rustc_borrowck/region_infer/mod.rs
1use std::collections::VecDeque;
2use std::rc::Rc;
3
4use rustc_data_structures::binary_search_util;
5use rustc_data_structures::frozen::Frozen;
6use rustc_data_structures::fx::{FxIndexMap, FxIndexSet};
7use rustc_data_structures::graph::scc::{self, Sccs};
8use rustc_errors::Diag;
9use rustc_hir::def_id::CRATE_DEF_ID;
10use rustc_index::IndexVec;
11use rustc_infer::infer::outlives::test_type_match;
12use rustc_infer::infer::region_constraints::{GenericKind, VarInfos, VerifyBound, VerifyIfEq};
13use rustc_infer::infer::{InferCtxt, NllRegionVariableOrigin, RegionVariableOrigin};
14use rustc_middle::bug;
15use rustc_middle::mir::{
16 AnnotationSource, BasicBlock, Body, ClosureOutlivesRequirement, ClosureOutlivesSubject,
17 ClosureOutlivesSubjectTy, ClosureRegionRequirements, ConstraintCategory, Local, Location,
18 ReturnConstraint, TerminatorKind,
19};
20use rustc_middle::traits::{ObligationCause, ObligationCauseCode};
21use rustc_middle::ty::{self, RegionVid, Ty, TyCtxt, TypeFoldable, UniverseIndex, fold_regions};
22use rustc_mir_dataflow::points::DenseLocationMap;
23use rustc_span::hygiene::DesugaringKind;
24use rustc_span::{DUMMY_SP, Span};
25use tracing::{debug, instrument, trace};
26
27use crate::BorrowckInferCtxt;
28use crate::constraints::graph::{self, NormalConstraintGraph, RegionGraph};
29use crate::constraints::{ConstraintSccIndex, OutlivesConstraint, OutlivesConstraintSet};
30use crate::dataflow::BorrowIndex;
31use crate::diagnostics::{RegionErrorKind, RegionErrors, UniverseInfo};
32use crate::member_constraints::{MemberConstraintSet, NllMemberConstraintIndex};
33use crate::polonius::LiveLoans;
34use crate::polonius::legacy::PoloniusOutput;
35use crate::region_infer::reverse_sccs::ReverseSccGraph;
36use crate::region_infer::values::{LivenessValues, RegionElement, RegionValues, ToElementIndex};
37use crate::type_check::free_region_relations::UniversalRegionRelations;
38use crate::type_check::{Locations, MirTypeckRegionConstraints};
39use crate::universal_regions::UniversalRegions;
40
41mod dump_mir;
42mod graphviz;
43mod opaque_types;
44mod reverse_sccs;
45
46pub(crate) mod values;
47
48pub(crate) type ConstraintSccs = Sccs<RegionVid, ConstraintSccIndex, RegionTracker>;
49
50/// An annotation for region graph SCCs that tracks
51/// the values of its elements.
52#[derive(Copy, Debug, Clone)]
53pub struct RegionTracker {
54 /// The largest universe of a placeholder reached from this SCC.
55 /// This includes placeholders within this SCC.
56 max_placeholder_universe_reached: UniverseIndex,
57
58 /// The smallest universe index reachable form the nodes of this SCC.
59 min_reachable_universe: UniverseIndex,
60
61 /// The representative Region Variable Id for this SCC. We prefer
62 /// placeholders over existentially quantified variables, otherwise
63 /// it's the one with the smallest Region Variable ID.
64 pub(crate) representative: RegionVid,
65
66 /// Is the current representative a placeholder?
67 representative_is_placeholder: bool,
68
69 /// Is the current representative existentially quantified?
70 representative_is_existential: bool,
71}
72
73impl scc::Annotation for RegionTracker {
74 fn merge_scc(mut self, mut other: Self) -> Self {
75 // Prefer any placeholder over any existential
76 if other.representative_is_placeholder && self.representative_is_existential {
77 other.merge_min_max_seen(&self);
78 return other;
79 }
80
81 if self.representative_is_placeholder && other.representative_is_existential
82 || (self.representative <= other.representative)
83 {
84 self.merge_min_max_seen(&other);
85 return self;
86 }
87 other.merge_min_max_seen(&self);
88 other
89 }
90
91 fn merge_reached(mut self, other: Self) -> Self {
92 // No update to in-component values, only add seen values.
93 self.merge_min_max_seen(&other);
94 self
95 }
96}
97
98impl RegionTracker {
99 pub(crate) fn new(rvid: RegionVid, definition: &RegionDefinition<'_>) -> Self {
100 let (representative_is_placeholder, representative_is_existential) = match definition.origin
101 {
102 NllRegionVariableOrigin::FreeRegion => (false, false),
103 NllRegionVariableOrigin::Placeholder(_) => (true, false),
104 NllRegionVariableOrigin::Existential { .. } => (false, true),
105 };
106
107 let placeholder_universe =
108 if representative_is_placeholder { definition.universe } else { UniverseIndex::ROOT };
109
110 Self {
111 max_placeholder_universe_reached: placeholder_universe,
112 min_reachable_universe: definition.universe,
113 representative: rvid,
114 representative_is_placeholder,
115 representative_is_existential,
116 }
117 }
118
119 /// The smallest-indexed universe reachable from and/or in this SCC.
120 fn min_universe(self) -> UniverseIndex {
121 self.min_reachable_universe
122 }
123
124 fn merge_min_max_seen(&mut self, other: &Self) {
125 self.max_placeholder_universe_reached = std::cmp::max(
126 self.max_placeholder_universe_reached,
127 other.max_placeholder_universe_reached,
128 );
129
130 self.min_reachable_universe =
131 std::cmp::min(self.min_reachable_universe, other.min_reachable_universe);
132 }
133
134 /// Returns `true` if during the annotated SCC reaches a placeholder
135 /// with a universe larger than the smallest reachable one, `false` otherwise.
136 pub(crate) fn has_incompatible_universes(&self) -> bool {
137 self.min_universe().cannot_name(self.max_placeholder_universe_reached)
138 }
139}
140
141pub struct RegionInferenceContext<'tcx> {
142 pub var_infos: VarInfos,
143
144 /// Contains the definition for every region variable. Region
145 /// variables are identified by their index (`RegionVid`). The
146 /// definition contains information about where the region came
147 /// from as well as its final inferred value.
148 definitions: IndexVec<RegionVid, RegionDefinition<'tcx>>,
149
150 /// The liveness constraints added to each region. For most
151 /// regions, these start out empty and steadily grow, though for
152 /// each universally quantified region R they start out containing
153 /// the entire CFG and `end(R)`.
154 liveness_constraints: LivenessValues,
155
156 /// The outlives constraints computed by the type-check.
157 constraints: Frozen<OutlivesConstraintSet<'tcx>>,
158
159 /// The constraint-set, but in graph form, making it easy to traverse
160 /// the constraints adjacent to a particular region. Used to construct
161 /// the SCC (see `constraint_sccs`) and for error reporting.
162 constraint_graph: Frozen<NormalConstraintGraph>,
163
164 /// The SCC computed from `constraints` and the constraint
165 /// graph. We have an edge from SCC A to SCC B if `A: B`. Used to
166 /// compute the values of each region.
167 constraint_sccs: ConstraintSccs,
168
169 /// Reverse of the SCC constraint graph -- i.e., an edge `A -> B` exists if
170 /// `B: A`. This is used to compute the universal regions that are required
171 /// to outlive a given SCC. Computed lazily.
172 rev_scc_graph: Option<ReverseSccGraph>,
173
174 /// The "R0 member of [R1..Rn]" constraints, indexed by SCC.
175 member_constraints: Rc<MemberConstraintSet<'tcx, ConstraintSccIndex>>,
176
177 /// Records the member constraints that we applied to each scc.
178 /// This is useful for error reporting. Once constraint
179 /// propagation is done, this vector is sorted according to
180 /// `member_region_scc`.
181 member_constraints_applied: Vec<AppliedMemberConstraint>,
182
183 /// Map universe indexes to information on why we created it.
184 universe_causes: FxIndexMap<ty::UniverseIndex, UniverseInfo<'tcx>>,
185
186 /// The final inferred values of the region variables; we compute
187 /// one value per SCC. To get the value for any given *region*,
188 /// you first find which scc it is a part of.
189 scc_values: RegionValues<ConstraintSccIndex>,
190
191 /// Type constraints that we check after solving.
192 type_tests: Vec<TypeTest<'tcx>>,
193
194 /// Information about how the universally quantified regions in
195 /// scope on this function relate to one another.
196 universal_region_relations: Frozen<UniversalRegionRelations<'tcx>>,
197}
198
199/// Each time that `apply_member_constraint` is successful, it appends
200/// one of these structs to the `member_constraints_applied` field.
201/// This is used in error reporting to trace out what happened.
202///
203/// The way that `apply_member_constraint` works is that it effectively
204/// adds a new lower bound to the SCC it is analyzing: so you wind up
205/// with `'R: 'O` where `'R` is the pick-region and `'O` is the
206/// minimal viable option.
207#[derive(Debug)]
208pub(crate) struct AppliedMemberConstraint {
209 /// The SCC that was affected. (The "member region".)
210 ///
211 /// The vector if `AppliedMemberConstraint` elements is kept sorted
212 /// by this field.
213 pub(crate) member_region_scc: ConstraintSccIndex,
214
215 /// The "best option" that `apply_member_constraint` found -- this was
216 /// added as an "ad-hoc" lower-bound to `member_region_scc`.
217 pub(crate) min_choice: ty::RegionVid,
218
219 /// The "member constraint index" -- we can find out details about
220 /// the constraint from
221 /// `set.member_constraints[member_constraint_index]`.
222 pub(crate) member_constraint_index: NllMemberConstraintIndex,
223}
224
225#[derive(Debug)]
226pub(crate) struct RegionDefinition<'tcx> {
227 /// What kind of variable is this -- a free region? existential
228 /// variable? etc. (See the `NllRegionVariableOrigin` for more
229 /// info.)
230 pub(crate) origin: NllRegionVariableOrigin,
231
232 /// Which universe is this region variable defined in? This is
233 /// most often `ty::UniverseIndex::ROOT`, but when we encounter
234 /// forall-quantifiers like `for<'a> { 'a = 'b }`, we would create
235 /// the variable for `'a` in a fresh universe that extends ROOT.
236 pub(crate) universe: ty::UniverseIndex,
237
238 /// If this is 'static or an early-bound region, then this is
239 /// `Some(X)` where `X` is the name of the region.
240 pub(crate) external_name: Option<ty::Region<'tcx>>,
241}
242
243/// N.B., the variants in `Cause` are intentionally ordered. Lower
244/// values are preferred when it comes to error messages. Do not
245/// reorder willy nilly.
246#[derive(Copy, Clone, Debug, PartialOrd, Ord, PartialEq, Eq)]
247pub(crate) enum Cause {
248 /// point inserted because Local was live at the given Location
249 LiveVar(Local, Location),
250
251 /// point inserted because Local was dropped at the given Location
252 DropVar(Local, Location),
253}
254
255/// A "type test" corresponds to an outlives constraint between a type
256/// and a lifetime, like `T: 'x` or `<T as Foo>::Bar: 'x`. They are
257/// translated from the `Verify` region constraints in the ordinary
258/// inference context.
259///
260/// These sorts of constraints are handled differently than ordinary
261/// constraints, at least at present. During type checking, the
262/// `InferCtxt::process_registered_region_obligations` method will
263/// attempt to convert a type test like `T: 'x` into an ordinary
264/// outlives constraint when possible (for example, `&'a T: 'b` will
265/// be converted into `'a: 'b` and registered as a `Constraint`).
266///
267/// In some cases, however, there are outlives relationships that are
268/// not converted into a region constraint, but rather into one of
269/// these "type tests". The distinction is that a type test does not
270/// influence the inference result, but instead just examines the
271/// values that we ultimately inferred for each region variable and
272/// checks that they meet certain extra criteria. If not, an error
273/// can be issued.
