, n: u64) -> Ty<'tcx> {
649        Ty::new(tcx, Array(ty, ty::Const::from_target_usize(tcx, n)))
650    }
651
652    #[inline]
653    pub fn new_array_with_const_len(
654        tcx: TyCtxt<'tcx>,
655        ty: Ty<'tcx>,
656        ct: ty::Const<'tcx>,
657    ) -> Ty<'tcx> {
658        Ty::new(tcx, Array(ty, ct))
659    }
660
661    #[inline]
662    pub fn new_slice(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> Ty<'tcx> {
663        Ty::new(tcx, Slice(ty))
664    }
665
666    #[inline]
667    pub fn new_tup(tcx: TyCtxt<'tcx>, ts: &[Ty<'tcx>]) -> Ty<'tcx> {
668        if ts.is_empty() { tcx.types.unit } else { Ty::new(tcx, Tuple(tcx.mk_type_list(ts))) }
669    }
670
671    pub fn new_tup_from_iter<I, T>(tcx: TyCtxt<'tcx>, iter: I) -> T::Output
672    where
673        I: Iterator<Item = T>,
674        T: CollectAndApply<Ty<'tcx>, Ty<'tcx>>,
675    {
676        T::collect_and_apply(iter, |ts| Ty::new_tup(tcx, ts))
677    }
678
679    #[inline]
680    pub fn new_fn_def(
681        tcx: TyCtxt<'tcx>,
682        def_id: DefId,
683        args: impl IntoIterator<Item: Into<GenericArg<'tcx>>>,
684    ) -> Ty<'tcx> {
685        if true {
    match tcx.def_kind(def_id) {
        DefKind::AssocFn | DefKind::Fn | DefKind::Ctor(_, CtorKind::Fn) => {}
        ref left_val => {
            ::core::panicking::assert_matches_failed(left_val,
                "DefKind::AssocFn | DefKind::Fn | DefKind::Ctor(_, CtorKind::Fn)",
                ::core::option::Option::None);
        }
    };
};debug_assert_matches!(
686            tcx.def_kind(def_id),
687            DefKind::AssocFn | DefKind::Fn | DefKind::Ctor(_, CtorKind::Fn)
688        );
689        let args = tcx.check_and_mk_args(def_id, args);
690        Ty::new(tcx, FnDef(def_id, args))
691    }
692
693    #[inline]
694    pub fn new_fn_ptr(tcx: TyCtxt<'tcx>, fty: PolyFnSig<'tcx>) -> Ty<'tcx> {
695        let (sig_tys, hdr) = fty.split();
696        Ty::new(tcx, FnPtr(sig_tys, hdr))
697    }
698
699    #[inline]
700    pub fn new_unsafe_binder(tcx: TyCtxt<'tcx>, b: Binder<'tcx, Ty<'tcx>>) -> Ty<'tcx> {
701        Ty::new(tcx, UnsafeBinder(b.into()))
702    }
703
704    #[inline]
705    pub fn new_dynamic(
706        tcx: TyCtxt<'tcx>,
707        obj: &'tcx List<ty::PolyExistentialPredicate<'tcx>>,
708        reg: ty::Region<'tcx>,
709    ) -> Ty<'tcx> {
710        if truecfg!(debug_assertions) {
711            let projection_count = obj
712                .projection_bounds()
713                .filter(|item| !tcx.generics_require_sized_self(item.item_def_id()))
714                .count();
715            let expected_count: usize = obj
716                .principal_def_id()
717                .into_iter()
718                .flat_map(|principal_def_id| {
719                    // IMPORTANT: This has to agree with HIR ty lowering of dyn trait!
720                    elaborate::supertraits(
721                        tcx,
722                        ty::Binder::dummy(ty::TraitRef::identity(tcx, principal_def_id)),
723                    )
724                    .map(|principal| {
725                        tcx.associated_items(principal.def_id())
726                            .in_definition_order()
727                            .filter(|item| item.is_type() || item.is_const())
728                            .filter(|item| !item.is_impl_trait_in_trait())
729                            .filter(|item| !tcx.generics_require_sized_self(item.def_id))
730                            .count()
731                    })
732                })
733                .sum();
734            match (&projection_count, &expected_count) {
    (left_val, right_val) => {
        if !(*left_val == *right_val) {
            let kind = ::core::panicking::AssertKind::Eq;
            ::core::panicking::assert_failed(kind, &*left_val, &*right_val,
                ::core::option::Option::Some(format_args!("expected {0:?} to have {1} projections, but it has {2}",
                        obj, expected_count, projection_count)));
        }
    }
};assert_eq!(
735                projection_count, expected_count,
736                "expected {obj:?} to have {expected_count} projections, \
737                but it has {projection_count}"
738            );
739        }
740        Ty::new(tcx, Dynamic(obj, reg))
741    }
742
743    #[inline]
744    pub fn new_projection_from_args(
745        tcx: TyCtxt<'tcx>,
746        item_def_id: DefId,
747        args: ty::GenericArgsRef<'tcx>,
748    ) -> Ty<'tcx> {
749        Ty::new_alias(tcx, ty::Projection, AliasTy::new_from_args(tcx, item_def_id, args))
750    }
751
752    #[inline]
753    pub fn new_projection(
754        tcx: TyCtxt<'tcx>,
755        item_def_id: DefId,
756        args: impl IntoIterator<Item: Into<GenericArg<'tcx>>>,
757    ) -> Ty<'tcx> {
758        Ty::new_alias(tcx, ty::Projection, AliasTy::new(tcx, item_def_id, args))
759    }
760
761    #[inline]
762    pub fn new_closure(
763        tcx: TyCtxt<'tcx>,
764        def_id: DefId,
765        closure_args: GenericArgsRef<'tcx>,
766    ) -> Ty<'tcx> {
767        tcx.debug_assert_args_compatible(def_id, closure_args);
768        Ty::new(tcx, Closure(def_id, closure_args))
769    }
770
771    #[inline]
772    pub fn new_coroutine_closure(
773        tcx: TyCtxt<'tcx>,
774        def_id: DefId,
775        closure_args: GenericArgsRef<'tcx>,
776    ) -> Ty<'tcx> {
777        tcx.debug_assert_args_compatible(def_id, closure_args);
778        Ty::new(tcx, CoroutineClosure(def_id, closure_args))
779    }
780
781    #[inline]
782    pub fn new_coroutine(
783        tcx: TyCtxt<'tcx>,
784        def_id: DefId,
785        coroutine_args: GenericArgsRef<'tcx>,
786    ) -> Ty<'tcx> {
787        tcx.debug_assert_args_compatible(def_id, coroutine_args);
788        Ty::new(tcx, Coroutine(def_id, coroutine_args))
789    }
790
791    #[inline]
792    pub fn new_coroutine_witness(
793        tcx: TyCtxt<'tcx>,
794        def_id: DefId,
795        args: GenericArgsRef<'tcx>,
796    ) -> Ty<'tcx> {
797        if truecfg!(debug_assertions) {
798            tcx.debug_assert_args_compatible(tcx.typeck_root_def_id(def_id), args);
799        }
800        Ty::new(tcx, CoroutineWitness(def_id, args))
801    }
802
803    pub fn new_coroutine_witness_for_coroutine(
804        tcx: TyCtxt<'tcx>,
805        def_id: DefId,
806        coroutine_args: GenericArgsRef<'tcx>,
807    ) -> Ty<'tcx> {
808        tcx.debug_assert_args_compatible(def_id, coroutine_args);
809        // HACK: Coroutine witness types are lifetime erased, so they
810        // never reference any lifetime args from the coroutine. We erase
811        // the regions here since we may get into situations where a
812        // coroutine is recursively contained within itself, leading to
813        // witness types that differ by region args. This means that
814        // cycle detection in fulfillment will not kick in, which leads
815        // to unnecessary overflows in async code. See the issue:
816        // <https://github.com/rust-lang/rust/issues/145151>.
817        let args =
818            ty::GenericArgs::for_item(tcx, tcx.typeck_root_def_id(def_id), |def, _| {
819                match def.kind {
820                    ty::GenericParamDefKind::Lifetime => tcx.lifetimes.re_erased.into(),
821                    ty::GenericParamDefKind::Type { .. }
822                    | ty::GenericParamDefKind::Const { .. } => coroutine_args[def.index as usize],
823                }
824            });
825        Ty::new_coroutine_witness(tcx, def_id, args)
826    }
827
828    // misc
829
830    #[inline]
831    pub fn new_static_str(tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
832        Ty::new_imm_ref(tcx, tcx.lifetimes.re_static, tcx.types.str_)
833    }
834
835    // lang and diagnostic tys
836
837    fn new_generic_adt(tcx: TyCtxt<'tcx>, wrapper_def_id: DefId, ty_param: Ty<'tcx>) -> Ty<'tcx> {
838        let adt_def = tcx.adt_def(wrapper_def_id);
839        let args = GenericArgs::for_item(tcx, wrapper_def_id, |param, args| match param.kind {
840            GenericParamDefKind::Lifetime | GenericParamDefKind::Const { .. } => crate::util::bug::bug_fmt(format_args!("impossible case reached"))bug!(),
841            GenericParamDefKind::Type { has_default, .. } => {
842                if param.index == 0 {
843                    ty_param.into()
844                } else {
845                    if !has_default { ::core::panicking::panic("assertion failed: has_default") };assert!(has_default);
846                    tcx.type_of(param.def_id).instantiate(tcx, args).into()
847                }
848            }
849        });
850        Ty::new_adt(tcx, adt_def, args)
851    }
852
853    #[inline]
854    pub fn new_lang_item(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>, item: LangItem) -> Option<Ty<'tcx>> {
855        let def_id = tcx.lang_items().get(item)?;
856        Some(Ty::new_generic_adt(tcx, def_id, ty))
857    }
858
859    #[inline]
860    pub fn new_diagnostic_item(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>, name: Symbol) -> Option<Ty<'tcx>> {
861        let def_id = tcx.get_diagnostic_item(name)?;
862        Some(Ty::new_generic_adt(tcx, def_id, ty))
863    }
864
865    #[inline]
866    pub fn new_box(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> Ty<'tcx> {
867        let def_id = tcx.require_lang_item(LangItem::OwnedBox, DUMMY_SP);
868        Ty::new_generic_adt(tcx, def_id, ty)
869    }
870
871    #[inline]
872    pub fn new_option(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> Ty<'tcx> {
873        let def_id = tcx.require_lang_item(LangItem::Option, DUMMY_SP);
874        Ty::new_generic_adt(tcx, def_id, ty)
875    }
876
877    #[inline]
878    pub fn new_maybe_uninit(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> Ty<'tcx> {
879        let def_id = tcx.require_lang_item(LangItem::MaybeUninit, DUMMY_SP);
880        Ty::new_generic_adt(tcx, def_id, ty)
881    }
882
883    /// Creates a `&mut Context<'_>` [`Ty`] with erased lifetimes.
