1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
//! This module contains `TyKind` and its major components.

#![allow(rustc::usage_of_ty_tykind)]

use self::InferTy::*;
use self::TyKind::*;

use crate::infer::canonical::Canonical;
use crate::ty::subst::{GenericArg, InternalSubsts, Subst, SubstsRef};
use crate::ty::{
    self, AdtDef, DefIdTree, Discr, Ty, TyCtxt, TypeFlags, TypeFoldable, WithConstness,
};
use crate::ty::{List, ParamEnv, TyS};
use polonius_engine::Atom;
use rustc_ast::ast;
use rustc_data_structures::captures::Captures;
use rustc_hir as hir;
use rustc_hir::def_id::DefId;
use rustc_index::vec::Idx;
use rustc_macros::HashStable;
use rustc_span::symbol::{kw, Ident, Symbol};
use rustc_target::abi::VariantIdx;
use rustc_target::spec::abi;
use std::borrow::Cow;
use std::cmp::Ordering;
use std::marker::PhantomData;
use std::ops::Range;
use ty::util::IntTypeExt;

#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Debug, RustcEncodable, RustcDecodable)]
#[derive(HashStable, TypeFoldable, Lift)]
pub struct TypeAndMut<'tcx> {
    pub ty: Ty<'tcx>,
    pub mutbl: hir::Mutability,
}

#[derive(Clone, PartialEq, PartialOrd, Eq, Ord, Hash, RustcEncodable, RustcDecodable, Copy)]
#[derive(HashStable)]
/// A "free" region `fr` can be interpreted as "some region
/// at least as big as the scope `fr.scope`".
pub struct FreeRegion {
    pub scope: DefId,
    pub bound_region: BoundRegion,
}

#[derive(Clone, PartialEq, PartialOrd, Eq, Ord, Hash, RustcEncodable, RustcDecodable, Copy)]
#[derive(HashStable)]
pub enum BoundRegion {
    /// An anonymous region parameter for a given fn (&T)
    BrAnon(u32),

    /// Named region parameters for functions (a in &'a T)
    ///
    /// The `DefId` is needed to distinguish free regions in
    /// the event of shadowing.
    BrNamed(DefId, Symbol),

    /// Anonymous region for the implicit env pointer parameter
    /// to a closure
    BrEnv,
}

impl BoundRegion {
    pub fn is_named(&self) -> bool {
        match *self {
            BoundRegion::BrNamed(_, name) => name != kw::UnderscoreLifetime,
            _ => false,
        }
    }

    /// When canonicalizing, we replace unbound inference variables and free
    /// regions with anonymous late bound regions. This method asserts that
    /// we have an anonymous late bound region, which hence may refer to
    /// a canonical variable.
    pub fn assert_bound_var(&self) -> BoundVar {
        match *self {
            BoundRegion::BrAnon(var) => BoundVar::from_u32(var),
            _ => bug!("bound region is not anonymous"),
        }
    }
}

/// N.B., if you change this, you'll probably want to change the corresponding
/// AST structure in `librustc_ast/ast.rs` as well.
#[derive(Clone, PartialEq, Eq, PartialOrd, Ord, Hash, RustcEncodable, RustcDecodable, Debug)]
#[derive(HashStable)]
#[rustc_diagnostic_item = "TyKind"]
pub enum TyKind<'tcx> {
    /// The primitive boolean type. Written as `bool`.
    Bool,

    /// The primitive character type; holds a Unicode scalar value
    /// (a non-surrogate code point). Written as `char`.
    Char,

    /// A primitive signed integer type. For example, `i32`.
    Int(ast::IntTy),

    /// A primitive unsigned integer type. For example, `u32`.
    Uint(ast::UintTy),

    /// A primitive floating-point type. For example, `f64`.
    Float(ast::FloatTy),

    /// Structures, enumerations and unions.
    ///
    /// InternalSubsts here, possibly against intuition, *may* contain `Param`s.
    /// That is, even after substitution it is possible that there are type
    /// variables. This happens when the `Adt` corresponds to an ADT
    /// definition and not a concrete use of it.
    Adt(&'tcx AdtDef, SubstsRef<'tcx>),

    /// An unsized FFI type that is opaque to Rust. Written as `extern type T`.
    Foreign(DefId),

    /// The pointee of a string slice. Written as `str`.
    Str,

    /// An array with the given length. Written as `[T; n]`.
    Array(Ty<'tcx>, &'tcx ty::Const<'tcx>),

    /// The pointee of an array slice. Written as `[T]`.
    Slice(Ty<'tcx>),

    /// A raw pointer. Written as `*mut T` or `*const T`
    RawPtr(TypeAndMut<'tcx>),

    /// A reference; a pointer with an associated lifetime. Written as
    /// `&'a mut T` or `&'a T`.
    Ref(Region<'tcx>, Ty<'tcx>, hir::Mutability),

    /// The anonymous type of a function declaration/definition. Each
    /// function has a unique type, which is output (for a function
    /// named `foo` returning an `i32`) as `fn() -> i32 {foo}`.
    ///
    /// For example the type of `bar` here:
    ///
    /// ```rust
    /// fn foo() -> i32 { 1 }
    /// let bar = foo; // bar: fn() -> i32 {foo}
    /// ```
    FnDef(DefId, SubstsRef<'tcx>),

    /// A pointer to a function. Written as `fn() -> i32`.
    ///
    /// For example the type of `bar` here:
    ///
    /// ```rust
    /// fn foo() -> i32 { 1 }
    /// let bar: fn() -> i32 = foo;
    /// ```
    FnPtr(PolyFnSig<'tcx>),

    /// A trait, defined with `trait`.
    Dynamic(Binder<&'tcx List<ExistentialPredicate<'tcx>>>, ty::Region<'tcx>),

    /// The anonymous type of a closure. Used to represent the type of
    /// `|a| a`.
    Closure(DefId, SubstsRef<'tcx>),

    /// The anonymous type of a generator. Used to represent the type of
    /// `|a| yield a`.
    Generator(DefId, SubstsRef<'tcx>, hir::Movability),

    /// A type representin the types stored inside a generator.
    /// This should only appear in GeneratorInteriors.
    GeneratorWitness(Binder<&'tcx List<Ty<'tcx>>>),

    /// The never type `!`
    Never,

    /// A tuple type. For example, `(i32, bool)`.
    /// Use `TyS::tuple_fields` to iterate over the field types.
    Tuple(SubstsRef<'tcx>),

    /// The projection of an associated type. For example,
    /// `<T as Trait<..>>::N`.
    Projection(ProjectionTy<'tcx>),

    /// Opaque (`impl Trait`) type found in a return type.
    /// The `DefId` comes either from
    /// * the `impl Trait` ast::Ty node,
    /// * or the `type Foo = impl Trait` declaration
    /// The substitutions are for the generics of the function in question.
    /// After typeck, the concrete type can be found in the `types` map.
    Opaque(DefId, SubstsRef<'tcx>),

    /// A type parameter; for example, `T` in `fn f<T>(x: T) {}
    Param(ParamTy),

    /// Bound type variable, used only when preparing a trait query.
    Bound(ty::DebruijnIndex, BoundTy),

    /// A placeholder type - universally quantified higher-ranked type.
    Placeholder(ty::PlaceholderType),

    /// A type variable used during type checking.
    Infer(InferTy),

    /// A placeholder for a type which could not be computed; this is
    /// propagated to avoid useless error messages.
    Error(DelaySpanBugEmitted),
}

impl TyKind<'tcx> {
    #[inline]
    pub fn is_primitive(&self) -> bool {
        match self {
            Bool | Char | Int(_) | Uint(_) | Float(_) => true,
            _ => false,
        }
    }
}

/// A type that is not publicly constructable. This prevents people from making `TyKind::Error`
/// except through `tcx.err*()`.
#[derive(Copy, Clone, Debug, Eq, Hash, PartialEq, PartialOrd, Ord)]
#[derive(RustcEncodable, RustcDecodable, HashStable)]
pub struct DelaySpanBugEmitted(pub(super) ());

// `TyKind` is used a lot. Make sure it doesn't unintentionally get bigger.
#[cfg(target_arch = "x86_64")]
static_assert_size!(TyKind<'_>, 24);