274///
275/// One reason for this is that these type tests typically boil down
276/// to a check like `'a: 'x` where `'a` is a universally quantified
277/// region -- and therefore not one whose value is really meant to be
278/// *inferred*, precisely (this is not always the case: one can have a
279/// type test like `<Foo as Trait<'?0>>::Bar: 'x`, where `'?0` is an
280/// inference variable). Another reason is that these type tests can
281/// involve *disjunction* -- that is, they can be satisfied in more
282/// than one way.
283///
284/// For more information about this translation, see
285/// `InferCtxt::process_registered_region_obligations` and
286/// `InferCtxt::type_must_outlive` in `rustc_infer::infer::InferCtxt`.
287#[derive(Clone, Debug)]
288pub(crate) struct TypeTest<'tcx> {
289 /// The type `T` that must outlive the region.
290 pub generic_kind: GenericKind<'tcx>,
291
292 /// The region `'x` that the type must outlive.
293 pub lower_bound: RegionVid,
294
295 /// The span to blame.
296 pub span: Span,
297
298 /// A test which, if met by the region `'x`, proves that this type
299 /// constraint is satisfied.
300 pub verify_bound: VerifyBound<'tcx>,
301}
302
303/// When we have an unmet lifetime constraint, we try to propagate it outward (e.g. to a closure
304/// environment). If we can't, it is an error.
305#[derive(Clone, Copy, Debug, Eq, PartialEq)]
306enum RegionRelationCheckResult {
307 Ok,
308 Propagated,
309 Error,
310}
311
312#[derive(Clone, PartialEq, Eq, Debug)]
313enum Trace<'a, 'tcx> {
314 StartRegion,
315 FromGraph(&'a OutlivesConstraint<'tcx>),
316 FromStatic(RegionVid),
317 FromMember(RegionVid, RegionVid, Span),
318 NotVisited,
319}
320
321#[instrument(skip(infcx, sccs), level = "debug")]
322fn sccs_info<'tcx>(infcx: &BorrowckInferCtxt<'tcx>, sccs: &ConstraintSccs) {
323 use crate::renumber::RegionCtxt;
324
325 let var_to_origin = infcx.reg_var_to_origin.borrow();
326
327 let mut var_to_origin_sorted = var_to_origin.clone().into_iter().collect::<Vec<_>>();
328 var_to_origin_sorted.sort_by_key(|vto| vto.0);
329
330 let mut reg_vars_to_origins_str = "region variables to origins:\n".to_string();
331 for (reg_var, origin) in var_to_origin_sorted.into_iter() {
332 reg_vars_to_origins_str.push_str(&format!("{reg_var:?}: {origin:?}\n"));
333 }
334 debug!("{}", reg_vars_to_origins_str);
335
336 let num_components = sccs.num_sccs();
337 let mut components = vec![FxIndexSet::default(); num_components];
338
339 for (reg_var_idx, scc_idx) in sccs.scc_indices().iter().enumerate() {
340 let reg_var = ty::RegionVid::from_usize(reg_var_idx);
341 let origin = var_to_origin.get(®_var).unwrap_or(&RegionCtxt::Unknown);
342 components[scc_idx.as_usize()].insert((reg_var, *origin));
343 }
344
345 let mut components_str = "strongly connected components:".to_string();
346 for (scc_idx, reg_vars_origins) in components.iter().enumerate() {
347 let regions_info = reg_vars_origins.clone().into_iter().collect::<Vec<_>>();
348 components_str.push_str(&format!(
349 "{:?}: {:?},\n)",
350 ConstraintSccIndex::from_usize(scc_idx),
351 regions_info,
352 ))
353 }
354 debug!("{}", components_str);
355
356 // calculate the best representative for each component
357 let components_representatives = components
358 .into_iter()
359 .enumerate()
360 .map(|(scc_idx, region_ctxts)| {
361 let repr = region_ctxts
362 .into_iter()
363 .map(|reg_var_origin| reg_var_origin.1)
364 .max_by(|x, y| x.preference_value().cmp(&y.preference_value()))
365 .unwrap();
366
367 (ConstraintSccIndex::from_usize(scc_idx), repr)
368 })
369 .collect::<FxIndexMap<_, _>>();
370
371 let mut scc_node_to_edges = FxIndexMap::default();
372 for (scc_idx, repr) in components_representatives.iter() {
373 let edge_representatives = sccs
374 .successors(*scc_idx)
375 .iter()
376 .map(|scc_idx| components_representatives[scc_idx])
377 .collect::<Vec<_>>();
378 scc_node_to_edges.insert((scc_idx, repr), edge_representatives);
379 }
380
381 debug!("SCC edges {:#?}", scc_node_to_edges);
382}
383
384impl<'tcx> RegionInferenceContext<'tcx> {
385 /// Creates a new region inference context with a total of
386 /// `num_region_variables` valid inference variables; the first N
387 /// of those will be constant regions representing the free
388 /// regions defined in `universal_regions`.
389 ///
390 /// The `outlives_constraints` and `type_tests` are an initial set
391 /// of constraints produced by the MIR type check.
392 pub(crate) fn new(
393 infcx: &BorrowckInferCtxt<'tcx>,
394 var_infos: VarInfos,
395 constraints: MirTypeckRegionConstraints<'tcx>,
396 universal_region_relations: Frozen<UniversalRegionRelations<'tcx>>,
397 location_map: Rc<DenseLocationMap>,
398 ) -> Self {
399 let universal_regions = &universal_region_relations.universal_regions;
400 let MirTypeckRegionConstraints {
401 placeholder_indices,
402 placeholder_index_to_region: _,
403 liveness_constraints,
404 mut outlives_constraints,
405 mut member_constraints,
406 universe_causes,
407 type_tests,
408 } = constraints;
409
410 debug!("universal_regions: {:#?}", universal_region_relations.universal_regions);
411 debug!("outlives constraints: {:#?}", outlives_constraints);
412 debug!("placeholder_indices: {:#?}", placeholder_indices);
413 debug!("type tests: {:#?}", type_tests);
414
415 if let Some(guar) = universal_region_relations.universal_regions.tainted_by_errors() {
416 // Suppress unhelpful extra errors in `infer_opaque_types` by clearing out all
417 // outlives bounds that we may end up checking.
418 outlives_constraints = Default::default();
419 member_constraints = Default::default();
420
421 // Also taint the entire scope.
422 infcx.set_tainted_by_errors(guar);
423 }
424
425 // Create a RegionDefinition for each inference variable.
426 let definitions: IndexVec<_, _> = var_infos
427 .iter()
428 .map(|info| RegionDefinition::new(info.universe, info.origin))
429 .collect();
430
431 let constraint_sccs =
432 outlives_constraints.add_outlives_static(&universal_regions, &definitions);
433 let constraints = Frozen::freeze(outlives_constraints);
434 let constraint_graph = Frozen::freeze(constraints.graph(definitions.len()));
435
436 if cfg!(debug_assertions) {
437 sccs_info(infcx, &constraint_sccs);
438 }
439
440 let mut scc_values =
441 RegionValues::new(location_map, universal_regions.len(), placeholder_indices);
442
443 for region in liveness_constraints.regions() {
444 let scc = constraint_sccs.scc(region);
445 scc_values.merge_liveness(scc, region, &liveness_constraints);
446 }
447
448 let member_constraints =
449 Rc::new(member_constraints.into_mapped(|r| constraint_sccs.scc(r)));
450
451 let mut result = Self {
452 var_infos,
453 definitions,
454 liveness_constraints,
455 constraints,
456 constraint_graph,
457 constraint_sccs,
458 rev_scc_graph: None,
459 member_constraints,
460 member_constraints_applied: Vec::new(),
461 universe_causes,
462 scc_values,
463 type_tests,
464 universal_region_relations,
465 };
466
467 result.init_free_and_bound_regions();
468
469 result
470 }
471
472 /// Initializes the region variables for each universally
473 /// quantified region (lifetime parameter). The first N variables
474 /// always correspond to the regions appearing in the function
475 /// signature (both named and anonymous) and where-clauses. This
476 /// function iterates over those regions and initializes them with
477 /// minimum values.
478 ///
479 /// For example:
480 /// ```
481 /// fn foo<'a, 'b>( /* ... */ ) where 'a: 'b { /* ... */ }
482 /// ```
483 /// would initialize two variables like so:
484 /// ```ignore (illustrative)
485 /// R0 = { CFG, R0 } // 'a
486 /// R1 = { CFG, R0, R1 } // 'b
487 /// ```
488 /// Here, R0 represents `'a`, and it contains (a) the entire CFG
489 /// and (b) any universally quantified regions that it outlives,
490 /// which in this case is just itself. R1 (`'b`) in contrast also
491 /// outlives `'a` and hence contains R0 and R1.
492 ///
493 /// This bit of logic also handles invalid universe relations
494 /// for higher-kinded types.
495 ///
496 /// We Walk each SCC `A` and `B` such that `A: B`
497 /// and ensure that universe(A) can see universe(B).
498 ///
499 /// This serves to enforce the 'empty/placeholder' hierarchy
500 /// (described in more detail on `RegionKind`):
501 ///
502 /// ```ignore (illustrative)
503 /// static -----+
504 /// | |
505 /// empty(U0) placeholder(U1)
506 /// | /
507 /// empty(U1)
508 /// ```
509 ///
510 /// In particular, imagine we have variables R0 in U0 and R1
511 /// created in U1, and constraints like this;
512 ///
513 /// ```ignore (illustrative)
514 /// R1: !1 // R1 outlives the placeholder in U1
515 /// R1: R0 // R1 outlives R0
516 /// ```
517 ///
518 /// Here, we wish for R1 to be `'static`, because it
519 /// cannot outlive `placeholder(U1)` and `empty(U0)` any other way.
520 ///
521 /// Thanks to this loop, what happens is that the `R1: R0`
522 /// constraint has lowered the universe of `R1` to `U0`, which in turn
523 /// means that the `R1: !1` constraint here will cause
524 /// `R1` to become `'static`.
525 fn init_free_and_bound_regions(&mut self) {
526 // Update the names (if any)
527 // This iterator has unstable order but we collect it all into an IndexVec
528 for (external_name, variable) in
529 self.universal_region_relations.universal_regions.named_universal_regions_iter()
530 {
531 debug!(
532 "init_free_and_bound_regions: region {:?} has external name {:?}",
533 variable, external_name
534 );
535 self.definitions[variable].external_name = Some(external_name);
536 }
537
538 for variable in self.definitions.indices() {
539 let scc = self.constraint_sccs.scc(variable);
540
541 match self.definitions[variable].origin {
542 NllRegionVariableOrigin::FreeRegion => {
543 // For each free, universally quantified region X:
544
545 // Add all nodes in the CFG to liveness constraints
546 self.liveness_constraints.add_all_points(variable);
547 self.scc_values.add_all_points(scc);
548
549 // Add `end(X)` into the set for X.
550 self.scc_values.add_element(scc, variable);
551 }
552
553 NllRegionVariableOrigin::Placeholder(placeholder) => {
554 self.scc_values.add_element(scc, placeholder);
555 }
556
557 NllRegionVariableOrigin::Existential { .. } => {
558 // For existential, regions, nothing to do.
559 }
560 }
561 }
562 }
563
564 /// Returns an iterator over all the region indices.
565 pub(crate) fn regions(&self) -> impl Iterator<Item = RegionVid> + 'tcx {
566 self.definitions.indices()
567 }
568
569 /// Given a universal region in scope on the MIR, returns the
570 /// corresponding index.
571 ///
572 /// Panics if `r` is not a registered universal region, most notably
573 /// if it is a placeholder. Handling placeholders requires access to the
574 /// `MirTypeckRegionConstraints`.
575 pub(crate) fn to_region_vid(&self, r: ty::Region<'tcx>) -> RegionVid {
576 self.universal_regions().to_region_vid(r)
577 }
578
579 /// Returns an iterator over all the outlives constraints.
580 pub(crate) fn outlives_constraints(&self) -> impl Iterator<Item = OutlivesConstraint<'tcx>> {
581 self.constraints.outlives().iter().copied()
582 }
583
584 /// Adds annotations for `#[rustc_regions]`; see `UniversalRegions::annotate`.
585 pub(crate) fn annotate(&self, tcx: TyCtxt<'tcx>, err: &mut Diag<'_, ()>) {
586 self.universal_regions().annotate(tcx, err)
587 }
588
589 /// Returns `true` if the region `r` contains the point `p`.