884    pub fn new_task_context(tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
885        let context_did = tcx.require_lang_item(LangItem::Context, DUMMY_SP);
886        let context_adt_ref = tcx.adt_def(context_did);
887        let context_args = tcx.mk_args(&[tcx.lifetimes.re_erased.into()]);
888        let context_ty = Ty::new_adt(tcx, context_adt_ref, context_args);
889        Ty::new_mut_ref(tcx, tcx.lifetimes.re_erased, context_ty)
890    }
891}
892
893impl<'tcx> rustc_type_ir::inherent::Ty<TyCtxt<'tcx>> for Ty<'tcx> {
894    fn new_bool(tcx: TyCtxt<'tcx>) -> Self {
895        tcx.types.bool
896    }
897
898    fn new_u8(tcx: TyCtxt<'tcx>) -> Self {
899        tcx.types.u8
900    }
901
902    fn new_infer(tcx: TyCtxt<'tcx>, infer: ty::InferTy) -> Self {
903        Ty::new_infer(tcx, infer)
904    }
905
906    fn new_var(tcx: TyCtxt<'tcx>, vid: ty::TyVid) -> Self {
907        Ty::new_var(tcx, vid)
908    }
909
910    fn new_param(tcx: TyCtxt<'tcx>, param: ty::ParamTy) -> Self {
911        Ty::new_param(tcx, param.index, param.name)
912    }
913
914    fn new_placeholder(tcx: TyCtxt<'tcx>, placeholder: ty::PlaceholderType<'tcx>) -> Self {
915        Ty::new_placeholder(tcx, placeholder)
916    }
917
918    fn new_bound(
919        interner: TyCtxt<'tcx>,
920        debruijn: ty::DebruijnIndex,
921        var: ty::BoundTy<'tcx>,
922    ) -> Self {
923        Ty::new_bound(interner, debruijn, var)
924    }
925
926    fn new_anon_bound(tcx: TyCtxt<'tcx>, debruijn: ty::DebruijnIndex, var: ty::BoundVar) -> Self {
927        Ty::new_bound(tcx, debruijn, ty::BoundTy { var, kind: ty::BoundTyKind::Anon })
928    }
929
930    fn new_canonical_bound(tcx: TyCtxt<'tcx>, var: ty::BoundVar) -> Self {
931        Ty::new_canonical_bound(tcx, var)
932    }
933
934    fn new_alias(
935        interner: TyCtxt<'tcx>,
936        kind: ty::AliasTyKind,
937        alias_ty: ty::AliasTy<'tcx>,
938    ) -> Self {
939        Ty::new_alias(interner, kind, alias_ty)
940    }
941
942    fn new_error(interner: TyCtxt<'tcx>, guar: ErrorGuaranteed) -> Self {
943        Ty::new_error(interner, guar)
944    }
945
946    fn new_adt(
947        interner: TyCtxt<'tcx>,
948        adt_def: ty::AdtDef<'tcx>,
949        args: ty::GenericArgsRef<'tcx>,
950    ) -> Self {
951        Ty::new_adt(interner, adt_def, args)
952    }
953
954    fn new_foreign(interner: TyCtxt<'tcx>, def_id: DefId) -> Self {
955        Ty::new_foreign(interner, def_id)
956    }
957
958    fn new_dynamic(
959        interner: TyCtxt<'tcx>,
960        preds: &'tcx List<ty::PolyExistentialPredicate<'tcx>>,
961        region: ty::Region<'tcx>,
962    ) -> Self {
963        Ty::new_dynamic(interner, preds, region)
964    }
965
966    fn new_coroutine(
967        interner: TyCtxt<'tcx>,
968        def_id: DefId,
969        args: ty::GenericArgsRef<'tcx>,
970    ) -> Self {
971        Ty::new_coroutine(interner, def_id, args)
972    }
973
974    fn new_coroutine_closure(
975        interner: TyCtxt<'tcx>,
976        def_id: DefId,
977        args: ty::GenericArgsRef<'tcx>,
978    ) -> Self {
979        Ty::new_coroutine_closure(interner, def_id, args)
980    }
981
982    fn new_closure(interner: TyCtxt<'tcx>, def_id: DefId, args: ty::GenericArgsRef<'tcx>) -> Self {
983        Ty::new_closure(interner, def_id, args)
984    }
985
986    fn new_coroutine_witness(
987        interner: TyCtxt<'tcx>,
988        def_id: DefId,
989        args: ty::GenericArgsRef<'tcx>,
990    ) -> Self {
991        Ty::new_coroutine_witness(interner, def_id, args)
992    }
993
994    fn new_coroutine_witness_for_coroutine(
995        interner: TyCtxt<'tcx>,
996        def_id: DefId,
997        coroutine_args: ty::GenericArgsRef<'tcx>,
998    ) -> Self {
999        Ty::new_coroutine_witness_for_coroutine(interner, def_id, coroutine_args)
1000    }
1001
1002    fn new_ptr(interner: TyCtxt<'tcx>, ty: Self, mutbl: hir::Mutability) -> Self {
1003        Ty::new_ptr(interner, ty, mutbl)
1004    }
1005
1006    fn new_ref(
1007        interner: TyCtxt<'tcx>,
1008        region: ty::Region<'tcx>,
1009        ty: Self,
1010        mutbl: hir::Mutability,
1011    ) -> Self {
1012        Ty::new_ref(interner, region, ty, mutbl)
1013    }
1014
1015    fn new_array_with_const_len(interner: TyCtxt<'tcx>, ty: Self, len: ty::Const<'tcx>) -> Self {
1016        Ty::new_array_with_const_len(interner, ty, len)
1017    }
1018
1019    fn new_slice(interner: TyCtxt<'tcx>, ty: Self) -> Self {
1020        Ty::new_slice(interner, ty)
1021    }
1022
1023    fn new_tup(interner: TyCtxt<'tcx>, tys: &[Ty<'tcx>]) -> Self {
1024        Ty::new_tup(interner, tys)
1025    }
1026
1027    fn new_tup_from_iter<It, T>(interner: TyCtxt<'tcx>, iter: It) -> T::Output
1028    where
1029        It: Iterator<Item = T>,
1030        T: CollectAndApply<Self, Self>,
1031    {
1032        Ty::new_tup_from_iter(interner, iter)
1033    }
1034
1035    fn tuple_fields(self) -> &'tcx ty::List<Ty<'tcx>> {
1036        self.tuple_fields()
1037    }
1038
1039    fn to_opt_closure_kind(self) -> Option<ty::ClosureKind> {
1040        self.to_opt_closure_kind()
1041    }
1042
1043    fn from_closure_kind(interner: TyCtxt<'tcx>, kind: ty::ClosureKind) -> Self {
1044        Ty::from_closure_kind(interner, kind)
1045    }
1046
1047    fn from_coroutine_closure_kind(
1048        interner: TyCtxt<'tcx>,
1049        kind: rustc_type_ir::ClosureKind,
1050    ) -> Self {
1051        Ty::from_coroutine_closure_kind(interner, kind)
1052    }
1053
1054    fn new_fn_def(interner: TyCtxt<'tcx>, def_id: DefId, args: ty::GenericArgsRef<'tcx>) -> Self {
1055        Ty::new_fn_def(interner, def_id, args)
1056    }
1057
1058    fn new_fn_ptr(interner: TyCtxt<'tcx>, sig: ty::Binder<'tcx, ty::FnSig<'tcx>>) -> Self {
1059        Ty::new_fn_ptr(interner, sig)
1060    }
1061
1062    fn new_pat(interner: TyCtxt<'tcx>, ty: Self, pat: ty::Pattern<'tcx>) -> Self {
1063        Ty::new_pat(interner, ty, pat)
1064    }
1065
1066    fn new_unsafe_binder(interner: TyCtxt<'tcx>, ty: ty::Binder<'tcx, Ty<'tcx>>) -> Self {
1067        Ty::new_unsafe_binder(interner, ty)
1068    }
1069
1070    fn new_unit(interner: TyCtxt<'tcx>) -> Self {
1071        interner.types.unit
1072    }
1073
1074    fn new_usize(interner: TyCtxt<'tcx>) -> Self {
1075        interner.types.usize
1076    }
1077
1078    fn discriminant_ty(self, interner: TyCtxt<'tcx>) -> Ty<'tcx> {
1079        self.discriminant_ty(interner)
1080    }
1081
1082    fn has_unsafe_fields(self) -> bool {
1083        Ty::has_unsafe_fields(self)
1084    }
1085}
1086
1087/// Type utilities
1088impl<'tcx> Ty<'tcx> {
1089    // It would be nicer if this returned the value instead of a reference,
1090    // like how `Predicate::kind` and `Region::kind` do. (It would result in
1091    // many fewer subsequent dereferences.) But that gives a small but
1092    // noticeable performance hit. See #126069 for details.
