cargo/core/compiler/unit_dependencies.rs
1//! Constructs the dependency graph for compilation.
2//!
3//! Rust code is typically organized as a set of Cargo packages. The
4//! dependencies between the packages themselves are stored in the
5//! [`Resolve`] struct. However, we can't use that information as is for
6//! compilation! A package typically contains several targets, or crates,
7//! and these targets has inter-dependencies. For example, you need to
8//! compile the `lib` target before the `bin` one, and you need to compile
9//! `build.rs` before either of those.
10//!
11//! So, we need to lower the `Resolve`, which specifies dependencies between
12//! *packages*, to a graph of dependencies between their *targets*, and this
13//! is exactly what this module is doing! Well, almost exactly: another
14//! complication is that we might want to compile the same target several times
15//! (for example, with and without tests), so we actually build a dependency
16//! graph of [`Unit`]s, which capture these properties.
17
18use std::collections::{HashMap, HashSet};
19
20use tracing::trace;
21
22use crate::CargoResult;
23use crate::core::compiler::UserIntent;
24use crate::core::compiler::artifact::match_artifacts_kind_with_targets;
25use crate::core::compiler::unit_graph::{UnitDep, UnitGraph};
26use crate::core::compiler::{
27 CompileKind, CompileMode, CrateType, RustcTargetData, Unit, UnitInterner,
28};
29use crate::core::dependency::{Artifact, ArtifactKind, ArtifactTarget, DepKind};
30use crate::core::profiles::{Profile, Profiles, UnitFor};
31use crate::core::resolver::features::{FeaturesFor, ResolvedFeatures};
32use crate::core::resolver::{ForceAllTargets, HasDevUnits, Resolve};
33use crate::core::{
34 Dependency, Feature, Package, PackageId, PackageSet, Target, TargetKind, Workspace,
35};
36use crate::ops::resolve_all_features;
37use crate::util::GlobalContext;
38use crate::util::interning::InternedString;
39
40const IS_NO_ARTIFACT_DEP: Option<&'static Artifact> = None;
41
42/// Collection of stuff used while creating the [`UnitGraph`].
43struct State<'a, 'gctx> {
44 ws: &'a Workspace<'gctx>,
45 gctx: &'gctx GlobalContext,
46 /// Stores the result of building the [`UnitGraph`].
47 unit_dependencies: UnitGraph,
48 package_set: &'a PackageSet<'gctx>,
49 usr_resolve: &'a Resolve,
50 usr_features: &'a ResolvedFeatures,
51 /// Like `usr_resolve` but for building standard library (`-Zbuild-std`).
52 std_resolve: Option<&'a Resolve>,
53 /// Like `usr_features` but for building standard library (`-Zbuild-std`).
54 std_features: Option<&'a ResolvedFeatures>,
55 /// `true` while generating the dependencies for the standard library.
56 is_std: bool,
57 /// The high-level operation requested by the user.
58 /// Used for preventing from building lib thrice.
59 intent: UserIntent,
60 target_data: &'a RustcTargetData<'gctx>,
61 profiles: &'a Profiles,
62 interner: &'a UnitInterner,
63 // Units for `-Zrustdoc-scrape-examples`.
64 scrape_units: &'a [Unit],
65
66 /// A set of edges in `unit_dependencies` where (a, b) means that the
67 /// dependency from a to b was added purely because it was a dev-dependency.
68 /// This is used during `connect_run_custom_build_deps`.
69 dev_dependency_edges: HashSet<(Unit, Unit)>,
70}
71
72/// A boolean-like to indicate if a `Unit` is an artifact or not.
73#[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)]
74pub enum IsArtifact {
75 Yes,
76 No,
77}
78
79impl IsArtifact {
80 pub fn is_true(&self) -> bool {
81 matches!(self, IsArtifact::Yes)
82 }
83}
84
85/// Then entry point for building a dependency graph of compilation units.
86///
87/// You can find some information for arguments from doc of [`State`].
88#[tracing::instrument(skip_all)]
89pub fn build_unit_dependencies<'a, 'gctx>(
90 ws: &'a Workspace<'gctx>,
91 package_set: &'a PackageSet<'gctx>,
92 resolve: &'a Resolve,
93 features: &'a ResolvedFeatures,
94 std_resolve: Option<&'a (Resolve, ResolvedFeatures)>,
95 roots: &[Unit],
96 scrape_units: &[Unit],
97 std_roots: &HashMap<CompileKind, Vec<Unit>>,
98 intent: UserIntent,
99 target_data: &'a RustcTargetData<'gctx>,
100 profiles: &'a Profiles,
101 interner: &'a UnitInterner,
102) -> CargoResult<UnitGraph> {
103 if roots.is_empty() {
104 // If -Zbuild-std, don't attach units if there is nothing to build.
105 // Otherwise, other parts of the code may be confused by seeing units
106 // in the dep graph without a root.
