cargo/core/compiler/
unit_dependencies.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
//! Constructs the dependency graph for compilation.
//!
//! Rust code is typically organized as a set of Cargo packages. The
//! dependencies between the packages themselves are stored in the
//! [`Resolve`] struct. However, we can't use that information as is for
//! compilation! A package typically contains several targets, or crates,
//! and these targets has inter-dependencies. For example, you need to
//! compile the `lib` target before the `bin` one, and you need to compile
//! `build.rs` before either of those.
//!
//! So, we need to lower the `Resolve`, which specifies dependencies between
//! *packages*, to a graph of dependencies between their *targets*, and this
//! is exactly what this module is doing! Well, almost exactly: another
//! complication is that we might want to compile the same target several times
//! (for example, with and without tests), so we actually build a dependency
//! graph of [`Unit`]s, which capture these properties.

use std::collections::{HashMap, HashSet};

use tracing::trace;

use crate::core::compiler::artifact::match_artifacts_kind_with_targets;
use crate::core::compiler::unit_graph::{UnitDep, UnitGraph};
use crate::core::compiler::{
    CompileKind, CompileMode, CrateType, RustcTargetData, Unit, UnitInterner,
};
use crate::core::dependency::{Artifact, ArtifactKind, ArtifactTarget, DepKind};
use crate::core::profiles::{Profile, Profiles, UnitFor};
use crate::core::resolver::features::{FeaturesFor, ResolvedFeatures};
use crate::core::resolver::Resolve;
use crate::core::{Dependency, Package, PackageId, PackageSet, Target, TargetKind, Workspace};
use crate::ops::resolve_all_features;
use crate::util::interning::InternedString;
use crate::util::GlobalContext;
use crate::CargoResult;

const IS_NO_ARTIFACT_DEP: Option<&'static Artifact> = None;

/// Collection of stuff used while creating the [`UnitGraph`].
struct State<'a, 'gctx> {
    ws: &'a Workspace<'gctx>,
    gctx: &'gctx GlobalContext,
    /// Stores the result of building the [`UnitGraph`].
    unit_dependencies: UnitGraph,
    package_set: &'a PackageSet<'gctx>,
    usr_resolve: &'a Resolve,
    usr_features: &'a ResolvedFeatures,
    /// Like `usr_resolve` but for building standard library (`-Zbuild-std`).
    std_resolve: Option<&'a Resolve>,
    /// Like `usr_features` but for building standard library (`-Zbuild-std`).
    std_features: Option<&'a ResolvedFeatures>,
    /// `true` while generating the dependencies for the standard library.
    is_std: bool,
    /// The mode we are compiling in. Used for preventing from building lib thrice.
    global_mode: CompileMode,
    target_data: &'a RustcTargetData<'gctx>,
    profiles: &'a Profiles,
    interner: &'a UnitInterner,
    // Units for `-Zrustdoc-scrape-examples`.
    scrape_units: &'a [Unit],

    /// A set of edges in `unit_dependencies` where (a, b) means that the
    /// dependency from a to b was added purely because it was a dev-dependency.
    /// This is used during `connect_run_custom_build_deps`.
    dev_dependency_edges: HashSet<(Unit, Unit)>,
}

/// A boolean-like to indicate if a `Unit` is an artifact or not.
#[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)]
pub enum IsArtifact {
    Yes,
    No,
}

impl IsArtifact {
    pub fn is_true(&self) -> bool {
        matches!(self, IsArtifact::Yes)
    }
}

/// Then entry point for building a dependency graph of compilation units.
///
/// You can find some information for arguments from doc of [`State`].
#[tracing::instrument(skip_all)]
pub fn build_unit_dependencies<'a, 'gctx>(
    ws: &'a Workspace<'gctx>,
    package_set: &'a PackageSet<'gctx>,
    resolve: &'a Resolve,
    features: &'a ResolvedFeatures,
    std_resolve: Option<&'a (Resolve, ResolvedFeatures)>,
    roots: &[Unit],
    scrape_units: &[Unit],
    std_roots: &HashMap<CompileKind, Vec<Unit>>,
    global_mode: CompileMode,
    target_data: &'a RustcTargetData<'gctx>,
    profiles: &'a Profiles,
    interner: &'a UnitInterner,
) -> CargoResult<UnitGraph> {
    if roots.is_empty() {
        // If -Zbuild-std, don't attach units if there is nothing to build.
        // Otherwise, other parts of the code may be confused by seeing units
        // in the dep graph without a root.
        return Ok(HashMap::new());
    }
    let (std_resolve, std_features) = match std_resolve {
        Some((r, f)) => (Some(r), Some(f)),
        None => (None, None),
    };
    let mut state = State {
        ws,
        gctx: ws.gctx(),
        unit_dependencies: HashMap::new(),
        package_set,
        usr_resolve: resolve,
        usr_features: features,
        std_resolve,
        std_features,
        is_std: false,
        global_mode,
        target_data,
        profiles,
        interner,
        scrape_units,
        dev_dependency_edges: HashSet::new(),
    };

    let std_unit_deps = calc_deps_of_std(&mut state, std_roots)?;

    deps_of_roots(roots, &mut state)?;
    super::links::validate_links(state.resolve(), &state.unit_dependencies)?;
    // Hopefully there aren't any links conflicts with the standard library?

