rustc_builtin_macros/
autodiff.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
//! This module contains the implementation of the `#[autodiff]` attribute.
//! Currently our linter isn't smart enough to see that each import is used in one of the two
//! configs (autodiff enabled or disabled), so we have to add cfg's to each import.
//! FIXME(ZuseZ4): Remove this once we have a smarter linter.

#[cfg(llvm_enzyme)]
mod llvm_enzyme {
    use std::str::FromStr;
    use std::string::String;

    use rustc_ast::expand::autodiff_attrs::{
        AutoDiffAttrs, DiffActivity, DiffMode, valid_input_activity, valid_ty_for_activity,
    };
    use rustc_ast::ptr::P;
    use rustc_ast::token::{Token, TokenKind};
    use rustc_ast::tokenstream::*;
    use rustc_ast::visit::AssocCtxt::*;
    use rustc_ast::{
        self as ast, AssocItemKind, BindingMode, FnRetTy, FnSig, Generics, ItemKind, MetaItemInner,
        PatKind, TyKind,
    };
    use rustc_expand::base::{Annotatable, ExtCtxt};
    use rustc_span::{Ident, Span, Symbol, kw, sym};
    use thin_vec::{ThinVec, thin_vec};
    use tracing::{debug, trace};

    use crate::errors;

    // If we have a default `()` return type or explicitley `()` return type,
    // then we often can skip doing some work.
    fn has_ret(ty: &FnRetTy) -> bool {
        match ty {
            FnRetTy::Ty(ty) => !ty.kind.is_unit(),
            FnRetTy::Default(_) => false,
        }
    }
    fn first_ident(x: &MetaItemInner) -> rustc_span::Ident {
        let segments = &x.meta_item().unwrap().path.segments;
        assert!(segments.len() == 1);
        segments[0].ident
    }

    fn name(x: &MetaItemInner) -> String {
        first_ident(x).name.to_string()
    }

    pub(crate) fn from_ast(
        ecx: &mut ExtCtxt<'_>,
        meta_item: &ThinVec<MetaItemInner>,
        has_ret: bool,
    ) -> AutoDiffAttrs {
        let dcx = ecx.sess.dcx();
        let mode = name(&meta_item[1]);
        let Ok(mode) = DiffMode::from_str(&mode) else {
            dcx.emit_err(errors::AutoDiffInvalidMode { span: meta_item[1].span(), mode });
            return AutoDiffAttrs::error();
        };
        let mut activities: Vec<DiffActivity> = vec![];
        let mut errors = false;
        for x in &meta_item[2..] {
            let activity_str = name(&x);
            let res = DiffActivity::from_str(&activity_str);
            match res {
                Ok(x) => activities.push(x),
                Err(_) => {
                    dcx.emit_err(errors::AutoDiffUnknownActivity {
                        span: x.span(),
                        act: activity_str,
                    });
                    errors = true;
                }
            };
        }
        if errors {
            return AutoDiffAttrs::error();
        }

        // If a return type exist, we need to split the last activity,
        // otherwise we return None as placeholder.
        let (ret_activity, input_activity) = if has_ret {
            let Some((last, rest)) = activities.split_last() else {
                unreachable!(
                    "should not be reachable because we counted the number of activities previously"
                );
            };
            (last, rest)
        } else {
            (&DiffActivity::None, activities.as_slice())
        };

        AutoDiffAttrs { mode, ret_activity: *ret_activity, input_activity: input_activity.to_vec() }
    }