/// A closure can be modeled as a struct that looks like:
///
///     struct Closure<'l0...'li, T0...Tj, CK, CS, U>(...U);
///
/// where:
///
/// - 'l0...'li and T0...Tj are the generic parameters
///   in scope on the function that defined the closure,
/// - CK represents the *closure kind* (Fn vs FnMut vs FnOnce). This
///   is rather hackily encoded via a scalar type. See
///   `TyS::to_opt_closure_kind` for details.
/// - CS represents the *closure signature*, representing as a `fn()`
///   type. For example, `fn(u32, u32) -> u32` would mean that the closure
///   implements `CK<(u32, u32), Output = u32>`, where `CK` is the trait
///   specified above.
/// - U is a type parameter representing the types of its upvars, tupled up
///   (borrowed, if appropriate; that is, if an U field represents a by-ref upvar,
///    and the up-var has the type `Foo`, then that field of U will be `&Foo`).
///
/// So, for example, given this function:
///
///     fn foo<'a, T>(data: &'a mut T) {
///          do(|| data.count += 1)
///     }
///
/// the type of the closure would be something like:
///
///     struct Closure<'a, T, U>(...U);
///
/// Note that the type of the upvar is not specified in the struct.
/// You may wonder how the impl would then be able to use the upvar,
/// if it doesn't know it's type? The answer is that the impl is
/// (conceptually) not fully generic over Closure but rather tied to
/// instances with the expected upvar types:
///
///     impl<'b, 'a, T> FnMut() for Closure<'a, T, (&'b mut &'a mut T,)> {
///         ...
///     }
///
/// You can see that the *impl* fully specified the type of the upvar
/// and thus knows full well that `data` has type `&'b mut &'a mut T`.
/// (Here, I am assuming that `data` is mut-borrowed.)
///
/// Now, the last question you may ask is: Why include the upvar types
/// in an extra type parameter? The reason for this design is that the
/// upvar types can reference lifetimes that are internal to the
/// creating function. In my example above, for example, the lifetime
/// `'b` represents the scope of the closure itself; this is some
/// subset of `foo`, probably just the scope of the call to the to
/// `do()`. If we just had the lifetime/type parameters from the
/// enclosing function, we couldn't name this lifetime `'b`. Note that
/// there can also be lifetimes in the types of the upvars themselves,
/// if one of them happens to be a reference to something that the
/// creating fn owns.
///
/// OK, you say, so why not create a more minimal set of parameters
/// that just includes the extra lifetime parameters? The answer is
/// primarily that it would be hard --- we don't know at the time when
/// we create the closure type what the full types of the upvars are,
/// nor do we know which are borrowed and which are not. In this
/// design, we can just supply a fresh type parameter and figure that
/// out later.
///
/// All right, you say, but why include the type parameters from the
/// original function then? The answer is that codegen may need them
/// when monomorphizing, and they may not appear in the upvars. A
/// closure could capture no variables but still make use of some
/// in-scope type parameter with a bound (e.g., if our example above
/// had an extra `U: Default`, and the closure called `U::default()`).
///
/// There is another reason. This design (implicitly) prohibits
/// closures from capturing themselves (except via a trait
/// object). This simplifies closure inference considerably, since it
/// means that when we infer the kind of a closure or its upvars, we
/// don't have to handle cycles where the decisions we make for
/// closure C wind up influencing the decisions we ought to make for
/// closure C (which would then require fixed point iteration to
/// handle). Plus it fixes an ICE. :P
///
/// ## Generators
///
/// Generators are handled similarly in `GeneratorSubsts`.  The set of
/// type parameters is similar, but `CK` and `CS` are replaced by the
/// following type parameters:
///
/// * `GS`: The generator's "resume type", which is the type of the
///   argument passed to `resume`, and the type of `yield` expressions
///   inside the generator.
/// * `GY`: The "yield type", which is the type of values passed to
///   `yield` inside the generator.
/// * `GR`: The "return type", which is the type of value returned upon
///   completion of the generator.
/// * `GW`: The "generator witness".
#[derive(Copy, Clone, Debug, TypeFoldable)]
pub struct ClosureSubsts<'tcx> {
    /// Lifetime and type parameters from the enclosing function,
    /// concatenated with a tuple containing the types of the upvars.
    ///
    /// These are separated out because codegen wants to pass them around
    /// when monomorphizing.
    pub substs: SubstsRef<'tcx>,
}

/// Struct returned by `split()`. Note that these are subslices of the
/// parent slice and not canonical substs themselves.
struct SplitClosureSubsts<'tcx> {
    parent: &'tcx [GenericArg<'tcx>],
    closure_kind_ty: GenericArg<'tcx>,
    closure_sig_as_fn_ptr_ty: GenericArg<'tcx>,
    tupled_upvars_ty: GenericArg<'tcx>,
}

impl<'tcx> ClosureSubsts<'tcx> {
    /// Divides the closure substs into their respective
    /// components. Single source of truth with respect to the
    /// ordering.
    fn split(self) -> SplitClosureSubsts<'tcx> {
        match self.substs[..] {
            [ref parent @ .., closure_kind_ty, closure_sig_as_fn_ptr_ty, tupled_upvars_ty] => {
                SplitClosureSubsts {
                    parent,
                    closure_kind_ty,
                    closure_sig_as_fn_ptr_ty,
                    tupled_upvars_ty,
                }
            }
            _ => bug!("closure substs missing synthetics"),
        }
    }

    /// Returns `true` only if enough of the synthetic types are known to
    /// allow using all of the methods on `ClosureSubsts` without panicking.
    ///
    /// Used primarily by `ty::print::pretty` to be able to handle closure
    /// types that haven't had their synthetic types substituted in.
    pub fn is_valid(self) -> bool {
        self.substs.len() >= 3 && matches!(self.split().tupled_upvars_ty.expect_ty().kind, Tuple(_))
    }

    /// Returns the substitutions of the closure's parent.
    pub fn parent_substs(self) -> &'tcx [GenericArg<'tcx>] {
        self.split().parent
    }

    #[inline]
    pub fn upvar_tys(self) -> impl Iterator<Item = Ty<'tcx>> + 'tcx {
        self.tupled_upvars_ty().tuple_fields()
    }

    /// Returns the tuple type representing the upvars for this closure.
    #[inline]
    pub fn tupled_upvars_ty(self) -> Ty<'tcx> {
        self.split().tupled_upvars_ty.expect_ty()
    }

    /// Returns the closure kind for this closure; may return a type
    /// variable during inference. To get the closure kind during
    /// inference, use `infcx.closure_kind(substs)`.
    pub fn kind_ty(self) -> Ty<'tcx> {
        self.split().closure_kind_ty.expect_ty()
    }

    /// Returns the `fn` pointer type representing the closure signature for this
    /// closure.
    // FIXME(eddyb) this should be unnecessary, as the shallowly resolved
    // type is known at the time of the creation of `ClosureSubsts`,
    // see `rustc_typeck::check::closure`.
    pub fn sig_as_fn_ptr_ty(self) -> Ty<'tcx> {
        self.split().closure_sig_as_fn_ptr_ty.expect_ty()
    }

    /// Returns the closure kind for this closure; only usable outside
    /// of an inference context, because in that context we know that
    /// there are no type variables.
    ///
    /// If you have an inference context, use `infcx.closure_kind()`.
    pub fn kind(self) -> ty::ClosureKind {
        self.kind_ty().to_opt_closure_kind().unwrap()
    }

    /// Extracts the signature from the closure.
    pub fn sig(self) -> ty::PolyFnSig<'tcx> {
        let ty = self.sig_as_fn_ptr_ty();
        match ty.kind {
            ty::FnPtr(sig) => sig,
            _ => bug!("closure_sig_as_fn_ptr_ty is not a fn-ptr: {:?}", ty.kind),
        }
    }
}

/// Similar to `ClosureSubsts`; see the above documentation for more.
#[derive(Copy, Clone, Debug, TypeFoldable)]
pub struct GeneratorSubsts<'tcx> {
    pub substs: SubstsRef<'tcx>,
}

struct SplitGeneratorSubsts<'tcx> {
    parent: &'tcx [GenericArg<'tcx>],
    resume_ty: GenericArg<'tcx>,
    yield_ty: GenericArg<'tcx>,
    return_ty: GenericArg<'tcx>,
    witness: GenericArg<'tcx>,
    tupled_upvars_ty: GenericArg<'tcx>,
}

impl<'tcx> GeneratorSubsts<'tcx> {
    fn split(self) -> SplitGeneratorSubsts<'tcx> {
        match self.substs[..] {
            [ref parent @ .., resume_ty, yield_ty, return_ty, witness, tupled_upvars_ty] => {
                SplitGeneratorSubsts {
                    parent,
                    resume_ty,
                    yield_ty,
                    return_ty,
                    witness,
                    tupled_upvars_ty,
                }
            }
            _ => bug!("generator substs missing synthetics"),
        }
    }

    /// Returns `true` only if enough of the synthetic types are known to
    /// allow using all of the methods on `GeneratorSubsts` without panicking.
    ///
    /// Used primarily by `ty::print::pretty` to be able to handle generator
    /// types that haven't had their synthetic types substituted in.
    pub fn is_valid(self) -> bool {
        self.substs.len() >= 5 && matches!(self.split().tupled_upvars_ty.expect_ty().kind, Tuple(_))
    }

    /// Returns the substitutions of the generator's parent.
    pub fn parent_substs(self) -> &'tcx [GenericArg<'tcx>] {
        self.split().parent
    }

    /// This describes the types that can be contained in a generator.
    /// It will be a type variable initially and unified in the last stages of typeck of a body.
    /// It contains a tuple of all the types that could end up on a generator frame.
    /// The state transformation MIR pass may only produce layouts which mention types
    /// in this tuple. Upvars are not counted here.
    pub fn witness(self) -> Ty<'tcx> {
        self.split().witness.expect_ty()
    }

    #[inline]
    pub fn upvar_tys(self) -> impl Iterator<Item = Ty<'tcx>> + 'tcx {
        self.tupled_upvars_ty().tuple_fields()
    }

    /// Returns the tuple type representing the upvars for this generator.
    #[inline]
    pub fn tupled_upvars_ty(self) -> Ty<'tcx> {
        self.split().tupled_upvars_ty.expect_ty()
    }

    /// Returns the type representing the resume type of the generator.
    pub fn resume_ty(self) -> Ty<'tcx> {
        self.split().resume_ty.expect_ty()
    }

    /// Returns the type representing the yield type of the generator.
    pub fn yield_ty(self) -> Ty<'tcx> {
        self.split().yield_ty.expect_ty()
    }

    /// Returns the type representing the return type of the generator.
    pub fn return_ty(self) -> Ty<'tcx> {
        self.split().return_ty.expect_ty()
    }

    /// Returns the "generator signature", which consists of its yield
    /// and return types.
    ///
    /// N.B., some bits of the code prefers to see this wrapped in a
    /// binder, but it never contains bound regions. Probably this
    /// function should be removed.
    pub fn poly_sig(self) -> PolyGenSig<'tcx> {
        ty::Binder::dummy(self.sig())
    }

    /// Returns the "generator signature", which consists of its resume, yield
    /// and return types.
    pub fn sig(self) -> GenSig<'tcx> {
        ty::GenSig {
            resume_ty: self.resume_ty(),
            yield_ty: self.yield_ty(),
            return_ty: self.return_ty(),
        }
    }
}

impl<'tcx> GeneratorSubsts<'tcx> {
    /// Generator has not been resumed yet.
    pub const UNRESUMED: usize = 0;
    /// Generator has returned or is completed.
    pub const RETURNED: usize = 1;
    /// Generator has been poisoned.
    pub const POISONED: usize = 2;

    const UNRESUMED_NAME: &'static str = "Unresumed";
    const RETURNED_NAME: &'static str = "Returned";
    const POISONED_NAME: &'static str = "Panicked";

    /// The valid variant indices of this generator.
    #[inline]
    pub fn variant_range(&self, def_id: DefId, tcx: TyCtxt<'tcx>) -> Range<VariantIdx> {
        // FIXME requires optimized MIR
        let num_variants = tcx.generator_layout(def_id).variant_fields.len();
        VariantIdx::new(0)..VariantIdx::new(num_variants)
    }