107 return Ok(HashMap::new());
108 }
109 let (std_resolve, std_features) = match std_resolve {
110 Some((r, f)) => (Some(r), Some(f)),
111 None => (None, None),
112 };
113 let mut state = State {
114 ws,
115 gctx: ws.gctx(),
116 unit_dependencies: HashMap::new(),
117 package_set,
118 usr_resolve: resolve,
119 usr_features: features,
120 std_resolve,
121 std_features,
122 is_std: false,
123 intent,
124 target_data,
125 profiles,
126 interner,
127 scrape_units,
128 dev_dependency_edges: HashSet::new(),
129 };
130
131 let std_unit_deps = calc_deps_of_std(&mut state, std_roots)?;
132
133 deps_of_roots(roots, &mut state)?;
134 super::links::validate_links(state.resolve(), &state.unit_dependencies)?;
135 // Hopefully there aren't any links conflicts with the standard library?
136
137 if let Some(std_unit_deps) = std_unit_deps {
138 attach_std_deps(&mut state, std_roots, std_unit_deps);
139 }
140
141 connect_run_custom_build_deps(&mut state);
142
143 // Dependencies are used in tons of places throughout the backend, many of
144 // which affect the determinism of the build itself. As a result be sure
145 // that dependency lists are always sorted to ensure we've always got a
146 // deterministic output.
147 for (unit, list) in &mut state.unit_dependencies {
148 let is_multiple_build_scripts_enabled = unit
149 .pkg
150 .manifest()
151 .unstable_features()
152 .require(Feature::multiple_build_scripts())
153 .is_ok();
154
155 if is_multiple_build_scripts_enabled {
156 list.sort_by_key(|unit_dep| {
157 if unit_dep.unit.target.is_custom_build() {
158 // We do not sort build scripts to preserve the user-defined order.
159 // In terms of determinism, we are assuming nothing interferes with order from when the user set it in `Cargo.toml` to here
160 (0, None)
161 } else {
162 (1, Some(unit_dep.clone()))
163 }
164 });
165 } else {
166 list.sort();
167 }
168 }
169 trace!("ALL UNIT DEPENDENCIES {:#?}", state.unit_dependencies);
170
171 Ok(state.unit_dependencies)
172}
173
174/// Compute all the dependencies for the standard library.
175fn calc_deps_of_std(
176 state: &mut State<'_, '_>,
177 std_roots: &HashMap<CompileKind, Vec<Unit>>,
178) -> CargoResult<Option<UnitGraph>> {
179 if std_roots.is_empty() {
180 return Ok(None);
181 }
182 // Compute dependencies for the standard library.
183 state.is_std = true;
184 for roots in std_roots.values() {
185 deps_of_roots(roots, state)?;
186 }
187 state.is_std = false;
188 Ok(Some(std::mem::take(&mut state.unit_dependencies)))
189}
190
191/// Add the standard library units to the `unit_dependencies`.
192fn attach_std_deps(
193 state: &mut State<'_, '_>,
194 std_roots: &HashMap<CompileKind, Vec<Unit>>,
195 std_unit_deps: UnitGraph,
196) {
197 // Attach the standard library as a dependency of every target unit.
198 let mut found = false;
199 for (unit, deps) in state.unit_dependencies.iter_mut() {
200 if !unit.kind.is_host() && !unit.mode.is_run_custom_build() {
201 deps.extend(std_roots[&unit.kind].iter().map(|unit| UnitDep {
202 unit: unit.clone(),
203 unit_for: UnitFor::new_normal(unit.kind),
204 extern_crate_name: unit.pkg.name(),
205 dep_name: None,
206 // TODO: Does this `public` make sense?
207 public: true,
208 noprelude: true,
209 }));
210 found = true;
211 }
212 }
213 // And also include the dependencies of the standard library itself. Don't
214 // include these if no units actually needed the standard library.
215 if found {
216 for (unit, deps) in std_unit_deps.into_iter() {
217 if let Some(other_unit) = state.unit_dependencies.insert(unit, deps) {
218 panic!("std unit collision with existing unit: {:?}", other_unit);
219 }
220 }
221 }
222}
223
224/// Compute all the dependencies of the given root units.
225/// The result is stored in `state.unit_dependencies`.
226fn deps_of_roots(roots: &[Unit], state: &mut State<'_, '_>) -> CargoResult<()> {
227 for unit in roots.iter() {
228 // Dependencies of tests/benches should not have `panic` set.
229 // We check the user intent to see if we are running in `cargo test` in
230 // which case we ensure all dependencies have `panic` cleared, and
231 // avoid building the lib thrice (once with `panic`, once without, once
232 // for `--test`). In particular, the lib included for Doc tests and
233 // examples are `Build` mode here.
234 let root_compile_kind = unit.kind;
235 let unit_for = if unit.mode.is_any_test() || state.intent.is_rustc_test() {
236 if unit.target.proc_macro() {
237 // Special-case for proc-macros, which are forced to for-host
238 // since they need to link with the proc_macro crate.
239 UnitFor::new_host_test(state.gctx, root_compile_kind)
240 } else {
241 UnitFor::new_test(state.gctx, root_compile_kind)
242 }
243 } else if unit.target.is_custom_build() {
244 // This normally doesn't happen, except `clean` aggressively
245 // generates all units.
246 UnitFor::new_host(false, root_compile_kind)
247 } else if unit.target.proc_macro() {
248 UnitFor::new_host(true, root_compile_kind)
249 } else if unit.target.for_host() {
250 // Plugin should never have panic set.
251 UnitFor::new_compiler(root_compile_kind)
252 } else {
253 UnitFor::new_normal(root_compile_kind)
254 };
255 deps_of(unit, state, unit_for)?;
256 }
257
258 Ok(())
259}
260
261/// Compute the dependencies of a single unit, recursively computing all
262/// transitive dependencies.