    if let Some(std_unit_deps) = std_unit_deps {
        attach_std_deps(&mut state, std_roots, std_unit_deps);
    }

    connect_run_custom_build_deps(&mut state);

    // Dependencies are used in tons of places throughout the backend, many of
    // which affect the determinism of the build itself. As a result be sure
    // that dependency lists are always sorted to ensure we've always got a
    // deterministic output.
    for list in state.unit_dependencies.values_mut() {
        list.sort();
    }
    trace!("ALL UNIT DEPENDENCIES {:#?}", state.unit_dependencies);

    Ok(state.unit_dependencies)
}

/// Compute all the dependencies for the standard library.
fn calc_deps_of_std(
    state: &mut State<'_, '_>,
    std_roots: &HashMap<CompileKind, Vec<Unit>>,
) -> CargoResult<Option<UnitGraph>> {
    if std_roots.is_empty() {
        return Ok(None);
    }
    // Compute dependencies for the standard library.
    state.is_std = true;
    for roots in std_roots.values() {
        deps_of_roots(roots, state)?;
    }
    state.is_std = false;
    Ok(Some(std::mem::take(&mut state.unit_dependencies)))
}

/// Add the standard library units to the `unit_dependencies`.
fn attach_std_deps(
    state: &mut State<'_, '_>,
    std_roots: &HashMap<CompileKind, Vec<Unit>>,
    std_unit_deps: UnitGraph,
) {
    // Attach the standard library as a dependency of every target unit.
    let mut found = false;
    for (unit, deps) in state.unit_dependencies.iter_mut() {
        if !unit.kind.is_host() && !unit.mode.is_run_custom_build() {
            deps.extend(std_roots[&unit.kind].iter().map(|unit| UnitDep {
                unit: unit.clone(),
                unit_for: UnitFor::new_normal(unit.kind),
                extern_crate_name: unit.pkg.name(),
                dep_name: None,
                // TODO: Does this `public` make sense?
                public: true,
                noprelude: true,
            }));
            found = true;
        }
    }
    // And also include the dependencies of the standard library itself. Don't
    // include these if no units actually needed the standard library.
    if found {
        for (unit, deps) in std_unit_deps.into_iter() {
            if let Some(other_unit) = state.unit_dependencies.insert(unit, deps) {
                panic!("std unit collision with existing unit: {:?}", other_unit);
            }
        }
    }
}

/// Compute all the dependencies of the given root units.
/// The result is stored in `state.unit_dependencies`.
fn deps_of_roots(roots: &[Unit], state: &mut State<'_, '_>) -> CargoResult<()> {
    for unit in roots.iter() {
        // Dependencies of tests/benches should not have `panic` set.
        // We check the global test mode to see if we are running in `cargo
        // test` in which case we ensure all dependencies have `panic`
        // cleared, and avoid building the lib thrice (once with `panic`, once
        // without, once for `--test`). In particular, the lib included for
        // Doc tests and examples are `Build` mode here.
        let root_compile_kind = unit.kind;
        let unit_for = if unit.mode.is_any_test() || state.global_mode.is_rustc_test() {
            if unit.target.proc_macro() {
                // Special-case for proc-macros, which are forced to for-host
                // since they need to link with the proc_macro crate.
                UnitFor::new_host_test(state.gctx, root_compile_kind)
            } else {
                UnitFor::new_test(state.gctx, root_compile_kind)
            }
        } else if unit.target.is_custom_build() {
            // This normally doesn't happen, except `clean` aggressively
            // generates all units.
            UnitFor::new_host(false, root_compile_kind)
        } else if unit.target.proc_macro() {
            UnitFor::new_host(true, root_compile_kind)
        } else if unit.target.for_host() {
            // Plugin should never have panic set.
            UnitFor::new_compiler(root_compile_kind)
        } else {
            UnitFor::new_normal(root_compile_kind)
        };
        deps_of(unit, state, unit_for)?;
    }