    /// We expand the autodiff macro to generate a new placeholder function which passes
    /// type-checking and can be called by users. The function body of the placeholder function will
    /// later be replaced on LLVM-IR level, so the design of the body is less important and for now
    /// should just prevent early inlining and optimizations which alter the function signature.
    /// The exact signature of the generated function depends on the configuration provided by the
    /// user, but here is an example:
    ///
    /// ```
    /// #[autodiff(cos_box, Reverse, Duplicated, Active)]
    /// fn sin(x: &Box<f32>) -> f32 {
    ///     f32::sin(**x)
    /// }
    /// ```
    /// which becomes expanded to:
    /// ```
    /// #[rustc_autodiff]
    /// #[inline(never)]
    /// fn sin(x: &Box<f32>) -> f32 {
    ///     f32::sin(**x)
    /// }
    /// #[rustc_autodiff(Reverse, Duplicated, Active)]
    /// #[inline(never)]
    /// fn cos_box(x: &Box<f32>, dx: &mut Box<f32>, dret: f32) -> f32 {
    ///     unsafe {
    ///         asm!("NOP");
    ///     };
    ///     ::core::hint::black_box(sin(x));
    ///     ::core::hint::black_box((dx, dret));
    ///     ::core::hint::black_box(sin(x))
    /// }
    /// ```
    /// FIXME(ZuseZ4): Once autodiff is enabled by default, make this a doc comment which is checked
    /// in CI.
    pub(crate) fn expand(
        ecx: &mut ExtCtxt<'_>,
        expand_span: Span,
        meta_item: &ast::MetaItem,
        mut item: Annotatable,
    ) -> Vec<Annotatable> {
        let dcx = ecx.sess.dcx();
        // first get the annotable item:
        let (sig, is_impl): (FnSig, bool) = match &item {
            Annotatable::Item(ref iitem) => {
                let sig = match &iitem.kind {
                    ItemKind::Fn(box ast::Fn { sig, .. }) => sig,
                    _ => {
                        dcx.emit_err(errors::AutoDiffInvalidApplication { span: item.span() });
                        return vec![item];
                    }
                };
                (sig.clone(), false)
            }
            Annotatable::AssocItem(ref assoc_item, _) => {
                let sig = match &assoc_item.kind {
                    ast::AssocItemKind::Fn(box ast::Fn { sig, .. }) => sig,
                    _ => {
                        dcx.emit_err(errors::AutoDiffInvalidApplication { span: item.span() });
                        return vec![item];
                    }
                };
                (sig.clone(), true)
            }
            _ => {
                dcx.emit_err(errors::AutoDiffInvalidApplication { span: item.span() });
                return vec![item];
            }
        };

        let meta_item_vec: ThinVec<MetaItemInner> = match meta_item.kind {
            ast::MetaItemKind::List(ref vec) => vec.clone(),
            _ => {
                dcx.emit_err(errors::AutoDiffInvalidApplication { span: item.span() });
                return vec![item];
            }
        };

        let has_ret = has_ret(&sig.decl.output);
        let sig_span = ecx.with_call_site_ctxt(sig.span);

        let (vis, primal) = match &item {
            Annotatable::Item(ref iitem) => (iitem.vis.clone(), iitem.ident.clone()),
            Annotatable::AssocItem(ref assoc_item, _) => {
                (assoc_item.vis.clone(), assoc_item.ident.clone())
            }
            _ => {
                dcx.emit_err(errors::AutoDiffInvalidApplication { span: item.span() });
                return vec![item];
            }
        };

        // create TokenStream from vec elemtents:
        // meta_item doesn't have a .tokens field
        let comma: Token = Token::new(TokenKind::Comma, Span::default());
        let mut ts: Vec<TokenTree> = vec![];
        if meta_item_vec.len() < 2 {
            // At the bare minimum, we need a fnc name and a mode, even for a dummy function with no
            // input and output args.
            dcx.emit_err(errors::AutoDiffMissingConfig { span: item.span() });
            return vec![item];
        } else {
            for t in meta_item_vec.clone()[1..].iter() {
                let val = first_ident(t);
                let t = Token::from_ast_ident(val);
                ts.push(TokenTree::Token(t, Spacing::Joint));
                ts.push(TokenTree::Token(comma.clone(), Spacing::Alone));
            }
        }
        if !has_ret {
            // We don't want users to provide a return activity if the function doesn't return anything.
            // For simplicity, we just add a dummy token to the end of the list.
            let t = Token::new(TokenKind::Ident(sym::None, false.into()), Span::default());
            ts.push(TokenTree::Token(t, Spacing::Joint));
        }
        let ts: TokenStream = TokenStream::from_iter(ts);