1093    #[inline(always)]
1094    pub fn kind(self) -> &'tcx TyKind<'tcx> {
1095        self.0.0
1096    }
1097
1098    // FIXME(compiler-errors): Think about removing this.
1099    #[inline(always)]
1100    pub fn flags(self) -> TypeFlags {
1101        self.0.0.flags
1102    }
1103
1104    #[inline]
1105    pub fn is_unit(self) -> bool {
1106        match self.kind() {
1107            Tuple(tys) => tys.is_empty(),
1108            _ => false,
1109        }
1110    }
1111
1112    /// Check if type is an `usize`.
1113    #[inline]
1114    pub fn is_usize(self) -> bool {
1115        #[allow(non_exhaustive_omitted_patterns)] match self.kind() {
    Uint(UintTy::Usize) => true,
    _ => false,
}matches!(self.kind(), Uint(UintTy::Usize))
1116    }
1117
1118    /// Check if type is an `usize` or an integral type variable.
1119    #[inline]
1120    pub fn is_usize_like(self) -> bool {
1121        #[allow(non_exhaustive_omitted_patterns)] match self.kind() {
    Uint(UintTy::Usize) | Infer(IntVar(_)) => true,
    _ => false,
}matches!(self.kind(), Uint(UintTy::Usize) | Infer(IntVar(_)))
1122    }
1123
1124    #[inline]
1125    pub fn is_never(self) -> bool {
1126        #[allow(non_exhaustive_omitted_patterns)] match self.kind() {
    Never => true,
    _ => false,
}matches!(self.kind(), Never)
1127    }
1128
1129    #[inline]
1130    pub fn is_primitive(self) -> bool {
1131        #[allow(non_exhaustive_omitted_patterns)] match self.kind() {
    Bool | Char | Int(_) | Uint(_) | Float(_) => true,
    _ => false,
}matches!(self.kind(), Bool | Char | Int(_) | Uint(_) | Float(_))
1132    }
1133
1134    #[inline]
1135    pub fn is_adt(self) -> bool {
1136        #[allow(non_exhaustive_omitted_patterns)] match self.kind() {
    Adt(..) => true,
    _ => false,
}matches!(self.kind(), Adt(..))
1137    }
1138
1139    #[inline]
1140    pub fn is_ref(self) -> bool {
1141        #[allow(non_exhaustive_omitted_patterns)] match self.kind() {
    Ref(..) => true,
    _ => false,
}matches!(self.kind(), Ref(..))
1142    }
1143
1144    #[inline]
1145    pub fn is_ty_var(self) -> bool {
1146        #[allow(non_exhaustive_omitted_patterns)] match self.kind() {
    Infer(TyVar(_)) => true,
    _ => false,
}matches!(self.kind(), Infer(TyVar(_)))
1147    }
1148
1149    #[inline]
1150    pub fn ty_vid(self) -> Option<ty::TyVid> {
1151        match self.kind() {
1152            &Infer(TyVar(vid)) => Some(vid),
1153            _ => None,
1154        }
1155    }
1156
1157    #[inline]
1158    pub fn is_ty_or_numeric_infer(self) -> bool {
1159        #[allow(non_exhaustive_omitted_patterns)] match self.kind() {
    Infer(_) => true,
    _ => false,
}matches!(self.kind(), Infer(_))
1160    }
1161
1162    #[inline]
1163    pub fn is_phantom_data(self) -> bool {
1164        if let Adt(def, _) = self.kind() { def.is_phantom_data() } else { false }
1165    }
1166
1167    #[inline]
1168    pub fn is_bool(self) -> bool {
1169        *self.kind() == Bool
1170    }
1171
1172    /// Returns `true` if this type is a `str`.
1173    #[inline]
1174    pub fn is_str(self) -> bool {
1175        *self.kind() == Str
1176    }
1177
1178    /// Returns true if this type is `&str`. The reference's lifetime is ignored.
1179    #[inline]
1180    pub fn is_imm_ref_str(self) -> bool {
1181        #[allow(non_exhaustive_omitted_patterns)] match self.kind() {
    ty::Ref(_, inner, hir::Mutability::Not) if inner.is_str() => true,
    _ => false,
}matches!(self.kind(), ty::Ref(_, inner, hir::Mutability::Not) if inner.is_str())
1182    }
1183
1184    #[inline]
1185    pub fn is_param(self, index: u32) -> bool {
1186        match self.kind() {
1187            ty::Param(data) => data.index == index,
1188            _ => false,
1189        }
1190    }
1191
1192    #[inline]
1193    pub fn is_slice(self) -> bool {
1194        #[allow(non_exhaustive_omitted_patterns)] match self.kind() {
    Slice(_) => true,
    _ => false,
}matches!(self.kind(), Slice(_))
1195    }
1196
1197    #[inline]
1198    pub fn is_array_slice(self) -> bool {
1199        match self.kind() {
1200            Slice(_) => true,
1201            ty::RawPtr(ty, _) | Ref(_, ty, _) => #[allow(non_exhaustive_omitted_patterns)] match ty.kind() {
    Slice(_) => true,
    _ => false,
}matches!(ty.kind(), Slice(_)),
1202            _ => false,
1203        }
1204    }
1205
1206    #[inline]
1207    pub fn is_array(self) -> bool {
1208        #[allow(non_exhaustive_omitted_patterns)] match self.kind() {
    Array(..) => true,
    _ => false,
}matches!(self.kind(), Array(..))
1209    }
1210
1211    #[inline]
1212    pub fn is_simd(self) -> bool {
1213        match self.kind() {
1214            Adt(def, _) => def.repr().simd(),
1215            _ => false,
1216        }
1217    }
1218
1219    #[inline]
1220    pub fn is_scalable_vector(self) -> bool {
1221        match self.kind() {
1222            Adt(def, _) => def.repr().scalable(),
1223            _ => false,
1224        }
1225    }
1226
1227    pub fn sequence_element_type(self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
1228        match self.kind() {
1229            Array(ty, _) | Slice(ty) => *ty,
1230            Str => tcx.types.u8,
1231            _ => crate::util::bug::bug_fmt(format_args!("`sequence_element_type` called on non-sequence value: {0}",
        self))bug!("`sequence_element_type` called on non-sequence value: {}", self),
1232        }
1233    }
1234
1235    pub fn scalable_vector_element_count_and_type(self, tcx: TyCtxt<'tcx>) -> (u16, Ty<'tcx>) {
1236        let Adt(def, args) = self.kind() else {
1237            crate::util::bug::bug_fmt(format_args!("`scalable_vector_size_and_type` called on invalid type"))bug!("`scalable_vector_size_and_type` called on invalid type")
1238        };
1239        let Some(ScalableElt::ElementCount(element_count)) = def.repr().scalable else {
1240            crate::util::bug::bug_fmt(format_args!("`scalable_vector_size_and_type` called on non-scalable vector type"));bug!("`scalable_vector_size_and_type` called on non-scalable vector type");
1241        };
1242        let variant = def.non_enum_variant();
1243        match (&variant.fields.len(), &1) {
    (left_val, right_val) => {
        if !(*left_val == *right_val) {
            let kind = ::core::panicking::AssertKind::Eq;
            ::core::panicking::assert_failed(kind, &*left_val, &*right_val,
                ::core::option::Option::None);
        }
    }
};assert_eq!(variant.fields.len(), 1);
1244        let field_ty = variant.fields[FieldIdx::ZERO].ty(tcx, args);
1245        (element_count, field_ty)
1246    }
1247
1248    pub fn simd_size_and_type(self, tcx: TyCtxt<'tcx>) -> (u64, Ty<'tcx>) {
1249        let Adt(def, args) = self.kind() else {
1250            crate::util::bug::bug_fmt(format_args!("`simd_size_and_type` called on invalid type"))bug!("`simd_size_and_type` called on invalid type")
1251        };
1252        if !def.repr().simd() {
    {
        ::core::panicking::panic_fmt(format_args!("`simd_size_and_type` called on non-SIMD type"));
    }
};assert!(def.repr().simd(), "`simd_size_and_type` called on non-SIMD type");
1253        let variant = def.non_enum_variant();
1254        match (&variant.fields.len(), &1) {
    (left_val, right_val) => {
        if !(*left_val == *right_val) {
            let kind = ::core::panicking::AssertKind::Eq;
            ::core::panicking::assert_failed(kind, &*left_val, &*right_val,
                ::core::option::Option::None);
        }
    }
};assert_eq!(variant.fields.len(), 1);
1255        let field_ty = variant.fields[FieldIdx::ZERO].ty(tcx, args);
1256        let Array(f0_elem_ty, f0_len) = field_ty.kind() else {
1257            crate::util::bug::bug_fmt(format_args!("Simd type has non-array field type {0:?}",
        field_ty))bug!("Simd type has non-array field type {field_ty:?}")
1258        };
1259        // FIXME(repr_simd): https://github.com/rust-lang/rust/pull/78863#discussion_r522784112
1260        // The way we evaluate the `N` in `[T; N]` here only works since we use
1261        // `simd_size_and_type` post-monomorphization. It will probably start to ICE
1262        // if we use it in generic code. See the `simd-array-trait` ui test.
