rustc_mir_build/thir/pattern/
const_to_pat.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
use rustc_abi::{FieldIdx, VariantIdx};
use rustc_apfloat::Float;
use rustc_data_structures::fx::FxHashSet;
use rustc_errors::Diag;
use rustc_hir as hir;
use rustc_index::Idx;
use rustc_infer::infer::TyCtxtInferExt;
use rustc_infer::traits::Obligation;
use rustc_middle::mir::interpret::ErrorHandled;
use rustc_middle::thir::{FieldPat, Pat, PatKind};
use rustc_middle::ty::{self, Ty, TyCtxt, TypeVisitableExt, TypeVisitor, ValTree};
use rustc_middle::{mir, span_bug};
use rustc_span::def_id::DefId;
use rustc_span::{Span, sym};
use rustc_trait_selection::traits::ObligationCause;
use rustc_trait_selection::traits::query::evaluate_obligation::InferCtxtExt;
use tracing::{debug, instrument, trace};

use super::PatCtxt;
use crate::errors::{
    ConstPatternDependsOnGenericParameter, CouldNotEvalConstPattern, InvalidPattern, NaNPattern,
    PointerPattern, TypeNotPartialEq, TypeNotStructural, UnionPattern, UnsizedPattern,
};

impl<'a, 'tcx> PatCtxt<'a, 'tcx> {
    /// Converts a constant to a pattern (if possible).
    /// This means aggregate values (like structs and enums) are converted
    /// to a pattern that matches the value (as if you'd compared via structural equality).
    ///
    /// Only type system constants are supported, as we are using valtrees
    /// as an intermediate step. Unfortunately those don't carry a type
    /// so we have to carry one ourselves.
    #[instrument(level = "debug", skip(self), ret)]
    pub(super) fn const_to_pat(
        &self,
        c: ty::Const<'tcx>,
        ty: Ty<'tcx>,
        id: hir::HirId,
        span: Span,
    ) -> Box<Pat<'tcx>> {
        let mut convert = ConstToPat::new(self, id, span, c);

        match c.kind() {
            ty::ConstKind::Unevaluated(uv) => convert.unevaluated_to_pat(uv, ty),
            ty::ConstKind::Value(_, val) => convert.valtree_to_pat(val, ty),
            _ => span_bug!(span, "Invalid `ConstKind` for `const_to_pat`: {:?}", c),
        }
    }
}

struct ConstToPat<'tcx> {
    tcx: TyCtxt<'tcx>,
    typing_env: ty::TypingEnv<'tcx>,
    span: Span,
    id: hir::HirId,

    treat_byte_string_as_slice: bool,

    c: ty::Const<'tcx>,
}

impl<'tcx> ConstToPat<'tcx> {
    fn new(pat_ctxt: &PatCtxt<'_, 'tcx>, id: hir::HirId, span: Span, c: ty::Const<'tcx>) -> Self {
        trace!(?pat_ctxt.typeck_results.hir_owner);
        ConstToPat {
            tcx: pat_ctxt.tcx,
            typing_env: pat_ctxt.typing_env,
            span,
            id,
            treat_byte_string_as_slice: pat_ctxt
                .typeck_results
                .treat_byte_string_as_slice
                .contains(&id.local_id),
            c,
        }
    }

    fn type_marked_structural(&self, ty: Ty<'tcx>) -> bool {
        ty.is_structural_eq_shallow(self.tcx)
    }

    /// We errored. Signal that in the pattern, so that follow up errors can be silenced.
    fn mk_err(&self, mut err: Diag<'_>, ty: Ty<'tcx>) -> Box<Pat<'tcx>> {
        if let ty::ConstKind::Unevaluated(uv) = self.c.kind() {
            let def_kind = self.tcx.def_kind(uv.def);
            if let hir::def::DefKind::AssocConst = def_kind
                && let Some(def_id) = uv.def.as_local()
            {
                // Include the container item in the output.
                err.span_label(self.tcx.def_span(self.tcx.local_parent(def_id)), "");
            }
            if let hir::def::DefKind::Const | hir::def::DefKind::AssocConst = def_kind {
                err.span_label(
                    self.tcx.def_span(uv.def),
                    crate::fluent_generated::mir_build_const_defined_here,
                );
            }
        }
        Box::new(Pat { span: self.span, ty, kind: PatKind::Error(err.emit()) })
    }

    fn unevaluated_to_pat(
        &mut self,
        uv: ty::UnevaluatedConst<'tcx>,
        ty: Ty<'tcx>,
    ) -> Box<Pat<'tcx>> {
        trace!(self.treat_byte_string_as_slice);