        let x: AutoDiffAttrs = from_ast(ecx, &meta_item_vec, has_ret);
        if !x.is_active() {
            // We encountered an error, so we return the original item.
            // This allows us to potentially parse other attributes.
            return vec![item];
        }
        let span = ecx.with_def_site_ctxt(expand_span);

        let n_active: u32 = x
            .input_activity
            .iter()
            .filter(|a| **a == DiffActivity::Active || **a == DiffActivity::ActiveOnly)
            .count() as u32;
        let (d_sig, new_args, idents, errored) = gen_enzyme_decl(ecx, &sig, &x, span);
        let new_decl_span = d_sig.span;
        let d_body = gen_enzyme_body(
            ecx,
            &x,
            n_active,
            &sig,
            &d_sig,
            primal,
            &new_args,
            span,
            sig_span,
            new_decl_span,
            idents,
            errored,
        );
        let d_ident = first_ident(&meta_item_vec[0]);

        // The first element of it is the name of the function to be generated
        let asdf = Box::new(ast::Fn {
            defaultness: ast::Defaultness::Final,
            sig: d_sig,
            generics: Generics::default(),
            body: Some(d_body),
        });
        let mut rustc_ad_attr =
            P(ast::NormalAttr::from_ident(Ident::with_dummy_span(sym::rustc_autodiff)));

        let ts2: Vec<TokenTree> = vec![TokenTree::Token(
            Token::new(TokenKind::Ident(sym::never, false.into()), span),
            Spacing::Joint,
        )];
        let never_arg = ast::DelimArgs {
            dspan: ast::tokenstream::DelimSpan::from_single(span),
            delim: ast::token::Delimiter::Parenthesis,
            tokens: ast::tokenstream::TokenStream::from_iter(ts2),
        };
        let inline_item = ast::AttrItem {
            unsafety: ast::Safety::Default,
            path: ast::Path::from_ident(Ident::with_dummy_span(sym::inline)),
            args: ast::AttrArgs::Delimited(never_arg),
            tokens: None,
        };
        let inline_never_attr = P(ast::NormalAttr { item: inline_item, tokens: None });
        let new_id = ecx.sess.psess.attr_id_generator.mk_attr_id();
        let attr: ast::Attribute = ast::Attribute {
            kind: ast::AttrKind::Normal(rustc_ad_attr.clone()),
            id: new_id,
            style: ast::AttrStyle::Outer,
            span,
        };
        let new_id = ecx.sess.psess.attr_id_generator.mk_attr_id();
        let inline_never: ast::Attribute = ast::Attribute {
            kind: ast::AttrKind::Normal(inline_never_attr),
            id: new_id,
            style: ast::AttrStyle::Outer,
            span,
        };

        // Don't add it multiple times:
        let orig_annotatable: Annotatable = match item {
            Annotatable::Item(ref mut iitem) => {
                if !iitem.attrs.iter().any(|a| a.id == attr.id) {
                    iitem.attrs.push(attr.clone());
                }
                if !iitem.attrs.iter().any(|a| a.id == inline_never.id) {
                    iitem.attrs.push(inline_never.clone());
                }
                Annotatable::Item(iitem.clone())
            }
            Annotatable::AssocItem(ref mut assoc_item, i @ Impl) => {
                if !assoc_item.attrs.iter().any(|a| a.id == attr.id) {
                    assoc_item.attrs.push(attr.clone());
                }
                if !assoc_item.attrs.iter().any(|a| a.id == inline_never.id) {
                    assoc_item.attrs.push(inline_never.clone());
                }
                Annotatable::AssocItem(assoc_item.clone(), i)
            }
            _ => {
                unreachable!("annotatable kind checked previously")
            }
        };
        // Now update for d_fn
        rustc_ad_attr.item.args = rustc_ast::AttrArgs::Delimited(rustc_ast::DelimArgs {
            dspan: DelimSpan::dummy(),
            delim: rustc_ast::token::Delimiter::Parenthesis,
            tokens: ts,
        });
        let d_attr: ast::Attribute = ast::Attribute {
            kind: ast::AttrKind::Normal(rustc_ad_attr.clone()),
            id: new_id,
            style: ast::AttrStyle::Outer,
            span,
        };