590 ///
591 /// Panics if called before `solve()` executes,
592 pub(crate) fn region_contains(&self, r: RegionVid, p: impl ToElementIndex) -> bool {
593 let scc = self.constraint_sccs.scc(r);
594 self.scc_values.contains(scc, p)
595 }
596
597 /// Returns the lowest statement index in `start..=end` which is not contained by `r`.
598 ///
599 /// Panics if called before `solve()` executes.
600 pub(crate) fn first_non_contained_inclusive(
601 &self,
602 r: RegionVid,
603 block: BasicBlock,
604 start: usize,
605 end: usize,
606 ) -> Option<usize> {
607 let scc = self.constraint_sccs.scc(r);
608 self.scc_values.first_non_contained_inclusive(scc, block, start, end)
609 }
610
611 /// Returns access to the value of `r` for debugging purposes.
612 pub(crate) fn region_value_str(&self, r: RegionVid) -> String {
613 let scc = self.constraint_sccs.scc(r);
614 self.scc_values.region_value_str(scc)
615 }
616
617 pub(crate) fn placeholders_contained_in(
618 &self,
619 r: RegionVid,
620 ) -> impl Iterator<Item = ty::PlaceholderRegion> {
621 let scc = self.constraint_sccs.scc(r);
622 self.scc_values.placeholders_contained_in(scc)
623 }
624
625 /// Returns access to the value of `r` for debugging purposes.
626 pub(crate) fn region_universe(&self, r: RegionVid) -> ty::UniverseIndex {
627 self.scc_universe(self.constraint_sccs.scc(r))
628 }
629
630 /// Once region solving has completed, this function will return the member constraints that
631 /// were applied to the value of a given SCC `scc`. See `AppliedMemberConstraint`.
632 pub(crate) fn applied_member_constraints(
633 &self,
634 scc: ConstraintSccIndex,
635 ) -> &[AppliedMemberConstraint] {
636 binary_search_util::binary_search_slice(
637 &self.member_constraints_applied,
638 |applied| applied.member_region_scc,
639 &scc,
640 )
641 }
642
643 /// Performs region inference and report errors if we see any
644 /// unsatisfiable constraints. If this is a closure, returns the
645 /// region requirements to propagate to our creator, if any.
646 #[instrument(skip(self, infcx, body, polonius_output), level = "debug")]
647 pub(super) fn solve(
648 &mut self,
649 infcx: &InferCtxt<'tcx>,
650 body: &Body<'tcx>,
651 polonius_output: Option<Box<PoloniusOutput>>,
652 ) -> (Option<ClosureRegionRequirements<'tcx>>, RegionErrors<'tcx>) {
653 let mir_def_id = body.source.def_id();
654 self.propagate_constraints();
655
656 let mut errors_buffer = RegionErrors::new(infcx.tcx);
657
658 // If this is a closure, we can propagate unsatisfied
659 // `outlives_requirements` to our creator, so create a vector
660 // to store those. Otherwise, we'll pass in `None` to the
661 // functions below, which will trigger them to report errors
662 // eagerly.
663 let mut outlives_requirements = infcx.tcx.is_typeck_child(mir_def_id).then(Vec::new);
664
665 self.check_type_tests(infcx, outlives_requirements.as_mut(), &mut errors_buffer);
666
667 debug!(?errors_buffer);
668 debug!(?outlives_requirements);
669
670 // In Polonius mode, the errors about missing universal region relations are in the output
671 // and need to be emitted or propagated. Otherwise, we need to check whether the
672 // constraints were too strong, and if so, emit or propagate those errors.
673 if infcx.tcx.sess.opts.unstable_opts.polonius.is_legacy_enabled() {
674 self.check_polonius_subset_errors(
675 outlives_requirements.as_mut(),
676 &mut errors_buffer,
677 polonius_output
678 .as_ref()
679 .expect("Polonius output is unavailable despite `-Z polonius`"),
680 );
681 } else {
682 self.check_universal_regions(outlives_requirements.as_mut(), &mut errors_buffer);
683 }
684
685 debug!(?errors_buffer);
686
687 if errors_buffer.is_empty() {
688 self.check_member_constraints(infcx, &mut errors_buffer);
689 }
690
691 debug!(?errors_buffer);
692
693 let outlives_requirements = outlives_requirements.unwrap_or_default();
694
695 if outlives_requirements.is_empty() {
696 (None, errors_buffer)
697 } else {
698 let num_external_vids = self.universal_regions().num_global_and_external_regions();
699 (
700 Some(ClosureRegionRequirements { num_external_vids, outlives_requirements }),
701 errors_buffer,
702 )
703 }
704 }
705
706 /// Propagate the region constraints: this will grow the values
707 /// for each region variable until all the constraints are
708 /// satisfied. Note that some values may grow **too** large to be
709 /// feasible, but we check this later.
710 #[instrument(skip(self), level = "debug")]
711 fn propagate_constraints(&mut self) {
712 debug!("constraints={:#?}", {
713 let mut constraints: Vec<_> = self.outlives_constraints().collect();
714 constraints.sort_by_key(|c| (c.sup, c.sub));
715 constraints
716 .into_iter()
717 .map(|c| (c, self.constraint_sccs.scc(c.sup), self.constraint_sccs.scc(c.sub)))
718 .collect::<Vec<_>>()
719 });
720
721 // To propagate constraints, we walk the DAG induced by the
722 // SCC. For each SCC, we visit its successors and compute
723 // their values, then we union all those values to get our
724 // own.
725 for scc in self.constraint_sccs.all_sccs() {
726 self.compute_value_for_scc(scc);
727 }
728
729 // Sort the applied member constraints so we can binary search
730 // through them later.
731 self.member_constraints_applied.sort_by_key(|applied| applied.member_region_scc);
732 }
733
734 /// Computes the value of the SCC `scc_a`, which has not yet been
735 /// computed, by unioning the values of its successors.
736 /// Assumes that all successors have been computed already
737 /// (which is assured by iterating over SCCs in dependency order).
738 #[instrument(skip(self), level = "debug")]
739 fn compute_value_for_scc(&mut self, scc_a: ConstraintSccIndex) {
740 // Walk each SCC `B` such that `A: B`...
741 for &scc_b in self.constraint_sccs.successors(scc_a) {
742 debug!(?scc_b);
743 self.scc_values.add_region(scc_a, scc_b);
744 }
745
746 // Now take member constraints into account.
747 let member_constraints = Rc::clone(&self.member_constraints);
748 for m_c_i in member_constraints.indices(scc_a) {
749 self.apply_member_constraint(scc_a, m_c_i, member_constraints.choice_regions(m_c_i));
750 }
751
752 debug!(value = ?self.scc_values.region_value_str(scc_a));
753 }
754
755 /// Invoked for each `R0 member of [R1..Rn]` constraint.
756 ///
757 /// `scc` is the SCC containing R0, and `choice_regions` are the
758 /// `R1..Rn` regions -- they are always known to be universal
759 /// regions (and if that's not true, we just don't attempt to
760 /// enforce the constraint).
761 ///
762 /// The current value of `scc` at the time the method is invoked
763 /// is considered a *lower bound*. If possible, we will modify
764 /// the constraint to set it equal to one of the option regions.
765 /// If we make any changes, returns true, else false.
766 ///
767 /// This function only adds the member constraints to the region graph,
768 /// it does not check them. They are later checked in
769 /// `check_member_constraints` after the region graph has been computed.
770 #[instrument(skip(self, member_constraint_index), level = "debug")]
771 fn apply_member_constraint(
772 &mut self,
773 scc: ConstraintSccIndex,
774 member_constraint_index: NllMemberConstraintIndex,
775 choice_regions: &[ty::RegionVid],
776 ) {
777 // Lazily compute the reverse graph, we'll need it later.
778 self.compute_reverse_scc_graph();
779
780 // Create a mutable vector of the options. We'll try to winnow
781 // them down.
782 let mut choice_regions: Vec<ty::RegionVid> = choice_regions.to_vec();
783
784 // Convert to the SCC representative: sometimes we have inference
785 // variables in the member constraint that wind up equated with
786 // universal regions. The scc representative is the minimal numbered
787 // one from the corresponding scc so it will be the universal region
788 // if one exists.
789 for c_r in &mut choice_regions {
790 let scc = self.constraint_sccs.scc(*c_r);
791 *c_r = self.scc_representative(scc);
792 }
793
794 // If the member region lives in a higher universe, we currently choose
795 // the most conservative option by leaving it unchanged.
796 if !self.constraint_sccs().annotation(scc).min_universe().is_root() {
797 return;
798 }
799
800 // The existing value for `scc` is a lower-bound. This will
801 // consist of some set `{P} + {LB}` of points `{P}` and
802 // lower-bound free regions `{LB}`. As each choice region `O`
803 // is a free region, it will outlive the points. But we can
804 // only consider the option `O` if `O: LB`.
805 choice_regions.retain(|&o_r| {
806 self.scc_values
807 .universal_regions_outlived_by(scc)
808 .all(|lb| self.universal_region_relations.outlives(o_r, lb))
809 });
810 debug!(?choice_regions, "after lb");
811
812 // Now find all the *upper bounds* -- that is, each UB is a
813 // free region that must outlive the member region `R0` (`UB:
814 // R0`). Therefore, we need only keep an option `O` if `UB: O`
815 // for all UB.
816 let universal_region_relations = &self.universal_region_relations;
817 for ub in self.rev_scc_graph.as_ref().unwrap().upper_bounds(scc) {
818 debug!(?ub);
819 choice_regions.retain(|&o_r| universal_region_relations.outlives(ub, o_r));
820 }
821 debug!(?choice_regions, "after ub");
822
823 // At this point we can pick any member of `choice_regions` and would like to choose
824 // it to be a small as possible. To avoid potential non-determinism we will pick the
825 // smallest such choice.
826 //
827 // Because universal regions are only partially ordered (i.e, not every two regions are
828 // comparable), we will ignore any region that doesn't compare to all others when picking
829 // the minimum choice.
830 //
831 // For example, consider `choice_regions = ['static, 'a, 'b, 'c, 'd, 'e]`, where
832 // `'static: 'a, 'static: 'b, 'a: 'c, 'b: 'c, 'c: 'd, 'c: 'e`.
833 // `['d, 'e]` are ignored because they do not compare - the same goes for `['a, 'b]`.
834 let totally_ordered_subset = choice_regions.iter().copied().filter(|&r1| {
835 choice_regions.iter().all(|&r2| {
836 self.universal_region_relations.outlives(r1, r2)
837 || self.universal_region_relations.outlives(r2, r1)
838 })
839 });
840 // Now we're left with `['static, 'c]`. Pick `'c` as the minimum!
841 let Some(min_choice) = totally_ordered_subset.reduce(|r1, r2| {
842 let r1_outlives_r2 = self.universal_region_relations.outlives(r1, r2);
843 let r2_outlives_r1 = self.universal_region_relations.outlives(r2, r1);
844 match (r1_outlives_r2, r2_outlives_r1) {
845 (true, true) => r1.min(r2),
846 (true, false) => r2,
847 (false, true) => r1,
848 (false, false) => bug!("incomparable regions in total order"),
849 }
850 }) else {
851 debug!("no unique minimum choice");
852 return;
853 };
854
855 // As we require `'scc: 'min_choice`, we have definitely already computed
856 // its `scc_values` at this point.
857 let min_choice_scc = self.constraint_sccs.scc(min_choice);
858 debug!(?min_choice, ?min_choice_scc);
859 if self.scc_values.add_region(scc, min_choice_scc) {
860 self.member_constraints_applied.push(AppliedMemberConstraint {
861 member_region_scc: scc,
862 min_choice,
863 member_constraint_index,
864 });
865 }
866 }
867
868 /// Returns `true` if all the elements in the value of `scc_b` are nameable
869 /// in `scc_a`. Used during constraint propagation, and only once
870 /// the value of `scc_b` has been computed.