    Ok(())
}

/// Compute the dependencies of a single unit, recursively computing all
/// transitive dependencies.
///
/// The result is stored in `state.unit_dependencies`.
fn deps_of(unit: &Unit, state: &mut State<'_, '_>, unit_for: UnitFor) -> CargoResult<()> {
    // Currently the `unit_dependencies` map does not include `unit_for`. This should
    // be safe for now. `TestDependency` only exists to clear the `panic`
    // flag, and you'll never ask for a `unit` with `panic` set as a
    // `TestDependency`. `CustomBuild` should also be fine since if the
    // requested unit's settings are the same as `Any`, `CustomBuild` can't
    // affect anything else in the hierarchy.
    if !state.unit_dependencies.contains_key(unit) {
        let unit_deps = compute_deps(unit, state, unit_for)?;
        state
            .unit_dependencies
            .insert(unit.clone(), unit_deps.clone());
        for unit_dep in unit_deps {
            deps_of(&unit_dep.unit, state, unit_dep.unit_for)?;
        }
    }
    Ok(())
}

/// Returns the direct unit dependencies for the given `Unit`.
fn compute_deps(
    unit: &Unit,
    state: &mut State<'_, '_>,
    unit_for: UnitFor,
) -> CargoResult<Vec<UnitDep>> {
    if unit.mode.is_run_custom_build() {
        return compute_deps_custom_build(unit, unit_for, state);
    } else if unit.mode.is_doc() {
        // Note: this does not include doc test.
        return compute_deps_doc(unit, state, unit_for);
    }

    let mut ret = Vec::new();
    let mut dev_deps = Vec::new();
    for (dep_pkg_id, deps) in state.deps(unit, unit_for) {
        let Some(dep_lib) = calc_artifact_deps(unit, unit_for, dep_pkg_id, &deps, state, &mut ret)?
        else {
            continue;
        };
        let dep_pkg = state.get(dep_pkg_id);
        let mode = check_or_build_mode(unit.mode, dep_lib);
        let dep_unit_for = unit_for.with_dependency(unit, dep_lib, unit_for.root_compile_kind());

        let start = ret.len();
        if state.gctx.cli_unstable().dual_proc_macros
            && dep_lib.proc_macro()
            && !unit.kind.is_host()
        {
            let unit_dep = new_unit_dep(
                state,
                unit,
                dep_pkg,
                dep_lib,
                dep_unit_for,
                unit.kind,
                mode,
                IS_NO_ARTIFACT_DEP,
            )?;
            ret.push(unit_dep);
            let unit_dep = new_unit_dep(
                state,
                unit,
                dep_pkg,
                dep_lib,
                dep_unit_for,
                CompileKind::Host,
                mode,
                IS_NO_ARTIFACT_DEP,
            )?;
            ret.push(unit_dep);
        } else {
            let unit_dep = new_unit_dep(
                state,
                unit,
                dep_pkg,
                dep_lib,
                dep_unit_for,
                unit.kind.for_target(dep_lib),
                mode,
                IS_NO_ARTIFACT_DEP,
            )?;
            ret.push(unit_dep);
        }

        // If the unit added was a dev-dependency unit, then record that in the
        // dev-dependencies array. We'll add this to
        // `state.dev_dependency_edges` at the end and process it later in
        // `connect_run_custom_build_deps`.
        if deps.iter().all(|d| !d.is_transitive()) {
            for dep in ret[start..].iter() {
                dev_deps.push((unit.clone(), dep.unit.clone()));
            }
        }
    }
    state.dev_dependency_edges.extend(dev_deps);

    // If this target is a build script, then what we've collected so far is
    // all we need. If this isn't a build script, then it depends on the
    // build script if there is one.
    if unit.target.is_custom_build() {
        return Ok(ret);
    }
    ret.extend(dep_build_script(unit, unit_for, state)?);

    // If this target is a binary, test, example, etc, then it depends on
    // the library of the same package. The call to `resolve.deps` above
    // didn't include `pkg` in the return values, so we need to special case
    // it here and see if we need to push `(pkg, pkg_lib_target)`.
    if unit.target.is_lib() && unit.mode != CompileMode::Doctest {
        return Ok(ret);
    }
    ret.extend(maybe_lib(unit, state, unit_for)?);

    // If any integration tests/benches are being run, make sure that
    // binaries are built as well.
    if !unit.mode.is_check()
        && unit.mode.is_any_test()
        && (unit.target.is_test() || unit.target.is_bench())
    {
        let id = unit.pkg.package_id();
        ret.extend(
            unit.pkg
                .targets()
                .iter()
                .filter(|t| {
                    // Skip binaries with required features that have not been selected.
                    match t.required_features() {
                        Some(rf) if t.is_bin() => {
                            let features = resolve_all_features(
                                state.resolve(),
                                state.features(),
                                state.package_set,
                                id,
                            );
                            rf.iter().all(|f| features.contains(f))
                        }
                        None if t.is_bin() => true,
                        _ => false,
                    }
                })
                .map(|t| {
                    new_unit_dep(
                        state,
                        unit,
                        &unit.pkg,
                        t,
                        UnitFor::new_normal(unit_for.root_compile_kind()),
                        unit.kind.for_target(t),
                        CompileMode::Build,
                        IS_NO_ARTIFACT_DEP,
                    )
                })
                .collect::<CargoResult<Vec<UnitDep>>>()?,
        );
    }