263///
264/// The result is stored in `state.unit_dependencies`.
265fn deps_of(unit: &Unit, state: &mut State<'_, '_>, unit_for: UnitFor) -> CargoResult<()> {
266 // Currently the `unit_dependencies` map does not include `unit_for`. This should
267 // be safe for now. `TestDependency` only exists to clear the `panic`
268 // flag, and you'll never ask for a `unit` with `panic` set as a
269 // `TestDependency`. `CustomBuild` should also be fine since if the
270 // requested unit's settings are the same as `Any`, `CustomBuild` can't
271 // affect anything else in the hierarchy.
272 if !state.unit_dependencies.contains_key(unit) {
273 let unit_deps = compute_deps(unit, state, unit_for)?;
274 state
275 .unit_dependencies
276 .insert(unit.clone(), unit_deps.clone());
277 for unit_dep in unit_deps {
278 deps_of(&unit_dep.unit, state, unit_dep.unit_for)?;
279 }
280 }
281 Ok(())
282}
283
284/// Returns the direct unit dependencies for the given `Unit`.
285fn compute_deps(
286 unit: &Unit,
287 state: &mut State<'_, '_>,
288 unit_for: UnitFor,
289) -> CargoResult<Vec<UnitDep>> {
290 if unit.mode.is_run_custom_build() {
291 return compute_deps_custom_build(unit, unit_for, state);
292 } else if unit.mode.is_doc() {
293 // Note: this does not include doc test.
294 return compute_deps_doc(unit, state, unit_for);
295 }
296
297 let mut ret = Vec::new();
298 let mut dev_deps = Vec::new();
299 for (dep_pkg_id, deps) in state.deps(unit, unit_for) {
300 let Some(dep_lib) = calc_artifact_deps(unit, unit_for, dep_pkg_id, &deps, state, &mut ret)?
301 else {
302 continue;
303 };
304 let dep_pkg = state.get(dep_pkg_id);
305 let mode = check_or_build_mode(unit.mode, dep_lib);
306 let dep_unit_for = unit_for.with_dependency(unit, dep_lib, unit_for.root_compile_kind());
307
308 let start = ret.len();
309 if state.gctx.cli_unstable().dual_proc_macros
310 && dep_lib.proc_macro()
311 && !unit.kind.is_host()
312 {
313 let unit_dep = new_unit_dep(
314 state,
315 unit,
316 dep_pkg,
317 dep_lib,
318 dep_unit_for,
319 unit.kind,
320 mode,
321 IS_NO_ARTIFACT_DEP,
322 )?;
323 ret.push(unit_dep);
324 let unit_dep = new_unit_dep(
325 state,
326 unit,
327 dep_pkg,
328 dep_lib,
329 dep_unit_for,
330 CompileKind::Host,
331 mode,
332 IS_NO_ARTIFACT_DEP,
333 )?;
334 ret.push(unit_dep);
335 } else {
336 let unit_dep = new_unit_dep(
337 state,
338 unit,
339 dep_pkg,
340 dep_lib,
341 dep_unit_for,
342 unit.kind.for_target(dep_lib),
343 mode,
344 IS_NO_ARTIFACT_DEP,
345 )?;
346 ret.push(unit_dep);
347 }
348
349 // If the unit added was a dev-dependency unit, then record that in the
350 // dev-dependencies array. We'll add this to
351 // `state.dev_dependency_edges` at the end and process it later in
352 // `connect_run_custom_build_deps`.
353 if deps.iter().all(|d| !d.is_transitive()) {
354 for dep in ret[start..].iter() {
355 dev_deps.push((unit.clone(), dep.unit.clone()));
356 }
357 }
358 }
359 state.dev_dependency_edges.extend(dev_deps);
360
361 // If this target is a build script, then what we've collected so far is
362 // all we need. If this isn't a build script, then it depends on the
363 // build script if there is one.
364 if unit.target.is_custom_build() {
365 return Ok(ret);
366 }
367 ret.extend(
368 dep_build_script(unit, unit_for, state)?
369 .into_iter()
370 .flatten(),
371 );
372
373 // If this target is a binary, test, example, etc, then it depends on
374 // the library of the same package. The call to `resolve.deps` above
375 // didn't include `pkg` in the return values, so we need to special case
376 // it here and see if we need to push `(pkg, pkg_lib_target)`.
377 if unit.target.is_lib() && unit.mode != CompileMode::Doctest {
378 return Ok(ret);
379 }
380 ret.extend(maybe_lib(unit, state, unit_for)?);
381
382 // If any integration tests/benches are being run, make sure that
383 // binaries are built as well.
384 if !unit.mode.is_check()
385 && unit.mode.is_any_test()
386 && (unit.target.is_test() || unit.target.is_bench())
387 {
388 let id = unit.pkg.package_id();
389 ret.extend(
390 unit.pkg
391 .targets()
392 .iter()
393 .filter(|t| {
394 // Skip binaries with required features that have not been selected.