1263        (
1264            f0_len
1265                .try_to_target_usize(tcx)
1266                .expect("expected SIMD field to have definite array size"),
1267            *f0_elem_ty,
1268        )
1269    }
1270
1271    #[inline]
1272    pub fn is_mutable_ptr(self) -> bool {
1273        #[allow(non_exhaustive_omitted_patterns)] match self.kind() {
    RawPtr(_, hir::Mutability::Mut) | Ref(_, _, hir::Mutability::Mut) => true,
    _ => false,
}matches!(self.kind(), RawPtr(_, hir::Mutability::Mut) | Ref(_, _, hir::Mutability::Mut))
1274    }
1275
1276    /// Get the mutability of the reference or `None` when not a reference
1277    #[inline]
1278    pub fn ref_mutability(self) -> Option<hir::Mutability> {
1279        match self.kind() {
1280            Ref(_, _, mutability) => Some(*mutability),
1281            _ => None,
1282        }
1283    }
1284
1285    #[inline]
1286    pub fn is_raw_ptr(self) -> bool {
1287        #[allow(non_exhaustive_omitted_patterns)] match self.kind() {
    RawPtr(_, _) => true,
    _ => false,
}matches!(self.kind(), RawPtr(_, _))
1288    }
1289
1290    /// Tests if this is any kind of primitive pointer type (reference, raw pointer, fn pointer).
1291    /// `Box` is *not* considered a pointer here!
1292    #[inline]
1293    pub fn is_any_ptr(self) -> bool {
1294        self.is_ref() || self.is_raw_ptr() || self.is_fn_ptr()
1295    }
1296
1297    #[inline]
1298    pub fn is_box(self) -> bool {
1299        match self.kind() {
1300            Adt(def, _) => def.is_box(),
1301            _ => false,
1302        }
1303    }
1304
1305    /// Tests whether this is a Box definitely using the global allocator.
1306    ///
1307    /// If the allocator is still generic, the answer is `false`, but it may
1308    /// later turn out that it does use the global allocator.
1309    #[inline]
1310    pub fn is_box_global(self, tcx: TyCtxt<'tcx>) -> bool {
1311        match self.kind() {
1312            Adt(def, args) if def.is_box() => {
1313                let Some(alloc) = args.get(1) else {
1314                    // Single-argument Box is always global. (for "minicore" tests)
1315                    return true;
1316                };
1317                alloc.expect_ty().ty_adt_def().is_some_and(|alloc_adt| {
1318                    tcx.is_lang_item(alloc_adt.did(), LangItem::GlobalAlloc)
1319                })
1320            }
1321            _ => false,
1322        }
1323    }
1324
1325    pub fn boxed_ty(self) -> Option<Ty<'tcx>> {
1326        match self.kind() {
1327            Adt(def, args) if def.is_box() => Some(args.type_at(0)),
1328            _ => None,
1329        }
1330    }
1331
1332    pub fn pinned_ty(self) -> Option<Ty<'tcx>> {
1333        match self.kind() {
1334            Adt(def, args) if def.is_pin() => Some(args.type_at(0)),
1335            _ => None,
1336        }
1337    }
1338
1339    pub fn maybe_pinned_ref(
1340        self,
1341    ) -> Option<(Ty<'tcx>, ty::Pinnedness, ty::Mutability, Region<'tcx>)> {
1342        match self.kind() {
1343            Adt(def, args)
1344                if def.is_pin()
1345                    && let &ty::Ref(region, ty, mutbl) = args.type_at(0).kind() =>
1346            {
1347                Some((ty, ty::Pinnedness::Pinned, mutbl, region))
1348            }
1349            &Ref(region, ty, mutbl) => Some((ty, ty::Pinnedness::Not, mutbl, region)),
1350            _ => None,
1351        }
1352    }
1353
1354    /// Panics if called on any type other than `Box<T>`.
1355    pub fn expect_boxed_ty(self) -> Ty<'tcx> {
1356        self.boxed_ty()
1357            .unwrap_or_else(|| crate::util::bug::bug_fmt(format_args!("`expect_boxed_ty` is called on non-box type {0:?}",
        self))bug!("`expect_boxed_ty` is called on non-box type {:?}", self))
1358    }
1359
1360    /// A scalar type is one that denotes an atomic datum, with no sub-components.
1361    /// (A RawPtr is scalar because it represents a non-managed pointer, so its
1362    /// contents are abstract to rustc.)
1363    #[inline]
1364    pub fn is_scalar(self) -> bool {
1365        #[allow(non_exhaustive_omitted_patterns)] match self.kind() {
    Bool | Char | Int(_) | Float(_) | Uint(_) | FnDef(..) | FnPtr(..) |
        RawPtr(_, _) | Infer(IntVar(_) | FloatVar(_)) => true,
    _ => false,
}matches!(
1366            self.kind(),
1367            Bool | Char
1368                | Int(_)
1369                | Float(_)
1370                | Uint(_)
1371                | FnDef(..)
1372                | FnPtr(..)
1373                | RawPtr(_, _)
1374                | Infer(IntVar(_) | FloatVar(_))
1375        )
1376    }
1377
1378    /// Returns `true` if this type is a floating point type.
1379    #[inline]
1380    pub fn is_floating_point(self) -> bool {
1381        #[allow(non_exhaustive_omitted_patterns)] match self.kind() {
    Float(_) | Infer(FloatVar(_)) => true,
    _ => false,
}matches!(self.kind(), Float(_) | Infer(FloatVar(_)))
1382    }
1383
1384    #[inline]
1385    pub fn is_trait(self) -> bool {
1386        #[allow(non_exhaustive_omitted_patterns)] match self.kind() {
    Dynamic(_, _) => true,
    _ => false,
}matches!(self.kind(), Dynamic(_, _))
1387    }
1388
1389    #[inline]
1390    pub fn is_enum(self) -> bool {
1391        #[allow(non_exhaustive_omitted_patterns)] match self.kind() {
    Adt(adt_def, _) if adt_def.is_enum() => true,
    _ => false,
}matches!(self.kind(), Adt(adt_def, _) if adt_def.is_enum())
1392    }
1393
1394    #[inline]
1395    pub fn is_union(self) -> bool {
1396        #[allow(non_exhaustive_omitted_patterns)] match self.kind() {
    Adt(adt_def, _) if adt_def.is_union() => true,
    _ => false,
}matches!(self.kind(), Adt(adt_def, _) if adt_def.is_union())
1397    }
1398
1399    #[inline]
1400    pub fn is_closure(self) -> bool {
1401        #[allow(non_exhaustive_omitted_patterns)] match self.kind() {
    Closure(..) => true,
    _ => false,
}matches!(self.kind(), Closure(..))
1402    }
1403
1404    #[inline]
1405    pub fn is_coroutine(self) -> bool {
1406        #[allow(non_exhaustive_omitted_patterns)] match self.kind() {
    Coroutine(..) => true,
    _ => false,
}matches!(self.kind(), Coroutine(..))
1407    }
1408
1409    #[inline]
1410    pub fn is_coroutine_closure(self) -> bool {
1411        #[allow(non_exhaustive_omitted_patterns)] match self.kind() {
    CoroutineClosure(..) => true,
    _ => false,
}matches!(self.kind(), CoroutineClosure(..))
1412    }
1413
1414    #[inline]
1415    pub fn is_integral(self) -> bool {
1416        #[allow(non_exhaustive_omitted_patterns)] match self.kind() {
    Infer(IntVar(_)) | Int(_) | Uint(_) => true,
    _ => false,
}matches!(self.kind(), Infer(IntVar(_)) | Int(_) | Uint(_))
1417    }
1418
1419    #[inline]
1420    pub fn is_fresh_ty(self) -> bool {
1421        #[allow(non_exhaustive_omitted_patterns)] match self.kind() {
    Infer(FreshTy(_)) => true,
    _ => false,
}matches!(self.kind(), Infer(FreshTy(_)))
1422    }
1423
1424    #[inline]
1425    pub fn is_fresh(self) -> bool {
1426        #[allow(non_exhaustive_omitted_patterns)] match self.kind() {
    Infer(FreshTy(_) | FreshIntTy(_) | FreshFloatTy(_)) => true,
    _ => false,
}matches!(self.kind(), Infer(FreshTy(_) | FreshIntTy(_) | FreshFloatTy(_)))
1427    }
1428
1429    #[inline]
1430    pub fn is_char(self) -> bool {
1431        #[allow(non_exhaustive_omitted_patterns)] match self.kind() {
    Char => true,
    _ => false,
}matches!(self.kind(), Char)
1432    }
1433
1434    #[inline]
1435    pub fn is_numeric(self) -> bool {
1436        self.is_integral() || self.is_floating_point()
1437    }
1438
1439    #[inline]
1440    pub fn is_signed(self) -> bool {
1441        #[allow(non_exhaustive_omitted_patterns)] match self.kind() {
    Int(_) => true,
    _ => false,
}matches!(self.kind(), Int(_))
1442    }
1443
1444    #[inline]
1445    pub fn is_ptr_sized_integral(self) -> bool {
1446        #[allow(non_exhaustive_omitted_patterns)] match self.kind() {
    Int(ty::IntTy::Isize) | Uint(ty::UintTy::Usize) => true,
    _ => false,
}matches!(self.kind(), Int(ty::IntTy::Isize) | Uint(ty::UintTy::Usize))
1447    }
1448
1449    #[inline]
1450    pub fn has_concrete_skeleton(self) -> bool {
1451        !#[allow(non_exhaustive_omitted_patterns)] match self.kind() {
    Param(_) | Infer(_) | Error(_) => true,
    _ => false,
}matches!(self.kind(), Param(_) | Infer(_) | Error(_))
1452    }
1453
1454    /// Checks whether a type recursively contains another type
1455    ///
1456    /// Example: `Option<()>` contains `()`
1457    pub fn contains(self, other: Ty<'tcx>) -> bool {
1458        struct ContainsTyVisitor<'tcx>(Ty<'tcx>);
1459
1460        impl<'tcx> TypeVisitor<TyCtxt<'tcx>> for ContainsTyVisitor<'tcx> {
1461            type Result = ControlFlow<()>;
1462
1463            fn visit_ty(&mut self, t: Ty<'tcx>) -> Self::Result {
1464                if self.0 == t { ControlFlow::Break(()) } else { t.super_visit_with(self) }
1465            }
1466        }
1467
1468        let cf = self.visit_with(&mut ContainsTyVisitor(other));
1469        cf.is_break()
1470    }
1471
1472    /// Checks whether a type recursively contains any closure
1473    ///
1474    /// Example: `Option<{closure@file.rs:4:20}>` returns true
1475    pub fn contains_closure(self) -> bool {
1476        struct ContainsClosureVisitor;
1477
1478        impl<'tcx> TypeVisitor<TyCtxt<'tcx>> for ContainsClosureVisitor {
1479            type Result = ControlFlow<()>;
1480
1481            fn visit_ty(&mut self, t: Ty<'tcx>) -> Self::Result {
1482                if let ty::Closure(..) = t.kind() {
1483                    ControlFlow::Break(())
1484                } else {
1485                    t.super_visit_with(self)
1486                }
1487            }
1488        }
1489
1490        let cf = self.visit_with(&mut ContainsClosureVisitor);
1491        cf.is_break()
1492    }
1493
1494    /// Returns the deepest `async_drop_in_place::{closure}` implementation.