871 fn universe_compatible(&self, scc_b: ConstraintSccIndex, scc_a: ConstraintSccIndex) -> bool {
872 let a_annotation = self.constraint_sccs().annotation(scc_a);
873 let b_annotation = self.constraint_sccs().annotation(scc_b);
874 let a_universe = a_annotation.min_universe();
875
876 // If scc_b's declared universe is a subset of
877 // scc_a's declared universe (typically, both are ROOT), then
878 // it cannot contain any problematic universe elements.
879 if a_universe.can_name(b_annotation.min_universe()) {
880 return true;
881 }
882
883 // Otherwise, there can be no placeholder in `b` with a too high
884 // universe index to name from `a`.
885 a_universe.can_name(b_annotation.max_placeholder_universe_reached)
886 }
887
888 /// Once regions have been propagated, this method is used to see
889 /// whether the "type tests" produced by typeck were satisfied;
890 /// type tests encode type-outlives relationships like `T:
891 /// 'a`. See `TypeTest` for more details.
892 fn check_type_tests(
893 &self,
894 infcx: &InferCtxt<'tcx>,
895 mut propagated_outlives_requirements: Option<&mut Vec<ClosureOutlivesRequirement<'tcx>>>,
896 errors_buffer: &mut RegionErrors<'tcx>,
897 ) {
898 let tcx = infcx.tcx;
899
900 // Sometimes we register equivalent type-tests that would
901 // result in basically the exact same error being reported to
902 // the user. Avoid that.
903 let mut deduplicate_errors = FxIndexSet::default();
904
905 for type_test in &self.type_tests {
906 debug!("check_type_test: {:?}", type_test);
907
908 let generic_ty = type_test.generic_kind.to_ty(tcx);
909 if self.eval_verify_bound(
910 infcx,
911 generic_ty,
912 type_test.lower_bound,
913 &type_test.verify_bound,
914 ) {
915 continue;
916 }
917
918 if let Some(propagated_outlives_requirements) = &mut propagated_outlives_requirements {
919 if self.try_promote_type_test(infcx, type_test, propagated_outlives_requirements) {
920 continue;
921 }
922 }
923
924 // Type-test failed. Report the error.
925 let erased_generic_kind = infcx.tcx.erase_regions(type_test.generic_kind);
926
927 // Skip duplicate-ish errors.
928 if deduplicate_errors.insert((
929 erased_generic_kind,
930 type_test.lower_bound,
931 type_test.span,
932 )) {
933 debug!(
934 "check_type_test: reporting error for erased_generic_kind={:?}, \
935 lower_bound_region={:?}, \
936 type_test.span={:?}",
937 erased_generic_kind, type_test.lower_bound, type_test.span,
938 );
939
940 errors_buffer.push(RegionErrorKind::TypeTestError { type_test: type_test.clone() });
941 }
942 }
943 }
944
945 /// Invoked when we have some type-test (e.g., `T: 'X`) that we cannot
946 /// prove to be satisfied. If this is a closure, we will attempt to
947 /// "promote" this type-test into our `ClosureRegionRequirements` and
948 /// hence pass it up the creator. To do this, we have to phrase the
949 /// type-test in terms of external free regions, as local free
950 /// regions are not nameable by the closure's creator.
951 ///
952 /// Promotion works as follows: we first check that the type `T`
953 /// contains only regions that the creator knows about. If this is
954 /// true, then -- as a consequence -- we know that all regions in
955 /// the type `T` are free regions that outlive the closure body. If
956 /// false, then promotion fails.
957 ///
958 /// Once we've promoted T, we have to "promote" `'X` to some region
959 /// that is "external" to the closure. Generally speaking, a region
960 /// may be the union of some points in the closure body as well as
961 /// various free lifetimes. We can ignore the points in the closure
962 /// body: if the type T can be expressed in terms of external regions,
963 /// we know it outlives the points in the closure body. That
964 /// just leaves the free regions.
965 ///
966 /// The idea then is to lower the `T: 'X` constraint into multiple
967 /// bounds -- e.g., if `'X` is the union of two free lifetimes,
968 /// `'1` and `'2`, then we would create `T: '1` and `T: '2`.
969 #[instrument(level = "debug", skip(self, infcx, propagated_outlives_requirements))]
970 fn try_promote_type_test(
971 &self,
972 infcx: &InferCtxt<'tcx>,
973 type_test: &TypeTest<'tcx>,
974 propagated_outlives_requirements: &mut Vec<ClosureOutlivesRequirement<'tcx>>,
975 ) -> bool {
976 let tcx = infcx.tcx;
977 let TypeTest { generic_kind, lower_bound, span: blame_span, verify_bound: _ } = *type_test;
978
979 let generic_ty = generic_kind.to_ty(tcx);
980 let Some(subject) = self.try_promote_type_test_subject(infcx, generic_ty) else {
981 return false;
982 };
983
984 let r_scc = self.constraint_sccs.scc(lower_bound);
985 debug!(
986 "lower_bound = {:?} r_scc={:?} universe={:?}",
987 lower_bound,
988 r_scc,
989 self.constraint_sccs.annotation(r_scc).min_universe()
990 );
991 // If the type test requires that `T: 'a` where `'a` is a
992 // placeholder from another universe, that effectively requires
993 // `T: 'static`, so we have to propagate that requirement.
994 //
995 // It doesn't matter *what* universe because the promoted `T` will
996 // always be in the root universe.
997 if let Some(p) = self.scc_values.placeholders_contained_in(r_scc).next() {
998 debug!("encountered placeholder in higher universe: {:?}, requiring 'static", p);
999 let static_r = self.universal_regions().fr_static;
1000 propagated_outlives_requirements.push(ClosureOutlivesRequirement {
1001 subject,
1002 outlived_free_region: static_r,
1003 blame_span,
1004 category: ConstraintCategory::Boring,
1005 });
1006
1007 // we can return here -- the code below might push add'l constraints
1008 // but they would all be weaker than this one.
1009 return true;
1010 }
1011
1012 // For each region outlived by lower_bound find a non-local,
1013 // universal region (it may be the same region) and add it to
1014 // `ClosureOutlivesRequirement`.
1015 let mut found_outlived_universal_region = false;
1016 for ur in self.scc_values.universal_regions_outlived_by(r_scc) {
1017 found_outlived_universal_region = true;
1018 debug!("universal_region_outlived_by ur={:?}", ur);
1019 let non_local_ub = self.universal_region_relations.non_local_upper_bounds(ur);
1020 debug!(?non_local_ub);
1021
1022 // This is slightly too conservative. To show T: '1, given `'2: '1`
1023 // and `'3: '1` we only need to prove that T: '2 *or* T: '3, but to
1024 // avoid potential non-determinism we approximate this by requiring
1025 // T: '1 and T: '2.
1026 for upper_bound in non_local_ub {
1027 debug_assert!(self.universal_regions().is_universal_region(upper_bound));
1028 debug_assert!(!self.universal_regions().is_local_free_region(upper_bound));
1029
1030 let requirement = ClosureOutlivesRequirement {
1031 subject,
1032 outlived_free_region: upper_bound,
1033 blame_span,
1034 category: ConstraintCategory::Boring,
1035 };
1036 debug!(?requirement, "adding closure requirement");
1037 propagated_outlives_requirements.push(requirement);
1038 }
1039 }
1040 // If we succeed to promote the subject, i.e. it only contains non-local regions,
1041 // and fail to prove the type test inside of the closure, the `lower_bound` has to
1042 // also be at least as large as some universal region, as the type test is otherwise
1043 // trivial.
1044 assert!(found_outlived_universal_region);
1045 true
1046 }
1047
1048 /// When we promote a type test `T: 'r`, we have to replace all region
1049 /// variables in the type `T` with an equal universal region from the
1050 /// closure signature.
1051 /// This is not always possible, so this is a fallible process.
1052 #[instrument(level = "debug", skip(self, infcx), ret)]
1053 fn try_promote_type_test_subject(
1054 &self,
1055 infcx: &InferCtxt<'tcx>,
1056 ty: Ty<'tcx>,
1057 ) -> Option<ClosureOutlivesSubject<'tcx>> {
1058 let tcx = infcx.tcx;
1059 let mut failed = false;
1060 let ty = fold_regions(tcx, ty, |r, _depth| {
1061 let r_vid = self.to_region_vid(r);
1062 let r_scc = self.constraint_sccs.scc(r_vid);
1063
1064 // The challenge is this. We have some region variable `r`
1065 // whose value is a set of CFG points and universal
1066 // regions. We want to find if that set is *equivalent* to
1067 // any of the named regions found in the closure.
1068 // To do so, we simply check every candidate `u_r` for equality.
1069 self.scc_values
1070 .universal_regions_outlived_by(r_scc)
1071 .filter(|&u_r| !self.universal_regions().is_local_free_region(u_r))
1072 .find(|&u_r| self.eval_equal(u_r, r_vid))
1073 .map(|u_r| ty::Region::new_var(tcx, u_r))
1074 // In case we could not find a named region to map to,
1075 // we will return `None` below.
1076 .unwrap_or_else(|| {
1077 failed = true;
1078 r
1079 })
1080 });
1081
1082 debug!("try_promote_type_test_subject: folded ty = {:?}", ty);
1083
1084 // This will be true if we failed to promote some region.
1085 if failed {
1086 return None;
1087 }
1088
1089 Some(ClosureOutlivesSubject::Ty(ClosureOutlivesSubjectTy::bind(tcx, ty)))
1090 }
1091
1092 /// Like `universal_upper_bound`, but returns an approximation more suitable
1093 /// for diagnostics. If `r` contains multiple disjoint universal regions
1094 /// (e.g. 'a and 'b in `fn foo<'a, 'b> { ... }`, we pick the lower-numbered region.
1095 /// This corresponds to picking named regions over unnamed regions
1096 /// (e.g. picking early-bound regions over a closure late-bound region).
1097 ///
1098 /// This means that the returned value may not be a true upper bound, since
1099 /// only 'static is known to outlive disjoint universal regions.
1100 /// Therefore, this method should only be used in diagnostic code,
1101 /// where displaying *some* named universal region is better than
1102 /// falling back to 'static.
1103 #[instrument(level = "debug", skip(self))]
1104 pub(crate) fn approx_universal_upper_bound(&self, r: RegionVid) -> RegionVid {
1105 debug!("{}", self.region_value_str(r));
1106
1107 // Find the smallest universal region that contains all other
1108 // universal regions within `region`.
1109 let mut lub = self.universal_regions().fr_fn_body;
1110 let r_scc = self.constraint_sccs.scc(r);
1111 let static_r = self.universal_regions().fr_static;
1112 for ur in self.scc_values.universal_regions_outlived_by(r_scc) {
1113 let new_lub = self.universal_region_relations.postdom_upper_bound(lub, ur);
1114 debug!(?ur, ?lub, ?new_lub);
1115 // The upper bound of two non-static regions is static: this
1116 // means we know nothing about the relationship between these
1117 // two regions. Pick a 'better' one to use when constructing
1118 // a diagnostic
1119 if ur != static_r && lub != static_r && new_lub == static_r {
1120 // Prefer the region with an `external_name` - this
1121 // indicates that the region is early-bound, so working with
1122 // it can produce a nicer error.
1123 if self.region_definition(ur).external_name.is_some() {
1124 lub = ur;
1125 } else if self.region_definition(lub).external_name.is_some() {
1126 // Leave lub unchanged
1127 } else {
1128 // If we get here, we don't have any reason to prefer
1129 // one region over the other. Just pick the
1130 // one with the lower index for now.
1131 lub = std::cmp::min(ur, lub);
1132 }
1133 } else {
1134 lub = new_lub;
1135 }
1136 }
1137
1138 debug!(?r, ?lub);
1139
1140 lub
1141 }
1142
1143 /// Tests if `test` is true when applied to `lower_bound` at
1144 /// `point`.
