1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
//! This module contains `TyKind` and its major components.

#![allow(rustc::usage_of_ty_tykind)]

use crate::infer::canonical::Canonical;
use crate::ty::InferTy::*;
use crate::ty::{
    self, AdtDef, BoundRegionKind, Discr, Region, Ty, TyCtxt, TypeFlags, TypeSuperVisitable,
    TypeVisitable, TypeVisitor,
};
use crate::ty::{GenericArg, GenericArgs, GenericArgsRef};
use crate::ty::{List, ParamEnv};
use hir::def::{CtorKind, DefKind};
use rustc_data_structures::captures::Captures;
use rustc_errors::{ErrorGuaranteed, MultiSpan};
use rustc_hir as hir;
use rustc_hir::def_id::DefId;
use rustc_hir::LangItem;
use rustc_macros::{extension, HashStable, TyDecodable, TyEncodable, TypeFoldable};
use rustc_span::symbol::{sym, Symbol};
use rustc_span::{Span, DUMMY_SP};
use rustc_target::abi::{FieldIdx, VariantIdx, FIRST_VARIANT};
use rustc_target::spec::abi;
use rustc_type_ir::visit::TypeVisitableExt;
use std::assert_matches::debug_assert_matches;
use std::borrow::Cow;
use std::iter;
use std::ops::{ControlFlow, Range};
use ty::util::{AsyncDropGlueMorphology, IntTypeExt};

use rustc_type_ir::TyKind::*;
use rustc_type_ir::{self as ir, BoundVar, CollectAndApply, DynKind};

use super::GenericParamDefKind;

// Re-export and re-parameterize some `I = TyCtxt<'tcx>` types here
#[rustc_diagnostic_item = "TyKind"]
pub type TyKind<'tcx> = ir::TyKind<TyCtxt<'tcx>>;
pub type TypeAndMut<'tcx> = ir::TypeAndMut<TyCtxt<'tcx>>;
pub type AliasTy<'tcx> = ir::AliasTy<TyCtxt<'tcx>>;
pub type FnSig<'tcx> = ir::FnSig<TyCtxt<'tcx>>;
pub type Binder<'tcx, T> = ir::Binder<TyCtxt<'tcx>, T>;
pub type EarlyBinder<'tcx, T> = ir::EarlyBinder<TyCtxt<'tcx>, T>;

pub trait Article {
    fn article(&self) -> &'static str;
}

impl<'tcx> Article for TyKind<'tcx> {
    /// Get the article ("a" or "an") to use with this type.
    fn article(&self) -> &'static str {
        match self {
            Int(_) | Float(_) | Array(_, _) => "an",
            Adt(def, _) if def.is_enum() => "an",
            // This should never happen, but ICEing and causing the user's code
            // to not compile felt too harsh.
            Error(_) => "a",
            _ => "a",
        }
    }
}

#[extension(pub trait CoroutineArgsExt<'tcx>)]
impl<'tcx> ty::CoroutineArgs<TyCtxt<'tcx>> {
    /// Coroutine has not been resumed yet.
    const UNRESUMED: usize = 0;
    /// Coroutine has returned or is completed.
    const RETURNED: usize = 1;
    /// Coroutine has been poisoned.
    const POISONED: usize = 2;
    /// Number of variants to reserve in coroutine state. Corresponds to
    /// `UNRESUMED` (beginning of a coroutine) and `RETURNED`/`POISONED`
    /// (end of a coroutine) states.
    const RESERVED_VARIANTS: usize = 3;

    const UNRESUMED_NAME: &'static str = "Unresumed";
    const RETURNED_NAME: &'static str = "Returned";
    const POISONED_NAME: &'static str = "Panicked";

    /// The valid variant indices of this coroutine.
    #[inline]
    fn variant_range(&self, def_id: DefId, tcx: TyCtxt<'tcx>) -> Range<VariantIdx> {
        // FIXME requires optimized MIR
        FIRST_VARIANT
            ..tcx.coroutine_layout(def_id, tcx.types.unit).unwrap().variant_fields.next_index()
    }

    /// The discriminant for the given variant. Panics if the `variant_index` is
    /// out of range.
    #[inline]
    fn discriminant_for_variant(
        &self,
        def_id: DefId,
        tcx: TyCtxt<'tcx>,
        variant_index: VariantIdx,
    ) -> Discr<'tcx> {
        // Coroutines don't support explicit discriminant values, so they are
        // the same as the variant index.
        assert!(self.variant_range(def_id, tcx).contains(&variant_index));
        Discr { val: variant_index.as_usize() as u128, ty: self.discr_ty(tcx) }
    }

    /// The set of all discriminants for the coroutine, enumerated with their
    /// variant indices.
    #[inline]
    fn discriminants(
        self,
        def_id: DefId,
        tcx: TyCtxt<'tcx>,
    ) -> impl Iterator<Item = (VariantIdx, Discr<'tcx>)> + Captures<'tcx> {
        self.variant_range(def_id, tcx).map(move |index| {
            (index, Discr { val: index.as_usize() as u128, ty: self.discr_ty(tcx) })
        })
    }

    /// Calls `f` with a reference to the name of the enumerator for the given
    /// variant `v`.
    fn variant_name(v: VariantIdx) -> Cow<'static, str> {
        match v.as_usize() {
            Self::UNRESUMED => Cow::from(Self::UNRESUMED_NAME),
            Self::RETURNED => Cow::from(Self::RETURNED_NAME),
            Self::POISONED => Cow::from(Self::POISONED_NAME),
            _ => Cow::from(format!("Suspend{}", v.as_usize() - Self::RESERVED_VARIANTS)),
        }
    }

    /// The type of the state discriminant used in the coroutine type.
    #[inline]
    fn discr_ty(&self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
        tcx.types.u32
    }

    /// This returns the types of the MIR locals which had to be stored across suspension points.
    /// It is calculated in rustc_mir_transform::coroutine::StateTransform.
    /// All the types here must be in the tuple in CoroutineInterior.
    ///
    /// The locals are grouped by their variant number. Note that some locals may
    /// be repeated in multiple variants.
    #[inline]
    fn state_tys(
        self,
        def_id: DefId,
        tcx: TyCtxt<'tcx>,
    ) -> impl Iterator<Item: Iterator<Item = Ty<'tcx>> + Captures<'tcx>> {
        let layout = tcx.coroutine_layout(def_id, self.kind_ty()).unwrap();
        layout.variant_fields.iter().map(move |variant| {
            variant.iter().map(move |field| {
                ty::EarlyBinder::bind(layout.field_tys[*field].ty).instantiate(tcx, self.args)
            })
        })
    }

    /// This is the types of the fields of a coroutine which are not stored in a
    /// variant.
    #[inline]
    fn prefix_tys(self) -> &'tcx List<Ty<'tcx>> {
        self.upvar_tys()
    }
}

#[derive(Debug, Copy, Clone, HashStable, TypeFoldable, TypeVisitable)]
pub enum UpvarArgs<'tcx> {
    Closure(GenericArgsRef<'tcx>),
    Coroutine(GenericArgsRef<'tcx>),
    CoroutineClosure(GenericArgsRef<'tcx>),
}

impl<'tcx> UpvarArgs<'tcx> {
    /// Returns an iterator over the list of types of captured paths by the closure/coroutine.
    /// In case there was a type error in figuring out the types of the captured path, an
    /// empty iterator is returned.
    #[inline]
    pub fn upvar_tys(self) -> &'tcx List<Ty<'tcx>> {
        let tupled_tys = match self {
            UpvarArgs::Closure(args) => args.as_closure().tupled_upvars_ty(),
            UpvarArgs::Coroutine(args) => args.as_coroutine().tupled_upvars_ty(),
            UpvarArgs::CoroutineClosure(args) => args.as_coroutine_closure().tupled_upvars_ty(),
        };

        match tupled_tys.kind() {
            TyKind::Error(_) => ty::List::empty(),
            TyKind::Tuple(..) => self.tupled_upvars_ty().tuple_fields(),
            TyKind::Infer(_) => bug!("upvar_tys called before capture types are inferred"),
            ty => bug!("Unexpected representation of upvar types tuple {:?}", ty),
        }
    }

    #[inline]
    pub fn tupled_upvars_ty(self) -> Ty<'tcx> {
        match self {
            UpvarArgs::Closure(args) => args.as_closure().tupled_upvars_ty(),
            UpvarArgs::Coroutine(args) => args.as_coroutine().tupled_upvars_ty(),
            UpvarArgs::CoroutineClosure(args) => args.as_coroutine_closure().tupled_upvars_ty(),
        }
    }
}

/// An inline const is modeled like
/// ```ignore (illustrative)
/// const InlineConst<'l0...'li, T0...Tj, R>: R;
/// ```
/// where:
///
/// - 'l0...'li and T0...Tj are the generic parameters
///   inherited from the item that defined the inline const,
/// - R represents the type of the constant.
///
/// When the inline const is instantiated, `R` is instantiated as the actual inferred
/// type of the constant. The reason that `R` is represented as an extra type parameter
/// is the same reason that [`ty::ClosureArgs`] have `CS` and `U` as type parameters:
/// inline const can reference lifetimes that are internal to the creating function.
#[derive(Copy, Clone, Debug)]
pub struct InlineConstArgs<'tcx> {
    /// Generic parameters from the enclosing item,
    /// concatenated with the inferred type of the constant.
    pub args: GenericArgsRef<'tcx>,
}