        // It's not *technically* correct to be revealing opaque types here as borrowcheck has
        // not run yet. However, CTFE itself uses `TypingMode::PostAnalysis` unconditionally even
        // during typeck and not doing so has a lot of (undesirable) fallout (#101478, #119821).
        // As a result we always use a revealed env when resolving the instance to evaluate.
        //
        // FIXME: `const_eval_resolve_for_typeck` should probably just modify the env itself
        // instead of having this logic here
        let typing_env =
            self.tcx.erase_regions(self.typing_env).with_post_analysis_normalized(self.tcx);
        let uv = self.tcx.erase_regions(uv);

        // try to resolve e.g. associated constants to their definition on an impl, and then
        // evaluate the const.
        let valtree = match self.tcx.const_eval_resolve_for_typeck(typing_env, uv, self.span) {
            Ok(Ok(c)) => c,
            Err(ErrorHandled::Reported(_, _)) => {
                // Let's tell the use where this failing const occurs.
                let mut err =
                    self.tcx.dcx().create_err(CouldNotEvalConstPattern { span: self.span });
                // We've emitted an error on the original const, it would be redundant to complain
                // on its use as well.
                if let ty::ConstKind::Unevaluated(uv) = self.c.kind()
                    && let hir::def::DefKind::Const | hir::def::DefKind::AssocConst =
                        self.tcx.def_kind(uv.def)
                {
                    err.downgrade_to_delayed_bug();
                }
                return self.mk_err(err, ty);
            }
            Err(ErrorHandled::TooGeneric(_)) => {
                let mut e = self
                    .tcx
                    .dcx()
                    .create_err(ConstPatternDependsOnGenericParameter { span: self.span });
                for arg in uv.args {
                    if let ty::GenericArgKind::Type(ty) = arg.unpack()
                        && let ty::Param(param_ty) = ty.kind()
                    {
                        let def_id = self.tcx.hir().enclosing_body_owner(self.id);
                        let generics = self.tcx.generics_of(def_id);
                        let param = generics.type_param(*param_ty, self.tcx);
                        let span = self.tcx.def_span(param.def_id);
                        e.span_label(span, "constant depends on this generic parameter");
                        if let Some(ident) = self.tcx.def_ident_span(def_id)
                            && self.tcx.sess.source_map().is_multiline(ident.between(span))
                        {
                            // Display the `fn` name as well in the diagnostic, as the generic isn't
                            // in the same line and it could be confusing otherwise.
                            e.span_label(ident, "");
                        }
                    }
                }
                return self.mk_err(e, ty);
            }
            Ok(Err(bad_ty)) => {
                // The pattern cannot be turned into a valtree.
                let e = match bad_ty.kind() {
                    ty::Adt(def, ..) => {
                        assert!(def.is_union());
                        self.tcx.dcx().create_err(UnionPattern { span: self.span })
                    }
                    ty::FnPtr(..) | ty::RawPtr(..) => {
                        self.tcx.dcx().create_err(PointerPattern { span: self.span })
                    }
                    _ => self.tcx.dcx().create_err(InvalidPattern {
                        span: self.span,
                        non_sm_ty: bad_ty,
                        prefix: bad_ty.prefix_string(self.tcx).to_string(),
                    }),
                };
                return self.mk_err(e, ty);
            }
        };

        // Convert the valtree to a const.
        let inlined_const_as_pat = self.valtree_to_pat(valtree, ty);

        if !inlined_const_as_pat.references_error() {
            // Always check for `PartialEq` if we had no other errors yet.
            if !type_has_partial_eq_impl(self.tcx, typing_env, ty).0 {
                let mut err = self.tcx.dcx().create_err(TypeNotPartialEq { span: self.span, ty });
                extend_type_not_partial_eq(self.tcx, typing_env, ty, &mut err);
                return self.mk_err(err, ty);
            }
        }

        inlined_const_as_pat
    }

    fn field_pats(
        &self,
        vals: impl Iterator<Item = (ValTree<'tcx>, Ty<'tcx>)>,
    ) -> Vec<FieldPat<'tcx>> {
        vals.enumerate()
            .map(|(idx, (val, ty))| {
                let field = FieldIdx::new(idx);
                // Patterns can only use monomorphic types.
                let ty = self.tcx.normalize_erasing_regions(self.typing_env, ty);
                FieldPat { field, pattern: self.valtree_to_pat(val, ty) }
            })
            .collect()
    }