395 match t.required_features() {
396 Some(rf) if t.is_bin() => {
397 let features = resolve_all_features(
398 state.resolve(),
399 state.features(),
400 state.package_set,
401 id,
402 HasDevUnits::No,
403 &[unit.kind],
404 state.target_data,
405 ForceAllTargets::No,
406 );
407 rf.iter().all(|f| features.contains(f))
408 }
409 None if t.is_bin() => true,
410 _ => false,
411 }
412 })
413 .map(|t| {
414 new_unit_dep(
415 state,
416 unit,
417 &unit.pkg,
418 t,
419 UnitFor::new_normal(unit_for.root_compile_kind()),
420 unit.kind.for_target(t),
421 CompileMode::Build,
422 IS_NO_ARTIFACT_DEP,
423 )
424 })
425 .collect::<CargoResult<Vec<UnitDep>>>()?,
426 );
427 }
428
429 Ok(ret)
430}
431
432/// Find artifacts for all `deps` of `unit` and add units that build these artifacts
433/// to `ret`.
434fn calc_artifact_deps<'a>(
435 unit: &Unit,
436 unit_for: UnitFor,
437 dep_id: PackageId,
438 deps: &[&Dependency],
439 state: &State<'a, '_>,
440 ret: &mut Vec<UnitDep>,
441) -> CargoResult<Option<&'a Target>> {
442 let mut has_artifact_lib = false;
443 let mut maybe_non_artifact_lib = false;
444 let artifact_pkg = state.get(dep_id);
445 for dep in deps {
446 let Some(artifact) = dep.artifact() else {
447 maybe_non_artifact_lib = true;
448 continue;
449 };
450 has_artifact_lib |= artifact.is_lib();
451 // Custom build scripts (build/compile) never get artifact dependencies,
452 // but the run-build-script step does (where it is handled).
453 if !unit.target.is_custom_build() {
454 debug_assert!(
455 !unit.mode.is_run_custom_build(),
456 "BUG: This should be handled in a separate branch"
457 );
458 ret.extend(artifact_targets_to_unit_deps(
459 unit,
460 unit_for.with_artifact_features(artifact),
461 state,
462 artifact
463 .target()
464 .and_then(|t| match t {
465 ArtifactTarget::BuildDependencyAssumeTarget => None,
466 ArtifactTarget::Force(kind) => Some(CompileKind::Target(kind)),
467 })
468 .unwrap_or(unit.kind),
469 artifact_pkg,
470 dep,
471 )?);
472 }
473 }
474 if has_artifact_lib || maybe_non_artifact_lib {
475 Ok(artifact_pkg.targets().iter().find(|t| t.is_lib()))
476 } else {
477 Ok(None)
478 }
479}
480
481/// Returns the dependencies needed to run a build script.
482///
483/// The `unit` provided must represent an execution of a build script, and
484/// the returned set of units must all be run before `unit` is run.
485fn compute_deps_custom_build(
486 unit: &Unit,
487 unit_for: UnitFor,
488 state: &State<'_, '_>,
489) -> CargoResult<Vec<UnitDep>> {
490 if let Some(links) = unit.pkg.manifest().links() {
491 if unit.links_overrides.get(links).is_some() {
492 // Overridden build scripts don't have any dependencies.
493 return Ok(Vec::new());
494 }
495 }
496 // All dependencies of this unit should use profiles for custom builds.
497 // If this is a build script of a proc macro, make sure it uses host
498 // features.
499 let script_unit_for = unit_for.for_custom_build();
500 // When not overridden, then the dependencies to run a build script are:
501 //
502 // 1. Compiling the build script itself.
503 // 2. For each immediate dependency of our package which has a `links`
504 // key, the execution of that build script.
505 //
506 // We don't have a great way of handling (2) here right now so this is
507 // deferred until after the graph of all unit dependencies has been
508 // constructed.
509 let compile_script_unit = new_unit_dep(
510 state,
511 unit,
512 &unit.pkg,
513 &unit.target,
514 script_unit_for,
515 // Build scripts always compiled for the host.
516 CompileKind::Host,
517 CompileMode::Build,
518 IS_NO_ARTIFACT_DEP,
519 )?;
520
521 let mut result = vec![compile_script_unit];
522
523 // Include any artifact dependencies.
524 //
525 // This is essentially the same as `calc_artifact_deps`, but there are some
526 // subtle differences that require this to be implemented differently.
527 //
528 // Produce units that build all required artifact kinds (like binaries,
529 // static libraries, etc) with the correct compile target.
530 //
531 // Computing the compile target for artifact units is more involved as it has to handle
532 // various target configurations specific to artifacts, like `target = "target"` and
533 // `target = "<triple>"`, which makes knowing the root units compile target
534 // `root_unit_compile_target` necessary.
535 let root_unit_compile_target = unit_for.root_compile_kind();
536 let unit_for = UnitFor::new_host(/*host_features*/ true, root_unit_compile_target);
537 for (dep_pkg_id, deps) in state.deps(unit, script_unit_for) {
538 for dep in deps {
539 if dep.kind() != DepKind::Build || dep.artifact().is_none() {
540 continue;
541 }
542 let artifact_pkg = state.get(dep_pkg_id);
543 let artifact = dep.artifact().expect("artifact dep");
544 let resolved_artifact_compile_kind = artifact
545 .target()
546 .map(|target| target.to_resolved_compile_kind(root_unit_compile_target));
547
548 result.extend(artifact_targets_to_unit_deps(
549 unit,
550 unit_for.with_artifact_features_from_resolved_compile_kind(
551 resolved_artifact_compile_kind,
552 ),
553 state,
554 resolved_artifact_compile_kind.unwrap_or(CompileKind::Host),
555 artifact_pkg,
556 dep,
557 )?);
558 }
559 }
560
561 Ok(result)
562}
563
564/// Given a `parent` unit containing a dependency `dep` whose package is `artifact_pkg`,
565/// find all targets in `artifact_pkg` which refer to the `dep`s artifact declaration
566/// and turn them into units.