    /// The discriminant for the given variant. Panics if the `variant_index` is
    /// out of range.
    #[inline]
    pub fn discriminant_for_variant(
        &self,
        def_id: DefId,
        tcx: TyCtxt<'tcx>,
        variant_index: VariantIdx,
    ) -> Discr<'tcx> {
        // Generators don't support explicit discriminant values, so they are
        // the same as the variant index.
        assert!(self.variant_range(def_id, tcx).contains(&variant_index));
        Discr { val: variant_index.as_usize() as u128, ty: self.discr_ty(tcx) }
    }

    /// The set of all discriminants for the generator, enumerated with their
    /// variant indices.
    #[inline]
    pub fn discriminants(
        self,
        def_id: DefId,
        tcx: TyCtxt<'tcx>,
    ) -> impl Iterator<Item = (VariantIdx, Discr<'tcx>)> + Captures<'tcx> {
        self.variant_range(def_id, tcx).map(move |index| {
            (index, Discr { val: index.as_usize() as u128, ty: self.discr_ty(tcx) })
        })
    }

    /// Calls `f` with a reference to the name of the enumerator for the given
    /// variant `v`.
    pub fn variant_name(v: VariantIdx) -> Cow<'static, str> {
        match v.as_usize() {
            Self::UNRESUMED => Cow::from(Self::UNRESUMED_NAME),
            Self::RETURNED => Cow::from(Self::RETURNED_NAME),
            Self::POISONED => Cow::from(Self::POISONED_NAME),
            _ => Cow::from(format!("Suspend{}", v.as_usize() - 3)),
        }
    }

    /// The type of the state discriminant used in the generator type.
    #[inline]
    pub fn discr_ty(&self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
        tcx.types.u32
    }

    /// This returns the types of the MIR locals which had to be stored across suspension points.
    /// It is calculated in rustc_mir::transform::generator::StateTransform.
    /// All the types here must be in the tuple in GeneratorInterior.
    ///
    /// The locals are grouped by their variant number. Note that some locals may
    /// be repeated in multiple variants.
    #[inline]
    pub fn state_tys(
        self,
        def_id: DefId,
        tcx: TyCtxt<'tcx>,
    ) -> impl Iterator<Item = impl Iterator<Item = Ty<'tcx>> + Captures<'tcx>> {
        let layout = tcx.generator_layout(def_id);
        layout.variant_fields.iter().map(move |variant| {
            variant.iter().map(move |field| layout.field_tys[*field].subst(tcx, self.substs))
        })
    }

    /// This is the types of the fields of a generator which are not stored in a
    /// variant.
    #[inline]
    pub fn prefix_tys(self) -> impl Iterator<Item = Ty<'tcx>> {
        self.upvar_tys()
    }
}

#[derive(Debug, Copy, Clone)]
pub enum UpvarSubsts<'tcx> {
    Closure(SubstsRef<'tcx>),
    Generator(SubstsRef<'tcx>),
}

impl<'tcx> UpvarSubsts<'tcx> {
    #[inline]
    pub fn upvar_tys(self) -> impl Iterator<Item = Ty<'tcx>> + 'tcx {
        let tupled_upvars_ty = match self {
            UpvarSubsts::Closure(substs) => substs.as_closure().split().tupled_upvars_ty,
            UpvarSubsts::Generator(substs) => substs.as_generator().split().tupled_upvars_ty,
        };
        tupled_upvars_ty.expect_ty().tuple_fields()
    }
}

#[derive(Debug, Copy, Clone, PartialEq, PartialOrd, Ord, Eq, Hash, RustcEncodable, RustcDecodable)]
#[derive(HashStable, TypeFoldable)]
pub enum ExistentialPredicate<'tcx> {
    /// E.g., `Iterator`.
    Trait(ExistentialTraitRef<'tcx>),
    /// E.g., `Iterator::Item = T`.
    Projection(ExistentialProjection<'tcx>),
    /// E.g., `Send`.
    AutoTrait(DefId),
}

impl<'tcx> ExistentialPredicate<'tcx> {
    /// Compares via an ordering that will not change if modules are reordered or other changes are
    /// made to the tree. In particular, this ordering is preserved across incremental compilations.
    pub fn stable_cmp(&self, tcx: TyCtxt<'tcx>, other: &Self) -> Ordering {
        use self::ExistentialPredicate::*;
        match (*self, *other) {
            (Trait(_), Trait(_)) => Ordering::Equal,
            (Projection(ref a), Projection(ref b)) => {
                tcx.def_path_hash(a.item_def_id).cmp(&tcx.def_path_hash(b.item_def_id))
            }
            (AutoTrait(ref a), AutoTrait(ref b)) => {
                tcx.trait_def(*a).def_path_hash.cmp(&tcx.trait_def(*b).def_path_hash)
            }
            (Trait(_), _) => Ordering::Less,
            (Projection(_), Trait(_)) => Ordering::Greater,
            (Projection(_), _) => Ordering::Less,
            (AutoTrait(_), _) => Ordering::Greater,
        }
    }
}

impl<'tcx> Binder<ExistentialPredicate<'tcx>> {
    pub fn with_self_ty(&self, tcx: TyCtxt<'tcx>, self_ty: Ty<'tcx>) -> ty::Predicate<'tcx> {
        use crate::ty::ToPredicate;
        match self.skip_binder() {
            ExistentialPredicate::Trait(tr) => {
                Binder(tr).with_self_ty(tcx, self_ty).without_const().to_predicate(tcx)
            }
            ExistentialPredicate::Projection(p) => {
                Binder(p.with_self_ty(tcx, self_ty)).to_predicate(tcx)
            }
            ExistentialPredicate::AutoTrait(did) => {
                let trait_ref =
                    Binder(ty::TraitRef { def_id: did, substs: tcx.mk_substs_trait(self_ty, &[]) });
                trait_ref.without_const().to_predicate(tcx)
            }
        }
    }
}

impl<'tcx> rustc_serialize::UseSpecializedDecodable for &'tcx List<ExistentialPredicate<'tcx>> {}

impl<'tcx> List<ExistentialPredicate<'tcx>> {
    /// Returns the "principal `DefId`" of this set of existential predicates.
    ///
    /// A Rust trait object type consists (in addition to a lifetime bound)
    /// of a set of trait bounds, which are separated into any number
    /// of auto-trait bounds, and at most one non-auto-trait bound. The
    /// non-auto-trait bound is called the "principal" of the trait
    /// object.
    ///
    /// Only the principal can have methods or type parameters (because
    /// auto traits can have neither of them). This is important, because
    /// it means the auto traits can be treated as an unordered set (methods
    /// would force an order for the vtable, while relating traits with
    /// type parameters without knowing the order to relate them in is
    /// a rather non-trivial task).
    ///
    /// For example, in the trait object `dyn fmt::Debug + Sync`, the
    /// principal bound is `Some(fmt::Debug)`, while the auto-trait bounds
    /// are the set `{Sync}`.
    ///
    /// It is also possible to have a "trivial" trait object that
    /// consists only of auto traits, with no principal - for example,
    /// `dyn Send + Sync`. In that case, the set of auto-trait bounds
    /// is `{Send, Sync}`, while there is no principal. These trait objects
    /// have a "trivial" vtable consisting of just the size, alignment,
    /// and destructor.
    pub fn principal(&self) -> Option<ExistentialTraitRef<'tcx>> {
        match self[0] {
            ExistentialPredicate::Trait(tr) => Some(tr),
            _ => None,
        }
    }

    pub fn principal_def_id(&self) -> Option<DefId> {
        self.principal().map(|trait_ref| trait_ref.def_id)
    }

    #[inline]
    pub fn projection_bounds<'a>(
        &'a self,
    ) -> impl Iterator<Item = ExistentialProjection<'tcx>> + 'a {
        self.iter().filter_map(|predicate| match predicate {
            ExistentialPredicate::Projection(projection) => Some(projection),
            _ => None,
        })
    }

    #[inline]
    pub fn auto_traits<'a>(&'a self) -> impl Iterator<Item = DefId> + 'a {
        self.iter().filter_map(|predicate| match predicate {
            ExistentialPredicate::AutoTrait(did) => Some(did),
            _ => None,
        })
    }
}

impl<'tcx> Binder<&'tcx List<ExistentialPredicate<'tcx>>> {
    pub fn principal(&self) -> Option<ty::Binder<ExistentialTraitRef<'tcx>>> {
        self.skip_binder().principal().map(Binder::bind)
    }

    pub fn principal_def_id(&self) -> Option<DefId> {
        self.skip_binder().principal_def_id()
    }

    #[inline]
    pub fn projection_bounds<'a>(
        &'a self,
    ) -> impl Iterator<Item = PolyExistentialProjection<'tcx>> + 'a {
        self.skip_binder().projection_bounds().map(Binder::bind)
    }

    #[inline]
    pub fn auto_traits<'a>(&'a self) -> impl Iterator<Item = DefId> + 'a {
        self.skip_binder().auto_traits()
    }

    pub fn iter<'a>(
        &'a self,
    ) -> impl DoubleEndedIterator<Item = Binder<ExistentialPredicate<'tcx>>> + 'tcx {
        self.skip_binder().iter().map(Binder::bind)
    }
}

/// A complete reference to a trait. These take numerous guises in syntax,
/// but perhaps the most recognizable form is in a where-clause:
///
///     T: Foo<U>
///
/// This would be represented by a trait-reference where the `DefId` is the
/// `DefId` for the trait `Foo` and the substs define `T` as parameter 0,
/// and `U` as parameter 1.
///
/// Trait references also appear in object types like `Foo<U>`, but in
/// that case the `Self` parameter is absent from the substitutions.
#[derive(Copy, Clone, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable)]
#[derive(HashStable, TypeFoldable)]
pub struct TraitRef<'tcx> {
    pub def_id: DefId,
    pub substs: SubstsRef<'tcx>,
}

impl<'tcx> TraitRef<'tcx> {
    pub fn new(def_id: DefId, substs: SubstsRef<'tcx>) -> TraitRef<'tcx> {
        TraitRef { def_id, substs }
    }

    /// Returns a `TraitRef` of the form `P0: Foo<P1..Pn>` where `Pi`
    /// are the parameters defined on trait.
    pub fn identity(tcx: TyCtxt<'tcx>, def_id: DefId) -> TraitRef<'tcx> {
        TraitRef { def_id, substs: InternalSubsts::identity_for_item(tcx, def_id) }
    }