/// Struct returned by `split()`.
pub struct InlineConstArgsParts<'tcx, T> {
    pub parent_args: &'tcx [GenericArg<'tcx>],
    pub ty: T,
}

impl<'tcx> InlineConstArgs<'tcx> {
    /// Construct `InlineConstArgs` from `InlineConstArgsParts`.
    pub fn new(
        tcx: TyCtxt<'tcx>,
        parts: InlineConstArgsParts<'tcx, Ty<'tcx>>,
    ) -> InlineConstArgs<'tcx> {
        InlineConstArgs {
            args: tcx.mk_args_from_iter(
                parts.parent_args.iter().copied().chain(std::iter::once(parts.ty.into())),
            ),
        }
    }

    /// Divides the inline const args into their respective components.
    /// The ordering assumed here must match that used by `InlineConstArgs::new` above.
    fn split(self) -> InlineConstArgsParts<'tcx, GenericArg<'tcx>> {
        match self.args[..] {
            [ref parent_args @ .., ty] => InlineConstArgsParts { parent_args, ty },
            _ => bug!("inline const args missing synthetics"),
        }
    }

    /// Returns the generic parameters of the inline const's parent.
    pub fn parent_args(self) -> &'tcx [GenericArg<'tcx>] {
        self.split().parent_args
    }

    /// Returns the type of this inline const.
    pub fn ty(self) -> Ty<'tcx> {
        self.split().ty.expect_ty()
    }
}

#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug, TyEncodable, TyDecodable)]
#[derive(HashStable)]
pub enum BoundVariableKind {
    Ty(BoundTyKind),
    Region(BoundRegionKind),
    Const,
}

impl BoundVariableKind {
    pub fn expect_region(self) -> BoundRegionKind {
        match self {
            BoundVariableKind::Region(lt) => lt,
            _ => bug!("expected a region, but found another kind"),
        }
    }

    pub fn expect_ty(self) -> BoundTyKind {
        match self {
            BoundVariableKind::Ty(ty) => ty,
            _ => bug!("expected a type, but found another kind"),
        }
    }

    pub fn expect_const(self) {
        match self {
            BoundVariableKind::Const => (),
            _ => bug!("expected a const, but found another kind"),
        }
    }
}

pub type PolyFnSig<'tcx> = Binder<'tcx, FnSig<'tcx>>;
pub type CanonicalPolyFnSig<'tcx> = Canonical<'tcx, Binder<'tcx, FnSig<'tcx>>>;

#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, TyEncodable, TyDecodable)]
#[derive(HashStable)]
pub struct ParamTy {
    pub index: u32,
    pub name: Symbol,
}

impl rustc_type_ir::inherent::ParamLike for ParamTy {
    fn index(self) -> u32 {
        self.index
    }
}

impl<'tcx> ParamTy {
    pub fn new(index: u32, name: Symbol) -> ParamTy {
        ParamTy { index, name }
    }

    pub fn for_def(def: &ty::GenericParamDef) -> ParamTy {
        ParamTy::new(def.index, def.name)
    }

    #[inline]
    pub fn to_ty(self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
        Ty::new_param(tcx, self.index, self.name)
    }

    pub fn span_from_generics(self, tcx: TyCtxt<'tcx>, item_with_generics: DefId) -> Span {
        let generics = tcx.generics_of(item_with_generics);
        let type_param = generics.type_param(self, tcx);
        tcx.def_span(type_param.def_id)
    }
}

#[derive(Copy, Clone, Hash, TyEncodable, TyDecodable, Eq, PartialEq, Ord, PartialOrd)]
#[derive(HashStable)]
pub struct ParamConst {
    pub index: u32,
    pub name: Symbol,
}

impl rustc_type_ir::inherent::ParamLike for ParamConst {
    fn index(self) -> u32 {
        self.index
    }
}

impl ParamConst {
    pub fn new(index: u32, name: Symbol) -> ParamConst {
        ParamConst { index, name }
    }

    pub fn for_def(def: &ty::GenericParamDef) -> ParamConst {
        ParamConst::new(def.index, def.name)
    }

    pub fn find_ty_from_env<'tcx>(self, env: ParamEnv<'tcx>) -> Ty<'tcx> {
        let mut candidates = env.caller_bounds().iter().filter_map(|clause| {
            // `ConstArgHasType` are never desugared to be higher ranked.
            match clause.kind().skip_binder() {
                ty::ClauseKind::ConstArgHasType(param_ct, ty) => {
                    assert!(!(param_ct, ty).has_escaping_bound_vars());

                    match param_ct.kind() {
                        ty::ConstKind::Param(param_ct) if param_ct.index == self.index => Some(ty),
                        _ => None,
                    }
                }
                _ => None,
            }
        });

        let ty = candidates.next().unwrap();
        assert!(candidates.next().is_none());
        ty
    }
}

#[derive(Clone, Copy, PartialEq, Eq, Hash, TyEncodable, TyDecodable)]
#[derive(HashStable)]
pub struct BoundTy {
    pub var: BoundVar,
    pub kind: BoundTyKind,
}

impl<'tcx> rustc_type_ir::inherent::BoundVarLike<TyCtxt<'tcx>> for BoundTy {
    fn var(self) -> BoundVar {
        self.var
    }

    fn assert_eq(self, var: ty::BoundVariableKind) {
        assert_eq!(self.kind, var.expect_ty())
    }
}

#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, TyEncodable, TyDecodable)]
#[derive(HashStable)]
pub enum BoundTyKind {
    Anon,
    Param(DefId, Symbol),
}

impl From<BoundVar> for BoundTy {
    fn from(var: BoundVar) -> Self {
        BoundTy { var, kind: BoundTyKind::Anon }
    }
}

/// Constructors for `Ty`
impl<'tcx> Ty<'tcx> {
    /// Avoid using this in favour of more specific `new_*` methods, where possible.
    /// The more specific methods will often optimize their creation.
    #[allow(rustc::usage_of_ty_tykind)]
    #[inline]
    pub fn new(tcx: TyCtxt<'tcx>, st: TyKind<'tcx>) -> Ty<'tcx> {
        tcx.mk_ty_from_kind(st)
    }

    #[inline]
    pub fn new_infer(tcx: TyCtxt<'tcx>, infer: ty::InferTy) -> Ty<'tcx> {
        Ty::new(tcx, TyKind::Infer(infer))
    }

    #[inline]
    pub fn new_var(tcx: TyCtxt<'tcx>, v: ty::TyVid) -> Ty<'tcx> {
        // Use a pre-interned one when possible.
        tcx.types
            .ty_vars
            .get(v.as_usize())
            .copied()
            .unwrap_or_else(|| Ty::new(tcx, Infer(TyVar(v))))
    }

    #[inline]
    pub fn new_int_var(tcx: TyCtxt<'tcx>, v: ty::IntVid) -> Ty<'tcx> {
        Ty::new_infer(tcx, IntVar(v))
    }

    #[inline]
    pub fn new_float_var(tcx: TyCtxt<'tcx>, v: ty::FloatVid) -> Ty<'tcx> {
        Ty::new_infer(tcx, FloatVar(v))
    }

    #[inline]
    pub fn new_fresh(tcx: TyCtxt<'tcx>, n: u32) -> Ty<'tcx> {
        // Use a pre-interned one when possible.
        tcx.types
            .fresh_tys
            .get(n as usize)
            .copied()
            .unwrap_or_else(|| Ty::new_infer(tcx, ty::FreshTy(n)))
    }

    #[inline]
    pub fn new_fresh_int(tcx: TyCtxt<'tcx>, n: u32) -> Ty<'tcx> {
        // Use a pre-interned one when possible.
        tcx.types
            .fresh_int_tys
            .get(n as usize)
            .copied()
            .unwrap_or_else(|| Ty::new_infer(tcx, ty::FreshIntTy(n)))
    }

    #[inline]
    pub fn new_fresh_float(tcx: TyCtxt<'tcx>, n: u32) -> Ty<'tcx> {
        // Use a pre-interned one when possible.
        tcx.types
            .fresh_float_tys
            .get(n as usize)
            .copied()
            .unwrap_or_else(|| Ty::new_infer(tcx, ty::FreshFloatTy(n)))
    }

    #[inline]
    pub fn new_param(tcx: TyCtxt<'tcx>, index: u32, name: Symbol) -> Ty<'tcx> {
        tcx.mk_ty_from_kind(Param(ParamTy { index, name }))
    }

    #[inline]
    pub fn new_bound(
        tcx: TyCtxt<'tcx>,
        index: ty::DebruijnIndex,
        bound_ty: ty::BoundTy,
    ) -> Ty<'tcx> {
        Ty::new(tcx, Bound(index, bound_ty))
    }

    #[inline]
    pub fn new_placeholder(tcx: TyCtxt<'tcx>, placeholder: ty::PlaceholderType) -> Ty<'tcx> {
        Ty::new(tcx, Placeholder(placeholder))
    }

    #[inline]
    pub fn new_alias(
        tcx: TyCtxt<'tcx>,
        kind: ty::AliasTyKind,
        alias_ty: ty::AliasTy<'tcx>,
    ) -> Ty<'tcx> {
        debug_assert_matches!(
            (kind, tcx.def_kind(alias_ty.def_id)),
            (ty::Opaque, DefKind::OpaqueTy)
                | (ty::Projection | ty::Inherent, DefKind::AssocTy)
                | (ty::Weak, DefKind::TyAlias)
        );
        Ty::new(tcx, Alias(kind, alias_ty))
    }