1495    ///
1496    /// `async_drop_in_place<T>::{closure}`, when T is a coroutine, is a proxy-impl
1497    /// to call async drop poll from impl coroutine.
1498    pub fn find_async_drop_impl_coroutine<F: FnMut(Ty<'tcx>)>(
1499        self,
1500        tcx: TyCtxt<'tcx>,
1501        mut f: F,
1502    ) -> Ty<'tcx> {
1503        if !self.is_coroutine() {
    ::core::panicking::panic("assertion failed: self.is_coroutine()")
};assert!(self.is_coroutine());
1504        let mut cor_ty = self;
1505        let mut ty = cor_ty;
1506        loop {
1507            let ty::Coroutine(def_id, args) = ty.kind() else { return cor_ty };
1508            cor_ty = ty;
1509            f(ty);
1510            if !tcx.is_async_drop_in_place_coroutine(*def_id) {
1511                return cor_ty;
1512            }
1513            ty = args.first().unwrap().expect_ty();
1514        }
1515    }
1516
1517    /// Returns the type of `*ty`.
1518    ///
1519    /// The parameter `explicit` indicates if this is an *explicit* dereference.
1520    /// Some types -- notably raw ptrs -- can only be dereferenced explicitly.
1521    pub fn builtin_deref(self, explicit: bool) -> Option<Ty<'tcx>> {
1522        match *self.kind() {
1523            _ if let Some(boxed) = self.boxed_ty() => Some(boxed),
1524            Ref(_, ty, _) => Some(ty),
1525            RawPtr(ty, _) if explicit => Some(ty),
1526            _ => None,
1527        }
1528    }
1529
1530    /// Returns the type of `ty[i]`.
1531    pub fn builtin_index(self) -> Option<Ty<'tcx>> {
1532        match self.kind() {
1533            Array(ty, _) | Slice(ty) => Some(*ty),
1534            _ => None,
1535        }
1536    }
1537
1538    #[allow(clippy :: suspicious_else_formatting)]
{
    let __tracing_attr_span;
    let __tracing_attr_guard;
    if ::tracing::Level::TRACE <= ::tracing::level_filters::STATIC_MAX_LEVEL
                &&
                ::tracing::Level::TRACE <=
                    ::tracing::level_filters::LevelFilter::current() ||
            { false } {
        __tracing_attr_span =
            {
                use ::tracing::__macro_support::Callsite as _;
                static __CALLSITE: ::tracing::callsite::DefaultCallsite =
                    {
                        static META: ::tracing::Metadata<'static> =
                            {
                                ::tracing_core::metadata::Metadata::new("fn_sig",
                                    "rustc_middle::ty::sty", ::tracing::Level::TRACE,
                                    ::tracing_core::__macro_support::Option::Some("compiler/rustc_middle/src/ty/sty.rs"),
                                    ::tracing_core::__macro_support::Option::Some(1538u32),
                                    ::tracing_core::__macro_support::Option::Some("rustc_middle::ty::sty"),
                                    ::tracing_core::field::FieldSet::new(&["self"],
                                        ::tracing_core::callsite::Identifier(&__CALLSITE)),
                                    ::tracing::metadata::Kind::SPAN)
                            };
                        ::tracing::callsite::DefaultCallsite::new(&META)
                    };
                let mut interest = ::tracing::subscriber::Interest::never();
                if ::tracing::Level::TRACE <=
                                    ::tracing::level_filters::STATIC_MAX_LEVEL &&
                                ::tracing::Level::TRACE <=
                                    ::tracing::level_filters::LevelFilter::current() &&
                            { interest = __CALLSITE.interest(); !interest.is_never() }
                        &&
                        ::tracing::__macro_support::__is_enabled(__CALLSITE.metadata(),
                            interest) {
                    let meta = __CALLSITE.metadata();
                    ::tracing::Span::new(meta,
                        &{
                                #[allow(unused_imports)]
                                use ::tracing::field::{debug, display, Value};
                                let mut iter = meta.fields().iter();
                                meta.fields().value_set(&[(&::tracing::__macro_support::Iterator::next(&mut iter).expect("FieldSet corrupted (this is a bug)"),
                                                    ::tracing::__macro_support::Option::Some(&::tracing::field::debug(&self)
                                                            as &dyn Value))])
                            })
                } else {
                    let span =
                        ::tracing::__macro_support::__disabled_span(__CALLSITE.metadata());
                    {};
                    span
                }
            };
        __tracing_attr_guard = __tracing_attr_span.enter();
    }

    #[warn(clippy :: suspicious_else_formatting)]
    {

        #[allow(unknown_lints, unreachable_code, clippy ::
        diverging_sub_expression, clippy :: empty_loop, clippy ::
        let_unit_value, clippy :: let_with_type_underscore, clippy ::
        needless_return, clippy :: unreachable)]
        if false {
            let __tracing_attr_fake_return: PolyFnSig<'tcx> = loop {};
            return __tracing_attr_fake_return;
        }
        { self.kind().fn_sig(tcx) }
    }
}#[tracing::instrument(level = "trace", skip(tcx))]
1539    pub fn fn_sig(self, tcx: TyCtxt<'tcx>) -> PolyFnSig<'tcx> {
1540        self.kind().fn_sig(tcx)
1541    }
1542
1543    #[inline]
1544    pub fn is_fn(self) -> bool {
1545        #[allow(non_exhaustive_omitted_patterns)] match self.kind() {
    FnDef(..) | FnPtr(..) => true,
    _ => false,
}matches!(self.kind(), FnDef(..) | FnPtr(..))
1546    }
1547
1548    #[inline]
1549    pub fn is_fn_ptr(self) -> bool {
1550        #[allow(non_exhaustive_omitted_patterns)] match self.kind() {
    FnPtr(..) => true,
    _ => false,
}matches!(self.kind(), FnPtr(..))
1551    }
1552
1553    #[inline]
1554    pub fn is_impl_trait(self) -> bool {
1555        #[allow(non_exhaustive_omitted_patterns)] match self.kind() {
    Alias(ty::Opaque, ..) => true,
    _ => false,
}matches!(self.kind(), Alias(ty::Opaque, ..))
1556    }
1557
1558    #[inline]
1559    pub fn ty_adt_def(self) -> Option<AdtDef<'tcx>> {
1560        match self.kind() {
1561            Adt(adt, _) => Some(*adt),
1562            _ => None,
1563        }
1564    }
1565
1566    /// Iterates over tuple fields.
1567    /// Panics when called on anything but a tuple.
1568    #[inline]
1569    pub fn tuple_fields(self) -> &'tcx List<Ty<'tcx>> {
1570        match self.kind() {
1571            Tuple(args) => args,
1572            _ => crate::util::bug::bug_fmt(format_args!("tuple_fields called on non-tuple: {0:?}",
        self))bug!("tuple_fields called on non-tuple: {self:?}"),
1573        }
1574    }
1575
1576    /// If the type contains variants, returns the valid range of variant indices.
1577    //
1578    // FIXME: This requires the optimized MIR in the case of coroutines.
1579    #[inline]
1580    pub fn variant_range(self, tcx: TyCtxt<'tcx>) -> Option<Range<VariantIdx>> {
1581        match self.kind() {
1582            TyKind::Adt(adt, _) => Some(adt.variant_range()),
1583            TyKind::Coroutine(def_id, args) => {
1584                Some(args.as_coroutine().variant_range(*def_id, tcx))
1585            }
1586            _ => None,
1587        }
1588    }
1589
1590    /// If the type contains variants, returns the variant for `variant_index`.
1591    /// Panics if `variant_index` is out of range.
1592    //
1593    // FIXME: This requires the optimized MIR in the case of coroutines.
1594    #[inline]
1595    pub fn discriminant_for_variant(
1596        self,
1597        tcx: TyCtxt<'tcx>,
1598        variant_index: VariantIdx,
1599    ) -> Option<Discr<'tcx>> {
1600        match self.kind() {
1601            TyKind::Adt(adt, _) if adt.is_enum() => {
1602                Some(adt.discriminant_for_variant(tcx, variant_index))
1603            }
1604            TyKind::Coroutine(def_id, args) => {
1605                Some(args.as_coroutine().discriminant_for_variant(*def_id, tcx, variant_index))
1606            }
1607            _ => None,
1608        }
1609    }
1610
1611    /// Returns the type of the discriminant of this type.