    Ok(ret)
}

/// Find artifacts for all `deps` of `unit` and add units that build these artifacts
/// to `ret`.
fn calc_artifact_deps<'a>(
    unit: &Unit,
    unit_for: UnitFor,
    dep_id: PackageId,
    deps: &[&Dependency],
    state: &State<'a, '_>,
    ret: &mut Vec<UnitDep>,
) -> CargoResult<Option<&'a Target>> {
    let mut has_artifact_lib = false;
    let mut maybe_non_artifact_lib = false;
    let artifact_pkg = state.get(dep_id);
    for dep in deps {
        let Some(artifact) = dep.artifact() else {
            maybe_non_artifact_lib = true;
            continue;
        };
        has_artifact_lib |= artifact.is_lib();
        // Custom build scripts (build/compile) never get artifact dependencies,
        // but the run-build-script step does (where it is handled).
        if !unit.target.is_custom_build() {
            debug_assert!(
                !unit.mode.is_run_custom_build(),
                "BUG: This should be handled in a separate branch"
            );
            ret.extend(artifact_targets_to_unit_deps(
                unit,
                unit_for.with_artifact_features(artifact),
                state,
                artifact
                    .target()
                    .and_then(|t| match t {
                        ArtifactTarget::BuildDependencyAssumeTarget => None,
                        ArtifactTarget::Force(kind) => Some(CompileKind::Target(kind)),
                    })
                    .unwrap_or(unit.kind),
                artifact_pkg,
                dep,
            )?);
        }
    }
    if has_artifact_lib || maybe_non_artifact_lib {
        Ok(artifact_pkg.targets().iter().find(|t| t.is_lib()))
    } else {
        Ok(None)
    }
}

/// Returns the dependencies needed to run a build script.
///
/// The `unit` provided must represent an execution of a build script, and
/// the returned set of units must all be run before `unit` is run.
fn compute_deps_custom_build(
    unit: &Unit,
    unit_for: UnitFor,
    state: &State<'_, '_>,
) -> CargoResult<Vec<UnitDep>> {
    if let Some(links) = unit.pkg.manifest().links() {
        if unit.links_overrides.get(links).is_some() {
            // Overridden build scripts don't have any dependencies.
            return Ok(Vec::new());
        }
    }
    // All dependencies of this unit should use profiles for custom builds.
    // If this is a build script of a proc macro, make sure it uses host
    // features.
    let script_unit_for = unit_for.for_custom_build();
    // When not overridden, then the dependencies to run a build script are:
    //
    // 1. Compiling the build script itself.
    // 2. For each immediate dependency of our package which has a `links`
    //    key, the execution of that build script.
    //
    // We don't have a great way of handling (2) here right now so this is
    // deferred until after the graph of all unit dependencies has been
    // constructed.
    let compile_script_unit = new_unit_dep(
        state,
        unit,
        &unit.pkg,
        &unit.target,
        script_unit_for,
        // Build scripts always compiled for the host.
        CompileKind::Host,
        CompileMode::Build,
        IS_NO_ARTIFACT_DEP,
    )?;

    let mut result = vec![compile_script_unit];

    // Include any artifact dependencies.
    //
    // This is essentially the same as `calc_artifact_deps`, but there are some
    // subtle differences that require this to be implemented differently.
    //
    // Produce units that build all required artifact kinds (like binaries,
    // static libraries, etc) with the correct compile target.
    //
    // Computing the compile target for artifact units is more involved as it has to handle
    // various target configurations specific to artifacts, like `target = "target"` and
    // `target = "<triple>"`, which makes knowing the root units compile target
    // `root_unit_compile_target` necessary.
    let root_unit_compile_target = unit_for.root_compile_kind();
    let unit_for = UnitFor::new_host(/*host_features*/ true, root_unit_compile_target);
    for (dep_pkg_id, deps) in state.deps(unit, script_unit_for) {
        for dep in deps {
            if dep.kind() != DepKind::Build || dep.artifact().is_none() {
                continue;
            }
            let artifact_pkg = state.get(dep_pkg_id);
            let artifact = dep.artifact().expect("artifact dep");
            let resolved_artifact_compile_kind = artifact
                .target()
                .map(|target| target.to_resolved_compile_kind(root_unit_compile_target));

            result.extend(artifact_targets_to_unit_deps(
                unit,
                unit_for.with_artifact_features_from_resolved_compile_kind(
                    resolved_artifact_compile_kind,
                ),
                state,
                resolved_artifact_compile_kind.unwrap_or(CompileKind::Host),
                artifact_pkg,
                dep,
            )?);
        }
    }