    // Recursive helper for `to_pat`; invoke that (instead of calling this directly).
    #[instrument(skip(self), level = "debug")]
    fn valtree_to_pat(&self, cv: ValTree<'tcx>, ty: Ty<'tcx>) -> Box<Pat<'tcx>> {
        let span = self.span;
        let tcx = self.tcx;
        let kind = match ty.kind() {
            ty::Adt(adt_def, _) if !self.type_marked_structural(ty) => {
                // Extremely important check for all ADTs! Make sure they opted-in to be used in
                // patterns.
                debug!("adt_def {:?} has !type_marked_structural for cv.ty: {:?}", adt_def, ty);
                let (_impls_partial_eq, derived, structural, impl_def_id) =
                    type_has_partial_eq_impl(self.tcx, self.typing_env, ty);
                let (manual_partialeq_impl_span, manual_partialeq_impl_note) =
                    match (structural, impl_def_id) {
                        (true, _) => (None, false),
                        (_, Some(def_id)) if def_id.is_local() && !derived => {
                            (Some(tcx.def_span(def_id)), false)
                        }
                        _ => (None, true),
                    };
                let ty_def_span = tcx.def_span(adt_def.did());
                let err = TypeNotStructural {
                    span,
                    ty,
                    ty_def_span,
                    manual_partialeq_impl_span,
                    manual_partialeq_impl_note,
                };
                return self.mk_err(tcx.dcx().create_err(err), ty);
            }
            ty::Adt(adt_def, args) if adt_def.is_enum() => {
                let (&variant_index, fields) = cv.unwrap_branch().split_first().unwrap();
                let variant_index = VariantIdx::from_u32(variant_index.unwrap_leaf().to_u32());
                PatKind::Variant {
                    adt_def: *adt_def,
                    args,
                    variant_index,
                    subpatterns: self.field_pats(
                        fields.iter().copied().zip(
                            adt_def.variants()[variant_index]
                                .fields
                                .iter()
                                .map(|field| field.ty(tcx, args)),
                        ),
                    ),
                }
            }
            ty::Adt(def, args) => {
                assert!(!def.is_union()); // Valtree construction would never succeed for unions.
                PatKind::Leaf {
                    subpatterns: self.field_pats(cv.unwrap_branch().iter().copied().zip(
                        def.non_enum_variant().fields.iter().map(|field| field.ty(tcx, args)),
                    )),
                }
            }
            ty::Tuple(fields) => PatKind::Leaf {
                subpatterns: self.field_pats(cv.unwrap_branch().iter().copied().zip(fields.iter())),
            },
            ty::Slice(elem_ty) => PatKind::Slice {
                prefix: cv
                    .unwrap_branch()
                    .iter()
                    .map(|val| self.valtree_to_pat(*val, *elem_ty))
                    .collect(),
                slice: None,
                suffix: Box::new([]),
            },
            ty::Array(elem_ty, _) => PatKind::Array {
                prefix: cv
                    .unwrap_branch()
                    .iter()
                    .map(|val| self.valtree_to_pat(*val, *elem_ty))
                    .collect(),
                slice: None,
                suffix: Box::new([]),
            },
            ty::Ref(_, pointee_ty, ..) => match *pointee_ty.kind() {
                // `&str` is represented as a valtree, let's keep using this
                // optimization for now.
                ty::Str => PatKind::Constant {
                    value: mir::Const::Ty(ty, ty::Const::new_value(tcx, cv, ty)),
                },
                // All other references are converted into deref patterns and then recursively
                // convert the dereferenced constant to a pattern that is the sub-pattern of the
                // deref pattern.
                _ => {
                    if !pointee_ty.is_sized(tcx, self.typing_env) && !pointee_ty.is_slice() {
                        return self.mk_err(
                            tcx.dcx().create_err(UnsizedPattern { span, non_sm_ty: *pointee_ty }),
                            ty,
                        );
                    } else {
                        // `b"foo"` produces a `&[u8; 3]`, but you can't use constants of array type when
                        // matching against references, you can only use byte string literals.
                        // The typechecker has a special case for byte string literals, by treating them
                        // as slices. This means we turn `&[T; N]` constants into slice patterns, which
                        // has no negative effects on pattern matching, even if we're actually matching on
                        // arrays.
                        let pointee_ty = match *pointee_ty.kind() {
                            ty::Array(elem_ty, _) if self.treat_byte_string_as_slice => {
                                Ty::new_slice(tcx, elem_ty)
                            }
                            _ => *pointee_ty,
                        };
                        // References have the same valtree representation as their pointee.
                        let subpattern = self.valtree_to_pat(cv, pointee_ty);
                        PatKind::Deref { subpattern }
                    }
                }
            },
            ty::Float(flt) => {
                let v = cv.unwrap_leaf();
                let is_nan = match flt {
                    ty::FloatTy::F16 => v.to_f16().is_nan(),
                    ty::FloatTy::F32 => v.to_f32().is_nan(),
                    ty::FloatTy::F64 => v.to_f64().is_nan(),
                    ty::FloatTy::F128 => v.to_f128().is_nan(),
                };
                if is_nan {
                    // NaNs are not ever equal to anything so they make no sense as patterns.
                    // Also see <https://github.com/rust-lang/rfcs/pull/3535>.
                    return self.mk_err(tcx.dcx().create_err(NaNPattern { span }), ty);
                } else {
                    PatKind::Constant {
                        value: mir::Const::Ty(ty, ty::Const::new_value(tcx, cv, ty)),
                    }
                }
            }
            ty::Pat(..) | ty::Bool | ty::Char | ty::Int(_) | ty::Uint(_) | ty::RawPtr(..) => {
                // The raw pointers we see here have been "vetted" by valtree construction to be
                // just integers, so we simply allow them.
                PatKind::Constant { value: mir::Const::Ty(ty, ty::Const::new_value(tcx, cv, ty)) }
            }
            ty::FnPtr(..) => {
                unreachable!(
                    "Valtree construction would never succeed for FnPtr, so this is unreachable."
                )
            }
            _ => {
                let err = InvalidPattern {
                    span,
                    non_sm_ty: ty,
                    prefix: ty.prefix_string(tcx).to_string(),
                };
                return self.mk_err(tcx.dcx().create_err(err), ty);
            }
        };