    #[inline]
    pub fn self_ty(&self) -> Ty<'tcx> {
        self.substs.type_at(0)
    }

    pub fn from_method(
        tcx: TyCtxt<'tcx>,
        trait_id: DefId,
        substs: SubstsRef<'tcx>,
    ) -> ty::TraitRef<'tcx> {
        let defs = tcx.generics_of(trait_id);

        ty::TraitRef { def_id: trait_id, substs: tcx.intern_substs(&substs[..defs.params.len()]) }
    }
}

pub type PolyTraitRef<'tcx> = Binder<TraitRef<'tcx>>;

impl<'tcx> PolyTraitRef<'tcx> {
    pub fn self_ty(&self) -> Binder<Ty<'tcx>> {
        self.map_bound_ref(|tr| tr.self_ty())
    }

    pub fn def_id(&self) -> DefId {
        self.skip_binder().def_id
    }

    pub fn to_poly_trait_predicate(&self) -> ty::PolyTraitPredicate<'tcx> {
        // Note that we preserve binding levels
        Binder(ty::TraitPredicate { trait_ref: self.skip_binder() })
    }
}

/// An existential reference to a trait, where `Self` is erased.
/// For example, the trait object `Trait<'a, 'b, X, Y>` is:
///
///     exists T. T: Trait<'a, 'b, X, Y>
///
/// The substitutions don't include the erased `Self`, only trait
/// type and lifetime parameters (`[X, Y]` and `['a, 'b]` above).
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, RustcEncodable, RustcDecodable)]
#[derive(HashStable, TypeFoldable)]
pub struct ExistentialTraitRef<'tcx> {
    pub def_id: DefId,
    pub substs: SubstsRef<'tcx>,
}

impl<'tcx> ExistentialTraitRef<'tcx> {
    pub fn erase_self_ty(
        tcx: TyCtxt<'tcx>,
        trait_ref: ty::TraitRef<'tcx>,
    ) -> ty::ExistentialTraitRef<'tcx> {
        // Assert there is a Self.
        trait_ref.substs.type_at(0);

        ty::ExistentialTraitRef {
            def_id: trait_ref.def_id,
            substs: tcx.intern_substs(&trait_ref.substs[1..]),
        }
    }

    /// Object types don't have a self type specified. Therefore, when
    /// we convert the principal trait-ref into a normal trait-ref,
    /// you must give *some* self type. A common choice is `mk_err()`
    /// or some placeholder type.
    pub fn with_self_ty(&self, tcx: TyCtxt<'tcx>, self_ty: Ty<'tcx>) -> ty::TraitRef<'tcx> {
        // otherwise the escaping vars would be captured by the binder
        // debug_assert!(!self_ty.has_escaping_bound_vars());

        ty::TraitRef { def_id: self.def_id, substs: tcx.mk_substs_trait(self_ty, self.substs) }
    }
}

pub type PolyExistentialTraitRef<'tcx> = Binder<ExistentialTraitRef<'tcx>>;

impl<'tcx> PolyExistentialTraitRef<'tcx> {
    pub fn def_id(&self) -> DefId {
        self.skip_binder().def_id
    }

    /// Object types don't have a self type specified. Therefore, when
    /// we convert the principal trait-ref into a normal trait-ref,
    /// you must give *some* self type. A common choice is `mk_err()`
    /// or some placeholder type.
    pub fn with_self_ty(&self, tcx: TyCtxt<'tcx>, self_ty: Ty<'tcx>) -> ty::PolyTraitRef<'tcx> {
        self.map_bound(|trait_ref| trait_ref.with_self_ty(tcx, self_ty))
    }
}

/// Binder is a binder for higher-ranked lifetimes or types. It is part of the
/// compiler's representation for things like `for<'a> Fn(&'a isize)`
/// (which would be represented by the type `PolyTraitRef ==
/// Binder<TraitRef>`). Note that when we instantiate,
/// erase, or otherwise "discharge" these bound vars, we change the
/// type from `Binder<T>` to just `T` (see
/// e.g., `liberate_late_bound_regions`).
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug, RustcEncodable, RustcDecodable)]
pub struct Binder<T>(T);

impl<T> Binder<T> {
    /// Wraps `value` in a binder, asserting that `value` does not
    /// contain any bound vars that would be bound by the
    /// binder. This is commonly used to 'inject' a value T into a
    /// different binding level.
    pub fn dummy<'tcx>(value: T) -> Binder<T>
    where
        T: TypeFoldable<'tcx>,
    {
        debug_assert!(!value.has_escaping_bound_vars());
        Binder(value)
    }

    /// Wraps `value` in a binder, binding higher-ranked vars (if any).
    pub fn bind(value: T) -> Binder<T> {
        Binder(value)
    }

    /// Wraps `value` in a binder without actually binding any currently
    /// unbound variables.
    ///
    /// Note that this will shift all debrujin indices of escaping bound variables
    /// by 1 to avoid accidential captures.
    pub fn wrap_nonbinding(tcx: TyCtxt<'tcx>, value: T) -> Binder<T>
    where
        T: TypeFoldable<'tcx>,
    {
        if value.has_escaping_bound_vars() {
            Binder::bind(super::fold::shift_vars(tcx, &value, 1))
        } else {
            Binder::dummy(value)
        }
    }

    /// Skips the binder and returns the "bound" value. This is a
    /// risky thing to do because it's easy to get confused about
    /// De Bruijn indices and the like. It is usually better to
    /// discharge the binder using `no_bound_vars` or
    /// `replace_late_bound_regions` or something like
    /// that. `skip_binder` is only valid when you are either
    /// extracting data that has nothing to do with bound vars, you
    /// are doing some sort of test that does not involve bound
    /// regions, or you are being very careful about your depth
    /// accounting.
    ///
    /// Some examples where `skip_binder` is reasonable:
    ///
    /// - extracting the `DefId` from a PolyTraitRef;
    /// - comparing the self type of a PolyTraitRef to see if it is equal to
    ///   a type parameter `X`, since the type `X` does not reference any regions
    pub fn skip_binder(self) -> T {
        self.0
    }

    pub fn as_ref(&self) -> Binder<&T> {
        Binder(&self.0)
    }

    pub fn map_bound_ref<F, U>(&self, f: F) -> Binder<U>
    where
        F: FnOnce(&T) -> U,
    {
        self.as_ref().map_bound(f)
    }

    pub fn map_bound<F, U>(self, f: F) -> Binder<U>
    where
        F: FnOnce(T) -> U,
    {
        Binder(f(self.0))
    }

    /// Unwraps and returns the value within, but only if it contains
    /// no bound vars at all. (In other words, if this binder --
    /// and indeed any enclosing binder -- doesn't bind anything at
    /// all.) Otherwise, returns `None`.
    ///
    /// (One could imagine having a method that just unwraps a single
    /// binder, but permits late-bound vars bound by enclosing
    /// binders, but that would require adjusting the debruijn
    /// indices, and given the shallow binding structure we often use,
    /// would not be that useful.)
    pub fn no_bound_vars<'tcx>(self) -> Option<T>
    where
        T: TypeFoldable<'tcx>,
    {
        if self.0.has_escaping_bound_vars() { None } else { Some(self.skip_binder()) }
    }

    /// Given two things that have the same binder level,
    /// and an operation that wraps on their contents, executes the operation
    /// and then wraps its result.
    ///
    /// `f` should consider bound regions at depth 1 to be free, and
    /// anything it produces with bound regions at depth 1 will be
    /// bound in the resulting return value.
    pub fn fuse<U, F, R>(self, u: Binder<U>, f: F) -> Binder<R>
    where
        F: FnOnce(T, U) -> R,
    {
        Binder(f(self.0, u.0))
    }

    /// Splits the contents into two things that share the same binder
    /// level as the original, returning two distinct binders.
    ///
    /// `f` should consider bound regions at depth 1 to be free, and
    /// anything it produces with bound regions at depth 1 will be
    /// bound in the resulting return values.
    pub fn split<U, V, F>(self, f: F) -> (Binder<U>, Binder<V>)
    where
        F: FnOnce(T) -> (U, V),
    {
        let (u, v) = f(self.0);
        (Binder(u), Binder(v))
    }
}

impl<T> Binder<Option<T>> {
    pub fn transpose(self) -> Option<Binder<T>> {
        match self.0 {
            Some(v) => Some(Binder(v)),
            None => None,
        }
    }
}

/// Represents the projection of an associated type. In explicit UFCS
/// form this would be written `<T as Trait<..>>::N`.
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug, RustcEncodable, RustcDecodable)]
#[derive(HashStable, TypeFoldable)]
pub struct ProjectionTy<'tcx> {
    /// The parameters of the associated item.
    pub substs: SubstsRef<'tcx>,

    /// The `DefId` of the `TraitItem` for the associated type `N`.
    ///
    /// Note that this is not the `DefId` of the `TraitRef` containing this
    /// associated type, which is in `tcx.associated_item(item_def_id).container`.
    pub item_def_id: DefId,
}

impl<'tcx> ProjectionTy<'tcx> {
    /// Construct a `ProjectionTy` by searching the trait from `trait_ref` for the
    /// associated item named `item_name`.
    pub fn from_ref_and_name(
        tcx: TyCtxt<'_>,
        trait_ref: ty::TraitRef<'tcx>,
        item_name: Ident,
    ) -> ProjectionTy<'tcx> {
        let item_def_id = tcx
            .associated_items(trait_ref.def_id)
            .find_by_name_and_kind(tcx, item_name, ty::AssocKind::Type, trait_ref.def_id)
            .unwrap()
            .def_id;