    Ok(result)
}

/// Given a `parent` unit containing a dependency `dep` whose package is `artifact_pkg`,
/// find all targets in `artifact_pkg` which refer to the `dep`s artifact declaration
/// and turn them into units.
/// Due to the nature of artifact dependencies, a single dependency in a manifest can
/// cause one or more targets to be build, for instance with
/// `artifact = ["bin:a", "bin:b", "staticlib"]`, which is very different from normal
/// dependencies which cause only a single unit to be created.
///
/// `compile_kind` is the computed kind for the future artifact unit
/// dependency, only the caller can pick the correct one.
fn artifact_targets_to_unit_deps(
    parent: &Unit,
    parent_unit_for: UnitFor,
    state: &State<'_, '_>,
    compile_kind: CompileKind,
    artifact_pkg: &Package,
    dep: &Dependency,
) -> CargoResult<Vec<UnitDep>> {
    let ret =
        match_artifacts_kind_with_targets(dep, artifact_pkg.targets(), parent.pkg.name().as_str())?
            .into_iter()
            .flat_map(|(artifact_kind, target)| {
                // We split target libraries into individual units, even though rustc is able
                // to produce multiple kinds in a single invocation for the sole reason that
                // each artifact kind has its own output directory, something we can't easily
                // teach rustc for now.
                match target.kind() {
                    TargetKind::Lib(kinds) => Box::new(
                        kinds
                            .iter()
                            .filter(move |tk| match (tk, artifact_kind) {
                                (CrateType::Cdylib, ArtifactKind::Cdylib) => true,
                                (CrateType::Staticlib, ArtifactKind::Staticlib) => true,
                                _ => false,
                            })
                            .map(|target_kind| {
                                new_unit_dep(
                                    state,
                                    parent,
                                    artifact_pkg,
                                    target
                                        .clone()
                                        .set_kind(TargetKind::Lib(vec![target_kind.clone()])),
                                    parent_unit_for,
                                    compile_kind,
                                    CompileMode::Build,
                                    dep.artifact(),
                                )
                            }),
                    ) as Box<dyn Iterator<Item = _>>,
                    _ => Box::new(std::iter::once(new_unit_dep(
                        state,
                        parent,
                        artifact_pkg,
                        target,
                        parent_unit_for,
                        compile_kind,
                        CompileMode::Build,
                        dep.artifact(),
                    ))),
                }
            })
            .collect::<Result<Vec<_>, _>>()?;
    Ok(ret)
}

/// Returns the dependencies necessary to document a package.
fn compute_deps_doc(
    unit: &Unit,
    state: &mut State<'_, '_>,
    unit_for: UnitFor,
) -> CargoResult<Vec<UnitDep>> {
    // To document a library, we depend on dependencies actually being
    // built. If we're documenting *all* libraries, then we also depend on
    // the documentation of the library being built.
    let mut ret = Vec::new();
    for (id, deps) in state.deps(unit, unit_for) {
        let Some(dep_lib) = calc_artifact_deps(unit, unit_for, id, &deps, state, &mut ret)? else {
            continue;
        };
        let dep_pkg = state.get(id);
        // Rustdoc only needs rmeta files for regular dependencies.
        // However, for plugins/proc macros, deps should be built like normal.
        let mode = check_or_build_mode(unit.mode, dep_lib);
        let dep_unit_for = unit_for.with_dependency(unit, dep_lib, unit_for.root_compile_kind());
        let lib_unit_dep = new_unit_dep(
            state,
            unit,
            dep_pkg,
            dep_lib,
            dep_unit_for,
            unit.kind.for_target(dep_lib),
            mode,
            IS_NO_ARTIFACT_DEP,
        )?;
        ret.push(lib_unit_dep);
        if dep_lib.documented() {
            if let CompileMode::Doc { deps: true, .. } = unit.mode {
                // Document this lib as well.
                let doc_unit_dep = new_unit_dep(
                    state,
                    unit,
                    dep_pkg,
                    dep_lib,
                    dep_unit_for,
                    unit.kind.for_target(dep_lib),
                    unit.mode,
                    IS_NO_ARTIFACT_DEP,
                )?;
                ret.push(doc_unit_dep);
            }
        }
    }

    // Be sure to build/run the build script for documented libraries.
    ret.extend(dep_build_script(unit, unit_for, state)?);

