rustc_mir_build/thir/pattern/
const_to_pat.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
use rustc_abi::{FieldIdx, VariantIdx};
use rustc_apfloat::Float;
use rustc_hir as hir;
use rustc_index::Idx;
use rustc_infer::infer::{InferCtxt, TyCtxtInferExt};
use rustc_infer::traits::Obligation;
use rustc_middle::mir::interpret::ErrorHandled;
use rustc_middle::thir::{FieldPat, Pat, PatKind};
use rustc_middle::ty::{self, Ty, TyCtxt, TypeVisitableExt, TypingMode, ValTree};
use rustc_middle::{mir, span_bug};
use rustc_span::Span;
use rustc_trait_selection::traits::ObligationCause;
use rustc_trait_selection::traits::query::evaluate_obligation::InferCtxtExt;
use tracing::{debug, instrument, trace};

use super::PatCtxt;
use crate::errors::{
    ConstPatternDependsOnGenericParameter, CouldNotEvalConstPattern, InvalidPattern, NaNPattern,
    PointerPattern, TypeNotPartialEq, TypeNotStructural, UnionPattern, UnsizedPattern,
};

impl<'a, 'tcx> PatCtxt<'a, 'tcx> {
    /// Converts a constant to a pattern (if possible).
    /// This means aggregate values (like structs and enums) are converted
    /// to a pattern that matches the value (as if you'd compared via structural equality).
    ///
    /// Only type system constants are supported, as we are using valtrees
    /// as an intermediate step. Unfortunately those don't carry a type
    /// so we have to carry one ourselves.
    #[instrument(level = "debug", skip(self), ret)]
    pub(super) fn const_to_pat(
        &self,
        c: ty::Const<'tcx>,
        ty: Ty<'tcx>,
        id: hir::HirId,
        span: Span,
    ) -> Box<Pat<'tcx>> {
        // FIXME(#132279): We likely want to be able to reveal the hidden types
        // of opaques defined in this function here.
        let infcx = self.tcx.infer_ctxt().build(TypingMode::non_body_analysis());
        let mut convert = ConstToPat::new(self, id, span, infcx);

        match c.kind() {
            ty::ConstKind::Unevaluated(uv) => convert.unevaluated_to_pat(uv, ty),
            ty::ConstKind::Value(_, val) => convert.valtree_to_pat(val, ty),
            _ => span_bug!(span, "Invalid `ConstKind` for `const_to_pat`: {:?}", c),
        }
    }
}

struct ConstToPat<'tcx> {
    span: Span,
    param_env: ty::ParamEnv<'tcx>,

    // inference context used for checking `T: Structural` bounds.
    infcx: InferCtxt<'tcx>,

    treat_byte_string_as_slice: bool,
}

impl<'tcx> ConstToPat<'tcx> {
    fn new(
        pat_ctxt: &PatCtxt<'_, 'tcx>,
        id: hir::HirId,
        span: Span,
        infcx: InferCtxt<'tcx>,
    ) -> Self {
        trace!(?pat_ctxt.typeck_results.hir_owner);
        ConstToPat {
            span,
            infcx,
            param_env: pat_ctxt.param_env,
            treat_byte_string_as_slice: pat_ctxt
                .typeck_results
                .treat_byte_string_as_slice
                .contains(&id.local_id),
        }
    }

    fn tcx(&self) -> TyCtxt<'tcx> {
        self.infcx.tcx
    }

    fn type_marked_structural(&self, ty: Ty<'tcx>) -> bool {
        ty.is_structural_eq_shallow(self.infcx.tcx)
    }

    fn unevaluated_to_pat(
        &mut self,
        uv: ty::UnevaluatedConst<'tcx>,
        ty: Ty<'tcx>,
    ) -> Box<Pat<'tcx>> {
        trace!(self.treat_byte_string_as_slice);
        let pat_from_kind = |kind| Box::new(Pat { span: self.span, ty, kind });

        // It's not *technically* correct to be revealing opaque types here as borrowcheck has
        // not run yet. However, CTFE itself uses `Reveal::All` unconditionally even during
        // typeck and not doing so has a lot of (undesirable) fallout (#101478, #119821). As a
        // result we always use a revealed env when resolving the instance to evaluate.
        //
        // FIXME: `const_eval_resolve_for_typeck` should probably just set the env to `Reveal::All`
        // instead of having this logic here
        let param_env =
            self.tcx().erase_regions(self.param_env).with_reveal_all_normalized(self.tcx());
        let uv = self.tcx().erase_regions(uv);