        ProjectionTy { substs: trait_ref.substs, item_def_id }
    }

    /// Extracts the underlying trait reference from this projection.
    /// For example, if this is a projection of `<T as Iterator>::Item`,
    /// then this function would return a `T: Iterator` trait reference.
    pub fn trait_ref(&self, tcx: TyCtxt<'tcx>) -> ty::TraitRef<'tcx> {
        let def_id = tcx.associated_item(self.item_def_id).container.id();
        ty::TraitRef { def_id, substs: self.substs.truncate_to(tcx, tcx.generics_of(def_id)) }
    }

    pub fn self_ty(&self) -> Ty<'tcx> {
        self.substs.type_at(0)
    }
}

#[derive(Copy, Clone, Debug, TypeFoldable)]
pub struct GenSig<'tcx> {
    pub resume_ty: Ty<'tcx>,
    pub yield_ty: Ty<'tcx>,
    pub return_ty: Ty<'tcx>,
}

pub type PolyGenSig<'tcx> = Binder<GenSig<'tcx>>;

impl<'tcx> PolyGenSig<'tcx> {
    pub fn resume_ty(&self) -> ty::Binder<Ty<'tcx>> {
        self.map_bound_ref(|sig| sig.resume_ty)
    }
    pub fn yield_ty(&self) -> ty::Binder<Ty<'tcx>> {
        self.map_bound_ref(|sig| sig.yield_ty)
    }
    pub fn return_ty(&self) -> ty::Binder<Ty<'tcx>> {
        self.map_bound_ref(|sig| sig.return_ty)
    }
}

/// Signature of a function type, which we have arbitrarily
/// decided to use to refer to the input/output types.
///
/// - `inputs`: is the list of arguments and their modes.
/// - `output`: is the return type.
/// - `c_variadic`: indicates whether this is a C-variadic function.
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, RustcEncodable, RustcDecodable)]
#[derive(HashStable, TypeFoldable)]
pub struct FnSig<'tcx> {
    pub inputs_and_output: &'tcx List<Ty<'tcx>>,
    pub c_variadic: bool,
    pub unsafety: hir::Unsafety,
    pub abi: abi::Abi,
}

impl<'tcx> FnSig<'tcx> {
    pub fn inputs(&self) -> &'tcx [Ty<'tcx>] {
        &self.inputs_and_output[..self.inputs_and_output.len() - 1]
    }

    pub fn output(&self) -> Ty<'tcx> {
        self.inputs_and_output[self.inputs_and_output.len() - 1]
    }

    // Creates a minimal `FnSig` to be used when encountering a `TyKind::Error` in a fallible
    // method.
    fn fake() -> FnSig<'tcx> {
        FnSig {
            inputs_and_output: List::empty(),
            c_variadic: false,
            unsafety: hir::Unsafety::Normal,
            abi: abi::Abi::Rust,
        }
    }
}

pub type PolyFnSig<'tcx> = Binder<FnSig<'tcx>>;

impl<'tcx> PolyFnSig<'tcx> {
    #[inline]
    pub fn inputs(&self) -> Binder<&'tcx [Ty<'tcx>]> {
        self.map_bound_ref(|fn_sig| fn_sig.inputs())
    }
    #[inline]
    pub fn input(&self, index: usize) -> ty::Binder<Ty<'tcx>> {
        self.map_bound_ref(|fn_sig| fn_sig.inputs()[index])
    }
    pub fn inputs_and_output(&self) -> ty::Binder<&'tcx List<Ty<'tcx>>> {
        self.map_bound_ref(|fn_sig| fn_sig.inputs_and_output)
    }
    #[inline]
    pub fn output(&self) -> ty::Binder<Ty<'tcx>> {
        self.map_bound_ref(|fn_sig| fn_sig.output())
    }
    pub fn c_variadic(&self) -> bool {
        self.skip_binder().c_variadic
    }
    pub fn unsafety(&self) -> hir::Unsafety {
        self.skip_binder().unsafety
    }
    pub fn abi(&self) -> abi::Abi {
        self.skip_binder().abi
    }
}

pub type CanonicalPolyFnSig<'tcx> = Canonical<'tcx, Binder<FnSig<'tcx>>>;

#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, RustcEncodable, RustcDecodable)]
#[derive(HashStable)]
pub struct ParamTy {
    pub index: u32,
    pub name: Symbol,
}

impl<'tcx> ParamTy {
    pub fn new(index: u32, name: Symbol) -> ParamTy {
        ParamTy { index, name }
    }

    pub fn for_self() -> ParamTy {
        ParamTy::new(0, kw::SelfUpper)
    }

    pub fn for_def(def: &ty::GenericParamDef) -> ParamTy {
        ParamTy::new(def.index, def.name)
    }

    pub fn to_ty(self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
        tcx.mk_ty_param(self.index, self.name)
    }
}

#[derive(Copy, Clone, Hash, RustcEncodable, RustcDecodable, Eq, PartialEq, Ord, PartialOrd)]
#[derive(HashStable)]
pub struct ParamConst {
    pub index: u32,
    pub name: Symbol,
}

impl<'tcx> ParamConst {
    pub fn new(index: u32, name: Symbol) -> ParamConst {
        ParamConst { index, name }
    }

    pub fn for_def(def: &ty::GenericParamDef) -> ParamConst {
        ParamConst::new(def.index, def.name)
    }

    pub fn to_const(self, tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> &'tcx ty::Const<'tcx> {
        tcx.mk_const_param(self.index, self.name, ty)
    }
}

rustc_index::newtype_index! {
    /// A [De Bruijn index][dbi] is a standard means of representing
    /// regions (and perhaps later types) in a higher-ranked setting. In
    /// particular, imagine a type like this:
    ///
    ///     for<'a> fn(for<'b> fn(&'b isize, &'a isize), &'a char)
    ///     ^          ^            |        |         |
    ///     |          |            |        |         |
    ///     |          +------------+ 0      |         |
    ///     |                                |         |
    ///     +--------------------------------+ 1       |
    ///     |                                          |
    ///     +------------------------------------------+ 0
    ///
    /// In this type, there are two binders (the outer fn and the inner
    /// fn). We need to be able to determine, for any given region, which
    /// fn type it is bound by, the inner or the outer one. There are
    /// various ways you can do this, but a De Bruijn index is one of the
    /// more convenient and has some nice properties. The basic idea is to
    /// count the number of binders, inside out. Some examples should help
    /// clarify what I mean.
    ///
    /// Let's start with the reference type `&'b isize` that is the first
    /// argument to the inner function. This region `'b` is assigned a De
    /// Bruijn index of 0, meaning "the innermost binder" (in this case, a
    /// fn). The region `'a` that appears in the second argument type (`&'a
    /// isize`) would then be assigned a De Bruijn index of 1, meaning "the
    /// second-innermost binder". (These indices are written on the arrays
    /// in the diagram).
    ///
    /// What is interesting is that De Bruijn index attached to a particular
    /// variable will vary depending on where it appears. For example,
    /// the final type `&'a char` also refers to the region `'a` declared on
    /// the outermost fn. But this time, this reference is not nested within
    /// any other binders (i.e., it is not an argument to the inner fn, but
    /// rather the outer one). Therefore, in this case, it is assigned a
    /// De Bruijn index of 0, because the innermost binder in that location
    /// is the outer fn.
    ///
    /// [dbi]: http://en.wikipedia.org/wiki/De_Bruijn_index
    #[derive(HashStable)]
    pub struct DebruijnIndex {
        DEBUG_FORMAT = "DebruijnIndex({})",
        const INNERMOST = 0,
    }
}

pub type Region<'tcx> = &'tcx RegionKind;

/// Representation of regions. Note that the NLL checker uses a distinct
/// representation of regions. For this reason, it internally replaces all the
/// regions with inference variables -- the index of the variable is then used
/// to index into internal NLL data structures. See `rustc_mir::borrow_check`
/// module for more information.
///
/// ## The Region lattice within a given function
///
/// In general, the region lattice looks like
///
/// ```
/// static ----------+-----...------+       (greatest)
/// |                |              |
/// early-bound and  |              |
/// free regions     |              |
/// |                |              |
/// |                |              |
/// empty(root)   placeholder(U1)   |
/// |            /                  |
/// |           /         placeholder(Un)
/// empty(U1) --         /
/// |                   /
/// ...                /
/// |                 /
/// empty(Un) --------                      (smallest)
/// ```
///
/// Early-bound/free regions are the named lifetimes in scope from the
/// function declaration. They have relationships to one another
/// determined based on the declared relationships from the
/// function.
///
/// Note that inference variables and bound regions are not included
/// in this diagram. In the case of inference variables, they should
/// be inferred to some other region from the diagram.  In the case of
/// bound regions, they are excluded because they don't make sense to
/// include -- the diagram indicates the relationship between free
/// regions.
///
/// ## Inference variables
///
/// During region inference, we sometimes create inference variables,
/// represented as `ReVar`. These will be inferred by the code in
/// `infer::lexical_region_resolve` to some free region from the
/// lattice above (the minimal region that meets the
/// constraints).
///
/// During NLL checking, where regions are defined differently, we
/// also use `ReVar` -- in that case, the index is used to index into
/// the NLL region checker's data structures. The variable may in fact
/// represent either a free region or an inference variable, in that
/// case.
///
/// ## Bound Regions
///
/// These are regions that are stored behind a binder and must be substituted
/// with some concrete region before being used. There are two kind of
/// bound regions: early-bound, which are bound in an item's `Generics`,
/// and are substituted by a `InternalSubsts`, and late-bound, which are part of
/// higher-ranked types (e.g., `for<'a> fn(&'a ())`), and are substituted by
/// the likes of `liberate_late_bound_regions`. The distinction exists
/// because higher-ranked lifetimes aren't supported in all places. See [1][2].
///
/// Unlike `Param`s, bound regions are not supposed to exist "in the wild"
/// outside their binder, e.g., in types passed to type inference, and
/// should first be substituted (by placeholder regions, free regions,
/// or region variables).
///
/// ## Placeholder and Free Regions
///
/// One often wants to work with bound regions without knowing their precise
/// identity. For example, when checking a function, the lifetime of a borrow
/// can end up being assigned to some region parameter. In these cases,
/// it must be ensured that bounds on the region can't be accidentally
/// assumed without being checked.
///
/// To do this, we replace the bound regions with placeholder markers,
/// which don't satisfy any relation not explicitly provided.
///
/// There are two kinds of placeholder regions in rustc: `ReFree` and
/// `RePlaceholder`. When checking an item's body, `ReFree` is supposed
/// to be used. These also support explicit bounds: both the internally-stored
/// *scope*, which the region is assumed to outlive, as well as other
/// relations stored in the `FreeRegionMap`. Note that these relations
/// aren't checked when you `make_subregion` (or `eq_types`), only by
/// `resolve_regions_and_report_errors`.
///
/// When working with higher-ranked types, some region relations aren't
/// yet known, so you can't just call `resolve_regions_and_report_errors`.
/// `RePlaceholder` is designed for this purpose. In these contexts,
/// there's also the risk that some inference variable laying around will
/// get unified with your placeholder region: if you want to check whether
/// `for<'a> Foo<'_>: 'a`, and you substitute your bound region `'a`
/// with a placeholder region `'%a`, the variable `'_` would just be
/// instantiated to the placeholder region `'%a`, which is wrong because
/// the inference variable is supposed to satisfy the relation
/// *for every value of the placeholder region*. To ensure that doesn't
/// happen, you can use `leak_check`. This is more clearly explained
/// by the [rustc dev guide].
///
/// [1]: http://smallcultfollowing.com/babysteps/blog/2013/10/29/intermingled-parameter-lists/
/// [2]: http://smallcultfollowing.com/babysteps/blog/2013/11/04/intermingled-parameter-lists/
/// [rustc dev guide]: https://rustc-dev-guide.rust-lang.org/traits/hrtb.html
#[derive(Clone, PartialEq, Eq, Hash, Copy, RustcEncodable, RustcDecodable, PartialOrd, Ord)]
pub enum RegionKind {
    /// Region bound in a type or fn declaration which will be
    /// substituted 'early' -- that is, at the same time when type
    /// parameters are substituted.
    ReEarlyBound(EarlyBoundRegion),