    // If we document a binary/example, we need the library available.
    if unit.target.is_bin() || unit.target.is_example() {
        // build the lib
        ret.extend(maybe_lib(unit, state, unit_for)?);
        // and also the lib docs for intra-doc links
        if let Some(lib) = unit
            .pkg
            .targets()
            .iter()
            .find(|t| t.is_linkable() && t.documented())
        {
            let dep_unit_for = unit_for.with_dependency(unit, lib, unit_for.root_compile_kind());
            let lib_doc_unit = new_unit_dep(
                state,
                unit,
                &unit.pkg,
                lib,
                dep_unit_for,
                unit.kind.for_target(lib),
                unit.mode,
                IS_NO_ARTIFACT_DEP,
            )?;
            ret.push(lib_doc_unit);
        }
    }

    // Add all units being scraped for examples as a dependency of top-level Doc units.
    if state.ws.unit_needs_doc_scrape(unit) {
        for scrape_unit in state.scrape_units.iter() {
            let scrape_unit_for = UnitFor::new_normal(scrape_unit.kind);
            deps_of(scrape_unit, state, scrape_unit_for)?;
            ret.push(new_unit_dep(
                state,
                scrape_unit,
                &scrape_unit.pkg,
                &scrape_unit.target,
                scrape_unit_for,
                scrape_unit.kind,
                scrape_unit.mode,
                IS_NO_ARTIFACT_DEP,
            )?);
        }
    }

    Ok(ret)
}

fn maybe_lib(
    unit: &Unit,
    state: &mut State<'_, '_>,
    unit_for: UnitFor,
) -> CargoResult<Option<UnitDep>> {
    unit.pkg
        .targets()
        .iter()
        .find(|t| t.is_linkable())
        .map(|t| {
            let mode = check_or_build_mode(unit.mode, t);
            let dep_unit_for = unit_for.with_dependency(unit, t, unit_for.root_compile_kind());
            new_unit_dep(
                state,
                unit,
                &unit.pkg,
                t,
                dep_unit_for,
                unit.kind.for_target(t),
                mode,
                IS_NO_ARTIFACT_DEP,
            )
        })
        .transpose()
}

/// If a build script is scheduled to be run for the package specified by
/// `unit`, this function will return the unit to run that build script.
///
/// Overriding a build script simply means that the running of the build
/// script itself doesn't have any dependencies, so even in that case a unit
/// of work is still returned. `None` is only returned if the package has no
/// build script.
fn dep_build_script(
    unit: &Unit,
    unit_for: UnitFor,
    state: &State<'_, '_>,
) -> CargoResult<Option<UnitDep>> {
    unit.pkg
        .targets()
        .iter()
        .find(|t| t.is_custom_build())
        .map(|t| {
            // The profile stored in the Unit is the profile for the thing
            // the custom build script is running for.
            let profile = state.profiles.get_profile_run_custom_build(&unit.profile);
            // UnitFor::for_custom_build is used because we want the `host` flag set
            // for all of our build dependencies (so they all get
            // build-override profiles), including compiling the build.rs
            // script itself.
            //
            // If `is_for_host_features` here is `false`, that means we are a
            // build.rs script for a normal dependency and we want to set the
            // CARGO_FEATURE_* environment variables to the features as a
            // normal dep.
            //
            // If `is_for_host_features` here is `true`, that means that this
            // package is being used as a build dependency or proc-macro, and
            // so we only want to set CARGO_FEATURE_* variables for the host
            // side of the graph.
            //
            // Keep in mind that the RunCustomBuild unit and the Compile
            // build.rs unit use the same features. This is because some
            // people use `cfg!` and `#[cfg]` expressions to check for enabled
            // features instead of just checking `CARGO_FEATURE_*` at runtime.
            // In the case with the new feature resolver (decoupled host
            // deps), and a shared dependency has different features enabled
            // for normal vs. build, then the build.rs script will get
            // compiled twice. I believe it is not feasible to only build it
            // once because it would break a large number of scripts (they
            // would think they have the wrong set of features enabled).
            let script_unit_for = unit_for.for_custom_build();
            new_unit_dep_with_profile(
                state,
                unit,
                &unit.pkg,
                t,
                script_unit_for,
                unit.kind,
                CompileMode::RunCustomBuild,
                profile,
                IS_NO_ARTIFACT_DEP,
            )
        })
        .transpose()
}

/// Choose the correct mode for dependencies.
fn check_or_build_mode(mode: CompileMode, target: &Target) -> CompileMode {
    match mode {
        CompileMode::Check { .. } | CompileMode::Doc { .. } | CompileMode::Docscrape => {
            if target.for_host() {
                // Plugin and proc macro targets should be compiled like
                // normal.
                CompileMode::Build
            } else {
                // Regular dependencies should not be checked with --test.
                // Regular dependencies of doc targets should emit rmeta only.
                CompileMode::Check { test: false }
            }
        }
        _ => CompileMode::Build,
    }
}