        Box::new(Pat { span, ty, kind })
    }
}

/// Given a type with type parameters, visit every ADT looking for types that need to
/// `#[derive(PartialEq)]` for it to be a structural type.
fn extend_type_not_partial_eq<'tcx>(
    tcx: TyCtxt<'tcx>,
    typing_env: ty::TypingEnv<'tcx>,
    ty: Ty<'tcx>,
    err: &mut Diag<'_>,
) {
    /// Collect all types that need to be `StructuralPartialEq`.
    struct UsedParamsNeedInstantiationVisitor<'tcx> {
        tcx: TyCtxt<'tcx>,
        typing_env: ty::TypingEnv<'tcx>,
        /// The user has written `impl PartialEq for Ty` which means it's non-structual.
        adts_with_manual_partialeq: FxHashSet<Span>,
        /// The type has no `PartialEq` implementation, neither manual or derived.
        adts_without_partialeq: FxHashSet<Span>,
        /// The user has written `impl PartialEq for Ty` which means it's non-structual,
        /// but we don't have a span to point at, so we'll just add them as a `note`.
        manual: Vec<Ty<'tcx>>,
        /// The type has no `PartialEq` implementation, neither manual or derived, but
        /// we don't have a span to point at, so we'll just add them as a `note`.
        without: Vec<Ty<'tcx>>,
    }