        let d_annotatable = if is_impl {
            let assoc_item: AssocItemKind = ast::AssocItemKind::Fn(asdf);
            let d_fn = P(ast::AssocItem {
                attrs: thin_vec![d_attr.clone(), inline_never],
                id: ast::DUMMY_NODE_ID,
                span,
                vis,
                ident: d_ident,
                kind: assoc_item,
                tokens: None,
            });
            Annotatable::AssocItem(d_fn, Impl)
        } else {
            let mut d_fn = ecx.item(
                span,
                d_ident,
                thin_vec![d_attr.clone(), inline_never],
                ItemKind::Fn(asdf),
            );
            d_fn.vis = vis;
            Annotatable::Item(d_fn)
        };

        return vec![orig_annotatable, d_annotatable];
    }

    // shadow arguments (the extra ones which were not in the original (primal) function), in reverse mode must be
    // mutable references or ptrs, because Enzyme will write into them.
    fn assure_mut_ref(ty: &ast::Ty) -> ast::Ty {
        let mut ty = ty.clone();
        match ty.kind {
            TyKind::Ptr(ref mut mut_ty) => {
                mut_ty.mutbl = ast::Mutability::Mut;
            }
            TyKind::Ref(_, ref mut mut_ty) => {
                mut_ty.mutbl = ast::Mutability::Mut;
            }
            _ => {
                panic!("unsupported type: {:?}", ty);
            }
        }
        ty
    }

    /// We only want this function to type-check, since we will replace the body
    /// later on llvm level. Using `loop {}` does not cover all return types anymore,
    /// so instead we build something that should pass. We also add a inline_asm
    /// line, as one more barrier for rustc to prevent inlining of this function.
    /// FIXME(ZuseZ4): We still have cases of incorrect inlining across modules, see
    /// <https://github.com/EnzymeAD/rust/issues/173>, so this isn't sufficient.
    /// It also triggers an Enzyme crash if we due to a bug ever try to differentiate
    /// this function (which should never happen, since it is only a placeholder).
    /// Finally, we also add back_box usages of all input arguments, to prevent rustc
    /// from optimizing any arguments away.
    fn gen_enzyme_body(
        ecx: &ExtCtxt<'_>,
        x: &AutoDiffAttrs,
        n_active: u32,
        sig: &ast::FnSig,
        d_sig: &ast::FnSig,
        primal: Ident,
        new_names: &[String],
        span: Span,
        sig_span: Span,
        new_decl_span: Span,
        idents: Vec<Ident>,
        errored: bool,
    ) -> P<ast::Block> {
        let blackbox_path = ecx.std_path(&[sym::hint, sym::black_box]);
        let noop = ast::InlineAsm {
            asm_macro: ast::AsmMacro::Asm,
            template: vec![ast::InlineAsmTemplatePiece::String("NOP".into())],
            template_strs: Box::new([]),
            operands: vec![],
            clobber_abis: vec![],
            options: ast::InlineAsmOptions::PURE | ast::InlineAsmOptions::NOMEM,
            line_spans: vec![],
        };
        let noop_expr = ecx.expr_asm(span, P(noop));
        let unsf = ast::BlockCheckMode::Unsafe(ast::UnsafeSource::CompilerGenerated);
        let unsf_block = ast::Block {
            stmts: thin_vec![ecx.stmt_semi(noop_expr)],
            id: ast::DUMMY_NODE_ID,
            tokens: None,
            rules: unsf,
            span,
            could_be_bare_literal: false,
        };
        let unsf_expr = ecx.expr_block(P(unsf_block));
        let blackbox_call_expr = ecx.expr_path(ecx.path(span, blackbox_path));
        let primal_call = gen_primal_call(ecx, span, primal, idents);
        let black_box_primal_call =
            ecx.expr_call(new_decl_span, blackbox_call_expr.clone(), thin_vec![
                primal_call.clone()
            ]);
        let tup_args = new_names
            .iter()
            .map(|arg| ecx.expr_path(ecx.path_ident(span, Ident::from_str(arg))))
            .collect();