1145 fn eval_verify_bound(
1146 &self,
1147 infcx: &InferCtxt<'tcx>,
1148 generic_ty: Ty<'tcx>,
1149 lower_bound: RegionVid,
1150 verify_bound: &VerifyBound<'tcx>,
1151 ) -> bool {
1152 debug!("eval_verify_bound(lower_bound={:?}, verify_bound={:?})", lower_bound, verify_bound);
1153
1154 match verify_bound {
1155 VerifyBound::IfEq(verify_if_eq_b) => {
1156 self.eval_if_eq(infcx, generic_ty, lower_bound, *verify_if_eq_b)
1157 }
1158
1159 VerifyBound::IsEmpty => {
1160 let lower_bound_scc = self.constraint_sccs.scc(lower_bound);
1161 self.scc_values.elements_contained_in(lower_bound_scc).next().is_none()
1162 }
1163
1164 VerifyBound::OutlivedBy(r) => {
1165 let r_vid = self.to_region_vid(*r);
1166 self.eval_outlives(r_vid, lower_bound)
1167 }
1168
1169 VerifyBound::AnyBound(verify_bounds) => verify_bounds.iter().any(|verify_bound| {
1170 self.eval_verify_bound(infcx, generic_ty, lower_bound, verify_bound)
1171 }),
1172
1173 VerifyBound::AllBounds(verify_bounds) => verify_bounds.iter().all(|verify_bound| {
1174 self.eval_verify_bound(infcx, generic_ty, lower_bound, verify_bound)
1175 }),
1176 }
1177 }
1178
1179 fn eval_if_eq(
1180 &self,
1181 infcx: &InferCtxt<'tcx>,
1182 generic_ty: Ty<'tcx>,
1183 lower_bound: RegionVid,
1184 verify_if_eq_b: ty::Binder<'tcx, VerifyIfEq<'tcx>>,
1185 ) -> bool {
1186 let generic_ty = self.normalize_to_scc_representatives(infcx.tcx, generic_ty);
1187 let verify_if_eq_b = self.normalize_to_scc_representatives(infcx.tcx, verify_if_eq_b);
1188 match test_type_match::extract_verify_if_eq(infcx.tcx, &verify_if_eq_b, generic_ty) {
1189 Some(r) => {
1190 let r_vid = self.to_region_vid(r);
1191 self.eval_outlives(r_vid, lower_bound)
1192 }
1193 None => false,
1194 }
1195 }
1196
1197 /// This is a conservative normalization procedure. It takes every
1198 /// free region in `value` and replaces it with the
1199 /// "representative" of its SCC (see `scc_representatives` field).
1200 /// We are guaranteed that if two values normalize to the same
1201 /// thing, then they are equal; this is a conservative check in
1202 /// that they could still be equal even if they normalize to
1203 /// different results. (For example, there might be two regions
1204 /// with the same value that are not in the same SCC).
1205 ///
1206 /// N.B., this is not an ideal approach and I would like to revisit
1207 /// it. However, it works pretty well in practice. In particular,
1208 /// this is needed to deal with projection outlives bounds like
1209 ///
1210 /// ```text
1211 /// <T as Foo<'0>>::Item: '1
1212 /// ```
1213 ///
1214 /// In particular, this routine winds up being important when
1215 /// there are bounds like `where <T as Foo<'a>>::Item: 'b` in the
1216 /// environment. In this case, if we can show that `'0 == 'a`,
1217 /// and that `'b: '1`, then we know that the clause is
1218 /// satisfied. In such cases, particularly due to limitations of
1219 /// the trait solver =), we usually wind up with a where-clause like
1220 /// `T: Foo<'a>` in scope, which thus forces `'0 == 'a` to be added as
1221 /// a constraint, and thus ensures that they are in the same SCC.
1222 ///
1223 /// So why can't we do a more correct routine? Well, we could
1224 /// *almost* use the `relate_tys` code, but the way it is
1225 /// currently setup it creates inference variables to deal with
1226 /// higher-ranked things and so forth, and right now the inference
1227 /// context is not permitted to make more inference variables. So
1228 /// we use this kind of hacky solution.
1229 fn normalize_to_scc_representatives<T>(&self, tcx: TyCtxt<'tcx>, value: T) -> T
1230 where
1231 T: TypeFoldable<TyCtxt<'tcx>>,
1232 {
1233 fold_regions(tcx, value, |r, _db| {
1234 let vid = self.to_region_vid(r);
1235 let scc = self.constraint_sccs.scc(vid);
1236 let repr = self.scc_representative(scc);
1237 ty::Region::new_var(tcx, repr)
1238 })
1239 }
1240
1241 /// Evaluate whether `sup_region == sub_region`.
1242 ///
1243 /// Panics if called before `solve()` executes,
1244 // This is `pub` because it's used by unstable external borrowck data users, see `consumers.rs`.
1245 pub fn eval_equal(&self, r1: RegionVid, r2: RegionVid) -> bool {
1246 self.eval_outlives(r1, r2) && self.eval_outlives(r2, r1)
1247 }
1248
1249 /// Evaluate whether `sup_region: sub_region`.
1250 ///
1251 /// Panics if called before `solve()` executes,
1252 // This is `pub` because it's used by unstable external borrowck data users, see `consumers.rs`.
1253 #[instrument(skip(self), level = "debug", ret)]
1254 pub fn eval_outlives(&self, sup_region: RegionVid, sub_region: RegionVid) -> bool {
1255 debug!(
1256 "sup_region's value = {:?} universal={:?}",
1257 self.region_value_str(sup_region),
1258 self.universal_regions().is_universal_region(sup_region),
1259 );
1260 debug!(
1261 "sub_region's value = {:?} universal={:?}",
1262 self.region_value_str(sub_region),
1263 self.universal_regions().is_universal_region(sub_region),
1264 );
1265
1266 let sub_region_scc = self.constraint_sccs.scc(sub_region);
1267 let sup_region_scc = self.constraint_sccs.scc(sup_region);
1268
1269 if sub_region_scc == sup_region_scc {
1270 debug!("{sup_region:?}: {sub_region:?} holds trivially; they are in the same SCC");
1271 return true;
1272 }
1273
1274 // If we are checking that `'sup: 'sub`, and `'sub` contains
1275 // some placeholder that `'sup` cannot name, then this is only
1276 // true if `'sup` outlives static.
1277 if !self.universe_compatible(sub_region_scc, sup_region_scc) {
1278 debug!(
1279 "sub universe `{sub_region_scc:?}` is not nameable \
1280 by super `{sup_region_scc:?}`, promoting to static",
1281 );
1282
1283 return self.eval_outlives(sup_region, self.universal_regions().fr_static);
1284 }
1285
1286 // Both the `sub_region` and `sup_region` consist of the union
1287 // of some number of universal regions (along with the union
1288 // of various points in the CFG; ignore those points for
1289 // now). Therefore, the sup-region outlives the sub-region if,
1290 // for each universal region R1 in the sub-region, there
1291 // exists some region R2 in the sup-region that outlives R1.
1292 let universal_outlives =
1293 self.scc_values.universal_regions_outlived_by(sub_region_scc).all(|r1| {
1294 self.scc_values
1295 .universal_regions_outlived_by(sup_region_scc)
1296 .any(|r2| self.universal_region_relations.outlives(r2, r1))
1297 });
1298
1299 if !universal_outlives {
1300 debug!("sub region contains a universal region not present in super");
1301 return false;
1302 }
1303
1304 // Now we have to compare all the points in the sub region and make
1305 // sure they exist in the sup region.
1306
1307 if self.universal_regions().is_universal_region(sup_region) {
1308 // Micro-opt: universal regions contain all points.
1309 debug!("super is universal and hence contains all points");
1310 return true;
1311 }
1312
1313 debug!("comparison between points in sup/sub");
1314
1315 self.scc_values.contains_points(sup_region_scc, sub_region_scc)
1316 }
1317
1318 /// Once regions have been propagated, this method is used to see
1319 /// whether any of the constraints were too strong. In particular,
1320 /// we want to check for a case where a universally quantified
1321 /// region exceeded its bounds. Consider:
1322 /// ```compile_fail
1323 /// fn foo<'a, 'b>(x: &'a u32) -> &'b u32 { x }
1324 /// ```
1325 /// In this case, returning `x` requires `&'a u32 <: &'b u32`
1326 /// and hence we establish (transitively) a constraint that
1327 /// `'a: 'b`. The `propagate_constraints` code above will
1328 /// therefore add `end('a)` into the region for `'b` -- but we
1329 /// have no evidence that `'b` outlives `'a`, so we want to report
1330 /// an error.
1331 ///
1332 /// If `propagated_outlives_requirements` is `Some`, then we will
1333 /// push unsatisfied obligations into there. Otherwise, we'll
1334 /// report them as errors.
1335 fn check_universal_regions(
1336 &self,
1337 mut propagated_outlives_requirements: Option<&mut Vec<ClosureOutlivesRequirement<'tcx>>>,
1338 errors_buffer: &mut RegionErrors<'tcx>,
1339 ) {
1340 for (fr, fr_definition) in self.definitions.iter_enumerated() {
1341 debug!(?fr, ?fr_definition);
1342 match fr_definition.origin {
1343 NllRegionVariableOrigin::FreeRegion => {
1344 // Go through each of the universal regions `fr` and check that
1345 // they did not grow too large, accumulating any requirements
1346 // for our caller into the `outlives_requirements` vector.
1347 self.check_universal_region(
1348 fr,
1349 &mut propagated_outlives_requirements,
1350 errors_buffer,
1351 );
1352 }
1353
1354 NllRegionVariableOrigin::Placeholder(placeholder) => {
1355 self.check_bound_universal_region(fr, placeholder, errors_buffer);
1356 }
1357
1358 NllRegionVariableOrigin::Existential { .. } => {
1359 // nothing to check here
1360 }
1361 }
1362 }
1363 }
1364
1365 /// Checks if Polonius has found any unexpected free region relations.
1366 ///
1367 /// In Polonius terms, a "subset error" (or "illegal subset relation error") is the equivalent
1368 /// of NLL's "checking if any region constraints were too strong": a placeholder origin `'a`
1369 /// was unexpectedly found to be a subset of another placeholder origin `'b`, and means in NLL
1370 /// terms that the "longer free region" `'a` outlived the "shorter free region" `'b`.
1371 ///
1372 /// More details can be found in this blog post by Niko:
1373 /// <https://smallcultfollowing.com/babysteps/blog/2019/01/17/polonius-and-region-errors/>
1374 ///
1375 /// In the canonical example
1376 /// ```compile_fail
1377 /// fn foo<'a, 'b>(x: &'a u32) -> &'b u32 { x }
1378 /// ```
1379 /// returning `x` requires `&'a u32 <: &'b u32` and hence we establish (transitively) a
1380 /// constraint that `'a: 'b`. It is an error that we have no evidence that this
1381 /// constraint holds.
1382 ///
1383 /// If `propagated_outlives_requirements` is `Some`, then we will
1384 /// push unsatisfied obligations into there. Otherwise, we'll
1385 /// report them as errors.
1386 fn check_polonius_subset_errors(
1387 &self,
1388 mut propagated_outlives_requirements: Option<&mut Vec<ClosureOutlivesRequirement<'tcx>>>,
1389 errors_buffer: &mut RegionErrors<'tcx>,
1390 polonius_output: &PoloniusOutput,
1391 ) {
1392 debug!(
1393 "check_polonius_subset_errors: {} subset_errors",
1394 polonius_output.subset_errors.len()
1395 );
1396
1397 // Similarly to `check_universal_regions`: a free region relation, which was not explicitly
1398 // declared ("known") was found by Polonius, so emit an error, or propagate the
1399 // requirements for our caller into the `propagated_outlives_requirements` vector.
1400 //
1401 // Polonius doesn't model regions ("origins") as CFG-subsets or durations, but the
1402 // `longer_fr` and `shorter_fr` terminology will still be used here, for consistency with
1403 // the rest of the NLL infrastructure. The "subset origin" is the "longer free region",
1404 // and the "superset origin" is the outlived "shorter free region".
1405 //
1406 // Note: Polonius will produce a subset error at every point where the unexpected
1407 // `longer_fr`'s "placeholder loan" is contained in the `shorter_fr`. This can be helpful
1408 // for diagnostics in the future, e.g. to point more precisely at the key locations
1409 // requiring this constraint to hold. However, the error and diagnostics code downstream
1410 // expects that these errors are not duplicated (and that they are in a certain order).