/// Create a new Unit for a dependency from `parent` to `pkg` and `target`.
fn new_unit_dep(
    state: &State<'_, '_>,
    parent: &Unit,
    pkg: &Package,
    target: &Target,
    unit_for: UnitFor,
    kind: CompileKind,
    mode: CompileMode,
    artifact: Option<&Artifact>,
) -> CargoResult<UnitDep> {
    let is_local = pkg.package_id().source_id().is_path() && !state.is_std;
    let profile = state.profiles.get_profile(
        pkg.package_id(),
        state.ws.is_member(pkg),
        is_local,
        unit_for,
        kind,
    );
    new_unit_dep_with_profile(
        state, parent, pkg, target, unit_for, kind, mode, profile, artifact,
    )
}

fn new_unit_dep_with_profile(
    state: &State<'_, '_>,
    parent: &Unit,
    pkg: &Package,
    target: &Target,
    unit_for: UnitFor,
    kind: CompileKind,
    mode: CompileMode,
    profile: Profile,
    artifact: Option<&Artifact>,
) -> CargoResult<UnitDep> {
    let (extern_crate_name, dep_name) = state.resolve().extern_crate_name_and_dep_name(
        parent.pkg.package_id(),
        pkg.package_id(),
        target,
    )?;
    let public = state
        .resolve()
        .is_public_dep(parent.pkg.package_id(), pkg.package_id());
    let features_for = unit_for.map_to_features_for(artifact);
    let artifact_target = match features_for {
        FeaturesFor::ArtifactDep(target) => Some(target),
        _ => None,
    };
    let features = state.activated_features(pkg.package_id(), features_for);
    let unit = state.interner.intern(
        pkg,
        target,
        profile,
        kind,
        mode,
        features,
        state.target_data.info(kind).rustflags.clone(),
        state.target_data.info(kind).rustdocflags.clone(),
        state
            .target_data
            .target_config(kind)
            .links_overrides
            .clone(),
        state.is_std,
        /*dep_hash*/ 0,
        artifact.map_or(IsArtifact::No, |_| IsArtifact::Yes),
        artifact_target,
    );
    Ok(UnitDep {
        unit,
        unit_for,
        extern_crate_name,
        dep_name,
        public,
        noprelude: false,
    })
}

/// Fill in missing dependencies for units of the `RunCustomBuild`
///
/// As mentioned above in `compute_deps_custom_build` each build script
/// execution has two dependencies. The first is compiling the build script
/// itself (already added) and the second is that all crates the package of the
/// build script depends on with `links` keys, their build script execution. (a
/// bit confusing eh?)
///
/// Here we take the entire `deps` map and add more dependencies from execution
/// of one build script to execution of another build script.
fn connect_run_custom_build_deps(state: &mut State<'_, '_>) {
    let mut new_deps = Vec::new();

    {
        let state = &*state;
        // First up build a reverse dependency map. This is a mapping of all
        // `RunCustomBuild` known steps to the unit which depends on them. For
        // example a library might depend on a build script, so this map will
        // have the build script as the key and the library would be in the
        // value's set.
        let mut reverse_deps_map = HashMap::new();
        for (unit, deps) in state.unit_dependencies.iter() {
            for dep in deps {
                if dep.unit.mode == CompileMode::RunCustomBuild {
                    reverse_deps_map
                        .entry(dep.unit.clone())
                        .or_insert_with(HashSet::new)
                        .insert(unit);
                }
            }
        }

        // Next, we take a look at all build scripts executions listed in the
        // dependency map. Our job here is to take everything that depends on
        // this build script (from our reverse map above) and look at the other
        // package dependencies of these parents.
        //
        // If we depend on a linkable target and the build script mentions
        // `links`, then we depend on that package's build script! Here we use
        // `dep_build_script` to manufacture an appropriate build script unit to
        // depend on.
        for unit in state
            .unit_dependencies
            .keys()
            .filter(|k| k.mode == CompileMode::RunCustomBuild)
        {
            // This list of dependencies all depend on `unit`, an execution of
            // the build script.
            let Some(reverse_deps) = reverse_deps_map.get(unit) else {
                continue;
            };