        let black_box_remaining_args =
            ecx.expr_call(sig_span, blackbox_call_expr.clone(), thin_vec![
                ecx.expr_tuple(sig_span, tup_args)
            ]);

        let mut body = ecx.block(span, ThinVec::new());
        body.stmts.push(ecx.stmt_semi(unsf_expr));

        // This uses primal args which won't be available if we errored before
        if !errored {
            body.stmts.push(ecx.stmt_semi(black_box_primal_call.clone()));
        }
        body.stmts.push(ecx.stmt_semi(black_box_remaining_args));

        if !has_ret(&d_sig.decl.output) {
            // there is no return type that we have to match, () works fine.
            return body;
        }

        // having an active-only return means we'll drop the original return type.
        // So that can be treated identical to not having one in the first place.
        let primal_ret = has_ret(&sig.decl.output) && !x.has_active_only_ret();

        if primal_ret && n_active == 0 && x.mode.is_rev() {
            // We only have the primal ret.
            body.stmts.push(ecx.stmt_expr(black_box_primal_call.clone()));
            return body;
        }

        if !primal_ret && n_active == 1 {
            // Again no tuple return, so return default float val.
            let ty = match d_sig.decl.output {
                FnRetTy::Ty(ref ty) => ty.clone(),
                FnRetTy::Default(span) => {
                    panic!("Did not expect Default ret ty: {:?}", span);
                }
            };
            let arg = ty.kind.is_simple_path().unwrap();
            let sl: Vec<Symbol> = vec![arg, kw::Default];
            let tmp = ecx.def_site_path(&sl);
            let default_call_expr = ecx.expr_path(ecx.path(span, tmp));
            let default_call_expr = ecx.expr_call(new_decl_span, default_call_expr, thin_vec![]);
            body.stmts.push(ecx.stmt_expr(default_call_expr));
            return body;
        }

        let mut exprs = ThinVec::<P<ast::Expr>>::new();
        if primal_ret {
            // We have both primal ret and active floats.
            // primal ret is first, by construction.
            exprs.push(primal_call.clone());
        }

        // Now construct default placeholder for each active float.
        // Is there something nicer than f32::default() and f64::default()?
        let d_ret_ty = match d_sig.decl.output {
            FnRetTy::Ty(ref ty) => ty.clone(),
            FnRetTy::Default(span) => {
                panic!("Did not expect Default ret ty: {:?}", span);
            }
        };
        let mut d_ret_ty = match d_ret_ty.kind.clone() {
            TyKind::Tup(ref tys) => tys.clone(),
            TyKind::Path(_, rustc_ast::Path { segments, .. }) => {
                if let [segment] = &segments[..]
                    && segment.args.is_none()
                {
                    let id = vec![segments[0].ident];
                    let kind = TyKind::Path(None, ecx.path(span, id));
                    let ty = P(rustc_ast::Ty { kind, id: ast::DUMMY_NODE_ID, span, tokens: None });
                    thin_vec![ty]
                } else {
                    panic!("Expected tuple or simple path return type");
                }
            }
            _ => {
                // We messed up construction of d_sig
                panic!("Did not expect non-tuple ret ty: {:?}", d_ret_ty);
            }
        };