    impl<'tcx> TypeVisitor<TyCtxt<'tcx>> for UsedParamsNeedInstantiationVisitor<'tcx> {
        fn visit_ty(&mut self, ty: Ty<'tcx>) -> Self::Result {
            if let ty::Adt(def, _args) = ty.kind() {
                let ty_def_id = def.did();
                let ty_def_span = self.tcx.def_span(ty_def_id);
                let (impls_partial_eq, derived, structural, impl_def_id) =
                    type_has_partial_eq_impl(self.tcx, self.typing_env, ty);
                match (impls_partial_eq, derived, structural, impl_def_id) {
                    (_, _, true, _) => {}
                    (true, false, _, Some(def_id)) if def_id.is_local() => {
                        self.adts_with_manual_partialeq.insert(self.tcx.def_span(def_id));
                    }
                    (true, false, _, _) if ty_def_id.is_local() => {
                        self.adts_with_manual_partialeq.insert(ty_def_span);
                    }
                    (false, _, _, _) if ty_def_id.is_local() => {
                        self.adts_without_partialeq.insert(ty_def_span);
                    }
                    (true, false, _, _) => {
                        self.manual.push(ty);
                    }
                    (false, _, _, _) => {
                        self.without.push(ty);
                    }
                    _ => {}
                };
            }
            use rustc_middle::ty::TypeSuperVisitable;
            ty.super_visit_with(self)
        }
    }
    let mut v = UsedParamsNeedInstantiationVisitor {
        tcx,
        typing_env,
        adts_with_manual_partialeq: FxHashSet::default(),
        adts_without_partialeq: FxHashSet::default(),
        manual: vec![],
        without: vec![],
    };
    v.visit_ty(ty);
    #[allow(rustc::potential_query_instability)] // Span labels will be sorted by the rendering
    for span in v.adts_with_manual_partialeq {
        err.span_note(span, "the `PartialEq` trait must be derived, manual `impl`s are not sufficient; see https://doc.rust-lang.org/stable/std/marker/trait.StructuralPartialEq.html for details");
    }
    #[allow(rustc::potential_query_instability)] // Span labels will be sorted by the rendering
    for span in v.adts_without_partialeq {
        err.span_label(
            span,
            "must be annotated with `#[derive(PartialEq)]` to be usable in patterns",
        );
    }
    for ty in v.manual {
        err.note(format!(
            "`{ty}` must be annotated with `#[derive(PartialEq)]` to be usable in patterns, manual `impl`s are not sufficient; see https://doc.rust-lang.org/stable/std/marker/trait.StructuralPartialEq.html for details"
        ));
    }
    for ty in v.without {
        err.note(format!(
            "`{ty}` must be annotated with `#[derive(PartialEq)]` to be usable in patterns"
        ));
    }
}

#[instrument(level = "trace", skip(tcx), ret)]
fn type_has_partial_eq_impl<'tcx>(
    tcx: TyCtxt<'tcx>,
    typing_env: ty::TypingEnv<'tcx>,
    ty: Ty<'tcx>,
) -> (
    /* has impl */ bool,
    /* is derived */ bool,
    /* structural partial eq */ bool,
    /* non-blanket impl */ Option<DefId>,
) {
    let (infcx, param_env) = tcx.infer_ctxt().build_with_typing_env(typing_env);
    // double-check there even *is* a semantic `PartialEq` to dispatch to.
    //
    // (If there isn't, then we can safely issue a hard
    // error, because that's never worked, due to compiler
    // using `PartialEq::eq` in this scenario in the past.)
    let partial_eq_trait_id = tcx.require_lang_item(hir::LangItem::PartialEq, None);
    let structural_partial_eq_trait_id = tcx.require_lang_item(hir::LangItem::StructuralPeq, None);

    let partial_eq_obligation = Obligation::new(
        tcx,
        ObligationCause::dummy(),
        param_env,
        ty::TraitRef::new(tcx, partial_eq_trait_id, [ty, ty]),
    );

    let mut automatically_derived = false;
    let mut structural_peq = false;
    let mut impl_def_id = None;
    for def_id in tcx.non_blanket_impls_for_ty(partial_eq_trait_id, ty) {
        automatically_derived = tcx.has_attr(def_id, sym::automatically_derived);
        impl_def_id = Some(def_id);
    }
    for _ in tcx.non_blanket_impls_for_ty(structural_partial_eq_trait_id, ty) {
        structural_peq = true;
    }
    // This *could* accept a type that isn't actually `PartialEq`, because region bounds get
    // ignored. However that should be pretty much impossible since consts that do not depend on
    // generics can only mention the `'static` lifetime, and how would one have a type that's
    // `PartialEq` for some lifetime but *not* for `'static`? If this ever becomes a problem
    // we'll need to leave some sort of trace of this requirement in the MIR so that borrowck
    // can ensure that the type really implements `PartialEq`.
    (
        infcx.predicate_must_hold_modulo_regions(&partial_eq_obligation),
        automatically_derived,
        structural_peq,
        impl_def_id,
    )
}