567/// Due to the nature of artifact dependencies, a single dependency in a manifest can
568/// cause one or more targets to be build, for instance with
569/// `artifact = ["bin:a", "bin:b", "staticlib"]`, which is very different from normal
570/// dependencies which cause only a single unit to be created.
571///
572/// `compile_kind` is the computed kind for the future artifact unit
573/// dependency, only the caller can pick the correct one.
574fn artifact_targets_to_unit_deps(
575 parent: &Unit,
576 parent_unit_for: UnitFor,
577 state: &State<'_, '_>,
578 compile_kind: CompileKind,
579 artifact_pkg: &Package,
580 dep: &Dependency,
581) -> CargoResult<Vec<UnitDep>> {
582 let ret =
583 match_artifacts_kind_with_targets(dep, artifact_pkg.targets(), parent.pkg.name().as_str())?
584 .into_iter()
585 .flat_map(|(artifact_kind, target)| {
586 // We split target libraries into individual units, even though rustc is able
587 // to produce multiple kinds in a single invocation for the sole reason that
588 // each artifact kind has its own output directory, something we can't easily
589 // teach rustc for now.
590 match target.kind() {
591 TargetKind::Lib(kinds) => Box::new(
592 kinds
593 .iter()
594 .filter(move |tk| match (tk, artifact_kind) {
595 (CrateType::Cdylib, ArtifactKind::Cdylib) => true,
596 (CrateType::Staticlib, ArtifactKind::Staticlib) => true,
597 _ => false,
598 })
599 .map(|target_kind| {
600 new_unit_dep(
601 state,
602 parent,
603 artifact_pkg,
604 target
605 .clone()
606 .set_kind(TargetKind::Lib(vec![target_kind.clone()])),
607 parent_unit_for,
608 compile_kind,
609 CompileMode::Build,
610 dep.artifact(),
611 )
612 }),
613 ) as Box<dyn Iterator<Item = _>>,
614 _ => Box::new(std::iter::once(new_unit_dep(
615 state,
616 parent,
617 artifact_pkg,
618 target,
619 parent_unit_for,
620 compile_kind,
621 CompileMode::Build,
622 dep.artifact(),
623 ))),
624 }
625 })
626 .collect::<Result<Vec<_>, _>>()?;
627 Ok(ret)
628}
629
630/// Returns the dependencies necessary to document a package.
631fn compute_deps_doc(
632 unit: &Unit,
633 state: &mut State<'_, '_>,
634 unit_for: UnitFor,
635) -> CargoResult<Vec<UnitDep>> {
636 // To document a library, we depend on dependencies actually being
637 // built. If we're documenting *all* libraries, then we also depend on
638 // the documentation of the library being built.
639 let mut ret = Vec::new();
640 for (id, deps) in state.deps(unit, unit_for) {
641 let Some(dep_lib) = calc_artifact_deps(unit, unit_for, id, &deps, state, &mut ret)? else {
642 continue;
643 };
644 let dep_pkg = state.get(id);
645 // Rustdoc only needs rmeta files for regular dependencies.
646 // However, for plugins/proc macros, deps should be built like normal.
647 let mode = check_or_build_mode(unit.mode, dep_lib);
648 let dep_unit_for = unit_for.with_dependency(unit, dep_lib, unit_for.root_compile_kind());
649 let lib_unit_dep = new_unit_dep(
650 state,
651 unit,
652 dep_pkg,
653 dep_lib,
654 dep_unit_for,
655 unit.kind.for_target(dep_lib),
656 mode,
657 IS_NO_ARTIFACT_DEP,
658 )?;
659 ret.push(lib_unit_dep);
660 if dep_lib.documented() && state.intent.wants_deps_docs() {
661 // Document this lib as well.
662 let doc_unit_dep = new_unit_dep(
663 state,
664 unit,
665 dep_pkg,
666 dep_lib,
667 dep_unit_for,
668 unit.kind.for_target(dep_lib),
669 unit.mode,
670 IS_NO_ARTIFACT_DEP,
671 )?;
672 ret.push(doc_unit_dep);
673 }
674 }
675
676 // Be sure to build/run the build script for documented libraries.
677 ret.extend(
678 dep_build_script(unit, unit_for, state)?
679 .into_iter()
680 .flatten(),
681 );
682
683 // If we document a binary/example, we need the library available.
684 if unit.target.is_bin() || unit.target.is_example() {
685 // build the lib
686 ret.extend(maybe_lib(unit, state, unit_for)?);
687 // and also the lib docs for intra-doc links
688 if let Some(lib) = unit
689 .pkg
690 .targets()
691 .iter()
692 .find(|t| t.is_linkable() && t.documented())
693 {
694 let dep_unit_for = unit_for.with_dependency(unit, lib, unit_for.root_compile_kind());
695 let lib_doc_unit = new_unit_dep(
696 state,
697 unit,
698 &unit.pkg,
699 lib,
700 dep_unit_for,
701 unit.kind.for_target(lib),
702 unit.mode,
703 IS_NO_ARTIFACT_DEP,
704 )?;
705 ret.push(lib_doc_unit);
706 }
707 }
708
709 // Add all units being scraped for examples as a dependency of top-level Doc units.