        if x.mode.is_fwd() && x.ret_activity == DiffActivity::Dual {
            assert!(d_ret_ty.len() == 2);
            // both should be identical, by construction
            let arg = d_ret_ty[0].kind.is_simple_path().unwrap();
            let arg2 = d_ret_ty[1].kind.is_simple_path().unwrap();
            assert!(arg == arg2);
            let sl: Vec<Symbol> = vec![arg, kw::Default];
            let tmp = ecx.def_site_path(&sl);
            let default_call_expr = ecx.expr_path(ecx.path(span, tmp));
            let default_call_expr = ecx.expr_call(new_decl_span, default_call_expr, thin_vec![]);
            exprs.push(default_call_expr);
        } else if x.mode.is_rev() {
            if primal_ret {
                // We have extra handling above for the primal ret
                d_ret_ty = d_ret_ty[1..].to_vec().into();
            }

            for arg in d_ret_ty.iter() {
                let arg = arg.kind.is_simple_path().unwrap();
                let sl: Vec<Symbol> = vec![arg, kw::Default];
                let tmp = ecx.def_site_path(&sl);
                let default_call_expr = ecx.expr_path(ecx.path(span, tmp));
                let default_call_expr =
                    ecx.expr_call(new_decl_span, default_call_expr, thin_vec![]);
                exprs.push(default_call_expr);
            }
        }

        let ret: P<ast::Expr>;
        match &exprs[..] {
            [] => {
                assert!(!has_ret(&d_sig.decl.output));
                // We don't have to match the return type.
                return body;
            }
            [arg] => {
                ret = ecx
                    .expr_call(new_decl_span, blackbox_call_expr.clone(), thin_vec![arg.clone()]);
            }
            args => {
                let ret_tuple: P<ast::Expr> = ecx.expr_tuple(span, args.into());
                ret =
                    ecx.expr_call(new_decl_span, blackbox_call_expr.clone(), thin_vec![ret_tuple]);
            }
        }
        assert!(has_ret(&d_sig.decl.output));
        body.stmts.push(ecx.stmt_expr(ret));

        body
    }

    fn gen_primal_call(
        ecx: &ExtCtxt<'_>,
        span: Span,
        primal: Ident,
        idents: Vec<Ident>,
    ) -> P<ast::Expr> {
        let has_self = idents.len() > 0 && idents[0].name == kw::SelfLower;
        if has_self {
            let args: ThinVec<_> =
                idents[1..].iter().map(|arg| ecx.expr_path(ecx.path_ident(span, *arg))).collect();
            let self_expr = ecx.expr_self(span);
            ecx.expr_method_call(span, self_expr, primal, args.clone())
        } else {
            let args: ThinVec<_> =
                idents.iter().map(|arg| ecx.expr_path(ecx.path_ident(span, *arg))).collect();
            let primal_call_expr = ecx.expr_path(ecx.path_ident(span, primal));
            ecx.expr_call(span, primal_call_expr, args)
        }
    }

    // Generate the new function declaration. Const arguments are kept as is. Duplicated arguments must
    // be pointers or references. Those receive a shadow argument, which is a mutable reference/pointer.
    // Active arguments must be scalars. Their shadow argument is added to the return type (and will be
    // zero-initialized by Enzyme).
    // Each argument of the primal function (and the return type if existing) must be annotated with an
    // activity.
    //
    // Error handling: If the user provides an invalid configuration (incorrect numbers, types, or
    // both), we emit an error and return the original signature. This allows us to continue parsing.
    fn gen_enzyme_decl(
        ecx: &ExtCtxt<'_>,
        sig: &ast::FnSig,
        x: &AutoDiffAttrs,
        span: Span,
    ) -> (ast::FnSig, Vec<String>, Vec<Ident>, bool) {
        let dcx = ecx.sess.dcx();
        let has_ret = has_ret(&sig.decl.output);
        let sig_args = sig.decl.inputs.len() + if has_ret { 1 } else { 0 };
        let num_activities = x.input_activity.len() + if x.has_ret_activity() { 1 } else { 0 };
        if sig_args != num_activities {
            dcx.emit_err(errors::AutoDiffInvalidNumberActivities {
                span,
                expected: sig_args,
                found: num_activities,
            });
            // This is not the right signature, but we can continue parsing.
            return (sig.clone(), vec![], vec![], true);
        }
        assert!(sig.decl.inputs.len() == x.input_activity.len());
        assert!(has_ret == x.has_ret_activity());
        let mut d_decl = sig.decl.clone();
        let mut d_inputs = Vec::new();
        let mut new_inputs = Vec::new();
        let mut idents = Vec::new();
        let mut act_ret = ThinVec::new();