    #[inline]
    pub fn new_pat(tcx: TyCtxt<'tcx>, base: Ty<'tcx>, pat: ty::Pattern<'tcx>) -> Ty<'tcx> {
        Ty::new(tcx, Pat(base, pat))
    }

    #[inline]
    pub fn new_opaque(tcx: TyCtxt<'tcx>, def_id: DefId, args: GenericArgsRef<'tcx>) -> Ty<'tcx> {
        Ty::new_alias(tcx, ty::Opaque, AliasTy::new_from_args(tcx, def_id, args))
    }

    /// Constructs a `TyKind::Error` type with current `ErrorGuaranteed`
    pub fn new_error(tcx: TyCtxt<'tcx>, guar: ErrorGuaranteed) -> Ty<'tcx> {
        Ty::new(tcx, Error(guar))
    }

    /// Constructs a `TyKind::Error` type and registers a `span_delayed_bug` to ensure it gets used.
    #[track_caller]
    pub fn new_misc_error(tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
        Ty::new_error_with_message(tcx, DUMMY_SP, "TyKind::Error constructed but no error reported")
    }

    /// Constructs a `TyKind::Error` type and registers a `span_delayed_bug` with the given `msg` to
    /// ensure it gets used.
    #[track_caller]
    pub fn new_error_with_message<S: Into<MultiSpan>>(
        tcx: TyCtxt<'tcx>,
        span: S,
        msg: impl Into<Cow<'static, str>>,
    ) -> Ty<'tcx> {
        let reported = tcx.dcx().span_delayed_bug(span, msg);
        Ty::new(tcx, Error(reported))
    }

    #[inline]
    pub fn new_int(tcx: TyCtxt<'tcx>, i: ty::IntTy) -> Ty<'tcx> {
        use ty::IntTy::*;
        match i {
            Isize => tcx.types.isize,
            I8 => tcx.types.i8,
            I16 => tcx.types.i16,
            I32 => tcx.types.i32,
            I64 => tcx.types.i64,
            I128 => tcx.types.i128,
        }
    }

    #[inline]
    pub fn new_uint(tcx: TyCtxt<'tcx>, ui: ty::UintTy) -> Ty<'tcx> {
        use ty::UintTy::*;
        match ui {
            Usize => tcx.types.usize,
            U8 => tcx.types.u8,
            U16 => tcx.types.u16,
            U32 => tcx.types.u32,
            U64 => tcx.types.u64,
            U128 => tcx.types.u128,
        }
    }

    #[inline]
    pub fn new_float(tcx: TyCtxt<'tcx>, f: ty::FloatTy) -> Ty<'tcx> {
        use ty::FloatTy::*;
        match f {
            F16 => tcx.types.f16,
            F32 => tcx.types.f32,
            F64 => tcx.types.f64,
            F128 => tcx.types.f128,
        }
    }

    #[inline]
    pub fn new_ref(
        tcx: TyCtxt<'tcx>,
        r: Region<'tcx>,
        ty: Ty<'tcx>,
        mutbl: ty::Mutability,
    ) -> Ty<'tcx> {
        Ty::new(tcx, Ref(r, ty, mutbl))
    }

    #[inline]
    pub fn new_mut_ref(tcx: TyCtxt<'tcx>, r: Region<'tcx>, ty: Ty<'tcx>) -> Ty<'tcx> {
        Ty::new_ref(tcx, r, ty, hir::Mutability::Mut)
    }

    #[inline]
    pub fn new_imm_ref(tcx: TyCtxt<'tcx>, r: Region<'tcx>, ty: Ty<'tcx>) -> Ty<'tcx> {
        Ty::new_ref(tcx, r, ty, hir::Mutability::Not)
    }

    #[inline]
    pub fn new_ptr(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>, mutbl: ty::Mutability) -> Ty<'tcx> {
        Ty::new(tcx, ty::RawPtr(ty, mutbl))
    }

    #[inline]
    pub fn new_mut_ptr(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> Ty<'tcx> {
        Ty::new_ptr(tcx, ty, hir::Mutability::Mut)
    }

    #[inline]
    pub fn new_imm_ptr(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> Ty<'tcx> {
        Ty::new_ptr(tcx, ty, hir::Mutability::Not)
    }

    #[inline]
    pub fn new_adt(tcx: TyCtxt<'tcx>, def: AdtDef<'tcx>, args: GenericArgsRef<'tcx>) -> Ty<'tcx> {
        tcx.debug_assert_args_compatible(def.did(), args);
        Ty::new(tcx, Adt(def, args))
    }

    #[inline]
    pub fn new_foreign(tcx: TyCtxt<'tcx>, def_id: DefId) -> Ty<'tcx> {
        Ty::new(tcx, Foreign(def_id))
    }

    #[inline]
    pub fn new_array(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>, n: u64) -> Ty<'tcx> {
        Ty::new(tcx, Array(ty, ty::Const::from_target_usize(tcx, n)))
    }

    #[inline]
    pub fn new_array_with_const_len(
        tcx: TyCtxt<'tcx>,
        ty: Ty<'tcx>,
        ct: ty::Const<'tcx>,
    ) -> Ty<'tcx> {
        Ty::new(tcx, Array(ty, ct))
    }

    #[inline]
    pub fn new_slice(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> Ty<'tcx> {
        Ty::new(tcx, Slice(ty))
    }

    #[inline]
    pub fn new_tup(tcx: TyCtxt<'tcx>, ts: &[Ty<'tcx>]) -> Ty<'tcx> {
        if ts.is_empty() { tcx.types.unit } else { Ty::new(tcx, Tuple(tcx.mk_type_list(ts))) }
    }

    pub fn new_tup_from_iter<I, T>(tcx: TyCtxt<'tcx>, iter: I) -> T::Output
    where
        I: Iterator<Item = T>,
        T: CollectAndApply<Ty<'tcx>, Ty<'tcx>>,
    {
        T::collect_and_apply(iter, |ts| Ty::new_tup(tcx, ts))
    }

    #[inline]
    pub fn new_fn_def(
        tcx: TyCtxt<'tcx>,
        def_id: DefId,
        args: impl IntoIterator<Item: Into<GenericArg<'tcx>>>,
    ) -> Ty<'tcx> {
        debug_assert_matches!(
            tcx.def_kind(def_id),
            DefKind::AssocFn | DefKind::Fn | DefKind::Ctor(_, CtorKind::Fn)
        );
        let args = tcx.check_and_mk_args(def_id, args);
        Ty::new(tcx, FnDef(def_id, args))
    }

    #[inline]
    pub fn new_fn_ptr(tcx: TyCtxt<'tcx>, fty: PolyFnSig<'tcx>) -> Ty<'tcx> {
        Ty::new(tcx, FnPtr(fty))
    }

    #[inline]
    pub fn new_dynamic(
        tcx: TyCtxt<'tcx>,
        obj: &'tcx List<ty::PolyExistentialPredicate<'tcx>>,
        reg: ty::Region<'tcx>,
        repr: DynKind,
    ) -> Ty<'tcx> {
        Ty::new(tcx, Dynamic(obj, reg, repr))
    }

    #[inline]
    pub fn new_projection_from_args(
        tcx: TyCtxt<'tcx>,
        item_def_id: DefId,
        args: ty::GenericArgsRef<'tcx>,
    ) -> Ty<'tcx> {
        Ty::new_alias(tcx, ty::Projection, AliasTy::new_from_args(tcx, item_def_id, args))
    }

    #[inline]
    pub fn new_projection(
        tcx: TyCtxt<'tcx>,
        item_def_id: DefId,
        args: impl IntoIterator<Item: Into<GenericArg<'tcx>>>,
    ) -> Ty<'tcx> {
        Ty::new_alias(tcx, ty::Projection, AliasTy::new(tcx, item_def_id, args))
    }

    #[inline]
    pub fn new_closure(
        tcx: TyCtxt<'tcx>,
        def_id: DefId,
        closure_args: GenericArgsRef<'tcx>,
    ) -> Ty<'tcx> {
        tcx.debug_assert_args_compatible(def_id, closure_args);
        Ty::new(tcx, Closure(def_id, closure_args))
    }

    #[inline]
    pub fn new_coroutine_closure(
        tcx: TyCtxt<'tcx>,
        def_id: DefId,
        closure_args: GenericArgsRef<'tcx>,
    ) -> Ty<'tcx> {
        tcx.debug_assert_args_compatible(def_id, closure_args);
        Ty::new(tcx, CoroutineClosure(def_id, closure_args))
    }

    #[inline]
    pub fn new_coroutine(
        tcx: TyCtxt<'tcx>,
        def_id: DefId,
        coroutine_args: GenericArgsRef<'tcx>,
    ) -> Ty<'tcx> {
        tcx.debug_assert_args_compatible(def_id, coroutine_args);
        Ty::new(tcx, Coroutine(def_id, coroutine_args))
    }

    #[inline]
    pub fn new_coroutine_witness(
        tcx: TyCtxt<'tcx>,
        id: DefId,
        args: GenericArgsRef<'tcx>,
    ) -> Ty<'tcx> {
        Ty::new(tcx, CoroutineWitness(id, args))
    }