710 if state.ws.unit_needs_doc_scrape(unit) {
711 for scrape_unit in state.scrape_units.iter() {
712 let scrape_unit_for = UnitFor::new_normal(scrape_unit.kind);
713 deps_of(scrape_unit, state, scrape_unit_for)?;
714 ret.push(new_unit_dep(
715 state,
716 scrape_unit,
717 &scrape_unit.pkg,
718 &scrape_unit.target,
719 scrape_unit_for,
720 scrape_unit.kind,
721 scrape_unit.mode,
722 IS_NO_ARTIFACT_DEP,
723 )?);
724 }
725 }
726
727 Ok(ret)
728}
729
730fn maybe_lib(
731 unit: &Unit,
732 state: &mut State<'_, '_>,
733 unit_for: UnitFor,
734) -> CargoResult<Option<UnitDep>> {
735 unit.pkg
736 .targets()
737 .iter()
738 .find(|t| t.is_linkable())
739 .map(|t| {
740 let mode = check_or_build_mode(unit.mode, t);
741 let dep_unit_for = unit_for.with_dependency(unit, t, unit_for.root_compile_kind());
742 new_unit_dep(
743 state,
744 unit,
745 &unit.pkg,
746 t,
747 dep_unit_for,
748 unit.kind.for_target(t),
749 mode,
750 IS_NO_ARTIFACT_DEP,
751 )
752 })
753 .transpose()
754}
755
756/// If a build script is scheduled to be run for the package specified by
757/// `unit`, this function will return the unit to run that build script.
758///
759/// Overriding a build script simply means that the running of the build
760/// script itself doesn't have any dependencies, so even in that case a unit
761/// of work is still returned. `None` is only returned if the package has no
762/// build script.
763fn dep_build_script(
764 unit: &Unit,
765 unit_for: UnitFor,
766 state: &State<'_, '_>,
767) -> CargoResult<Option<Vec<UnitDep>>> {
768 Some(
769 unit.pkg
770 .targets()
771 .iter()
772 .filter(|t| t.is_custom_build())
773 .map(|t| {
774 // The profile stored in the Unit is the profile for the thing
775 // the custom build script is running for.
776 let profile = state.profiles.get_profile_run_custom_build(&unit.profile);
777 // UnitFor::for_custom_build is used because we want the `host` flag set
778 // for all of our build dependencies (so they all get
779 // build-override profiles), including compiling the build.rs
780 // script itself.
781 //
782 // If `is_for_host_features` here is `false`, that means we are a
783 // build.rs script for a normal dependency and we want to set the
784 // CARGO_FEATURE_* environment variables to the features as a
785 // normal dep.
786 //
787 // If `is_for_host_features` here is `true`, that means that this
788 // package is being used as a build dependency or proc-macro, and
789 // so we only want to set CARGO_FEATURE_* variables for the host
790 // side of the graph.
791 //
792 // Keep in mind that the RunCustomBuild unit and the Compile
793 // build.rs unit use the same features. This is because some
794 // people use `cfg!` and `#[cfg]` expressions to check for enabled
795 // features instead of just checking `CARGO_FEATURE_*` at runtime.
796 // In the case with the new feature resolver (decoupled host
797 // deps), and a shared dependency has different features enabled
798 // for normal vs. build, then the build.rs script will get
799 // compiled twice. I believe it is not feasible to only build it
800 // once because it would break a large number of scripts (they
801 // would think they have the wrong set of features enabled).
802 let script_unit_for = unit_for.for_custom_build();
803 new_unit_dep_with_profile(
804 state,
805 unit,
806 &unit.pkg,
807 t,
808 script_unit_for,
809 unit.kind,
810 CompileMode::RunCustomBuild,
811 profile,
812 IS_NO_ARTIFACT_DEP,
813 )
814 })
815 .collect(),
816 )
817 .transpose()
818}
819
820/// Choose the correct mode for dependencies.
821fn check_or_build_mode(mode: CompileMode, target: &Target) -> CompileMode {
822 match mode {
823 CompileMode::Check { .. } | CompileMode::Doc { .. } | CompileMode::Docscrape => {
824 if target.for_host() {
825 // Plugin and proc macro targets should be compiled like
826 // normal.
827 CompileMode::Build
828 } else {
829 // Regular dependencies should not be checked with --test.
830 // Regular dependencies of doc targets should emit rmeta only.
831 CompileMode::Check { test: false }
832 }
833 }
834 _ => CompileMode::Build,
835 }
836}
837
838/// Create a new Unit for a dependency from `parent` to `pkg` and `target`.