            let to_add = reverse_deps
                .iter()
                // Get all sibling dependencies of `unit`
                .flat_map(|reverse_dep| {
                    state.unit_dependencies[reverse_dep]
                        .iter()
                        .map(move |a| (reverse_dep, a))
                })
                // Only deps with `links`.
                .filter(|(_parent, other)| {
                    other.unit.pkg != unit.pkg
                        && other.unit.target.is_linkable()
                        && other.unit.pkg.manifest().links().is_some()
                })
                // Avoid cycles when using the doc --scrape-examples feature:
                // Say a workspace has crates A and B where A has a build-dependency on B.
                // The Doc units for A and B will have a dependency on the Docscrape for both A and B.
                // So this would add a dependency from B-build to A-build, causing a cycle:
                //   B (build) -> A (build) -> B(build)
                // See the test scrape_examples_avoid_build_script_cycle for a concrete example.
                // To avoid this cycle, we filter out the B -> A (docscrape) dependency.
                .filter(|(_parent, other)| !other.unit.mode.is_doc_scrape())
                // Skip dependencies induced via dev-dependencies since
                // connections between `links` and build scripts only happens
                // via normal dependencies. Otherwise since dev-dependencies can
                // be cyclic we could have cyclic build-script executions.
                .filter_map(move |(parent, other)| {
                    if state
                        .dev_dependency_edges
                        .contains(&((*parent).clone(), other.unit.clone()))
                    {
                        None
                    } else {
                        Some(other)
                    }
                })
                // Get the RunCustomBuild for other lib.
                .filter_map(|other| {
                    state.unit_dependencies[&other.unit]
                        .iter()
                        .find(|other_dep| other_dep.unit.mode == CompileMode::RunCustomBuild)
                        .cloned()
                })
                .collect::<HashSet<_>>();

            if !to_add.is_empty() {
                // (RunCustomBuild, set(other RunCustomBuild))
                new_deps.push((unit.clone(), to_add));
            }
        }
    }

    // And finally, add in all the missing dependencies!
    for (unit, new_deps) in new_deps {
        state
            .unit_dependencies
            .get_mut(&unit)
            .unwrap()
            .extend(new_deps);
    }
}

impl<'a, 'gctx> State<'a, 'gctx> {
    /// Gets `std_resolve` during building std, otherwise `usr_resolve`.
    fn resolve(&self) -> &'a Resolve {
        if self.is_std {
            self.std_resolve.unwrap()
        } else {
            self.usr_resolve
        }
    }

    /// Gets `std_features` during building std, otherwise `usr_features`.
    fn features(&self) -> &'a ResolvedFeatures {
        if self.is_std {
            self.std_features.unwrap()
        } else {
            self.usr_features
        }
    }

    fn activated_features(
        &self,
        pkg_id: PackageId,
        features_for: FeaturesFor,
    ) -> Vec<InternedString> {
        let features = self.features();
        features.activated_features(pkg_id, features_for)
    }

    fn is_dep_activated(
        &self,
        pkg_id: PackageId,
        features_for: FeaturesFor,
        dep_name: InternedString,
    ) -> bool {
        self.features()
            .is_dep_activated(pkg_id, features_for, dep_name)
    }

    fn get(&self, id: PackageId) -> &'a Package {
        self.package_set
            .get_one(id)
            .unwrap_or_else(|_| panic!("expected {} to be downloaded", id))
    }

    /// Returns a filtered set of dependencies for the given unit.
    fn deps(&self, unit: &Unit, unit_for: UnitFor) -> Vec<(PackageId, Vec<&Dependency>)> {
        let pkg_id = unit.pkg.package_id();
        let kind = unit.kind;
        self.resolve()
            .deps(pkg_id)
            .filter_map(|(id, deps)| {
                assert!(!deps.is_empty());
                let deps: Vec<_> = deps
                    .iter()
                    .filter(|dep| {
                        // If this target is a build command, then we only want build
                        // dependencies, otherwise we want everything *other than* build
                        // dependencies.
                        if unit.target.is_custom_build() != dep.is_build() {
                            return false;
                        }

                        // If this dependency is **not** a transitive dependency, then it
                        // only applies to test/example targets.
                        if !dep.is_transitive()
                            && !unit.target.is_test()
                            && !unit.target.is_example()
                            && !unit.mode.is_any_test()
                        {
                            return false;
                        }

                        // If this dependency is only available for certain platforms,
                        // make sure we're only enabling it for that platform.
                        if !self.target_data.dep_platform_activated(dep, kind) {
                            return false;
                        }

                        // If this is an optional dependency, and the new feature resolver
                        // did not enable it, don't include it.
                        if dep.is_optional() {
                            // This `unit_for` is from parent dep and *SHOULD* contains its own
                            // artifact dep information inside `artifact_target_for_features`.
                            // So, no need to map any artifact info from an incorrect `dep.artifact()`.
                            let features_for = unit_for.map_to_features_for(IS_NO_ARTIFACT_DEP);
                            if !self.is_dep_activated(pkg_id, features_for, dep.name_in_toml()) {
                                return false;
                            }
                        }

                        // If we've gotten past all that, then this dependency is
                        // actually used!
                        true
                    })
                    .collect();
                if deps.is_empty() {
                    None
                } else {
                    Some((id, deps))
                }
            })
            .collect()
    }
}