1612    pub fn discriminant_ty(self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
1613        match self.kind() {
1614            ty::Adt(adt, _) if adt.is_enum() => adt.repr().discr_type().to_ty(tcx),
1615            ty::Coroutine(_, args) => args.as_coroutine().discr_ty(tcx),
1616
1617            ty::Param(_) | ty::Alias(..) | ty::Infer(ty::TyVar(_)) => {
1618                let assoc_items = tcx.associated_item_def_ids(
1619                    tcx.require_lang_item(hir::LangItem::DiscriminantKind, DUMMY_SP),
1620                );
1621                Ty::new_projection_from_args(tcx, assoc_items[0], tcx.mk_args(&[self.into()]))
1622            }
1623
1624            ty::Pat(ty, _) => ty.discriminant_ty(tcx),
1625
1626            ty::Bool
1627            | ty::Char
1628            | ty::Int(_)
1629            | ty::Uint(_)
1630            | ty::Float(_)
1631            | ty::Adt(..)
1632            | ty::Foreign(_)
1633            | ty::Str
1634            | ty::Array(..)
1635            | ty::Slice(_)
1636            | ty::RawPtr(_, _)
1637            | ty::Ref(..)
1638            | ty::FnDef(..)
1639            | ty::FnPtr(..)
1640            | ty::Dynamic(..)
1641            | ty::Closure(..)
1642            | ty::CoroutineClosure(..)
1643            | ty::CoroutineWitness(..)
1644            | ty::Never
1645            | ty::Tuple(_)
1646            | ty::UnsafeBinder(_)
1647            | ty::Error(_)
1648            | ty::Infer(IntVar(_) | FloatVar(_)) => tcx.types.u8,
1649
1650            ty::Bound(..)
1651            | ty::Placeholder(_)
1652            | ty::Infer(FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => {
1653                crate::util::bug::bug_fmt(format_args!("`discriminant_ty` applied to unexpected type: {0:?}",
        self))bug!("`discriminant_ty` applied to unexpected type: {:?}", self)
1654            }
1655        }
1656    }
1657
1658    /// Returns the type of metadata for (potentially wide) pointers to this type,
1659    /// or the struct tail if the metadata type cannot be determined.
1660    pub fn ptr_metadata_ty_or_tail(
1661        self,
1662        tcx: TyCtxt<'tcx>,
1663        normalize: impl FnMut(Ty<'tcx>) -> Ty<'tcx>,
1664    ) -> Result<Ty<'tcx>, Ty<'tcx>> {
1665        let tail = tcx.struct_tail_raw(self, &ObligationCause::dummy(), normalize, || {});
1666        match tail.kind() {
1667            // Sized types
1668            ty::Infer(ty::IntVar(_) | ty::FloatVar(_))
1669            | ty::Uint(_)
1670            | ty::Int(_)
1671            | ty::Bool
1672            | ty::Float(_)
1673            | ty::FnDef(..)
1674            | ty::FnPtr(..)
1675            | ty::RawPtr(..)
1676            | ty::Char
1677            | ty::Ref(..)
1678            | ty::Coroutine(..)
1679            | ty::CoroutineWitness(..)
1680            | ty::Array(..)
1681            | ty::Closure(..)
1682            | ty::CoroutineClosure(..)
1683            | ty::Never
1684            | ty::Error(_)
1685            // Extern types have metadata = ().
1686            | ty::Foreign(..)
1687            // If returned by `struct_tail_raw` this is a unit struct
1688            // without any fields, or not a struct, and therefore is Sized.
1689            | ty::Adt(..)
1690            // If returned by `struct_tail_raw` this is the empty tuple,
1691            // a.k.a. unit type, which is Sized
1692            | ty::Tuple(..) => Ok(tcx.types.unit),
1693
1694            ty::Str | ty::Slice(_) => Ok(tcx.types.usize),
1695
1696            ty::Dynamic(_, _) => {
1697                let dyn_metadata = tcx.require_lang_item(LangItem::DynMetadata, DUMMY_SP);
1698                Ok(tcx.type_of(dyn_metadata).instantiate(tcx, &[tail.into()]))
1699            }
1700
1701            // We don't know the metadata of `self`, but it must be equal to the
1702            // metadata of `tail`.
1703            ty::Param(_) | ty::Alias(..) => Err(tail),
1704
1705            | ty::UnsafeBinder(_) => {
    ::core::panicking::panic_fmt(format_args!("not yet implemented: {0}",
            format_args!("FIXME(unsafe_binder)")));
}todo!("FIXME(unsafe_binder)"),
1706
1707            ty::Infer(ty::TyVar(_))
1708            | ty::Pat(..)
1709            | ty::Bound(..)
1710            | ty::Placeholder(..)
1711            | ty::Infer(ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => crate::util::bug::bug_fmt(format_args!("`ptr_metadata_ty_or_tail` applied to unexpected type: {0:?} (tail = {1:?})",
        self, tail))bug!(
1712                "`ptr_metadata_ty_or_tail` applied to unexpected type: {self:?} (tail = {tail:?})"
1713            ),
1714        }
1715    }
1716
1717    /// Returns the type of metadata for (potentially wide) pointers to this type.
1718    /// Causes an ICE if the metadata type cannot be determined.
1719    pub fn ptr_metadata_ty(
1720        self,
1721        tcx: TyCtxt<'tcx>,
1722        normalize: impl FnMut(Ty<'tcx>) -> Ty<'tcx>,
1723    ) -> Ty<'tcx> {
1724        match self.ptr_metadata_ty_or_tail(tcx, normalize) {
1725            Ok(metadata) => metadata,
1726            Err(tail) => crate::util::bug::bug_fmt(format_args!("`ptr_metadata_ty` failed to get metadata for type: {0:?} (tail = {1:?})",
        self, tail))bug!(
1727                "`ptr_metadata_ty` failed to get metadata for type: {self:?} (tail = {tail:?})"
1728            ),
1729        }
1730    }
1731
1732    /// Given a pointer or reference type, returns the type of the *pointee*'s
1733    /// metadata. If it can't be determined exactly (perhaps due to still
1734    /// being generic) then a projection through `ptr::Pointee` will be returned.
1735    ///
1736    /// This is particularly useful for getting the type of the result of
1737    /// [`UnOp::PtrMetadata`](crate::mir::UnOp::PtrMetadata).
1738    ///
1739    /// Panics if `self` is not dereferenceable.
1740    #[track_caller]
1741    pub fn pointee_metadata_ty_or_projection(self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
1742        let Some(pointee_ty) = self.builtin_deref(true) else {
1743            crate::util::bug::bug_fmt(format_args!("Type {0:?} is not a pointer or reference type",
        self))bug!("Type {self:?} is not a pointer or reference type")
1744        };
1745        if pointee_ty.has_trivial_sizedness(tcx, SizedTraitKind::Sized) {
1746            tcx.types.unit
1747        } else {
1748            match pointee_ty.ptr_metadata_ty_or_tail(tcx, |x| x) {
1749                Ok(metadata_ty) => metadata_ty,
1750                Err(tail_ty) => {
1751                    let metadata_def_id = tcx.require_lang_item(LangItem::Metadata, DUMMY_SP);
1752                    Ty::new_projection(tcx, metadata_def_id, [tail_ty])
1753                }
1754            }
1755        }
1756    }
1757
1758    /// When we create a closure, we record its kind (i.e., what trait
1759    /// it implements, constrained by how it uses its borrows) into its
1760    /// [`ty::ClosureArgs`] or [`ty::CoroutineClosureArgs`] using a type
1761    /// parameter. This is kind of a phantom type, except that the
1762    /// most convenient thing for us to are the integral types. This
1763    /// function converts such a special type into the closure
1764    /// kind. To go the other way, use [`Ty::from_closure_kind`].
1765    ///
1766    /// Note that during type checking, we use an inference variable
1767    /// to represent the closure kind, because it has not yet been
1768    /// inferred. Once upvar inference (in `rustc_hir_analysis/src/check/upvar.rs`)
1769    /// is complete, that type variable will be unified with one of
1770    /// the integral types.
1771    ///
1772    /// ```rust,ignore (snippet of compiler code)
1773    /// if let TyKind::Closure(def_id, args) = closure_ty.kind()
1774    ///     && let Some(closure_kind) = args.as_closure().kind_ty().to_opt_closure_kind()
1775    /// {
1776    ///     println!("{closure_kind:?}");
1777    /// } else if let TyKind::CoroutineClosure(def_id, args) = closure_ty.kind()
1778    ///     && let Some(closure_kind) = args.as_coroutine_closure().kind_ty().to_opt_closure_kind()
1779    /// {
1780    ///     println!("{closure_kind:?}");
1781    /// }
1782    /// ```
1783    ///
1784    /// After upvar analysis, you should instead use [`ty::ClosureArgs::kind()`]
1785    /// or [`ty::CoroutineClosureArgs::kind()`] to assert that the `ClosureKind`
1786    /// has been constrained instead of manually calling this method.
1787    ///
1788    /// ```rust,ignore (snippet of compiler code)
1789    /// if let TyKind::Closure(def_id, args) = closure_ty.kind()
1790    /// {
1791    ///     println!("{:?}", args.as_closure().kind());
1792    /// } else if let TyKind::CoroutineClosure(def_id, args) = closure_ty.kind()
1793    /// {
1794    ///     println!("{:?}", args.as_coroutine_closure().kind());
1795    /// }
1796    /// ```
1797    pub fn to_opt_closure_kind(self) -> Option<ty::ClosureKind> {
1798        match self.kind() {
1799            Int(int_ty) => match int_ty {
1800                ty::IntTy::I8 => Some(ty::ClosureKind::Fn),
1801                ty::IntTy::I16 => Some(ty::ClosureKind::FnMut),
1802                ty::IntTy::I32 => Some(ty::ClosureKind::FnOnce),
1803                _ => crate::util::bug::bug_fmt(format_args!("cannot convert type `{0:?}` to a closure kind",
        self))bug!("cannot convert type `{:?}` to a closure kind", self),
1804            },
1805
1806            // "Bound" types appear in canonical queries when the
1807            // closure type is not yet known, and `Placeholder` and `Param`
1808            // may be encountered in generic `AsyncFnKindHelper` goals.