    // misc

    #[inline]
    pub fn new_static_str(tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
        Ty::new_imm_ref(tcx, tcx.lifetimes.re_static, tcx.types.str_)
    }

    #[inline]
    pub fn new_diverging_default(tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
        if tcx.features().never_type_fallback { tcx.types.never } else { tcx.types.unit }
    }

    // lang and diagnostic tys

    fn new_generic_adt(tcx: TyCtxt<'tcx>, wrapper_def_id: DefId, ty_param: Ty<'tcx>) -> Ty<'tcx> {
        let adt_def = tcx.adt_def(wrapper_def_id);
        let args = GenericArgs::for_item(tcx, wrapper_def_id, |param, args| match param.kind {
            GenericParamDefKind::Lifetime | GenericParamDefKind::Const { .. } => bug!(),
            GenericParamDefKind::Type { has_default, .. } => {
                if param.index == 0 {
                    ty_param.into()
                } else {
                    assert!(has_default);
                    tcx.type_of(param.def_id).instantiate(tcx, args).into()
                }
            }
        });
        Ty::new(tcx, Adt(adt_def, args))
    }

    #[inline]
    pub fn new_lang_item(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>, item: LangItem) -> Option<Ty<'tcx>> {
        let def_id = tcx.lang_items().get(item)?;
        Some(Ty::new_generic_adt(tcx, def_id, ty))
    }

    #[inline]
    pub fn new_diagnostic_item(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>, name: Symbol) -> Option<Ty<'tcx>> {
        let def_id = tcx.get_diagnostic_item(name)?;
        Some(Ty::new_generic_adt(tcx, def_id, ty))
    }

    #[inline]
    pub fn new_box(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> Ty<'tcx> {
        let def_id = tcx.require_lang_item(LangItem::OwnedBox, None);
        Ty::new_generic_adt(tcx, def_id, ty)
    }

    #[inline]
    pub fn new_maybe_uninit(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> Ty<'tcx> {
        let def_id = tcx.require_lang_item(LangItem::MaybeUninit, None);
        Ty::new_generic_adt(tcx, def_id, ty)
    }

    /// Creates a `&mut Context<'_>` [`Ty`] with erased lifetimes.
    pub fn new_task_context(tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
        let context_did = tcx.require_lang_item(LangItem::Context, None);
        let context_adt_ref = tcx.adt_def(context_did);
        let context_args = tcx.mk_args(&[tcx.lifetimes.re_erased.into()]);
        let context_ty = Ty::new_adt(tcx, context_adt_ref, context_args);
        Ty::new_mut_ref(tcx, tcx.lifetimes.re_erased, context_ty)
    }
}

impl<'tcx> rustc_type_ir::inherent::Ty<TyCtxt<'tcx>> for Ty<'tcx> {
    fn new_bool(tcx: TyCtxt<'tcx>) -> Self {
        tcx.types.bool
    }

    fn new_u8(tcx: TyCtxt<'tcx>) -> Self {
        tcx.types.u8
    }

    fn new_infer(tcx: TyCtxt<'tcx>, infer: ty::InferTy) -> Self {
        Ty::new_infer(tcx, infer)
    }

    fn new_var(tcx: TyCtxt<'tcx>, vid: ty::TyVid) -> Self {
        Ty::new_var(tcx, vid)
    }

    fn new_param(tcx: TyCtxt<'tcx>, param: ty::ParamTy) -> Self {
        Ty::new_param(tcx, param.index, param.name)
    }

    fn new_placeholder(tcx: TyCtxt<'tcx>, placeholder: ty::PlaceholderType) -> Self {
        Ty::new_placeholder(tcx, placeholder)
    }

    fn new_bound(interner: TyCtxt<'tcx>, debruijn: ty::DebruijnIndex, var: ty::BoundTy) -> Self {
        Ty::new_bound(interner, debruijn, var)
    }

    fn new_anon_bound(tcx: TyCtxt<'tcx>, debruijn: ty::DebruijnIndex, var: ty::BoundVar) -> Self {
        Ty::new_bound(tcx, debruijn, ty::BoundTy { var, kind: ty::BoundTyKind::Anon })
    }

    fn new_alias(
        interner: TyCtxt<'tcx>,
        kind: ty::AliasTyKind,
        alias_ty: ty::AliasTy<'tcx>,
    ) -> Self {
        Ty::new_alias(interner, kind, alias_ty)
    }

    fn new_error(interner: TyCtxt<'tcx>, guar: ErrorGuaranteed) -> Self {
        Ty::new_error(interner, guar)
    }

    fn new_adt(
        interner: TyCtxt<'tcx>,
        adt_def: ty::AdtDef<'tcx>,
        args: ty::GenericArgsRef<'tcx>,
    ) -> Self {
        Ty::new_adt(interner, adt_def, args)
    }

    fn new_foreign(interner: TyCtxt<'tcx>, def_id: DefId) -> Self {
        Ty::new_foreign(interner, def_id)
    }

    fn new_dynamic(
        interner: TyCtxt<'tcx>,
        preds: &'tcx List<ty::PolyExistentialPredicate<'tcx>>,
        region: ty::Region<'tcx>,
        kind: ty::DynKind,
    ) -> Self {
        Ty::new_dynamic(interner, preds, region, kind)
    }

    fn new_coroutine(
        interner: TyCtxt<'tcx>,
        def_id: DefId,
        args: ty::GenericArgsRef<'tcx>,
    ) -> Self {
        Ty::new_coroutine(interner, def_id, args)
    }

    fn new_coroutine_closure(
        interner: TyCtxt<'tcx>,
        def_id: DefId,
        args: ty::GenericArgsRef<'tcx>,
    ) -> Self {
        Ty::new_coroutine_closure(interner, def_id, args)
    }

    fn new_closure(interner: TyCtxt<'tcx>, def_id: DefId, args: ty::GenericArgsRef<'tcx>) -> Self {
        Ty::new_closure(interner, def_id, args)
    }

    fn new_coroutine_witness(
        interner: TyCtxt<'tcx>,
        def_id: DefId,
        args: ty::GenericArgsRef<'tcx>,
    ) -> Self {
        Ty::new_coroutine_witness(interner, def_id, args)
    }

    fn new_ptr(interner: TyCtxt<'tcx>, ty: Self, mutbl: hir::Mutability) -> Self {
        Ty::new_ptr(interner, ty, mutbl)
    }

    fn new_ref(
        interner: TyCtxt<'tcx>,
        region: ty::Region<'tcx>,
        ty: Self,
        mutbl: hir::Mutability,
    ) -> Self {
        Ty::new_ref(interner, region, ty, mutbl)
    }

    fn new_array_with_const_len(interner: TyCtxt<'tcx>, ty: Self, len: ty::Const<'tcx>) -> Self {
        Ty::new_array_with_const_len(interner, ty, len)
    }

    fn new_slice(interner: TyCtxt<'tcx>, ty: Self) -> Self {
        Ty::new_slice(interner, ty)
    }

    fn new_tup(interner: TyCtxt<'tcx>, tys: &[Ty<'tcx>]) -> Self {
        Ty::new_tup(interner, tys)
    }

    fn new_tup_from_iter<It, T>(interner: TyCtxt<'tcx>, iter: It) -> T::Output
    where
        It: Iterator<Item = T>,
        T: CollectAndApply<Self, Self>,
    {
        Ty::new_tup_from_iter(interner, iter)
    }

    fn tuple_fields(self) -> &'tcx ty::List<Ty<'tcx>> {
        self.tuple_fields()
    }

    fn to_opt_closure_kind(self) -> Option<ty::ClosureKind> {
        self.to_opt_closure_kind()
    }

    fn from_closure_kind(interner: TyCtxt<'tcx>, kind: ty::ClosureKind) -> Self {
        Ty::from_closure_kind(interner, kind)
    }

    fn from_coroutine_closure_kind(
        interner: TyCtxt<'tcx>,
        kind: rustc_type_ir::ClosureKind,
    ) -> Self {
        Ty::from_coroutine_closure_kind(interner, kind)
    }

    fn new_fn_def(interner: TyCtxt<'tcx>, def_id: DefId, args: ty::GenericArgsRef<'tcx>) -> Self {
        Ty::new_fn_def(interner, def_id, args)
    }

    fn new_fn_ptr(interner: TyCtxt<'tcx>, sig: ty::Binder<'tcx, ty::FnSig<'tcx>>) -> Self {
        Ty::new_fn_ptr(interner, sig)
    }

    fn new_pat(interner: TyCtxt<'tcx>, ty: Self, pat: ty::Pattern<'tcx>) -> Self {
        Ty::new_pat(interner, ty, pat)
    }

    fn new_unit(interner: TyCtxt<'tcx>) -> Self {
        interner.types.unit
    }

    fn new_usize(interner: TyCtxt<'tcx>) -> Self {
        interner.types.usize
    }

    fn discriminant_ty(self, interner: TyCtxt<'tcx>) -> Ty<'tcx> {
        self.discriminant_ty(interner)
    }

    fn async_destructor_ty(self, interner: TyCtxt<'tcx>) -> Ty<'tcx> {
        self.async_destructor_ty(interner)
    }
}

/// Type utilities
impl<'tcx> Ty<'tcx> {
    #[inline(always)]
    pub fn kind(self) -> &'tcx TyKind<'tcx> {
        self.0.0
    }