    /// Region bound in a function scope, which will be substituted when the
    /// function is called.
    ReLateBound(DebruijnIndex, BoundRegion),

    /// When checking a function body, the types of all arguments and so forth
    /// that refer to bound region parameters are modified to refer to free
    /// region parameters.
    ReFree(FreeRegion),

    /// Static data that has an "infinite" lifetime. Top in the region lattice.
    ReStatic,

    /// A region variable. Should not exist after typeck.
    ReVar(RegionVid),

    /// A placeholder region -- basically, the higher-ranked version of `ReFree`.
    /// Should not exist after typeck.
    RePlaceholder(ty::PlaceholderRegion),

    /// Empty lifetime is for data that is never accessed.  We tag the
    /// empty lifetime with a universe -- the idea is that we don't
    /// want `exists<'a> { forall<'b> { 'b: 'a } }` to be satisfiable.
    /// Therefore, the `'empty` in a universe `U` is less than all
    /// regions visible from `U`, but not less than regions not visible
    /// from `U`.
    ReEmpty(ty::UniverseIndex),

    /// Erased region, used by trait selection, in MIR and during codegen.
    ReErased,
}

impl<'tcx> rustc_serialize::UseSpecializedDecodable for Region<'tcx> {}

#[derive(Copy, Clone, PartialEq, Eq, Hash, RustcEncodable, RustcDecodable, Debug, PartialOrd, Ord)]
pub struct EarlyBoundRegion {
    pub def_id: DefId,
    pub index: u32,
    pub name: Symbol,
}

#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, RustcEncodable, RustcDecodable)]
pub struct TyVid {
    pub index: u32,
}

#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, RustcEncodable, RustcDecodable)]
pub struct ConstVid<'tcx> {
    pub index: u32,
    pub phantom: PhantomData<&'tcx ()>,
}

#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, RustcEncodable, RustcDecodable)]
pub struct IntVid {
    pub index: u32,
}

#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, RustcEncodable, RustcDecodable)]
pub struct FloatVid {
    pub index: u32,
}

rustc_index::newtype_index! {
    pub struct RegionVid {
        DEBUG_FORMAT = custom,
    }
}

impl Atom for RegionVid {
    fn index(self) -> usize {
        Idx::index(self)
    }
}

#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, RustcEncodable, RustcDecodable)]
#[derive(HashStable)]
pub enum InferTy {
    TyVar(TyVid),
    IntVar(IntVid),
    FloatVar(FloatVid),

    /// A `FreshTy` is one that is generated as a replacement for an
    /// unbound type variable. This is convenient for caching etc. See
    /// `infer::freshen` for more details.
    FreshTy(u32),
    FreshIntTy(u32),
    FreshFloatTy(u32),
}

rustc_index::newtype_index! {
    pub struct BoundVar { .. }
}

#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Debug, RustcEncodable, RustcDecodable)]
#[derive(HashStable)]
pub struct BoundTy {
    pub var: BoundVar,
    pub kind: BoundTyKind,
}

#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Debug, RustcEncodable, RustcDecodable)]
#[derive(HashStable)]
pub enum BoundTyKind {
    Anon,
    Param(Symbol),
}

impl From<BoundVar> for BoundTy {
    fn from(var: BoundVar) -> Self {
        BoundTy { var, kind: BoundTyKind::Anon }
    }
}

/// A `ProjectionPredicate` for an `ExistentialTraitRef`.
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Debug, RustcEncodable, RustcDecodable)]
#[derive(HashStable, TypeFoldable)]
pub struct ExistentialProjection<'tcx> {
    pub item_def_id: DefId,
    pub substs: SubstsRef<'tcx>,
    pub ty: Ty<'tcx>,
}

pub type PolyExistentialProjection<'tcx> = Binder<ExistentialProjection<'tcx>>;

impl<'tcx> ExistentialProjection<'tcx> {
    /// Extracts the underlying existential trait reference from this projection.
    /// For example, if this is a projection of `exists T. <T as Iterator>::Item == X`,
    /// then this function would return a `exists T. T: Iterator` existential trait
    /// reference.
    pub fn trait_ref(&self, tcx: TyCtxt<'_>) -> ty::ExistentialTraitRef<'tcx> {
        let def_id = tcx.associated_item(self.item_def_id).container.id();
        ty::ExistentialTraitRef { def_id, substs: self.substs }
    }

    pub fn with_self_ty(
        &self,
        tcx: TyCtxt<'tcx>,
        self_ty: Ty<'tcx>,
    ) -> ty::ProjectionPredicate<'tcx> {
        // otherwise the escaping regions would be captured by the binders
        debug_assert!(!self_ty.has_escaping_bound_vars());

        ty::ProjectionPredicate {
            projection_ty: ty::ProjectionTy {
                item_def_id: self.item_def_id,
                substs: tcx.mk_substs_trait(self_ty, self.substs),
            },
            ty: self.ty,
        }
    }
}

impl<'tcx> PolyExistentialProjection<'tcx> {
    pub fn with_self_ty(
        &self,
        tcx: TyCtxt<'tcx>,
        self_ty: Ty<'tcx>,
    ) -> ty::PolyProjectionPredicate<'tcx> {
        self.map_bound(|p| p.with_self_ty(tcx, self_ty))
    }

    pub fn item_def_id(&self) -> DefId {
        self.skip_binder().item_def_id
    }
}

impl DebruijnIndex {
    /// Returns the resulting index when this value is moved into
    /// `amount` number of new binders. So, e.g., if you had
    ///
    ///    for<'a> fn(&'a x)
    ///
    /// and you wanted to change it to
    ///
    ///    for<'a> fn(for<'b> fn(&'a x))
    ///
    /// you would need to shift the index for `'a` into a new binder.
    #[must_use]
    pub fn shifted_in(self, amount: u32) -> DebruijnIndex {
        DebruijnIndex::from_u32(self.as_u32() + amount)
    }

    /// Update this index in place by shifting it "in" through
    /// `amount` number of binders.
    pub fn shift_in(&mut self, amount: u32) {
        *self = self.shifted_in(amount);
    }

    /// Returns the resulting index when this value is moved out from
    /// `amount` number of new binders.
    #[must_use]
    pub fn shifted_out(self, amount: u32) -> DebruijnIndex {
        DebruijnIndex::from_u32(self.as_u32() - amount)
    }

    /// Update in place by shifting out from `amount` binders.
    pub fn shift_out(&mut self, amount: u32) {
        *self = self.shifted_out(amount);
    }

    /// Adjusts any De Bruijn indices so as to make `to_binder` the
    /// innermost binder. That is, if we have something bound at `to_binder`,
    /// it will now be bound at INNERMOST. This is an appropriate thing to do
    /// when moving a region out from inside binders:
    ///
    /// ```
    ///             for<'a>   fn(for<'b>   for<'c>   fn(&'a u32), _)
    /// // Binder:  D3           D2        D1            ^^
    /// ```
    ///
    /// Here, the region `'a` would have the De Bruijn index D3,
    /// because it is the bound 3 binders out. However, if we wanted
    /// to refer to that region `'a` in the second argument (the `_`),
    /// those two binders would not be in scope. In that case, we
    /// might invoke `shift_out_to_binder(D3)`. This would adjust the
    /// De Bruijn index of `'a` to D1 (the innermost binder).
    ///
    /// If we invoke `shift_out_to_binder` and the region is in fact
    /// bound by one of the binders we are shifting out of, that is an
    /// error (and should fail an assertion failure).
    pub fn shifted_out_to_binder(self, to_binder: DebruijnIndex) -> Self {
        self.shifted_out(to_binder.as_u32() - INNERMOST.as_u32())
    }
}

/// Region utilities
impl RegionKind {
    /// Is this region named by the user?
    pub fn has_name(&self) -> bool {
        match *self {
            RegionKind::ReEarlyBound(ebr) => ebr.has_name(),
            RegionKind::ReLateBound(_, br) => br.is_named(),
            RegionKind::ReFree(fr) => fr.bound_region.is_named(),
            RegionKind::ReStatic => true,
            RegionKind::ReVar(..) => false,
            RegionKind::RePlaceholder(placeholder) => placeholder.name.is_named(),
            RegionKind::ReEmpty(_) => false,
            RegionKind::ReErased => false,
        }
    }

    pub fn is_late_bound(&self) -> bool {
        match *self {
            ty::ReLateBound(..) => true,
            _ => false,
        }
    }

    pub fn is_placeholder(&self) -> bool {
        match *self {
            ty::RePlaceholder(..) => true,
            _ => false,
        }
    }

    pub fn bound_at_or_above_binder(&self, index: DebruijnIndex) -> bool {
        match *self {
            ty::ReLateBound(debruijn, _) => debruijn >= index,
            _ => false,
        }
    }