        // try to resolve e.g. associated constants to their definition on an impl, and then
        // evaluate the const.
        let valtree = match self.infcx.tcx.const_eval_resolve_for_typeck(param_env, uv, self.span) {
            Ok(Ok(c)) => c,
            Err(ErrorHandled::Reported(_, _)) => {
                // Let's tell the use where this failing const occurs.
                let e = self.tcx().dcx().emit_err(CouldNotEvalConstPattern { span: self.span });
                return pat_from_kind(PatKind::Error(e));
            }
            Err(ErrorHandled::TooGeneric(_)) => {
                let e = self
                    .tcx()
                    .dcx()
                    .emit_err(ConstPatternDependsOnGenericParameter { span: self.span });
                return pat_from_kind(PatKind::Error(e));
            }
            Ok(Err(bad_ty)) => {
                // The pattern cannot be turned into a valtree.
                let e = match bad_ty.kind() {
                    ty::Adt(def, ..) => {
                        assert!(def.is_union());
                        self.tcx().dcx().emit_err(UnionPattern { span: self.span })
                    }
                    ty::FnPtr(..) | ty::RawPtr(..) => {
                        self.tcx().dcx().emit_err(PointerPattern { span: self.span })
                    }
                    _ => self
                        .tcx()
                        .dcx()
                        .emit_err(InvalidPattern { span: self.span, non_sm_ty: bad_ty }),
                };
                return pat_from_kind(PatKind::Error(e));
            }
        };

        // Convert the valtree to a const.
        let inlined_const_as_pat = self.valtree_to_pat(valtree, ty);

        if !inlined_const_as_pat.references_error() {
            // Always check for `PartialEq` if we had no other errors yet.
            if !self.type_has_partial_eq_impl(ty) {
                let err = TypeNotPartialEq { span: self.span, non_peq_ty: ty };
                let e = self.tcx().dcx().emit_err(err);
                return pat_from_kind(PatKind::Error(e));
            }
        }

        inlined_const_as_pat
    }

    #[instrument(level = "trace", skip(self), ret)]
    fn type_has_partial_eq_impl(&self, ty: Ty<'tcx>) -> bool {
        let tcx = self.tcx();
        // double-check there even *is* a semantic `PartialEq` to dispatch to.
        //
        // (If there isn't, then we can safely issue a hard
        // error, because that's never worked, due to compiler
        // using `PartialEq::eq` in this scenario in the past.)
        let partial_eq_trait_id = tcx.require_lang_item(hir::LangItem::PartialEq, Some(self.span));
        let partial_eq_obligation = Obligation::new(
            tcx,
            ObligationCause::dummy(),
            self.param_env,
            ty::TraitRef::new(tcx, partial_eq_trait_id, [ty, ty]),
        );

        // This *could* accept a type that isn't actually `PartialEq`, because region bounds get
        // ignored. However that should be pretty much impossible since consts that do not depend on
        // generics can only mention the `'static` lifetime, and how would one have a type that's
        // `PartialEq` for some lifetime but *not* for `'static`? If this ever becomes a problem
        // we'll need to leave some sort of trace of this requirement in the MIR so that borrowck
        // can ensure that the type really implements `PartialEq`.
        self.infcx.predicate_must_hold_modulo_regions(&partial_eq_obligation)
    }

    fn field_pats(
        &self,
        vals: impl Iterator<Item = (ValTree<'tcx>, Ty<'tcx>)>,
    ) -> Vec<FieldPat<'tcx>> {
        vals.enumerate()
            .map(|(idx, (val, ty))| {
                let field = FieldIdx::new(idx);
                // Patterns can only use monomorphic types.
                let ty = self.tcx().normalize_erasing_regions(self.param_env, ty);
                FieldPat { field, pattern: self.valtree_to_pat(val, ty) }
            })
            .collect()
    }

    // Recursive helper for `to_pat`; invoke that (instead of calling this directly).
    #[instrument(skip(self), level = "debug")]
    fn valtree_to_pat(&self, cv: ValTree<'tcx>, ty: Ty<'tcx>) -> Box<Pat<'tcx>> {
        let span = self.span;
        let tcx = self.tcx();
        let param_env = self.param_env;