1411 // Otherwise, diagnostics messages such as the ones giving names like `'1` to elided or
1412 // anonymous lifetimes for example, could give these names differently, while others like
1413 // the outlives suggestions or the debug output from `#[rustc_regions]` would be
1414 // duplicated. The polonius subset errors are deduplicated here, while keeping the
1415 // CFG-location ordering.
1416 // We can iterate the HashMap here because the result is sorted afterwards.
1417 #[allow(rustc::potential_query_instability)]
1418 let mut subset_errors: Vec<_> = polonius_output
1419 .subset_errors
1420 .iter()
1421 .flat_map(|(_location, subset_errors)| subset_errors.iter())
1422 .collect();
1423 subset_errors.sort();
1424 subset_errors.dedup();
1425
1426 for &(longer_fr, shorter_fr) in subset_errors.into_iter() {
1427 debug!(
1428 "check_polonius_subset_errors: subset_error longer_fr={:?},\
1429 shorter_fr={:?}",
1430 longer_fr, shorter_fr
1431 );
1432
1433 let propagated = self.try_propagate_universal_region_error(
1434 longer_fr.into(),
1435 shorter_fr.into(),
1436 &mut propagated_outlives_requirements,
1437 );
1438 if propagated == RegionRelationCheckResult::Error {
1439 errors_buffer.push(RegionErrorKind::RegionError {
1440 longer_fr: longer_fr.into(),
1441 shorter_fr: shorter_fr.into(),
1442 fr_origin: NllRegionVariableOrigin::FreeRegion,
1443 is_reported: true,
1444 });
1445 }
1446 }
1447
1448 // Handle the placeholder errors as usual, until the chalk-rustc-polonius triumvirate has
1449 // a more complete picture on how to separate this responsibility.
1450 for (fr, fr_definition) in self.definitions.iter_enumerated() {
1451 match fr_definition.origin {
1452 NllRegionVariableOrigin::FreeRegion => {
1453 // handled by polonius above
1454 }
1455
1456 NllRegionVariableOrigin::Placeholder(placeholder) => {
1457 self.check_bound_universal_region(fr, placeholder, errors_buffer);
1458 }
1459
1460 NllRegionVariableOrigin::Existential { .. } => {
1461 // nothing to check here
1462 }
1463 }
1464 }
1465 }
1466
1467 /// The minimum universe of any variable reachable from this
1468 /// SCC, inside or outside of it.
1469 fn scc_universe(&self, scc: ConstraintSccIndex) -> UniverseIndex {
1470 self.constraint_sccs().annotation(scc).min_universe()
1471 }
1472
1473 /// Checks the final value for the free region `fr` to see if it
1474 /// grew too large. In particular, examine what `end(X)` points
1475 /// wound up in `fr`'s final value; for each `end(X)` where `X !=
1476 /// fr`, we want to check that `fr: X`. If not, that's either an
1477 /// error, or something we have to propagate to our creator.
1478 ///
1479 /// Things that are to be propagated are accumulated into the
1480 /// `outlives_requirements` vector.
1481 #[instrument(skip(self, propagated_outlives_requirements, errors_buffer), level = "debug")]
1482 fn check_universal_region(
1483 &self,
1484 longer_fr: RegionVid,
1485 propagated_outlives_requirements: &mut Option<&mut Vec<ClosureOutlivesRequirement<'tcx>>>,
1486 errors_buffer: &mut RegionErrors<'tcx>,
1487 ) {
1488 let longer_fr_scc = self.constraint_sccs.scc(longer_fr);
1489
1490 // Because this free region must be in the ROOT universe, we
1491 // know it cannot contain any bound universes.
1492 assert!(self.scc_universe(longer_fr_scc).is_root());
1493
1494 // Only check all of the relations for the main representative of each
1495 // SCC, otherwise just check that we outlive said representative. This
1496 // reduces the number of redundant relations propagated out of
1497 // closures.
1498 // Note that the representative will be a universal region if there is
1499 // one in this SCC, so we will always check the representative here.
1500 let representative = self.scc_representative(longer_fr_scc);
1501 if representative != longer_fr {
1502 if let RegionRelationCheckResult::Error = self.check_universal_region_relation(
1503 longer_fr,
1504 representative,
1505 propagated_outlives_requirements,
1506 ) {
1507 errors_buffer.push(RegionErrorKind::RegionError {
1508 longer_fr,
1509 shorter_fr: representative,
1510 fr_origin: NllRegionVariableOrigin::FreeRegion,
1511 is_reported: true,
1512 });
1513 }
1514 return;
1515 }
1516
1517 // Find every region `o` such that `fr: o`
1518 // (because `fr` includes `end(o)`).
1519 let mut error_reported = false;
1520 for shorter_fr in self.scc_values.universal_regions_outlived_by(longer_fr_scc) {
1521 if let RegionRelationCheckResult::Error = self.check_universal_region_relation(
1522 longer_fr,
1523 shorter_fr,
1524 propagated_outlives_requirements,
1525 ) {
1526 // We only report the first region error. Subsequent errors are hidden so as
1527 // not to overwhelm the user, but we do record them so as to potentially print
1528 // better diagnostics elsewhere...
1529 errors_buffer.push(RegionErrorKind::RegionError {
1530 longer_fr,
1531 shorter_fr,
1532 fr_origin: NllRegionVariableOrigin::FreeRegion,
1533 is_reported: !error_reported,
1534 });
1535
1536 error_reported = true;
1537 }
1538 }
1539 }
1540
1541 /// Checks that we can prove that `longer_fr: shorter_fr`. If we can't we attempt to propagate
1542 /// the constraint outward (e.g. to a closure environment), but if that fails, there is an
1543 /// error.
1544 fn check_universal_region_relation(
1545 &self,
1546 longer_fr: RegionVid,
1547 shorter_fr: RegionVid,
1548 propagated_outlives_requirements: &mut Option<&mut Vec<ClosureOutlivesRequirement<'tcx>>>,
1549 ) -> RegionRelationCheckResult {
1550 // If it is known that `fr: o`, carry on.
1551 if self.universal_region_relations.outlives(longer_fr, shorter_fr) {
1552 RegionRelationCheckResult::Ok
1553 } else {
1554 // If we are not in a context where we can't propagate errors, or we
1555 // could not shrink `fr` to something smaller, then just report an
1556 // error.
1557 //
1558 // Note: in this case, we use the unapproximated regions to report the
1559 // error. This gives better error messages in some cases.
1560 self.try_propagate_universal_region_error(
1561 longer_fr,
1562 shorter_fr,
1563 propagated_outlives_requirements,
1564 )
1565 }
1566 }
1567
1568 /// Attempt to propagate a region error (e.g. `'a: 'b`) that is not met to a closure's
1569 /// creator. If we cannot, then the caller should report an error to the user.
1570 fn try_propagate_universal_region_error(
1571 &self,
1572 longer_fr: RegionVid,
1573 shorter_fr: RegionVid,
1574 propagated_outlives_requirements: &mut Option<&mut Vec<ClosureOutlivesRequirement<'tcx>>>,
1575 ) -> RegionRelationCheckResult {
1576 if let Some(propagated_outlives_requirements) = propagated_outlives_requirements {
1577 // Shrink `longer_fr` until we find a non-local region (if we do).
1578 // We'll call it `fr-` -- it's ever so slightly smaller than
1579 // `longer_fr`.
1580 if let Some(fr_minus) = self.universal_region_relations.non_local_lower_bound(longer_fr)
1581 {
1582 debug!("try_propagate_universal_region_error: fr_minus={:?}", fr_minus);
1583
1584 let blame_span_category = self.find_outlives_blame_span(
1585 longer_fr,
1586 NllRegionVariableOrigin::FreeRegion,
1587 shorter_fr,
1588 );
1589
1590 // Grow `shorter_fr` until we find some non-local regions. (We
1591 // always will.) We'll call them `shorter_fr+` -- they're ever
1592 // so slightly larger than `shorter_fr`.
1593 let shorter_fr_plus =
1594 self.universal_region_relations.non_local_upper_bounds(shorter_fr);
1595 debug!(
1596 "try_propagate_universal_region_error: shorter_fr_plus={:?}",
1597 shorter_fr_plus
1598 );
1599 for fr in shorter_fr_plus {
1600 // Push the constraint `fr-: shorter_fr+`
1601 propagated_outlives_requirements.push(ClosureOutlivesRequirement {
1602 subject: ClosureOutlivesSubject::Region(fr_minus),
1603 outlived_free_region: fr,
1604 blame_span: blame_span_category.1.span,
1605 category: blame_span_category.0,
1606 });
1607 }
1608 return RegionRelationCheckResult::Propagated;
1609 }
1610 }
1611
1612 RegionRelationCheckResult::Error
1613 }
1614
1615 fn check_bound_universal_region(
1616 &self,
1617 longer_fr: RegionVid,
1618 placeholder: ty::PlaceholderRegion,
1619 errors_buffer: &mut RegionErrors<'tcx>,
1620 ) {
1621 debug!("check_bound_universal_region(fr={:?}, placeholder={:?})", longer_fr, placeholder,);
1622
1623 let longer_fr_scc = self.constraint_sccs.scc(longer_fr);
1624 debug!("check_bound_universal_region: longer_fr_scc={:?}", longer_fr_scc,);
1625
1626 for error_element in self.scc_values.elements_contained_in(longer_fr_scc) {
1627 match error_element {
1628 RegionElement::Location(_) | RegionElement::RootUniversalRegion(_) => {}
1629 // If we have some bound universal region `'a`, then the only
1630 // elements it can contain is itself -- we don't know anything
1631 // else about it!
1632 RegionElement::PlaceholderRegion(placeholder1) => {
1633 if placeholder == placeholder1 {
1634 continue;
1635 }
1636 }
1637 }
1638
1639 errors_buffer.push(RegionErrorKind::BoundUniversalRegionError {
1640 longer_fr,
1641 error_element,
1642 placeholder,
1643 });
1644
1645 // Stop after the first error, it gets too noisy otherwise, and does not provide more
1646 // information.
1647 break;
1648 }
1649 debug!("check_bound_universal_region: all bounds satisfied");
1650 }
1651
1652 #[instrument(level = "debug", skip(self, infcx, errors_buffer))]
1653 fn check_member_constraints(
1654 &self,
1655 infcx: &InferCtxt<'tcx>,
1656 errors_buffer: &mut RegionErrors<'tcx>,
1657 ) {
1658 let member_constraints = Rc::clone(&self.member_constraints);
1659 for m_c_i in member_constraints.all_indices() {
1660 debug!(?m_c_i);
1661 let m_c = &member_constraints[m_c_i];
1662 let member_region_vid = m_c.member_region_vid;
1663 debug!(
1664 ?member_region_vid,
1665 value = ?self.region_value_str(member_region_vid),
1666 );
1667 let choice_regions = member_constraints.choice_regions(m_c_i);
1668 debug!(?choice_regions);
1669
1670 // Did the member region wind up equal to any of the option regions?
1671 if let Some(o) =
1672 choice_regions.iter().find(|&&o_r| self.eval_equal(o_r, m_c.member_region_vid))
1673 {
1674 debug!("evaluated as equal to {:?}", o);
1675 continue;
1676 }
1677
1678 // If not, report an error.
1679 let member_region = ty::Region::new_var(infcx.tcx, member_region_vid);
1680 errors_buffer.push(RegionErrorKind::UnexpectedHiddenRegion {
1681 span: m_c.definition_span,
1682 hidden_ty: m_c.hidden_ty,
1683 key: m_c.key,
1684 member_region,
1685 });
1686 }
1687 }
1688
1689 /// We have a constraint `fr1: fr2` that is not satisfied, where
1690 /// `fr2` represents some universal region. Here, `r` is some
1691 /// region where we know that `fr1: r` and this function has the
1692 /// job of determining whether `r` is "to blame" for the fact that
1693 /// `fr1: fr2` is required.
1694 ///
1695 /// This is true under two conditions:
1696 ///
1697 /// - `r == fr2`
1698 /// - `fr2` is `'static` and `r` is some placeholder in a universe
1699 /// that cannot be named by `fr1`; in that case, we will require
1700 /// that `fr1: 'static` because it is the only way to `fr1: r` to
1701 /// be satisfied. (See `add_incompatible_universe`.)