    /// Adjusts any De Bruijn indices so as to make `to_binder` the
    /// innermost binder. That is, if we have something bound at `to_binder`,
    /// it will now be bound at INNERMOST. This is an appropriate thing to do
    /// when moving a region out from inside binders:
    ///
    /// ```
    ///             for<'a>   fn(for<'b>   for<'c>   fn(&'a u32), _)
    /// // Binder:  D3           D2        D1            ^^
    /// ```
    ///
    /// Here, the region `'a` would have the De Bruijn index D3,
    /// because it is the bound 3 binders out. However, if we wanted
    /// to refer to that region `'a` in the second argument (the `_`),
    /// those two binders would not be in scope. In that case, we
    /// might invoke `shift_out_to_binder(D3)`. This would adjust the
    /// De Bruijn index of `'a` to D1 (the innermost binder).
    ///
    /// If we invoke `shift_out_to_binder` and the region is in fact
    /// bound by one of the binders we are shifting out of, that is an
    /// error (and should fail an assertion failure).
    pub fn shifted_out_to_binder(&self, to_binder: ty::DebruijnIndex) -> RegionKind {
        match *self {
            ty::ReLateBound(debruijn, r) => {
                ty::ReLateBound(debruijn.shifted_out_to_binder(to_binder), r)
            }
            r => r,
        }
    }

    pub fn type_flags(&self) -> TypeFlags {
        let mut flags = TypeFlags::empty();

        match *self {
            ty::ReVar(..) => {
                flags = flags | TypeFlags::HAS_FREE_REGIONS;
                flags = flags | TypeFlags::HAS_FREE_LOCAL_REGIONS;
                flags = flags | TypeFlags::HAS_RE_INFER;
            }
            ty::RePlaceholder(..) => {
                flags = flags | TypeFlags::HAS_FREE_REGIONS;
                flags = flags | TypeFlags::HAS_FREE_LOCAL_REGIONS;
                flags = flags | TypeFlags::HAS_RE_PLACEHOLDER;
            }
            ty::ReEarlyBound(..) => {
                flags = flags | TypeFlags::HAS_FREE_REGIONS;
                flags = flags | TypeFlags::HAS_FREE_LOCAL_REGIONS;
                flags = flags | TypeFlags::HAS_RE_PARAM;
            }
            ty::ReFree { .. } => {
                flags = flags | TypeFlags::HAS_FREE_REGIONS;
                flags = flags | TypeFlags::HAS_FREE_LOCAL_REGIONS;
            }
            ty::ReEmpty(_) | ty::ReStatic => {
                flags = flags | TypeFlags::HAS_FREE_REGIONS;
            }
            ty::ReLateBound(..) => {
                flags = flags | TypeFlags::HAS_RE_LATE_BOUND;
            }
            ty::ReErased => {
                flags = flags | TypeFlags::HAS_RE_ERASED;
            }
        }

        debug!("type_flags({:?}) = {:?}", self, flags);

        flags
    }

    /// Given an early-bound or free region, returns the `DefId` where it was bound.
    /// For example, consider the regions in this snippet of code:
    ///
    /// ```
    /// impl<'a> Foo {
    ///      ^^ -- early bound, declared on an impl
    ///
    ///     fn bar<'b, 'c>(x: &self, y: &'b u32, z: &'c u64) where 'static: 'c
    ///            ^^  ^^     ^ anonymous, late-bound
    ///            |   early-bound, appears in where-clauses
    ///            late-bound, appears only in fn args
    ///     {..}
    /// }
    /// ```
    ///
    /// Here, `free_region_binding_scope('a)` would return the `DefId`
    /// of the impl, and for all the other highlighted regions, it
    /// would return the `DefId` of the function. In other cases (not shown), this
    /// function might return the `DefId` of a closure.
    pub fn free_region_binding_scope(&self, tcx: TyCtxt<'_>) -> DefId {
        match self {
            ty::ReEarlyBound(br) => tcx.parent(br.def_id).unwrap(),
            ty::ReFree(fr) => fr.scope,
            _ => bug!("free_region_binding_scope invoked on inappropriate region: {:?}", self),
        }
    }
}

/// Type utilities
impl<'tcx> TyS<'tcx> {
    #[inline]
    pub fn is_unit(&self) -> bool {
        match self.kind {
            Tuple(ref tys) => tys.is_empty(),
            _ => false,
        }
    }

    #[inline]
    pub fn is_never(&self) -> bool {
        match self.kind {
            Never => true,
            _ => false,
        }
    }

    /// Checks whether a type is definitely uninhabited. This is
    /// conservative: for some types that are uninhabited we return `false`,
    /// but we only return `true` for types that are definitely uninhabited.
    /// `ty.conservative_is_privately_uninhabited` implies that any value of type `ty`
    /// will be `Abi::Uninhabited`. (Note that uninhabited types may have nonzero
    /// size, to account for partial initialisation. See #49298 for details.)
    pub fn conservative_is_privately_uninhabited(&self, tcx: TyCtxt<'tcx>) -> bool {
        // FIXME(varkor): we can make this less conversative by substituting concrete
        // type arguments.
        match self.kind {
            ty::Never => true,
            ty::Adt(def, _) if def.is_union() => {
                // For now, `union`s are never considered uninhabited.
                false
            }
            ty::Adt(def, _) => {
                // Any ADT is uninhabited if either:
                // (a) It has no variants (i.e. an empty `enum`);
                // (b) Each of its variants (a single one in the case of a `struct`) has at least
                //     one uninhabited field.
                def.variants.iter().all(|var| {
                    var.fields.iter().any(|field| {
                        tcx.type_of(field.did).conservative_is_privately_uninhabited(tcx)
                    })
                })
            }
            ty::Tuple(..) => {
                self.tuple_fields().any(|ty| ty.conservative_is_privately_uninhabited(tcx))
            }
            ty::Array(ty, len) => {
                match len.try_eval_usize(tcx, ParamEnv::empty()) {
                    // If the array is definitely non-empty, it's uninhabited if
                    // the type of its elements is uninhabited.
                    Some(n) if n != 0 => ty.conservative_is_privately_uninhabited(tcx),
                    _ => false,
                }
            }
            ty::Ref(..) => {
                // References to uninitialised memory is valid for any type, including
                // uninhabited types, in unsafe code, so we treat all references as
                // inhabited.
                false
            }
            _ => false,
        }
    }

    #[inline]
    pub fn is_primitive(&self) -> bool {
        self.kind.is_primitive()
    }

    #[inline]
    pub fn is_ty_var(&self) -> bool {
        match self.kind {
            Infer(TyVar(_)) => true,
            _ => false,
        }
    }

    #[inline]
    pub fn is_ty_infer(&self) -> bool {
        match self.kind {
            Infer(_) => true,
            _ => false,
        }
    }

    #[inline]
    pub fn is_phantom_data(&self) -> bool {
        if let Adt(def, _) = self.kind { def.is_phantom_data() } else { false }
    }

    #[inline]
    pub fn is_bool(&self) -> bool {
        self.kind == Bool
    }

    /// Returns `true` if this type is a `str`.
    #[inline]
    pub fn is_str(&self) -> bool {
        self.kind == Str
    }

    #[inline]
    pub fn is_param(&self, index: u32) -> bool {
        match self.kind {
            ty::Param(ref data) => data.index == index,
            _ => false,
        }
    }

    #[inline]
    pub fn is_slice(&self) -> bool {
        match self.kind {
            RawPtr(TypeAndMut { ty, .. }) | Ref(_, ty, _) => match ty.kind {
                Slice(_) | Str => true,
                _ => false,
            },
            _ => false,
        }
    }

    #[inline]
    pub fn is_simd(&self) -> bool {
        match self.kind {
            Adt(def, _) => def.repr.simd(),
            _ => false,
        }
    }

    pub fn sequence_element_type(&self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
        match self.kind {
            Array(ty, _) | Slice(ty) => ty,
            Str => tcx.mk_mach_uint(ast::UintTy::U8),
            _ => bug!("`sequence_element_type` called on non-sequence value: {}", self),
        }
    }

    pub fn simd_type(&self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
        match self.kind {
            Adt(def, substs) => def.non_enum_variant().fields[0].ty(tcx, substs),
            _ => bug!("`simd_type` called on invalid type"),
        }
    }

    pub fn simd_size(&self, _tcx: TyCtxt<'tcx>) -> u64 {
        // Parameter currently unused, but probably needed in the future to
        // allow `#[repr(simd)] struct Simd<T, const N: usize>([T; N]);`.
        match self.kind {
            Adt(def, _) => def.non_enum_variant().fields.len() as u64,
            _ => bug!("`simd_size` called on invalid type"),
        }
    }

    pub fn simd_size_and_type(&self, tcx: TyCtxt<'tcx>) -> (u64, Ty<'tcx>) {
        match self.kind {
            Adt(def, substs) => {
                let variant = def.non_enum_variant();
                (variant.fields.len() as u64, variant.fields[0].ty(tcx, substs))
            }
            _ => bug!("`simd_size_and_type` called on invalid type"),
        }
    }

    #[inline]
    pub fn is_region_ptr(&self) -> bool {
        match self.kind {
            Ref(..) => true,
            _ => false,
        }
    }

    #[inline]
    pub fn is_mutable_ptr(&self) -> bool {
        match self.kind {
            RawPtr(TypeAndMut { mutbl: hir::Mutability::Mut, .. })
            | Ref(_, _, hir::Mutability::Mut) => true,
            _ => false,
        }
    }

    #[inline]
    pub fn is_unsafe_ptr(&self) -> bool {
        match self.kind {
            RawPtr(_) => true,
            _ => false,
        }
    }

    /// Tests if this is any kind of primitive pointer type (reference, raw pointer, fn pointer).
    #[inline]
    pub fn is_any_ptr(&self) -> bool {
        self.is_region_ptr() || self.is_unsafe_ptr() || self.is_fn_ptr()
    }

    #[inline]
    pub fn is_box(&self) -> bool {
        match self.kind {
            Adt(def, _) => def.is_box(),
            _ => false,
        }
    }

    /// Panics if called on any type other than `Box<T>`.
    pub fn boxed_ty(&self) -> Ty<'tcx> {
        match self.kind {
            Adt(def, substs) if def.is_box() => substs.type_at(0),
            _ => bug!("`boxed_ty` is called on non-box type {:?}", self),
        }
    }