    // FIXME(compiler-errors): Think about removing this.
    #[inline(always)]
    pub fn flags(self) -> TypeFlags {
        self.0.0.flags
    }

    #[inline]
    pub fn is_unit(self) -> bool {
        match self.kind() {
            Tuple(tys) => tys.is_empty(),
            _ => false,
        }
    }

    #[inline]
    pub fn is_never(self) -> bool {
        matches!(self.kind(), Never)
    }

    #[inline]
    pub fn is_primitive(self) -> bool {
        self.kind().is_primitive()
    }

    #[inline]
    pub fn is_adt(self) -> bool {
        matches!(self.kind(), Adt(..))
    }

    #[inline]
    pub fn is_ref(self) -> bool {
        matches!(self.kind(), Ref(..))
    }

    #[inline]
    pub fn is_ty_var(self) -> bool {
        matches!(self.kind(), Infer(TyVar(_)))
    }

    #[inline]
    pub fn ty_vid(self) -> Option<ty::TyVid> {
        match self.kind() {
            &Infer(TyVar(vid)) => Some(vid),
            _ => None,
        }
    }

    #[inline]
    pub fn is_ty_or_numeric_infer(self) -> bool {
        matches!(self.kind(), Infer(_))
    }

    #[inline]
    pub fn is_phantom_data(self) -> bool {
        if let Adt(def, _) = self.kind() { def.is_phantom_data() } else { false }
    }

    #[inline]
    pub fn is_bool(self) -> bool {
        *self.kind() == Bool
    }

    /// Returns `true` if this type is a `str`.
    #[inline]
    pub fn is_str(self) -> bool {
        *self.kind() == Str
    }

    #[inline]
    pub fn is_param(self, index: u32) -> bool {
        match self.kind() {
            ty::Param(ref data) => data.index == index,
            _ => false,
        }
    }

    #[inline]
    pub fn is_slice(self) -> bool {
        matches!(self.kind(), Slice(_))
    }

    #[inline]
    pub fn is_array_slice(self) -> bool {
        match self.kind() {
            Slice(_) => true,
            ty::RawPtr(ty, _) | Ref(_, ty, _) => matches!(ty.kind(), Slice(_)),
            _ => false,
        }
    }

    #[inline]
    pub fn is_array(self) -> bool {
        matches!(self.kind(), Array(..))
    }

    #[inline]
    pub fn is_simd(self) -> bool {
        match self.kind() {
            Adt(def, _) => def.repr().simd(),
            _ => false,
        }
    }

    pub fn sequence_element_type(self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
        match self.kind() {
            Array(ty, _) | Slice(ty) => *ty,
            Str => tcx.types.u8,
            _ => bug!("`sequence_element_type` called on non-sequence value: {}", self),
        }
    }

    pub fn simd_size_and_type(self, tcx: TyCtxt<'tcx>) -> (u64, Ty<'tcx>) {
        match self.kind() {
            Adt(def, args) => {
                assert!(def.repr().simd(), "`simd_size_and_type` called on non-SIMD type");
                let variant = def.non_enum_variant();
                let f0_ty = variant.fields[FieldIdx::ZERO].ty(tcx, args);

                match f0_ty.kind() {
                    // If the first field is an array, we assume it is the only field and its
                    // elements are the SIMD components.
                    Array(f0_elem_ty, f0_len) => {
                        // FIXME(repr_simd): https://github.com/rust-lang/rust/pull/78863#discussion_r522784112
                        // The way we evaluate the `N` in `[T; N]` here only works since we use
                        // `simd_size_and_type` post-monomorphization. It will probably start to ICE
                        // if we use it in generic code. See the `simd-array-trait` ui test.
                        (f0_len.eval_target_usize(tcx, ParamEnv::empty()), *f0_elem_ty)
                    }
                    // Otherwise, the fields of this Adt are the SIMD components (and we assume they
                    // all have the same type).
                    _ => (variant.fields.len() as u64, f0_ty),
                }
            }
            _ => bug!("`simd_size_and_type` called on invalid type"),
        }
    }

    #[inline]
    pub fn is_mutable_ptr(self) -> bool {
        matches!(self.kind(), RawPtr(_, hir::Mutability::Mut) | Ref(_, _, hir::Mutability::Mut))
    }

    /// Get the mutability of the reference or `None` when not a reference
    #[inline]
    pub fn ref_mutability(self) -> Option<hir::Mutability> {
        match self.kind() {
            Ref(_, _, mutability) => Some(*mutability),
            _ => None,
        }
    }

    #[inline]
    pub fn is_unsafe_ptr(self) -> bool {
        matches!(self.kind(), RawPtr(_, _))
    }

    /// Tests if this is any kind of primitive pointer type (reference, raw pointer, fn pointer).
    #[inline]
    pub fn is_any_ptr(self) -> bool {
        self.is_ref() || self.is_unsafe_ptr() || self.is_fn_ptr()
    }

    #[inline]
    pub fn is_box(self) -> bool {
        match self.kind() {
            Adt(def, _) => def.is_box(),
            _ => false,
        }
    }

    /// Tests whether this is a Box using the global allocator.
    #[inline]
    pub fn is_box_global(self, tcx: TyCtxt<'tcx>) -> bool {
        match self.kind() {
            Adt(def, args) if def.is_box() => {
                let Some(alloc) = args.get(1) else {
                    // Single-argument Box is always global. (for "minicore" tests)
                    return true;
                };
                alloc.expect_ty().ty_adt_def().is_some_and(|alloc_adt| {
                    let global_alloc = tcx.require_lang_item(LangItem::GlobalAlloc, None);
                    alloc_adt.did() == global_alloc
                })
            }
            _ => false,
        }
    }

    /// Panics if called on any type other than `Box<T>`.
    pub fn boxed_ty(self) -> Ty<'tcx> {
        match self.kind() {
            Adt(def, args) if def.is_box() => args.type_at(0),
            _ => bug!("`boxed_ty` is called on non-box type {:?}", self),
        }
    }

    /// A scalar type is one that denotes an atomic datum, with no sub-components.
    /// (A RawPtr is scalar because it represents a non-managed pointer, so its
    /// contents are abstract to rustc.)
    #[inline]
    pub fn is_scalar(self) -> bool {
        matches!(
            self.kind(),
            Bool | Char
                | Int(_)
                | Float(_)
                | Uint(_)
                | FnDef(..)
                | FnPtr(_)
                | RawPtr(_, _)
                | Infer(IntVar(_) | FloatVar(_))
        )
    }

    /// Returns `true` if this type is a floating point type.
    #[inline]
    pub fn is_floating_point(self) -> bool {
        matches!(self.kind(), Float(_) | Infer(FloatVar(_)))
    }

    #[inline]
    pub fn is_trait(self) -> bool {
        matches!(self.kind(), Dynamic(_, _, ty::Dyn))
    }

    #[inline]
    pub fn is_dyn_star(self) -> bool {
        matches!(self.kind(), Dynamic(_, _, ty::DynStar))
    }

    #[inline]
    pub fn is_enum(self) -> bool {
        matches!(self.kind(), Adt(adt_def, _) if adt_def.is_enum())
    }

    #[inline]
    pub fn is_union(self) -> bool {
        matches!(self.kind(), Adt(adt_def, _) if adt_def.is_union())
    }

    #[inline]
    pub fn is_closure(self) -> bool {
        matches!(self.kind(), Closure(..))
    }

    #[inline]
    pub fn is_coroutine(self) -> bool {
        matches!(self.kind(), Coroutine(..))
    }

    #[inline]
    pub fn is_coroutine_closure(self) -> bool {
        matches!(self.kind(), CoroutineClosure(..))
    }

    #[inline]
    pub fn is_integral(self) -> bool {
        matches!(self.kind(), Infer(IntVar(_)) | Int(_) | Uint(_))
    }

    #[inline]
    pub fn is_fresh_ty(self) -> bool {
        matches!(self.kind(), Infer(FreshTy(_)))
    }

    #[inline]
    pub fn is_fresh(self) -> bool {
        matches!(self.kind(), Infer(FreshTy(_) | FreshIntTy(_) | FreshFloatTy(_)))
    }

    #[inline]
    pub fn is_char(self) -> bool {
        matches!(self.kind(), Char)
    }

    #[inline]
    pub fn is_numeric(self) -> bool {
        self.is_integral() || self.is_floating_point()
    }

    #[inline]
    pub fn is_signed(self) -> bool {
        matches!(self.kind(), Int(_))
    }

    #[inline]
    pub fn is_ptr_sized_integral(self) -> bool {
        matches!(self.kind(), Int(ty::IntTy::Isize) | Uint(ty::UintTy::Usize))
    }

    #[inline]
    pub fn has_concrete_skeleton(self) -> bool {
        !matches!(self.kind(), Param(_) | Infer(_) | Error(_))
    }

    /// Checks whether a type recursively contains another type
    ///
    /// Example: `Option<()>` contains `()`
    pub fn contains(self, other: Ty<'tcx>) -> bool {
        struct ContainsTyVisitor<'tcx>(Ty<'tcx>);

        impl<'tcx> TypeVisitor<TyCtxt<'tcx>> for ContainsTyVisitor<'tcx> {
            type Result = ControlFlow<()>;

            fn visit_ty(&mut self, t: Ty<'tcx>) -> Self::Result {
                if self.0 == t { ControlFlow::Break(()) } else { t.super_visit_with(self) }
            }
        }

        let cf = self.visit_with(&mut ContainsTyVisitor(other));
        cf.is_break()
    }