1809            Bound(..) | Placeholder(_) | Param(_) | Infer(_) => None,
1810
1811            Error(_) => Some(ty::ClosureKind::Fn),
1812
1813            _ => crate::util::bug::bug_fmt(format_args!("cannot convert type `{0:?}` to a closure kind",
        self))bug!("cannot convert type `{:?}` to a closure kind", self),
1814        }
1815    }
1816
1817    /// Inverse of [`Ty::to_opt_closure_kind`]. See docs on that method
1818    /// for explanation of the relationship between `Ty` and [`ty::ClosureKind`].
1819    pub fn from_closure_kind(tcx: TyCtxt<'tcx>, kind: ty::ClosureKind) -> Ty<'tcx> {
1820        match kind {
1821            ty::ClosureKind::Fn => tcx.types.i8,
1822            ty::ClosureKind::FnMut => tcx.types.i16,
1823            ty::ClosureKind::FnOnce => tcx.types.i32,
1824        }
1825    }
1826
1827    /// Like [`Ty::to_opt_closure_kind`], but it caps the "maximum" closure kind
1828    /// to `FnMut`. This is because although we have three capability states,
1829    /// `AsyncFn`/`AsyncFnMut`/`AsyncFnOnce`, we only need to distinguish two coroutine
1830    /// bodies: by-ref and by-value.
1831    ///
1832    /// See the definition of `AsyncFn` and `AsyncFnMut` and the `CallRefFuture`
1833    /// associated type for why we don't distinguish [`ty::ClosureKind::Fn`] and
1834    /// [`ty::ClosureKind::FnMut`] for the purpose of the generated MIR bodies.
1835    ///
1836    /// This method should be used when constructing a `Coroutine` out of a
1837    /// `CoroutineClosure`, when the `Coroutine`'s `kind` field is being populated
1838    /// directly from the `CoroutineClosure`'s `kind`.
1839    pub fn from_coroutine_closure_kind(tcx: TyCtxt<'tcx>, kind: ty::ClosureKind) -> Ty<'tcx> {
1840        match kind {
1841            ty::ClosureKind::Fn | ty::ClosureKind::FnMut => tcx.types.i16,
1842            ty::ClosureKind::FnOnce => tcx.types.i32,
1843        }
1844    }
1845
1846    /// Fast path helper for testing if a type is `Sized` or `MetaSized`.
1847    ///
1848    /// Returning true means the type is known to implement the sizedness trait. Returning `false`
1849    /// means nothing -- could be sized, might not be.
1850    ///
1851    /// Note that we could never rely on the fact that a type such as `[_]` is trivially `!Sized`
1852    /// because we could be in a type environment with a bound such as `[_]: Copy`. A function with
1853    /// such a bound obviously never can be called, but that doesn't mean it shouldn't typecheck.
1854    /// This is why this method doesn't return `Option<bool>`.
1855    #[allow(clippy :: suspicious_else_formatting)]
{
    let __tracing_attr_span;
    let __tracing_attr_guard;
    if ::tracing::Level::DEBUG <= ::tracing::level_filters::STATIC_MAX_LEVEL
                &&
                ::tracing::Level::DEBUG <=
                    ::tracing::level_filters::LevelFilter::current() ||
            { false } {
        __tracing_attr_span =
            {
                use ::tracing::__macro_support::Callsite as _;
                static __CALLSITE: ::tracing::callsite::DefaultCallsite =
                    {
                        static META: ::tracing::Metadata<'static> =
                            {
                                ::tracing_core::metadata::Metadata::new("has_trivial_sizedness",
                                    "rustc_middle::ty::sty", ::tracing::Level::DEBUG,
                                    ::tracing_core::__macro_support::Option::Some("compiler/rustc_middle/src/ty/sty.rs"),
                                    ::tracing_core::__macro_support::Option::Some(1855u32),
                                    ::tracing_core::__macro_support::Option::Some("rustc_middle::ty::sty"),
                                    ::tracing_core::field::FieldSet::new(&["self", "sizedness"],
                                        ::tracing_core::callsite::Identifier(&__CALLSITE)),
                                    ::tracing::metadata::Kind::SPAN)
                            };
                        ::tracing::callsite::DefaultCallsite::new(&META)
                    };
                let mut interest = ::tracing::subscriber::Interest::never();
                if ::tracing::Level::DEBUG <=
                                    ::tracing::level_filters::STATIC_MAX_LEVEL &&
                                ::tracing::Level::DEBUG <=
                                    ::tracing::level_filters::LevelFilter::current() &&
                            { interest = __CALLSITE.interest(); !interest.is_never() }
                        &&
                        ::tracing::__macro_support::__is_enabled(__CALLSITE.metadata(),
                            interest) {
                    let meta = __CALLSITE.metadata();
                    ::tracing::Span::new(meta,
                        &{
                                #[allow(unused_imports)]
                                use ::tracing::field::{debug, display, Value};
                                let mut iter = meta.fields().iter();
                                meta.fields().value_set(&[(&::tracing::__macro_support::Iterator::next(&mut iter).expect("FieldSet corrupted (this is a bug)"),
                                                    ::tracing::__macro_support::Option::Some(&::tracing::field::debug(&self)
                                                            as &dyn Value)),
                                                (&::tracing::__macro_support::Iterator::next(&mut iter).expect("FieldSet corrupted (this is a bug)"),
                                                    ::tracing::__macro_support::Option::Some(&::tracing::field::debug(&sizedness)
                                                            as &dyn Value))])
                            })
                } else {
                    let span =
                        ::tracing::__macro_support::__disabled_span(__CALLSITE.metadata());
                    {};
                    span
                }
            };
        __tracing_attr_guard = __tracing_attr_span.enter();
    }

    #[warn(clippy :: suspicious_else_formatting)]
    {

        #[allow(unknown_lints, unreachable_code, clippy ::
        diverging_sub_expression, clippy :: empty_loop, clippy ::
        let_unit_value, clippy :: let_with_type_underscore, clippy ::
        needless_return, clippy :: unreachable)]
        if false {
            let __tracing_attr_fake_return: bool = loop {};
            return __tracing_attr_fake_return;
        }
        {
            match self.kind() {
                ty::Infer(ty::IntVar(_) | ty::FloatVar(_)) | ty::Uint(_) |
                    ty::Int(_) | ty::Bool | ty::Float(_) | ty::FnDef(..) |
                    ty::FnPtr(..) | ty::UnsafeBinder(_) | ty::RawPtr(..) |
                    ty::Char | ty::Ref(..) | ty::Coroutine(..) |
                    ty::CoroutineWitness(..) | ty::Array(..) | ty::Pat(..) |
                    ty::Closure(..) | ty::CoroutineClosure(..) | ty::Never |
                    ty::Error(_) => true,
                ty::Str | ty::Slice(_) | ty::Dynamic(_, _) =>
                    match sizedness {
                        SizedTraitKind::Sized => false,
                        SizedTraitKind::MetaSized => true,
                    },
                ty::Foreign(..) =>
                    match sizedness {
                        SizedTraitKind::Sized | SizedTraitKind::MetaSized => false,
                    },
                ty::Tuple(tys) =>
                    tys.last().is_none_or(|ty|
                            ty.has_trivial_sizedness(tcx, sizedness)),
                ty::Adt(def, args) =>
                    def.sizedness_constraint(tcx,
                            sizedness).is_none_or(|ty|
                            ty.instantiate(tcx,
                                    args).has_trivial_sizedness(tcx, sizedness)),
                ty::Alias(..) | ty::Param(_) | ty::Placeholder(..) |
                    ty::Bound(..) => false,
                ty::Infer(ty::TyVar(_)) => false,
                ty::Infer(ty::FreshTy(_) | ty::FreshIntTy(_) |
                    ty::FreshFloatTy(_)) => {
                    crate::util::bug::bug_fmt(format_args!("`has_trivial_sizedness` applied to unexpected type: {0:?}",
                            self))
                }
            }
        }
    }
}#[instrument(skip(tcx), level = "debug")]
1856    pub fn has_trivial_sizedness(self, tcx: TyCtxt<'tcx>, sizedness: SizedTraitKind) -> bool {
1857        match self.kind() {
1858            ty::Infer(ty::IntVar(_) | ty::FloatVar(_))
1859            | ty::Uint(_)
1860            | ty::Int(_)
1861            | ty::Bool
1862            | ty::Float(_)
1863            | ty::FnDef(..)
1864            | ty::FnPtr(..)
1865            | ty::UnsafeBinder(_)
1866            | ty::RawPtr(..)
1867            | ty::Char
1868            | ty::Ref(..)
1869            | ty::Coroutine(..)
1870            | ty::CoroutineWitness(..)
1871            | ty::Array(..)
1872            | ty::Pat(..)
1873            | ty::Closure(..)
1874            | ty::CoroutineClosure(..)