    /// A scalar type is one that denotes an atomic datum, with no sub-components.
    /// (A RawPtr is scalar because it represents a non-managed pointer, so its
    /// contents are abstract to rustc.)
    #[inline]
    pub fn is_scalar(&self) -> bool {
        match self.kind {
            Bool
            | Char
            | Int(_)
            | Float(_)
            | Uint(_)
            | Infer(IntVar(_) | FloatVar(_))
            | FnDef(..)
            | FnPtr(_)
            | RawPtr(_) => true,
            _ => false,
        }
    }

    /// Returns `true` if this type is a floating point type.
    #[inline]
    pub fn is_floating_point(&self) -> bool {
        match self.kind {
            Float(_) | Infer(FloatVar(_)) => true,
            _ => false,
        }
    }

    #[inline]
    pub fn is_trait(&self) -> bool {
        match self.kind {
            Dynamic(..) => true,
            _ => false,
        }
    }

    #[inline]
    pub fn is_enum(&self) -> bool {
        match self.kind {
            Adt(adt_def, _) => adt_def.is_enum(),
            _ => false,
        }
    }

    #[inline]
    pub fn is_closure(&self) -> bool {
        match self.kind {
            Closure(..) => true,
            _ => false,
        }
    }

    #[inline]
    pub fn is_generator(&self) -> bool {
        match self.kind {
            Generator(..) => true,
            _ => false,
        }
    }

    #[inline]
    pub fn is_integral(&self) -> bool {
        match self.kind {
            Infer(IntVar(_)) | Int(_) | Uint(_) => true,
            _ => false,
        }
    }

    #[inline]
    pub fn is_fresh_ty(&self) -> bool {
        match self.kind {
            Infer(FreshTy(_)) => true,
            _ => false,
        }
    }

    #[inline]
    pub fn is_fresh(&self) -> bool {
        match self.kind {
            Infer(FreshTy(_)) => true,
            Infer(FreshIntTy(_)) => true,
            Infer(FreshFloatTy(_)) => true,
            _ => false,
        }
    }

    #[inline]
    pub fn is_char(&self) -> bool {
        match self.kind {
            Char => true,
            _ => false,
        }
    }

    #[inline]
    pub fn is_numeric(&self) -> bool {
        self.is_integral() || self.is_floating_point()
    }

    #[inline]
    pub fn is_signed(&self) -> bool {
        match self.kind {
            Int(_) => true,
            _ => false,
        }
    }

    #[inline]
    pub fn is_ptr_sized_integral(&self) -> bool {
        match self.kind {
            Int(ast::IntTy::Isize) | Uint(ast::UintTy::Usize) => true,
            _ => false,
        }
    }

    #[inline]
    pub fn is_machine(&self) -> bool {
        match self.kind {
            Int(..) | Uint(..) | Float(..) => true,
            _ => false,
        }
    }

    #[inline]
    pub fn has_concrete_skeleton(&self) -> bool {
        match self.kind {
            Param(_) | Infer(_) | Error(_) => false,
            _ => true,
        }
    }

    /// Returns the type and mutability of `*ty`.
    ///
    /// The parameter `explicit` indicates if this is an *explicit* dereference.
    /// Some types -- notably unsafe ptrs -- can only be dereferenced explicitly.
    pub fn builtin_deref(&self, explicit: bool) -> Option<TypeAndMut<'tcx>> {
        match self.kind {
            Adt(def, _) if def.is_box() => {
                Some(TypeAndMut { ty: self.boxed_ty(), mutbl: hir::Mutability::Not })
            }
            Ref(_, ty, mutbl) => Some(TypeAndMut { ty, mutbl }),
            RawPtr(mt) if explicit => Some(mt),
            _ => None,
        }
    }

    /// Returns the type of `ty[i]`.
    pub fn builtin_index(&self) -> Option<Ty<'tcx>> {
        match self.kind {
            Array(ty, _) | Slice(ty) => Some(ty),
            _ => None,
        }
    }

    pub fn fn_sig(&self, tcx: TyCtxt<'tcx>) -> PolyFnSig<'tcx> {
        match self.kind {
            FnDef(def_id, substs) => tcx.fn_sig(def_id).subst(tcx, substs),
            FnPtr(f) => f,
            Error(_) => {
                // ignore errors (#54954)
                ty::Binder::dummy(FnSig::fake())
            }
            Closure(..) => bug!(
                "to get the signature of a closure, use `substs.as_closure().sig()` not `fn_sig()`",
            ),
            _ => bug!("Ty::fn_sig() called on non-fn type: {:?}", self),
        }
    }

    #[inline]
    pub fn is_fn(&self) -> bool {
        match self.kind {
            FnDef(..) | FnPtr(_) => true,
            _ => false,
        }
    }

    #[inline]
    pub fn is_fn_ptr(&self) -> bool {
        match self.kind {
            FnPtr(_) => true,
            _ => false,
        }
    }

    #[inline]
    pub fn is_impl_trait(&self) -> bool {
        match self.kind {
            Opaque(..) => true,
            _ => false,
        }
    }

    #[inline]
    pub fn ty_adt_def(&self) -> Option<&'tcx AdtDef> {
        match self.kind {
            Adt(adt, _) => Some(adt),
            _ => None,
        }
    }

    /// Iterates over tuple fields.
    /// Panics when called on anything but a tuple.
    pub fn tuple_fields(&self) -> impl DoubleEndedIterator<Item = Ty<'tcx>> {
        match self.kind {
            Tuple(substs) => substs.iter().map(|field| field.expect_ty()),
            _ => bug!("tuple_fields called on non-tuple"),
        }
    }

    /// If the type contains variants, returns the valid range of variant indices.
    //
    // FIXME: This requires the optimized MIR in the case of generators.
    #[inline]
    pub fn variant_range(&self, tcx: TyCtxt<'tcx>) -> Option<Range<VariantIdx>> {
        match self.kind {
            TyKind::Adt(adt, _) => Some(adt.variant_range()),
            TyKind::Generator(def_id, substs, _) => {
                Some(substs.as_generator().variant_range(def_id, tcx))
            }
            _ => None,
        }
    }

    /// If the type contains variants, returns the variant for `variant_index`.
    /// Panics if `variant_index` is out of range.
    //
    // FIXME: This requires the optimized MIR in the case of generators.
    #[inline]
    pub fn discriminant_for_variant(
        &self,
        tcx: TyCtxt<'tcx>,
        variant_index: VariantIdx,
    ) -> Option<Discr<'tcx>> {
        match self.kind {
            TyKind::Adt(adt, _) if adt.variants.is_empty() => {
                bug!("discriminant_for_variant called on zero variant enum");
            }
            TyKind::Adt(adt, _) if adt.is_enum() => {
                Some(adt.discriminant_for_variant(tcx, variant_index))
            }
            TyKind::Generator(def_id, substs, _) => {
                Some(substs.as_generator().discriminant_for_variant(def_id, tcx, variant_index))
            }
            _ => None,
        }
    }

    /// Returns the type of the discriminant of this type.
    pub fn discriminant_ty(&self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
        match self.kind {
            ty::Adt(adt, _) if adt.is_enum() => adt.repr.discr_type().to_ty(tcx),
            ty::Generator(_, substs, _) => substs.as_generator().discr_ty(tcx),
            _ => {
                // This can only be `0`, for now, so `u8` will suffice.
                tcx.types.u8
            }
        }
    }

    /// When we create a closure, we record its kind (i.e., what trait
    /// it implements) into its `ClosureSubsts` using a type
    /// parameter. This is kind of a phantom type, except that the
    /// most convenient thing for us to are the integral types. This
    /// function converts such a special type into the closure
    /// kind. To go the other way, use
    /// `tcx.closure_kind_ty(closure_kind)`.
    ///
    /// Note that during type checking, we use an inference variable
    /// to represent the closure kind, because it has not yet been
    /// inferred. Once upvar inference (in `src/librustc_typeck/check/upvar.rs`)
    /// is complete, that type variable will be unified.
    pub fn to_opt_closure_kind(&self) -> Option<ty::ClosureKind> {
        match self.kind {
            Int(int_ty) => match int_ty {
                ast::IntTy::I8 => Some(ty::ClosureKind::Fn),
                ast::IntTy::I16 => Some(ty::ClosureKind::FnMut),
                ast::IntTy::I32 => Some(ty::ClosureKind::FnOnce),
                _ => bug!("cannot convert type `{:?}` to a closure kind", self),
            },

            // "Bound" types appear in canonical queries when the
            // closure type is not yet known
            Bound(..) | Infer(_) => None,

            Error(_) => Some(ty::ClosureKind::Fn),

            _ => bug!("cannot convert type `{:?}` to a closure kind", self),
        }
    }

    /// Fast path helper for testing if a type is `Sized`.
    ///
    /// Returning true means the type is known to be sized. Returning
    /// `false` means nothing -- could be sized, might not be.
    pub fn is_trivially_sized(&self, tcx: TyCtxt<'tcx>) -> bool {
        match self.kind {
            ty::Infer(ty::IntVar(_) | ty::FloatVar(_))
            | ty::Uint(_)
            | ty::Int(_)
            | ty::Bool
            | ty::Float(_)
            | ty::FnDef(..)
            | ty::FnPtr(_)
            | ty::RawPtr(..)
            | ty::Char
            | ty::Ref(..)
            | ty::Generator(..)
            | ty::GeneratorWitness(..)
            | ty::Array(..)
            | ty::Closure(..)
            | ty::Never
            | ty::Error(_) => true,

            ty::Str | ty::Slice(_) | ty::Dynamic(..) | ty::Foreign(..) => false,

            ty::Tuple(tys) => tys.iter().all(|ty| ty.expect_ty().is_trivially_sized(tcx)),

            ty::Adt(def, _substs) => def.sized_constraint(tcx).is_empty(),

            ty::Projection(_) | ty::Param(_) | ty::Opaque(..) => false,

            ty::Infer(ty::TyVar(_)) => false,

            ty::Bound(..)
            | ty::Placeholder(..)
            | ty::Infer(ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => {
                bug!("`is_trivially_sized` applied to unexpected type: {:?}", self)
            }
        }
    }

    /// Is this a zero-sized type?
    pub fn is_zst(&'tcx self, tcx: TyCtxt<'tcx>, did: DefId) -> bool {
        tcx.layout_of(tcx.param_env(did).and(self)).map(|layout| layout.is_zst()).unwrap_or(false)
    }
}