1702 pub(crate) fn provides_universal_region(
1703 &self,
1704 r: RegionVid,
1705 fr1: RegionVid,
1706 fr2: RegionVid,
1707 ) -> bool {
1708 debug!("provides_universal_region(r={:?}, fr1={:?}, fr2={:?})", r, fr1, fr2);
1709 let result = {
1710 r == fr2 || {
1711 fr2 == self.universal_regions().fr_static && self.cannot_name_placeholder(fr1, r)
1712 }
1713 };
1714 debug!("provides_universal_region: result = {:?}", result);
1715 result
1716 }
1717
1718 /// If `r2` represents a placeholder region, then this returns
1719 /// `true` if `r1` cannot name that placeholder in its
1720 /// value; otherwise, returns `false`.
1721 pub(crate) fn cannot_name_placeholder(&self, r1: RegionVid, r2: RegionVid) -> bool {
1722 match self.definitions[r2].origin {
1723 NllRegionVariableOrigin::Placeholder(placeholder) => {
1724 let r1_universe = self.definitions[r1].universe;
1725 debug!(
1726 "cannot_name_value_of: universe1={r1_universe:?} placeholder={:?}",
1727 placeholder
1728 );
1729 r1_universe.cannot_name(placeholder.universe)
1730 }
1731
1732 NllRegionVariableOrigin::FreeRegion | NllRegionVariableOrigin::Existential { .. } => {
1733 false
1734 }
1735 }
1736 }
1737
1738 /// Finds a good `ObligationCause` to blame for the fact that `fr1` outlives `fr2`.
1739 pub(crate) fn find_outlives_blame_span(
1740 &self,
1741 fr1: RegionVid,
1742 fr1_origin: NllRegionVariableOrigin,
1743 fr2: RegionVid,
1744 ) -> (ConstraintCategory<'tcx>, ObligationCause<'tcx>) {
1745 let BlameConstraint { category, cause, .. } = self
1746 .best_blame_constraint(fr1, fr1_origin, |r| self.provides_universal_region(r, fr1, fr2))
1747 .0;
1748 (category, cause)
1749 }
1750
1751 /// Walks the graph of constraints (where `'a: 'b` is considered
1752 /// an edge `'a -> 'b`) to find all paths from `from_region` to
1753 /// `to_region`. The paths are accumulated into the vector
1754 /// `results`. The paths are stored as a series of
1755 /// `ConstraintIndex` values -- in other words, a list of *edges*.
1756 ///
1757 /// Returns: a series of constraints as well as the region `R`
1758 /// that passed the target test.
1759 #[instrument(skip(self, target_test), ret)]
1760 pub(crate) fn find_constraint_paths_between_regions(
1761 &self,
1762 from_region: RegionVid,
1763 target_test: impl Fn(RegionVid) -> bool,
1764 ) -> Option<(Vec<OutlivesConstraint<'tcx>>, RegionVid)> {
1765 let mut context = IndexVec::from_elem(Trace::NotVisited, &self.definitions);
1766 context[from_region] = Trace::StartRegion;
1767
1768 let fr_static = self.universal_regions().fr_static;
1769
1770 // Use a deque so that we do a breadth-first search. We will
1771 // stop at the first match, which ought to be the shortest
1772 // path (fewest constraints).
1773 let mut deque = VecDeque::new();
1774 deque.push_back(from_region);
1775
1776 while let Some(r) = deque.pop_front() {
1777 debug!(
1778 "find_constraint_paths_between_regions: from_region={:?} r={:?} value={}",
1779 from_region,
1780 r,
1781 self.region_value_str(r),
1782 );
1783
1784 // Check if we reached the region we were looking for. If so,
1785 // we can reconstruct the path that led to it and return it.
1786 if target_test(r) {
1787 let mut result = vec![];
1788 let mut p = r;
1789 // This loop is cold and runs at the end, which is why we delay
1790 // `OutlivesConstraint` construction until now.
1791 loop {
1792 match context[p] {
1793 Trace::FromGraph(c) => {
1794 p = c.sup;
1795 result.push(*c);
1796 }
1797
1798 Trace::FromStatic(sub) => {
1799 let c = OutlivesConstraint {
1800 sup: fr_static,
1801 sub,
1802 locations: Locations::All(DUMMY_SP),
1803 span: DUMMY_SP,
1804 category: ConstraintCategory::Internal,
1805 variance_info: ty::VarianceDiagInfo::default(),
1806 from_closure: false,
1807 };
1808 p = c.sup;
1809 result.push(c);
1810 }
1811
1812 Trace::FromMember(sup, sub, span) => {
1813 let c = OutlivesConstraint {
1814 sup,
1815 sub,
1816 locations: Locations::All(span),
1817 span,
1818 category: ConstraintCategory::OpaqueType,
1819 variance_info: ty::VarianceDiagInfo::default(),
1820 from_closure: false,
1821 };
1822 p = c.sup;
1823 result.push(c);
1824 }
1825
1826 Trace::StartRegion => {
1827 result.reverse();
1828 return Some((result, r));
1829 }
1830
1831 Trace::NotVisited => {
1832 bug!("found unvisited region {:?} on path to {:?}", p, r)
1833 }
1834 }
1835 }
1836 }
1837
1838 // Otherwise, walk over the outgoing constraints and
1839 // enqueue any regions we find, keeping track of how we
1840 // reached them.
1841
1842 // A constraint like `'r: 'x` can come from our constraint
1843 // graph.
1844
1845 // Always inline this closure because it can be hot.
1846 let mut handle_trace = #[inline(always)]
1847 |sub, trace| {
1848 if let Trace::NotVisited = context[sub] {
1849 context[sub] = trace;
1850 deque.push_back(sub);
1851 }
1852 };
1853
1854 // If this is the `'static` region and the graph's direction is normal, then set up the
1855 // Edges iterator to return all regions (#53178).
1856 if r == fr_static && self.constraint_graph.is_normal() {
1857 for sub in self.constraint_graph.outgoing_edges_from_static() {
1858 handle_trace(sub, Trace::FromStatic(sub));
1859 }
1860 } else {
1861 let edges = self.constraint_graph.outgoing_edges_from_graph(r, &self.constraints);
1862 // This loop can be hot.
1863 for constraint in edges {
1864 if matches!(constraint.category, ConstraintCategory::IllegalUniverse) {
1865 debug!("Ignoring illegal universe constraint: {constraint:?}");
1866 continue;
1867 }
1868 debug_assert_eq!(constraint.sup, r);
1869 handle_trace(constraint.sub, Trace::FromGraph(constraint));
1870 }
1871 }
1872
1873 // Member constraints can also give rise to `'r: 'x` edges that
1874 // were not part of the graph initially, so watch out for those.
1875 // (But they are extremely rare; this loop is very cold.)
1876 for constraint in self.applied_member_constraints(self.constraint_sccs.scc(r)) {
1877 let sub = constraint.min_choice;
1878 let p_c = &self.member_constraints[constraint.member_constraint_index];
1879 handle_trace(sub, Trace::FromMember(r, sub, p_c.definition_span));
1880 }
1881 }
1882
1883 None
1884 }
1885
1886 /// Finds some region R such that `fr1: R` and `R` is live at `location`.
1887 #[instrument(skip(self), level = "trace", ret)]
1888 pub(crate) fn find_sub_region_live_at(&self, fr1: RegionVid, location: Location) -> RegionVid {
1889 trace!(scc = ?self.constraint_sccs.scc(fr1));
1890 trace!(universe = ?self.region_universe(fr1));
1891 self.find_constraint_paths_between_regions(fr1, |r| {
1892 // First look for some `r` such that `fr1: r` and `r` is live at `location`
1893 trace!(?r, liveness_constraints=?self.liveness_constraints.pretty_print_live_points(r));
1894 self.liveness_constraints.is_live_at(r, location)
1895 })
1896 .or_else(|| {
1897 // If we fail to find that, we may find some `r` such that
1898 // `fr1: r` and `r` is a placeholder from some universe
1899 // `fr1` cannot name. This would force `fr1` to be
1900 // `'static`.
1901 self.find_constraint_paths_between_regions(fr1, |r| {
1902 self.cannot_name_placeholder(fr1, r)
1903 })
1904 })
1905 .or_else(|| {
1906 // If we fail to find THAT, it may be that `fr1` is a
1907 // placeholder that cannot "fit" into its SCC. In that
1908 // case, there should be some `r` where `fr1: r` and `fr1` is a
1909 // placeholder that `r` cannot name. We can blame that
1910 // edge.
1911 //
1912 // Remember that if `R1: R2`, then the universe of R1
1913 // must be able to name the universe of R2, because R2 will
1914 // be at least `'empty(Universe(R2))`, and `R1` must be at
1915 // larger than that.
1916 self.find_constraint_paths_between_regions(fr1, |r| {
1917 self.cannot_name_placeholder(r, fr1)
1918 })
1919 })
1920 .map(|(_path, r)| r)
1921 .unwrap()
1922 }
1923
1924 /// Get the region outlived by `longer_fr` and live at `element`.
1925 pub(crate) fn region_from_element(
1926 &self,
1927 longer_fr: RegionVid,
1928 element: &RegionElement,
1929 ) -> RegionVid {
1930 match *element {
1931 RegionElement::Location(l) => self.find_sub_region_live_at(longer_fr, l),
1932 RegionElement::RootUniversalRegion(r) => r,
1933 RegionElement::PlaceholderRegion(error_placeholder) => self
1934 .definitions
1935 .iter_enumerated()
1936 .find_map(|(r, definition)| match definition.origin {
1937 NllRegionVariableOrigin::Placeholder(p) if p == error_placeholder => Some(r),
1938 _ => None,
1939 })
1940 .unwrap(),
1941 }
1942 }
1943
1944 /// Get the region definition of `r`.
1945 pub(crate) fn region_definition(&self, r: RegionVid) -> &RegionDefinition<'tcx> {
1946 &self.definitions[r]
1947 }
1948
1949 /// Check if the SCC of `r` contains `upper`.
1950 pub(crate) fn upper_bound_in_region_scc(&self, r: RegionVid, upper: RegionVid) -> bool {
1951 let r_scc = self.constraint_sccs.scc(r);
1952 self.scc_values.contains(r_scc, upper)
1953 }
1954
1955 pub(crate) fn universal_regions(&self) -> &UniversalRegions<'tcx> {
1956 &self.universal_region_relations.universal_regions
1957 }
1958
1959 /// Tries to find the best constraint to blame for the fact that
1960 /// `R: from_region`, where `R` is some region that meets
1961 /// `target_test`. This works by following the constraint graph,
1962 /// creating a constraint path that forces `R` to outlive
1963 /// `from_region`, and then finding the best choices within that
1964 /// path to blame.
1965 #[instrument(level = "debug", skip(self, target_test))]
1966 pub(crate) fn best_blame_constraint(
1967 &self,
1968 from_region: RegionVid,
1969 from_region_origin: NllRegionVariableOrigin,
1970 target_test: impl Fn(RegionVid) -> bool,
1971 ) -> (BlameConstraint<'tcx>, Vec<OutlivesConstraint<'tcx>>) {
1972 // Find all paths
1973 let (path, target_region) = self
1974 .find_constraint_paths_between_regions(from_region, target_test)
1975 .or_else(|| {
1976 self.find_constraint_paths_between_regions(from_region, |r| {
1977 self.cannot_name_placeholder(from_region, r)
1978 })
1979 })
1980 .unwrap();
1981 debug!(
1982 "path={:#?}",
1983 path.iter()
1984 .map(|c| format!(
1985 "{:?} ({:?}: {:?})",
1986 c,
1987 self.constraint_sccs.scc(c.sup),
1988 self.constraint_sccs.scc(c.sub),
1989 ))
1990 .collect::<Vec<_>>()
1991 );
1992
1993 // We try to avoid reporting a `ConstraintCategory::Predicate` as our best constraint.
1994 // Instead, we use it to produce an improved `ObligationCauseCode`.
1995 // FIXME - determine what we should do if we encounter multiple
1996 // `ConstraintCategory::Predicate` constraints. Currently, we just pick the first one.