839fn new_unit_dep(
840 state: &State<'_, '_>,
841 parent: &Unit,
842 pkg: &Package,
843 target: &Target,
844 unit_for: UnitFor,
845 kind: CompileKind,
846 mode: CompileMode,
847 artifact: Option<&Artifact>,
848) -> CargoResult<UnitDep> {
849 let is_local = pkg.package_id().source_id().is_path() && !state.is_std;
850 let profile = state.profiles.get_profile(
851 pkg.package_id(),
852 state.ws.is_member(pkg),
853 is_local,
854 unit_for,
855 kind,
856 );
857 new_unit_dep_with_profile(
858 state, parent, pkg, target, unit_for, kind, mode, profile, artifact,
859 )
860}
861
862fn new_unit_dep_with_profile(
863 state: &State<'_, '_>,
864 parent: &Unit,
865 pkg: &Package,
866 target: &Target,
867 unit_for: UnitFor,
868 kind: CompileKind,
869 mode: CompileMode,
870 profile: Profile,
871 artifact: Option<&Artifact>,
872) -> CargoResult<UnitDep> {
873 let (extern_crate_name, dep_name) = state.resolve().extern_crate_name_and_dep_name(
874 parent.pkg.package_id(),
875 pkg.package_id(),
876 target,
877 )?;
878 let public = state
879 .resolve()
880 .is_public_dep(parent.pkg.package_id(), pkg.package_id());
881 let features_for = unit_for.map_to_features_for(artifact);
882 let artifact_target = match features_for {
883 FeaturesFor::ArtifactDep(target) => Some(target),
884 _ => None,
885 };
886 let features = state.activated_features(pkg.package_id(), features_for);
887 let unit = state.interner.intern(
888 pkg,
889 target,
890 profile,
891 kind,
892 mode,
893 features,
894 state.target_data.info(kind).rustflags.clone(),
895 state.target_data.info(kind).rustdocflags.clone(),
896 state
897 .target_data
898 .target_config(kind)
899 .links_overrides
900 .clone(),
901 state.is_std,
902 /*dep_hash*/ 0,
903 artifact.map_or(IsArtifact::No, |_| IsArtifact::Yes),
904 artifact_target,
905 false,
906 );
907 Ok(UnitDep {
908 unit,
909 unit_for,
910 extern_crate_name,
911 dep_name,
912 public,
913 noprelude: false,
914 })
915}
916
917/// Fill in missing dependencies for units of the `RunCustomBuild`
918///
919/// As mentioned above in `compute_deps_custom_build` each build script
920/// execution has two dependencies. The first is compiling the build script
921/// itself (already added) and the second is that all crates the package of the
922/// build script depends on with `links` keys, their build script execution. (a
923/// bit confusing eh?)
924///
925/// Here we take the entire `deps` map and add more dependencies from execution
926/// of one build script to execution of another build script.
927fn connect_run_custom_build_deps(state: &mut State<'_, '_>) {
928 let mut new_deps = Vec::new();
929
930 {
931 let state = &*state;
932 // First up build a reverse dependency map. This is a mapping of all
933 // `RunCustomBuild` known steps to the unit which depends on them. For
934 // example a library might depend on a build script, so this map will
935 // have the build script as the key and the library would be in the
936 // value's set.
937 let mut reverse_deps_map = HashMap::new();
938 for (unit, deps) in state.unit_dependencies.iter() {
939 for dep in deps {
940 if dep.unit.mode == CompileMode::RunCustomBuild {
941 reverse_deps_map
942 .entry(dep.unit.clone())
943 .or_insert_with(HashSet::new)
944 .insert(unit);
945 }
946 }
947 }
948
949 // Next, we take a look at all build scripts executions listed in the
950 // dependency map. Our job here is to take everything that depends on
951 // this build script (from our reverse map above) and look at the other
952 // package dependencies of these parents.
953 //
954 // If we depend on a linkable target and the build script mentions
955 // `links`, then we depend on that package's build script! Here we use
956 // `dep_build_script` to manufacture an appropriate build script unit to
957 // depend on.
958 for unit in state
959 .unit_dependencies
960 .keys()
961 .filter(|k| k.mode == CompileMode::RunCustomBuild)
962 {
963 // This list of dependencies all depend on `unit`, an execution of
964 // the build script.
965 let Some(reverse_deps) = reverse_deps_map.get(unit) else {
966 continue;
967 };
968
969 let to_add = reverse_deps
970 .iter()
971 // Get all sibling dependencies of `unit`
972 .flat_map(|reverse_dep| {
973 state.unit_dependencies[reverse_dep]
974 .iter()
975 .map(move |a| (reverse_dep, a))
976 })
977 // Exclude ourself
978 .filter(|(_parent, other)| other.unit.pkg != unit.pkg)
979 // Only deps with `links`.
980 .filter(|(_parent, other)| {
981 state.gctx.cli_unstable().any_build_script_metadata
982 || (other.unit.target.is_linkable()
983 && other.unit.pkg.manifest().links().is_some())
984 })
985 // Avoid cycles when using the doc --scrape-examples feature:
986 // Say a workspace has crates A and B where A has a build-dependency on B.
987 // The Doc units for A and B will have a dependency on the Docscrape for both A and B.
988 // So this would add a dependency from B-build to A-build, causing a cycle:
989 // B (build) -> A (build) -> B(build)
990 // See the test scrape_examples_avoid_build_script_cycle for a concrete example.
991 // To avoid this cycle, we filter out the B -> A (docscrape) dependency.
992 .filter(|(_parent, other)| !other.unit.mode.is_doc_scrape())
993 // Skip dependencies induced via dev-dependencies since
994 // connections between `links` and build scripts only happens
995 // via normal dependencies. Otherwise since dev-dependencies can
996 // be cyclic we could have cyclic build-script executions.