    /// Checks whether a type recursively contains any closure
    ///
    /// Example: `Option<{closure@file.rs:4:20}>` returns true
    pub fn contains_closure(self) -> bool {
        struct ContainsClosureVisitor;

        impl<'tcx> TypeVisitor<TyCtxt<'tcx>> for ContainsClosureVisitor {
            type Result = ControlFlow<()>;

            fn visit_ty(&mut self, t: Ty<'tcx>) -> Self::Result {
                if let ty::Closure(..) = t.kind() {
                    ControlFlow::Break(())
                } else {
                    t.super_visit_with(self)
                }
            }
        }

        let cf = self.visit_with(&mut ContainsClosureVisitor);
        cf.is_break()
    }

    /// Returns the type and mutability of `*ty`.
    ///
    /// The parameter `explicit` indicates if this is an *explicit* dereference.
    /// Some types -- notably unsafe ptrs -- can only be dereferenced explicitly.
    pub fn builtin_deref(self, explicit: bool) -> Option<Ty<'tcx>> {
        match *self.kind() {
            Adt(def, _) if def.is_box() => Some(self.boxed_ty()),
            Ref(_, ty, _) => Some(ty),
            RawPtr(ty, _) if explicit => Some(ty),
            _ => None,
        }
    }

    /// Returns the type of `ty[i]`.
    pub fn builtin_index(self) -> Option<Ty<'tcx>> {
        match self.kind() {
            Array(ty, _) | Slice(ty) => Some(*ty),
            _ => None,
        }
    }

    pub fn fn_sig(self, tcx: TyCtxt<'tcx>) -> PolyFnSig<'tcx> {
        match self.kind() {
            FnDef(def_id, args) => tcx.fn_sig(*def_id).instantiate(tcx, args),
            FnPtr(f) => *f,
            Error(_) => {
                // ignore errors (#54954)
                Binder::dummy(ty::FnSig {
                    inputs_and_output: ty::List::empty(),
                    c_variadic: false,
                    safety: hir::Safety::Safe,
                    abi: abi::Abi::Rust,
                })
            }
            Closure(..) => bug!(
                "to get the signature of a closure, use `args.as_closure().sig()` not `fn_sig()`",
            ),
            _ => bug!("Ty::fn_sig() called on non-fn type: {:?}", self),
        }
    }

    #[inline]
    pub fn is_fn(self) -> bool {
        matches!(self.kind(), FnDef(..) | FnPtr(_))
    }

    #[inline]
    pub fn is_fn_ptr(self) -> bool {
        matches!(self.kind(), FnPtr(_))
    }

    #[inline]
    pub fn is_impl_trait(self) -> bool {
        matches!(self.kind(), Alias(ty::Opaque, ..))
    }

    #[inline]
    pub fn ty_adt_def(self) -> Option<AdtDef<'tcx>> {
        match self.kind() {
            Adt(adt, _) => Some(*adt),
            _ => None,
        }
    }

    /// Iterates over tuple fields.
    /// Panics when called on anything but a tuple.
    #[inline]
    pub fn tuple_fields(self) -> &'tcx List<Ty<'tcx>> {
        match self.kind() {
            Tuple(args) => args,
            _ => bug!("tuple_fields called on non-tuple: {self:?}"),
        }
    }

    /// If the type contains variants, returns the valid range of variant indices.
    //
    // FIXME: This requires the optimized MIR in the case of coroutines.
    #[inline]
    pub fn variant_range(self, tcx: TyCtxt<'tcx>) -> Option<Range<VariantIdx>> {
        match self.kind() {
            TyKind::Adt(adt, _) => Some(adt.variant_range()),
            TyKind::Coroutine(def_id, args) => {
                Some(args.as_coroutine().variant_range(*def_id, tcx))
            }
            _ => None,
        }
    }

    /// If the type contains variants, returns the variant for `variant_index`.
    /// Panics if `variant_index` is out of range.
    //
    // FIXME: This requires the optimized MIR in the case of coroutines.
    #[inline]
    pub fn discriminant_for_variant(
        self,
        tcx: TyCtxt<'tcx>,
        variant_index: VariantIdx,
    ) -> Option<Discr<'tcx>> {
        match self.kind() {
            TyKind::Adt(adt, _) if adt.is_enum() => {
                Some(adt.discriminant_for_variant(tcx, variant_index))
            }
            TyKind::Coroutine(def_id, args) => {
                Some(args.as_coroutine().discriminant_for_variant(*def_id, tcx, variant_index))
            }
            _ => None,
        }
    }

    /// Returns the type of the discriminant of this type.
    pub fn discriminant_ty(self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
        match self.kind() {
            ty::Adt(adt, _) if adt.is_enum() => adt.repr().discr_type().to_ty(tcx),
            ty::Coroutine(_, args) => args.as_coroutine().discr_ty(tcx),

            ty::Param(_) | ty::Alias(..) | ty::Infer(ty::TyVar(_)) => {
                let assoc_items = tcx.associated_item_def_ids(
                    tcx.require_lang_item(hir::LangItem::DiscriminantKind, None),
                );
                Ty::new_projection_from_args(tcx, assoc_items[0], tcx.mk_args(&[self.into()]))
            }

            ty::Pat(ty, _) => ty.discriminant_ty(tcx),

            ty::Bool
            | ty::Char
            | ty::Int(_)
            | ty::Uint(_)
            | ty::Float(_)
            | ty::Adt(..)
            | ty::Foreign(_)
            | ty::Str
            | ty::Array(..)
            | ty::Slice(_)
            | ty::RawPtr(_, _)
            | ty::Ref(..)
            | ty::FnDef(..)
            | ty::FnPtr(..)
            | ty::Dynamic(..)
            | ty::Closure(..)
            | ty::CoroutineClosure(..)
            | ty::CoroutineWitness(..)
            | ty::Never
            | ty::Tuple(_)
            | ty::Error(_)
            | ty::Infer(IntVar(_) | FloatVar(_)) => tcx.types.u8,

            ty::Bound(..)
            | ty::Placeholder(_)
            | ty::Infer(FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => {
                bug!("`discriminant_ty` applied to unexpected type: {:?}", self)
            }
        }
    }

    /// Returns the type of the async destructor of this type.
    pub fn async_destructor_ty(self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
        match self.async_drop_glue_morphology(tcx) {
            AsyncDropGlueMorphology::Noop => {
                return Ty::async_destructor_combinator(tcx, LangItem::AsyncDropNoop)
                    .instantiate_identity();
            }
            AsyncDropGlueMorphology::DeferredDropInPlace => {
                let drop_in_place =
                    Ty::async_destructor_combinator(tcx, LangItem::AsyncDropDeferredDropInPlace)
                        .instantiate(tcx, &[self.into()]);
                return Ty::async_destructor_combinator(tcx, LangItem::AsyncDropFuse)
                    .instantiate(tcx, &[drop_in_place.into()]);
            }
            AsyncDropGlueMorphology::Custom => (),
        }

        match *self.kind() {
            ty::Param(_) | ty::Alias(..) | ty::Infer(ty::TyVar(_)) => {
                let assoc_items = tcx
                    .associated_item_def_ids(tcx.require_lang_item(LangItem::AsyncDestruct, None));
                Ty::new_projection(tcx, assoc_items[0], [self])
            }

            ty::Array(elem_ty, _) | ty::Slice(elem_ty) => {
                let dtor = Ty::async_destructor_combinator(tcx, LangItem::AsyncDropSlice)
                    .instantiate(tcx, &[elem_ty.into()]);
                Ty::async_destructor_combinator(tcx, LangItem::AsyncDropFuse)
                    .instantiate(tcx, &[dtor.into()])
            }

            ty::Adt(adt_def, args) if adt_def.is_enum() || adt_def.is_struct() => self
                .adt_async_destructor_ty(
                    tcx,
                    adt_def.variants().iter().map(|v| v.fields.iter().map(|f| f.ty(tcx, args))),
                ),
            ty::Tuple(tys) => self.adt_async_destructor_ty(tcx, iter::once(tys)),
            ty::Closure(_, args) => {
                self.adt_async_destructor_ty(tcx, iter::once(args.as_closure().upvar_tys()))
            }
            ty::CoroutineClosure(_, args) => self
                .adt_async_destructor_ty(tcx, iter::once(args.as_coroutine_closure().upvar_tys())),

            ty::Adt(adt_def, _) => {
                assert!(adt_def.is_union());

                let surface_drop = self.surface_async_dropper_ty(tcx).unwrap();

                Ty::async_destructor_combinator(tcx, LangItem::AsyncDropFuse)
                    .instantiate(tcx, &[surface_drop.into()])
            }

            ty::Bound(..)
            | ty::Foreign(_)
            | ty::Placeholder(_)
            | ty::Infer(ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => {
                bug!("`async_destructor_ty` applied to unexpected type: {self:?}")
            }