        let kind = match ty.kind() {
            ty::Adt(adt_def, _) if !self.type_marked_structural(ty) => {
                // Extremely important check for all ADTs! Make sure they opted-in to be used in
                // patterns.
                debug!("adt_def {:?} has !type_marked_structural for cv.ty: {:?}", adt_def, ty,);
                let err = TypeNotStructural { span, non_sm_ty: ty };
                let e = tcx.dcx().emit_err(err);
                // We errored. Signal that in the pattern, so that follow up errors can be silenced.
                PatKind::Error(e)
            }
            ty::Adt(adt_def, args) if adt_def.is_enum() => {
                let (&variant_index, fields) = cv.unwrap_branch().split_first().unwrap();
                let variant_index = VariantIdx::from_u32(variant_index.unwrap_leaf().to_u32());
                PatKind::Variant {
                    adt_def: *adt_def,
                    args,
                    variant_index,
                    subpatterns: self.field_pats(
                        fields.iter().copied().zip(
                            adt_def.variants()[variant_index]
                                .fields
                                .iter()
                                .map(|field| field.ty(self.tcx(), args)),
                        ),
                    ),
                }
            }
            ty::Adt(def, args) => {
                assert!(!def.is_union()); // Valtree construction would never succeed for unions.
                PatKind::Leaf {
                    subpatterns: self.field_pats(
                        cv.unwrap_branch().iter().copied().zip(
                            def.non_enum_variant()
                                .fields
                                .iter()
                                .map(|field| field.ty(self.tcx(), args)),
                        ),
                    ),
                }
            }
            ty::Tuple(fields) => PatKind::Leaf {
                subpatterns: self.field_pats(cv.unwrap_branch().iter().copied().zip(fields.iter())),
            },
            ty::Slice(elem_ty) => PatKind::Slice {
                prefix: cv
                    .unwrap_branch()
                    .iter()
                    .map(|val| self.valtree_to_pat(*val, *elem_ty))
                    .collect(),
                slice: None,
                suffix: Box::new([]),
            },
            ty::Array(elem_ty, _) => PatKind::Array {
                prefix: cv
                    .unwrap_branch()
                    .iter()
                    .map(|val| self.valtree_to_pat(*val, *elem_ty))
                    .collect(),
                slice: None,
                suffix: Box::new([]),
            },
            ty::Ref(_, pointee_ty, ..) => match *pointee_ty.kind() {
                // `&str` is represented as a valtree, let's keep using this
                // optimization for now.
                ty::Str => PatKind::Constant {
                    value: mir::Const::Ty(ty, ty::Const::new_value(tcx, cv, ty)),
                },
                // All other references are converted into deref patterns and then recursively
                // convert the dereferenced constant to a pattern that is the sub-pattern of the
                // deref pattern.
                _ => {
                    if !pointee_ty.is_sized(tcx, param_env) && !pointee_ty.is_slice() {
                        let err = UnsizedPattern { span, non_sm_ty: *pointee_ty };
                        let e = tcx.dcx().emit_err(err);
                        // We errored. Signal that in the pattern, so that follow up errors can be silenced.
                        PatKind::Error(e)
                    } else {
                        // `b"foo"` produces a `&[u8; 3]`, but you can't use constants of array type when
                        // matching against references, you can only use byte string literals.
                        // The typechecker has a special case for byte string literals, by treating them
                        // as slices. This means we turn `&[T; N]` constants into slice patterns, which
                        // has no negative effects on pattern matching, even if we're actually matching on
                        // arrays.
                        let pointee_ty = match *pointee_ty.kind() {
                            ty::Array(elem_ty, _) if self.treat_byte_string_as_slice => {
                                Ty::new_slice(tcx, elem_ty)
                            }
                            _ => *pointee_ty,
                        };
                        // References have the same valtree representation as their pointee.
                        let subpattern = self.valtree_to_pat(cv, pointee_ty);
                        PatKind::Deref { subpattern }
                    }
                }
            },
            ty::Float(flt) => {
                let v = cv.unwrap_leaf();
                let is_nan = match flt {
                    ty::FloatTy::F16 => v.to_f16().is_nan(),
                    ty::FloatTy::F32 => v.to_f32().is_nan(),
                    ty::FloatTy::F64 => v.to_f64().is_nan(),
                    ty::FloatTy::F128 => v.to_f128().is_nan(),
                };
                if is_nan {
                    // NaNs are not ever equal to anything so they make no sense as patterns.
                    // Also see <https://github.com/rust-lang/rfcs/pull/3535>.
                    let e = tcx.dcx().emit_err(NaNPattern { span });
                    PatKind::Error(e)
                } else {
                    PatKind::Constant {
                        value: mir::Const::Ty(ty, ty::Const::new_value(tcx, cv, ty)),
                    }
                }
            }
            ty::Pat(..) | ty::Bool | ty::Char | ty::Int(_) | ty::Uint(_) | ty::RawPtr(..) => {
                // The raw pointers we see here have been "vetted" by valtree construction to be
                // just integers, so we simply allow them.
                PatKind::Constant { value: mir::Const::Ty(ty, ty::Const::new_value(tcx, cv, ty)) }
            }
            ty::FnPtr(..) => {
                unreachable!(
                    "Valtree construction would never succeed for FnPtr, so this is unreachable."
                )
            }
            _ => {
                let err = InvalidPattern { span, non_sm_ty: ty };
                let e = tcx.dcx().emit_err(err);
                // We errored. Signal that in the pattern, so that follow up errors can be silenced.
                PatKind::Error(e)
            }
        };

        Box::new(Pat { span, ty, kind })
    }
}