1875            | ty::Never
1876            | ty::Error(_) => true,
1877
1878            ty::Str | ty::Slice(_) | ty::Dynamic(_, _) => match sizedness {
1879                SizedTraitKind::Sized => false,
1880                SizedTraitKind::MetaSized => true,
1881            },
1882
1883            ty::Foreign(..) => match sizedness {
1884                SizedTraitKind::Sized | SizedTraitKind::MetaSized => false,
1885            },
1886
1887            ty::Tuple(tys) => tys.last().is_none_or(|ty| ty.has_trivial_sizedness(tcx, sizedness)),
1888
1889            ty::Adt(def, args) => def
1890                .sizedness_constraint(tcx, sizedness)
1891                .is_none_or(|ty| ty.instantiate(tcx, args).has_trivial_sizedness(tcx, sizedness)),
1892
1893            ty::Alias(..) | ty::Param(_) | ty::Placeholder(..) | ty::Bound(..) => false,
1894
1895            ty::Infer(ty::TyVar(_)) => false,
1896
1897            ty::Infer(ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => {
1898                bug!("`has_trivial_sizedness` applied to unexpected type: {:?}", self)
1899            }
1900        }
1901    }
1902
1903    /// Fast path helper for primitives which are always `Copy` and which
1904    /// have a side-effect-free `Clone` impl.
1905    ///
1906    /// Returning true means the type is known to be pure and `Copy+Clone`.
1907    /// Returning `false` means nothing -- could be `Copy`, might not be.
1908    ///
1909    /// This is mostly useful for optimizations, as these are the types
1910    /// on which we can replace cloning with dereferencing.
1911    pub fn is_trivially_pure_clone_copy(self) -> bool {
1912        match self.kind() {
1913            ty::Bool | ty::Char | ty::Never => true,
1914
1915            // These aren't even `Clone`
1916            ty::Str | ty::Slice(..) | ty::Foreign(..) | ty::Dynamic(..) => false,
1917
1918            ty::Infer(ty::InferTy::FloatVar(_) | ty::InferTy::IntVar(_))
1919            | ty::Int(..)
1920            | ty::Uint(..)
1921            | ty::Float(..) => true,
1922
1923            // ZST which can't be named are fine.
1924            ty::FnDef(..) => true,
1925
1926            ty::Array(element_ty, _len) => element_ty.is_trivially_pure_clone_copy(),
1927
1928            // A 100-tuple isn't "trivial", so doing this only for reasonable sizes.
1929            ty::Tuple(field_tys) => {
1930                field_tys.len() <= 3 && field_tys.iter().all(Self::is_trivially_pure_clone_copy)
1931            }
1932
1933            ty::Pat(ty, _) => ty.is_trivially_pure_clone_copy(),
1934
1935            // Sometimes traits aren't implemented for every ABI or arity,
1936            // because we can't be generic over everything yet.
1937            ty::FnPtr(..) => false,
1938
1939            // Definitely absolutely not copy.
1940            ty::Ref(_, _, hir::Mutability::Mut) => false,
1941
1942            // The standard library has a blanket Copy impl for shared references and raw pointers,
1943            // for all unsized types.
1944            ty::Ref(_, _, hir::Mutability::Not) | ty::RawPtr(..) => true,
1945
1946            ty::Coroutine(..) | ty::CoroutineWitness(..) => false,
1947
1948            // Might be, but not "trivial" so just giving the safe answer.
1949            ty::Adt(..) | ty::Closure(..) | ty::CoroutineClosure(..) => false,
1950
1951            ty::UnsafeBinder(_) => false,
1952
1953            // Needs normalization or revealing to determine, so no is the safe answer.
1954            ty::Alias(..) => false,
1955
1956            ty::Param(..) | ty::Placeholder(..) | ty::Bound(..) | ty::Infer(..) | ty::Error(..) => {
1957                false
1958            }
1959        }
1960    }
1961
1962    pub fn is_trivially_wf(self, tcx: TyCtxt<'tcx>) -> bool {
1963        match *self.kind() {
1964            ty::Bool
1965            | ty::Char
1966            | ty::Int(_)
1967            | ty::Uint(_)
1968            | ty::Float(_)
1969            | ty::Str
1970            | ty::Never
1971            | ty::Param(_)
1972            | ty::Placeholder(_)
1973            | ty::Bound(..) => true,
1974
1975            ty::Slice(ty) => {
1976                ty.is_trivially_wf(tcx) && ty.has_trivial_sizedness(tcx, SizedTraitKind::Sized)
1977            }
1978            ty::RawPtr(ty, _) => ty.is_trivially_wf(tcx),
1979
1980            ty::FnPtr(sig_tys, _) => {
1981                sig_tys.skip_binder().inputs_and_output.iter().all(|ty| ty.is_trivially_wf(tcx))
1982            }
1983            ty::Ref(_, ty, _) => ty.is_global() && ty.is_trivially_wf(tcx),
1984
1985            ty::Infer(infer) => match infer {
1986                ty::TyVar(_) => false,
1987                ty::IntVar(_) | ty::FloatVar(_) => true,
1988                ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_) => true,
1989            },
1990
1991            ty::Adt(_, _)
1992            | ty::Tuple(_)
1993            | ty::Array(..)
1994            | ty::Foreign(_)
1995            | ty::Pat(_, _)
1996            | ty::FnDef(..)
1997            | ty::UnsafeBinder(..)
1998            | ty::Dynamic(..)
1999            | ty::Closure(..)
2000            | ty::CoroutineClosure(..)
2001            | ty::Coroutine(..)
2002            | ty::CoroutineWitness(..)
2003            | ty::Alias(..)
2004            | ty::Error(_) => false,
2005        }
2006    }
2007
2008    /// If `self` is a primitive, return its [`Symbol`].
2009    pub fn primitive_symbol(self) -> Option<Symbol> {
2010        match self.kind() {
2011            ty::Bool => Some(sym::bool),
2012            ty::Char => Some(sym::char),
2013            ty::Float(f) => match f {
2014                ty::FloatTy::F16 => Some(sym::f16),
2015                ty::FloatTy::F32 => Some(sym::f32),
2016                ty::FloatTy::F64 => Some(sym::f64),
2017                ty::FloatTy::F128 => Some(sym::f128),
2018            },
2019            ty::Int(f) => match f {
2020                ty::IntTy::Isize => Some(sym::isize),
2021                ty::IntTy::I8 => Some(sym::i8),
2022                ty::IntTy::I16 => Some(sym::i16),
2023                ty::IntTy::I32 => Some(sym::i32),
2024                ty::IntTy::I64 => Some(sym::i64),
2025                ty::IntTy::I128 => Some(sym::i128),
2026            },
2027            ty::Uint(f) => match f {
2028                ty::UintTy::Usize => Some(sym::usize),
2029                ty::UintTy::U8 => Some(sym::u8),
2030                ty::UintTy::U16 => Some(sym::u16),
2031                ty::UintTy::U32 => Some(sym::u32),
2032                ty::UintTy::U64 => Some(sym::u64),
2033                ty::UintTy::U128 => Some(sym::u128),
2034            },
2035            ty::Str => Some(sym::str),
2036            _ => None,
2037        }
2038    }
2039
2040    pub fn is_c_void(self, tcx: TyCtxt<'_>) -> bool {
2041        match self.kind() {
2042            ty::Adt(adt, _) => tcx.is_lang_item(adt.did(), LangItem::CVoid),
2043            _ => false,
2044        }
2045    }
2046
2047    pub fn is_async_drop_in_place_coroutine(self, tcx: TyCtxt<'_>) -> bool {
2048        match self.kind() {
2049            ty::Coroutine(def, ..) => tcx.is_async_drop_in_place_coroutine(*def),
2050            _ => false,
2051        }
2052    }
2053
2054    /// Returns `true` when the outermost type cannot be further normalized,
2055    /// resolved, or instantiated. This includes all primitive types, but also
2056    /// things like ADTs and trait objects, since even if their arguments or
2057    /// nested types may be further simplified, the outermost [`TyKind`] or
2058    /// type constructor remains the same.
2059    pub fn is_known_rigid(self) -> bool {
2060        self.kind().is_known_rigid()
2061    }
2062
2063    /// Iterator that walks `self` and any types reachable from
2064    /// `self`, in depth-first order. Note that just walks the types
2065    /// that appear in `self`, it does not descend into the fields of
2066    /// structs or variants. For example:
2067    ///
2068    /// ```text
2069    /// isize => { isize }
2070    /// Foo<Bar<isize>> => { Foo<Bar<isize>>, Bar<isize>, isize }
2071    /// [isize] => { [isize], isize }
2072    /// ```
2073    pub fn walk(self) -> TypeWalker<TyCtxt<'tcx>> {
2074        TypeWalker::new(self.into())
2075    }
2076}
2077
2078impl<'tcx> rustc_type_ir::inherent::Tys<TyCtxt<'tcx>> for &'tcx ty::List<Ty<'tcx>> {
2079    fn inputs(self) -> &'tcx [Ty<'tcx>] {
2080        self.split_last().unwrap().1
2081    }
2082
2083    fn output(self) -> Ty<'tcx> {
2084        *self.split_last().unwrap().0
2085    }
2086}
2087
2088impl<'tcx> rustc_type_ir::inherent::Symbol<TyCtxt<'tcx>> for Symbol {
2089    fn is_kw_underscore_lifetime(self) -> bool {
2090        self == kw::UnderscoreLifetime
2091    }
2092}
2093
2094// Some types are used a lot. Make sure they don't unintentionally get bigger.
2095#[cfg(target_pointer_width = "64")]
2096mod size_asserts {
2097    use rustc_data_structures::static_assert_size;
2098
2099    use super::*;
2100    // tidy-alphabetical-start
2101    const _: [(); 24] = [(); ::std::mem::size_of::<TyKind<'_>>()];static_assert_size!(TyKind<'_>, 24);
2102    const _: [(); 48] =
    [(); ::std::mem::size_of::<ty::WithCachedTypeInfo<TyKind<'_>>>()];static_assert_size!(ty::WithCachedTypeInfo<TyKind<'_>>, 48);
2103    // tidy-alphabetical-end
2104}