            _ => bug!("`async_destructor_ty` is not yet implemented for type: {self:?}"),
        }
    }

    fn adt_async_destructor_ty<I>(self, tcx: TyCtxt<'tcx>, variants: I) -> Ty<'tcx>
    where
        I: Iterator + ExactSizeIterator,
        I::Item: IntoIterator<Item = Ty<'tcx>>,
    {
        debug_assert_eq!(self.async_drop_glue_morphology(tcx), AsyncDropGlueMorphology::Custom);

        let defer = Ty::async_destructor_combinator(tcx, LangItem::AsyncDropDefer);
        let chain = Ty::async_destructor_combinator(tcx, LangItem::AsyncDropChain);

        let noop =
            Ty::async_destructor_combinator(tcx, LangItem::AsyncDropNoop).instantiate_identity();
        let either = Ty::async_destructor_combinator(tcx, LangItem::AsyncDropEither);

        let variants_dtor = variants
            .into_iter()
            .map(|variant| {
                variant
                    .into_iter()
                    .map(|ty| defer.instantiate(tcx, &[ty.into()]))
                    .reduce(|acc, next| chain.instantiate(tcx, &[acc.into(), next.into()]))
                    .unwrap_or(noop)
            })
            .reduce(|other, matched| {
                either.instantiate(tcx, &[other.into(), matched.into(), self.into()])
            })
            .unwrap();

        let dtor = if let Some(dropper_ty) = self.surface_async_dropper_ty(tcx) {
            Ty::async_destructor_combinator(tcx, LangItem::AsyncDropChain)
                .instantiate(tcx, &[dropper_ty.into(), variants_dtor.into()])
        } else {
            variants_dtor
        };

        Ty::async_destructor_combinator(tcx, LangItem::AsyncDropFuse)
            .instantiate(tcx, &[dtor.into()])
    }

    fn surface_async_dropper_ty(self, tcx: TyCtxt<'tcx>) -> Option<Ty<'tcx>> {
        let adt_def = self.ty_adt_def()?;
        let dropper = adt_def
            .async_destructor(tcx)
            .map(|_| LangItem::SurfaceAsyncDropInPlace)
            .or_else(|| adt_def.destructor(tcx).map(|_| LangItem::AsyncDropSurfaceDropInPlace))?;
        Some(Ty::async_destructor_combinator(tcx, dropper).instantiate(tcx, &[self.into()]))
    }

    fn async_destructor_combinator(
        tcx: TyCtxt<'tcx>,
        lang_item: LangItem,
    ) -> ty::EarlyBinder<'tcx, Ty<'tcx>> {
        tcx.fn_sig(tcx.require_lang_item(lang_item, None))
            .map_bound(|fn_sig| fn_sig.output().no_bound_vars().unwrap())
    }

    /// Returns the type of metadata for (potentially fat) pointers to this type,
    /// or the struct tail if the metadata type cannot be determined.
    pub fn ptr_metadata_ty_or_tail(
        self,
        tcx: TyCtxt<'tcx>,
        normalize: impl FnMut(Ty<'tcx>) -> Ty<'tcx>,
    ) -> Result<Ty<'tcx>, Ty<'tcx>> {
        let tail = tcx.struct_tail_with_normalize(self, normalize, || {});
        match tail.kind() {
            // Sized types
            ty::Infer(ty::IntVar(_) | ty::FloatVar(_))
            | ty::Uint(_)
            | ty::Int(_)
            | ty::Bool
            | ty::Float(_)
            | ty::FnDef(..)
            | ty::FnPtr(_)
            | ty::RawPtr(..)
            | ty::Char
            | ty::Ref(..)
            | ty::Coroutine(..)
            | ty::CoroutineWitness(..)
            | ty::Array(..)
            | ty::Closure(..)
            | ty::CoroutineClosure(..)
            | ty::Never
            | ty::Error(_)
            // Extern types have metadata = ().
            | ty::Foreign(..)
            // `dyn*` has metadata = ().
            | ty::Dynamic(_, _, ty::DynStar)
            // If returned by `struct_tail_with_normalize` this is a unit struct
            // without any fields, or not a struct, and therefore is Sized.
            | ty::Adt(..)
            // If returned by `struct_tail_with_normalize` this is the empty tuple,
            // a.k.a. unit type, which is Sized
            | ty::Tuple(..) => Ok(tcx.types.unit),

            ty::Str | ty::Slice(_) => Ok(tcx.types.usize),

            ty::Dynamic(_, _, ty::Dyn) => {
                let dyn_metadata = tcx.require_lang_item(LangItem::DynMetadata, None);
                Ok(tcx.type_of(dyn_metadata).instantiate(tcx, &[tail.into()]))
            }

            // We don't know the metadata of `self`, but it must be equal to the
            // metadata of `tail`.
            ty::Param(_) | ty::Alias(..) => Err(tail),

            ty::Infer(ty::TyVar(_))
            | ty::Pat(..)
            | ty::Bound(..)
            | ty::Placeholder(..)
            | ty::Infer(ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => bug!(
                "`ptr_metadata_ty_or_tail` applied to unexpected type: {self:?} (tail = {tail:?})"
            ),
        }
    }

    /// Returns the type of metadata for (potentially fat) pointers to this type.
    /// Causes an ICE if the metadata type cannot be determined.
    pub fn ptr_metadata_ty(
        self,
        tcx: TyCtxt<'tcx>,
        normalize: impl FnMut(Ty<'tcx>) -> Ty<'tcx>,
    ) -> Ty<'tcx> {
        match self.ptr_metadata_ty_or_tail(tcx, normalize) {
            Ok(metadata) => metadata,
            Err(tail) => bug!(
                "`ptr_metadata_ty` failed to get metadata for type: {self:?} (tail = {tail:?})"
            ),
        }
    }

    /// Given a pointer or reference type, returns the type of the *pointee*'s
    /// metadata. If it can't be determined exactly (perhaps due to still
    /// being generic) then a projection through `ptr::Pointee` will be returned.
    ///
    /// This is particularly useful for getting the type of the result of
    /// [`UnOp::PtrMetadata`](crate::mir::UnOp::PtrMetadata).
    ///
    /// Panics if `self` is not dereferencable.
    #[track_caller]
    pub fn pointee_metadata_ty_or_projection(self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
        let Some(pointee_ty) = self.builtin_deref(true) else {
            bug!("Type {self:?} is not a pointer or reference type")
        };
        if pointee_ty.is_trivially_sized(tcx) {
            tcx.types.unit
        } else {
            match pointee_ty.ptr_metadata_ty_or_tail(tcx, |x| x) {
                Ok(metadata_ty) => metadata_ty,
                Err(tail_ty) => {
                    let Some(metadata_def_id) = tcx.lang_items().metadata_type() else {
                        bug!("No metadata_type lang item while looking at {self:?}")
                    };
                    Ty::new_projection(tcx, metadata_def_id, [tail_ty])
                }
            }
        }
    }

    /// When we create a closure, we record its kind (i.e., what trait
    /// it implements, constrained by how it uses its borrows) into its
    /// [`ty::ClosureArgs`] or [`ty::CoroutineClosureArgs`] using a type
    /// parameter. This is kind of a phantom type, except that the
    /// most convenient thing for us to are the integral types. This
    /// function converts such a special type into the closure
    /// kind. To go the other way, use [`Ty::from_closure_kind`].
    ///
    /// Note that during type checking, we use an inference variable
    /// to represent the closure kind, because it has not yet been
    /// inferred. Once upvar inference (in `rustc_hir_analysis/src/check/upvar.rs`)
    /// is complete, that type variable will be unified with one of
    /// the integral types.
    ///
    /// ```rust,ignore (snippet of compiler code)
    /// if let TyKind::Closure(def_id, args) = closure_ty.kind()
    ///     && let Some(closure_kind) = args.as_closure().kind_ty().to_opt_closure_kind()
    /// {
    ///     println!("{closure_kind:?}");
    /// } else if let TyKind::CoroutineClosure(def_id, args) = closure_ty.kind()
    ///     && let Some(closure_kind) = args.as_coroutine_closure().kind_ty().to_opt_closure_kind()
    /// {
    ///     println!("{closure_kind:?}");
    /// }
    /// ```
    ///
    /// After upvar analysis, you should instead use [`ty::ClosureArgs::kind()`]
    /// or [`ty::CoroutineClosureArgs::kind()`] to assert that the `ClosureKind`
    /// has been constrained instead of manually calling this method.
    ///
    /// ```rust,ignore (snippet of compiler code)
    /// if let TyKind::Closure(def_id, args) = closure_ty.kind()
    /// {
    ///     println!("{:?}", args.as_closure().kind());
    /// } else if let TyKind::CoroutineClosure(def_id, args) = closure_ty.kind()
    /// {
    ///     println!("{:?}", args.as_coroutine_closure().kind());
    /// }
    /// ```
    pub fn to_opt_closure_kind(self) -> Option<ty::ClosureKind> {
        match self.kind() {
            Int(int_ty) => match int_ty {
                ty::IntTy::I8 => Some(ty::ClosureKind::Fn),
                ty::IntTy::I16 => Some(ty::ClosureKind::FnMut),
                ty::IntTy::I32 => Some(ty::ClosureKind::FnOnce),
                _ => bug!("cannot convert type `{:?}` to a closure kind", self),
            },

            // "Bound" types appear in canonical queries when the
            // closure type is not yet known, and `Placeholder` and `Param`
            // may be encountered in generic `AsyncFnKindHelper` goals.
            Bound(..) | Placeholder(_) | Param(_) | Infer(_) => None,