997 .filter_map(move |(parent, other)| {
998 if state
999 .dev_dependency_edges
1000 .contains(&((*parent).clone(), other.unit.clone()))
1001 {
1002 None
1003 } else {
1004 Some(other)
1005 }
1006 })
1007 // Get the RunCustomBuild for other lib.
1008 .filter_map(|other| {
1009 state.unit_dependencies[&other.unit]
1010 .iter()
1011 .find(|other_dep| other_dep.unit.mode == CompileMode::RunCustomBuild)
1012 .map(|other_dep| {
1013 let mut dep = other_dep.clone();
1014 let dep_name = other.dep_name.unwrap_or(other.unit.pkg.name());
1015 // Propagate the manifest dep name from the sibling edge.
1016 // The RunCustomBuild-RustCustomBuild edge is synthetic
1017 // and doesn't carry a usable dep name, but build script
1018 // metadata needs one for `CARGO_DEP_<dep_name>_*` env var
1019 dep.dep_name = Some(dep_name);
1020 dep
1021 })
1022 })
1023 .collect::<HashSet<_>>();
1024
1025 if !to_add.is_empty() {
1026 // (RunCustomBuild, set(other RunCustomBuild))
1027 new_deps.push((unit.clone(), to_add));
1028 }
1029 }
1030 }
1031
1032 // And finally, add in all the missing dependencies!
1033 for (unit, new_deps) in new_deps {
1034 state
1035 .unit_dependencies
1036 .get_mut(&unit)
1037 .unwrap()
1038 .extend(new_deps);
1039 }
1040}
1041
1042impl<'a, 'gctx> State<'a, 'gctx> {
1043 /// Gets `std_resolve` during building std, otherwise `usr_resolve`.
1044 fn resolve(&self) -> &'a Resolve {
1045 if self.is_std {
1046 self.std_resolve.unwrap()
1047 } else {
1048 self.usr_resolve
1049 }
1050 }
1051
1052 /// Gets `std_features` during building std, otherwise `usr_features`.
1053 fn features(&self) -> &'a ResolvedFeatures {
1054 if self.is_std {
1055 self.std_features.unwrap()
1056 } else {
1057 self.usr_features
1058 }
1059 }
1060
1061 fn activated_features(
1062 &self,
1063 pkg_id: PackageId,
1064 features_for: FeaturesFor,
1065 ) -> Vec<InternedString> {
1066 let features = self.features();
1067 features.activated_features(pkg_id, features_for)
1068 }
1069
1070 fn is_dep_activated(
1071 &self,
1072 pkg_id: PackageId,
1073 features_for: FeaturesFor,
1074 dep_name: InternedString,
1075 ) -> bool {
1076 self.features()
1077 .is_dep_activated(pkg_id, features_for, dep_name)
1078 }
1079
1080 fn get(&self, id: PackageId) -> &'a Package {
1081 self.package_set
1082 .get_one(id)
1083 .unwrap_or_else(|_| panic!("expected {} to be downloaded", id))
1084 }
1085
1086 /// Returns a filtered set of dependencies for the given unit.
1087 fn deps(&self, unit: &Unit, unit_for: UnitFor) -> Vec<(PackageId, Vec<&Dependency>)> {
1088 let pkg_id = unit.pkg.package_id();
1089 let kind = unit.kind;
1090 self.resolve()
1091 .deps(pkg_id)
1092 .filter_map(|(id, deps)| {
1093 assert!(!deps.is_empty());
1094 let deps: Vec<_> = deps
1095 .iter()
1096 .filter(|dep| {
1097 // If this target is a build command, then we only want build
1098 // dependencies, otherwise we want everything *other than* build
1099 // dependencies.
1100 if unit.target.is_custom_build() != dep.is_build() {
1101 return false;
1102 }
1103
1104 // If this dependency is **not** a transitive dependency, then it
1105 // only applies to test/example targets.
1106 if !dep.is_transitive()
1107 && !unit.target.is_test()
1108 && !unit.target.is_example()
1109 && !unit.mode.is_any_test()
1110 {
1111 return false;
1112 }
1113
1114 // If this dependency is only available for certain platforms,
1115 // make sure we're only enabling it for that platform.
1116 if !self.target_data.dep_platform_activated(dep, kind) {
1117 return false;
1118 }
1119
1120 // If this is an optional dependency, and the new feature resolver
1121 // did not enable it, don't include it.
1122 if dep.is_optional() {
1123 // This `unit_for` is from parent dep and *SHOULD* contains its own
1124 // artifact dep information inside `artifact_target_for_features`.
1125 // So, no need to map any artifact info from an incorrect `dep.artifact()`.
1126 let features_for = unit_for.map_to_features_for(IS_NO_ARTIFACT_DEP);
1127 if !self.is_dep_activated(pkg_id, features_for, dep.name_in_toml()) {
1128 return false;
1129 }
1130 }
1131
1132 // If we've gotten past all that, then this dependency is
1133 // actually used!
1134 true
1135 })
1136 .collect();
1137 if deps.is_empty() {
1138 None
1139 } else {
1140 Some((id, deps))
1141 }
1142 })
1143 .collect()
1144 }
1145}