1997 let cause_code = path
1998 .iter()
1999 .find_map(|constraint| {
2000 if let ConstraintCategory::Predicate(predicate_span) = constraint.category {
2001 // We currently do not store the `DefId` in the `ConstraintCategory`
2002 // for performances reasons. The error reporting code used by NLL only
2003 // uses the span, so this doesn't cause any problems at the moment.
2004 Some(ObligationCauseCode::WhereClause(CRATE_DEF_ID.to_def_id(), predicate_span))
2005 } else {
2006 None
2007 }
2008 })
2009 .unwrap_or_else(|| ObligationCauseCode::Misc);
2010
2011 // When reporting an error, there is typically a chain of constraints leading from some
2012 // "source" region which must outlive some "target" region.
2013 // In most cases, we prefer to "blame" the constraints closer to the target --
2014 // but there is one exception. When constraints arise from higher-ranked subtyping,
2015 // we generally prefer to blame the source value,
2016 // as the "target" in this case tends to be some type annotation that the user gave.
2017 // Therefore, if we find that the region origin is some instantiation
2018 // of a higher-ranked region, we start our search from the "source" point
2019 // rather than the "target", and we also tweak a few other things.
2020 //
2021 // An example might be this bit of Rust code:
2022 //
2023 // ```rust
2024 // let x: fn(&'static ()) = |_| {};
2025 // let y: for<'a> fn(&'a ()) = x;
2026 // ```
2027 //
2028 // In MIR, this will be converted into a combination of assignments and type ascriptions.
2029 // In particular, the 'static is imposed through a type ascription:
2030 //
2031 // ```rust
2032 // x = ...;
2033 // AscribeUserType(x, fn(&'static ())
2034 // y = x;
2035 // ```
2036 //
2037 // We wind up ultimately with constraints like
2038 //
2039 // ```rust
2040 // !a: 'temp1 // from the `y = x` statement
2041 // 'temp1: 'temp2
2042 // 'temp2: 'static // from the AscribeUserType
2043 // ```
2044 //
2045 // and here we prefer to blame the source (the y = x statement).
2046 let blame_source = match from_region_origin {
2047 NllRegionVariableOrigin::FreeRegion
2048 | NllRegionVariableOrigin::Existential { from_forall: false } => true,
2049 NllRegionVariableOrigin::Placeholder(_)
2050 | NllRegionVariableOrigin::Existential { from_forall: true } => false,
2051 };
2052
2053 // To pick a constraint to blame, we organize constraints by how interesting we expect them
2054 // to be in diagnostics, then pick the most interesting one closest to either the source or
2055 // the target on our constraint path.
2056 let constraint_interest = |constraint: &OutlivesConstraint<'tcx>| {
2057 // Try to avoid blaming constraints from desugarings, since they may not clearly match
2058 // match what users have written. As an exception, allow blaming returns generated by
2059 // `?` desugaring, since the correspondence is fairly clear.
2060 let category = if let Some(kind) = constraint.span.desugaring_kind()
2061 && (kind != DesugaringKind::QuestionMark
2062 || !matches!(constraint.category, ConstraintCategory::Return(_)))
2063 {
2064 ConstraintCategory::Boring
2065 } else {
2066 constraint.category
2067 };
2068
2069 match category {
2070 // Returns usually provide a type to blame and have specially written diagnostics,
2071 // so prioritize them.
2072 ConstraintCategory::Return(_) => 0,
2073 // Unsizing coercions are interesting, since we have a note for that:
2074 // `BorrowExplanation::add_object_lifetime_default_note`.
2075 // FIXME(dianne): That note shouldn't depend on a coercion being blamed; see issue
2076 // #131008 for an example of where we currently don't emit it but should.
2077 // Once the note is handled properly, this case should be removed. Until then, it
2078 // should be as limited as possible; the note is prone to false positives and this
2079 // constraint usually isn't best to blame.
2080 ConstraintCategory::Cast {
2081 unsize_to: Some(unsize_ty),
2082 is_implicit_coercion: true,
2083 } if target_region == self.universal_regions().fr_static
2084 // Mirror the note's condition, to minimize how often this diverts blame.
2085 && let ty::Adt(_, args) = unsize_ty.kind()
2086 && args.iter().any(|arg| arg.as_type().is_some_and(|ty| ty.is_trait()))
2087 // Mimic old logic for this, to minimize false positives in tests.
2088 && !path
2089 .iter()
2090 .any(|c| matches!(c.category, ConstraintCategory::TypeAnnotation(_))) =>
2091 {
2092 1
2093 }
2094 // Between other interesting constraints, order by their position on the `path`.
2095 ConstraintCategory::Yield
2096 | ConstraintCategory::UseAsConst
2097 | ConstraintCategory::UseAsStatic
2098 | ConstraintCategory::TypeAnnotation(
2099 AnnotationSource::Ascription
2100 | AnnotationSource::Declaration
2101 | AnnotationSource::OpaqueCast,
2102 )
2103 | ConstraintCategory::Cast { .. }
2104 | ConstraintCategory::CallArgument(_)
2105 | ConstraintCategory::CopyBound
2106 | ConstraintCategory::SizedBound
2107 | ConstraintCategory::Assignment
2108 | ConstraintCategory::Usage
2109 | ConstraintCategory::ClosureUpvar(_) => 2,
2110 // Generic arguments are unlikely to be what relates regions together
2111 ConstraintCategory::TypeAnnotation(AnnotationSource::GenericArg) => 3,
2112 // We handle predicates and opaque types specially; don't prioritize them here.
2113 ConstraintCategory::Predicate(_) | ConstraintCategory::OpaqueType => 4,
2114 // `Boring` constraints can correspond to user-written code and have useful spans,
2115 // but don't provide any other useful information for diagnostics.
2116 ConstraintCategory::Boring => 5,
2117 // `BoringNoLocation` constraints can point to user-written code, but are less
2118 // specific, and are not used for relations that would make sense to blame.
2119 ConstraintCategory::BoringNoLocation => 6,
2120 // Do not blame internal constraints.
2121 ConstraintCategory::Internal => 7,
2122 ConstraintCategory::IllegalUniverse => 8,
2123 }
2124 };
2125
2126 let best_choice = if blame_source {
2127 path.iter().enumerate().rev().min_by_key(|(_, c)| constraint_interest(c)).unwrap().0
2128 } else {
2129 path.iter().enumerate().min_by_key(|(_, c)| constraint_interest(c)).unwrap().0
2130 };
2131
2132 debug!(?best_choice, ?blame_source);
2133
2134 let best_constraint = if let Some(next) = path.get(best_choice + 1)
2135 && matches!(path[best_choice].category, ConstraintCategory::Return(_))
2136 && next.category == ConstraintCategory::OpaqueType
2137 {
2138 // The return expression is being influenced by the return type being
2139 // impl Trait, point at the return type and not the return expr.
2140 *next
2141 } else if path[best_choice].category == ConstraintCategory::Return(ReturnConstraint::Normal)
2142 && let Some(field) = path.iter().find_map(|p| {
2143 if let ConstraintCategory::ClosureUpvar(f) = p.category { Some(f) } else { None }
2144 })
2145 {
2146 OutlivesConstraint {
2147 category: ConstraintCategory::Return(ReturnConstraint::ClosureUpvar(field)),
2148 ..path[best_choice]
2149 }
2150 } else {
2151 path[best_choice]
2152 };
2153
2154 let blame_constraint = BlameConstraint {
2155 category: best_constraint.category,
2156 from_closure: best_constraint.from_closure,
2157 cause: ObligationCause::new(best_constraint.span, CRATE_DEF_ID, cause_code.clone()),
2158 variance_info: best_constraint.variance_info,
2159 };
2160 (blame_constraint, path)
2161 }
2162
2163 pub(crate) fn universe_info(&self, universe: ty::UniverseIndex) -> UniverseInfo<'tcx> {
2164 // Query canonicalization can create local superuniverses (for example in
2165 // `InferCtx::query_response_instantiation_guess`), but they don't have an associated
2166 // `UniverseInfo` explaining why they were created.
2167 // This can cause ICEs if these causes are accessed in diagnostics, for example in issue
2168 // #114907 where this happens via liveness and dropck outlives results.
2169 // Therefore, we return a default value in case that happens, which should at worst emit a
2170 // suboptimal error, instead of the ICE.
2171 self.universe_causes.get(&universe).cloned().unwrap_or_else(UniverseInfo::other)
2172 }
2173
2174 /// Tries to find the terminator of the loop in which the region 'r' resides.
2175 /// Returns the location of the terminator if found.
2176 pub(crate) fn find_loop_terminator_location(
2177 &self,
2178 r: RegionVid,
2179 body: &Body<'_>,
2180 ) -> Option<Location> {
2181 let scc = self.constraint_sccs.scc(r);
2182 let locations = self.scc_values.locations_outlived_by(scc);
2183 for location in locations {
2184 let bb = &body[location.block];
2185 if let Some(terminator) = &bb.terminator {
2186 // terminator of a loop should be TerminatorKind::FalseUnwind
2187 if let TerminatorKind::FalseUnwind { .. } = terminator.kind {
2188 return Some(location);
2189 }
2190 }
2191 }
2192 None
2193 }
2194
2195 /// Access to the SCC constraint graph.
2196 /// This can be used to quickly under-approximate the regions which are equal to each other
2197 /// and their relative orderings.
2198 // This is `pub` because it's used by unstable external borrowck data users, see `consumers.rs`.
2199 pub fn constraint_sccs(&self) -> &ConstraintSccs {
2200 &self.constraint_sccs
2201 }
2202
2203 /// Access to the region graph, built from the outlives constraints.
2204 pub(crate) fn region_graph(&self) -> RegionGraph<'_, 'tcx, graph::Normal> {
2205 self.constraint_graph.region_graph(&self.constraints, self.universal_regions().fr_static)
2206 }
2207
2208 /// Returns the representative `RegionVid` for a given SCC.
2209 /// See `RegionTracker` for how a region variable ID is chosen.
2210 ///
2211 /// It is a hacky way to manage checking regions for equality,
2212 /// since we can 'canonicalize' each region to the representative
2213 /// of its SCC and be sure that -- if they have the same repr --
2214 /// they *must* be equal (though not having the same repr does not
2215 /// mean they are unequal).
2216 fn scc_representative(&self, scc: ConstraintSccIndex) -> RegionVid {
2217 self.constraint_sccs.annotation(scc).representative
2218 }
2219
2220 pub(crate) fn liveness_constraints(&self) -> &LivenessValues {
2221 &self.liveness_constraints
2222 }
2223
2224 /// When using `-Zpolonius=next`, records the given live loans for the loan scopes and active
2225 /// loans dataflow computations.
2226 pub(crate) fn record_live_loans(&mut self, live_loans: LiveLoans) {
2227 self.liveness_constraints.record_live_loans(live_loans);
2228 }
2229
2230 /// Returns whether the `loan_idx` is live at the given `location`: whether its issuing
2231 /// region is contained within the type of a variable that is live at this point.
2232 /// Note: for now, the sets of live loans is only available when using `-Zpolonius=next`.
2233 pub(crate) fn is_loan_live_at(&self, loan_idx: BorrowIndex, location: Location) -> bool {
2234 let point = self.liveness_constraints.point_from_location(location);
2235 self.liveness_constraints.is_loan_live_at(loan_idx, point)
2236 }
2237}
2238
2239impl<'tcx> RegionDefinition<'tcx> {
2240 fn new(universe: ty::UniverseIndex, rv_origin: RegionVariableOrigin) -> Self {
2241 // Create a new region definition. Note that, for free
2242 // regions, the `external_name` field gets updated later in
2243 // `init_free_and_bound_regions`.
2244
2245 let origin = match rv_origin {
2246 RegionVariableOrigin::Nll(origin) => origin,
2247 _ => NllRegionVariableOrigin::Existential { from_forall: false },
2248 };
2249
2250 Self { origin, universe, external_name: None }
2251 }
2252}
2253
2254#[derive(Clone, Debug)]
2255pub(crate) struct BlameConstraint<'tcx> {
2256 pub category: ConstraintCategory<'tcx>,
2257 pub from_closure: bool,
2258 pub cause: ObligationCause<'tcx>,
2259 pub variance_info: ty::VarianceDiagInfo<TyCtxt<'tcx>>,
2260}