            Error(_) => Some(ty::ClosureKind::Fn),

            _ => bug!("cannot convert type `{:?}` to a closure kind", self),
        }
    }

    /// Inverse of [`Ty::to_opt_closure_kind`]. See docs on that method
    /// for explanation of the relationship between `Ty` and [`ty::ClosureKind`].
    pub fn from_closure_kind(tcx: TyCtxt<'tcx>, kind: ty::ClosureKind) -> Ty<'tcx> {
        match kind {
            ty::ClosureKind::Fn => tcx.types.i8,
            ty::ClosureKind::FnMut => tcx.types.i16,
            ty::ClosureKind::FnOnce => tcx.types.i32,
        }
    }

    /// Like [`Ty::to_opt_closure_kind`], but it caps the "maximum" closure kind
    /// to `FnMut`. This is because although we have three capability states,
    /// `AsyncFn`/`AsyncFnMut`/`AsyncFnOnce`, we only need to distinguish two coroutine
    /// bodies: by-ref and by-value.
    ///
    /// See the definition of `AsyncFn` and `AsyncFnMut` and the `CallRefFuture`
    /// associated type for why we don't distinguish [`ty::ClosureKind::Fn`] and
    /// [`ty::ClosureKind::FnMut`] for the purpose of the generated MIR bodies.
    ///
    /// This method should be used when constructing a `Coroutine` out of a
    /// `CoroutineClosure`, when the `Coroutine`'s `kind` field is being populated
    /// directly from the `CoroutineClosure`'s `kind`.
    pub fn from_coroutine_closure_kind(tcx: TyCtxt<'tcx>, kind: ty::ClosureKind) -> Ty<'tcx> {
        match kind {
            ty::ClosureKind::Fn | ty::ClosureKind::FnMut => tcx.types.i16,
            ty::ClosureKind::FnOnce => tcx.types.i32,
        }
    }

    /// Fast path helper for testing if a type is `Sized`.
    ///
    /// Returning true means the type is known to be sized. Returning
    /// `false` means nothing -- could be sized, might not be.
    ///
    /// Note that we could never rely on the fact that a type such as `[_]` is
    /// trivially `!Sized` because we could be in a type environment with a
    /// bound such as `[_]: Copy`. A function with such a bound obviously never
    /// can be called, but that doesn't mean it shouldn't typecheck. This is why
    /// this method doesn't return `Option<bool>`.
    pub fn is_trivially_sized(self, tcx: TyCtxt<'tcx>) -> bool {
        match self.kind() {
            ty::Infer(ty::IntVar(_) | ty::FloatVar(_))
            | ty::Uint(_)
            | ty::Int(_)
            | ty::Bool
            | ty::Float(_)
            | ty::FnDef(..)
            | ty::FnPtr(_)
            | ty::RawPtr(..)
            | ty::Char
            | ty::Ref(..)
            | ty::Coroutine(..)
            | ty::CoroutineWitness(..)
            | ty::Array(..)
            | ty::Pat(..)
            | ty::Closure(..)
            | ty::CoroutineClosure(..)
            | ty::Never
            | ty::Error(_)
            | ty::Dynamic(_, _, ty::DynStar) => true,

            ty::Str | ty::Slice(_) | ty::Dynamic(_, _, ty::Dyn) | ty::Foreign(..) => false,

            ty::Tuple(tys) => tys.last().map_or(true, |ty| ty.is_trivially_sized(tcx)),

            ty::Adt(def, args) => def
                .sized_constraint(tcx)
                .map_or(true, |ty| ty.instantiate(tcx, args).is_trivially_sized(tcx)),

            ty::Alias(..) | ty::Param(_) | ty::Placeholder(..) | ty::Bound(..) => false,

            ty::Infer(ty::TyVar(_)) => false,

            ty::Infer(ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => {
                bug!("`is_trivially_sized` applied to unexpected type: {:?}", self)
            }
        }
    }

    /// Fast path helper for primitives which are always `Copy` and which
    /// have a side-effect-free `Clone` impl.
    ///
    /// Returning true means the type is known to be pure and `Copy+Clone`.
    /// Returning `false` means nothing -- could be `Copy`, might not be.
    ///
    /// This is mostly useful for optimizations, as these are the types
    /// on which we can replace cloning with dereferencing.
    pub fn is_trivially_pure_clone_copy(self) -> bool {
        match self.kind() {
            ty::Bool | ty::Char | ty::Never => true,

            // These aren't even `Clone`
            ty::Str | ty::Slice(..) | ty::Foreign(..) | ty::Dynamic(..) => false,

            ty::Infer(ty::InferTy::FloatVar(_) | ty::InferTy::IntVar(_))
            | ty::Int(..)
            | ty::Uint(..)
            | ty::Float(..) => true,

            // ZST which can't be named are fine.
            ty::FnDef(..) => true,

            ty::Array(element_ty, _len) => element_ty.is_trivially_pure_clone_copy(),

            // A 100-tuple isn't "trivial", so doing this only for reasonable sizes.
            ty::Tuple(field_tys) => {
                field_tys.len() <= 3 && field_tys.iter().all(Self::is_trivially_pure_clone_copy)
            }

            ty::Pat(ty, _) => ty.is_trivially_pure_clone_copy(),

            // Sometimes traits aren't implemented for every ABI or arity,
            // because we can't be generic over everything yet.
            ty::FnPtr(..) => false,

            // Definitely absolutely not copy.
            ty::Ref(_, _, hir::Mutability::Mut) => false,

            // Thin pointers & thin shared references are pure-clone-copy, but for
            // anything with custom metadata it might be more complicated.
            ty::Ref(_, _, hir::Mutability::Not) | ty::RawPtr(..) => false,

            ty::Coroutine(..) | ty::CoroutineWitness(..) => false,

            // Might be, but not "trivial" so just giving the safe answer.
            ty::Adt(..) | ty::Closure(..) | ty::CoroutineClosure(..) => false,

            // Needs normalization or revealing to determine, so no is the safe answer.
            ty::Alias(..) => false,

            ty::Param(..) | ty::Infer(..) | ty::Error(..) => false,

            ty::Bound(..) | ty::Placeholder(..) => {
                bug!("`is_trivially_pure_clone_copy` applied to unexpected type: {:?}", self);
            }
        }
    }

    /// If `self` is a primitive, return its [`Symbol`].
    pub fn primitive_symbol(self) -> Option<Symbol> {
        match self.kind() {
            ty::Bool => Some(sym::bool),
            ty::Char => Some(sym::char),
            ty::Float(f) => match f {
                ty::FloatTy::F16 => Some(sym::f16),
                ty::FloatTy::F32 => Some(sym::f32),
                ty::FloatTy::F64 => Some(sym::f64),
                ty::FloatTy::F128 => Some(sym::f128),
            },
            ty::Int(f) => match f {
                ty::IntTy::Isize => Some(sym::isize),
                ty::IntTy::I8 => Some(sym::i8),
                ty::IntTy::I16 => Some(sym::i16),
                ty::IntTy::I32 => Some(sym::i32),
                ty::IntTy::I64 => Some(sym::i64),
                ty::IntTy::I128 => Some(sym::i128),
            },
            ty::Uint(f) => match f {
                ty::UintTy::Usize => Some(sym::usize),
                ty::UintTy::U8 => Some(sym::u8),
                ty::UintTy::U16 => Some(sym::u16),
                ty::UintTy::U32 => Some(sym::u32),
                ty::UintTy::U64 => Some(sym::u64),
                ty::UintTy::U128 => Some(sym::u128),
            },
            _ => None,
        }
    }

    pub fn is_c_void(self, tcx: TyCtxt<'_>) -> bool {
        match self.kind() {
            ty::Adt(adt, _) => tcx.lang_items().get(LangItem::CVoid) == Some(adt.did()),
            _ => false,
        }
    }

    /// Returns `true` when the outermost type cannot be further normalized,
    /// resolved, or instantiated. This includes all primitive types, but also
    /// things like ADTs and trait objects, sice even if their arguments or
    /// nested types may be further simplified, the outermost [`TyKind`] or
    /// type constructor remains the same.
    pub fn is_known_rigid(self) -> bool {
        match self.kind() {
            Bool
            | Char
            | Int(_)
            | Uint(_)
            | Float(_)
            | Adt(_, _)
            | Foreign(_)
            | Str
            | Array(_, _)
            | Pat(_, _)
            | Slice(_)
            | RawPtr(_, _)
            | Ref(_, _, _)
            | FnDef(_, _)
            | FnPtr(_)
            | Dynamic(_, _, _)
            | Closure(_, _)
            | CoroutineClosure(_, _)
            | Coroutine(_, _)
            | CoroutineWitness(..)
            | Never
            | Tuple(_) => true,
            Error(_) | Infer(_) | Alias(_, _) | Param(_) | Bound(_, _) | Placeholder(_) => false,
        }
    }
}

impl<'tcx> rustc_type_ir::inherent::Tys<TyCtxt<'tcx>> for &'tcx ty::List<Ty<'tcx>> {
    fn split_inputs_and_output(self) -> (&'tcx [Ty<'tcx>], Ty<'tcx>) {
        let (output, inputs) = self.split_last().unwrap();
        (inputs, *output)
    }
}

// Some types are used a lot. Make sure they don't unintentionally get bigger.
#[cfg(target_pointer_width = "64")]
mod size_asserts {
    use super::*;
    use rustc_data_structures::static_assert_size;
    // tidy-alphabetical-start
    static_assert_size!(ty::RegionKind<'_>, 24);
    static_assert_size!(ty::TyKind<'_>, 32);
    // tidy-alphabetical-end
}