        // We have two loops, a first one just to check the activities and types and possibly report
        // multiple errors in one compilation session.
        let mut errors = false;
        for (arg, activity) in sig.decl.inputs.iter().zip(x.input_activity.iter()) {
            if !valid_input_activity(x.mode, *activity) {
                dcx.emit_err(errors::AutoDiffInvalidApplicationModeAct {
                    span,
                    mode: x.mode.to_string(),
                    act: activity.to_string(),
                });
                errors = true;
            }
            if !valid_ty_for_activity(&arg.ty, *activity) {
                dcx.emit_err(errors::AutoDiffInvalidTypeForActivity {
                    span: arg.ty.span,
                    act: activity.to_string(),
                });
                errors = true;
            }
        }
        if errors {
            // This is not the right signature, but we can continue parsing.
            return (sig.clone(), new_inputs, idents, true);
        }
        let unsafe_activities = x
            .input_activity
            .iter()
            .any(|&act| matches!(act, DiffActivity::DuplicatedOnly | DiffActivity::DualOnly));
        for (arg, activity) in sig.decl.inputs.iter().zip(x.input_activity.iter()) {
            d_inputs.push(arg.clone());
            match activity {
                DiffActivity::Active => {
                    act_ret.push(arg.ty.clone());
                }
                DiffActivity::ActiveOnly => {
                    // We will add the active scalar to the return type.
                    // This is handled later.
                }
                DiffActivity::Duplicated | DiffActivity::DuplicatedOnly => {
                    let mut shadow_arg = arg.clone();
                    // We += into the shadow in reverse mode.
                    shadow_arg.ty = P(assure_mut_ref(&arg.ty));
                    let old_name = if let PatKind::Ident(_, ident, _) = arg.pat.kind {
                        ident.name
                    } else {
                        debug!("{:#?}", &shadow_arg.pat);
                        panic!("not an ident?");
                    };
                    let name: String = format!("d{}", old_name);
                    new_inputs.push(name.clone());
                    let ident = Ident::from_str_and_span(&name, shadow_arg.pat.span);
                    shadow_arg.pat = P(ast::Pat {
                        id: ast::DUMMY_NODE_ID,
                        kind: PatKind::Ident(BindingMode::NONE, ident, None),
                        span: shadow_arg.pat.span,
                        tokens: shadow_arg.pat.tokens.clone(),
                    });
                    d_inputs.push(shadow_arg);
                }
                DiffActivity::Dual | DiffActivity::DualOnly => {
                    let mut shadow_arg = arg.clone();
                    let old_name = if let PatKind::Ident(_, ident, _) = arg.pat.kind {
                        ident.name
                    } else {
                        debug!("{:#?}", &shadow_arg.pat);
                        panic!("not an ident?");
                    };
                    let name: String = format!("b{}", old_name);
                    new_inputs.push(name.clone());
                    let ident = Ident::from_str_and_span(&name, shadow_arg.pat.span);
                    shadow_arg.pat = P(ast::Pat {
                        id: ast::DUMMY_NODE_ID,
                        kind: PatKind::Ident(BindingMode::NONE, ident, None),
                        span: shadow_arg.pat.span,
                        tokens: shadow_arg.pat.tokens.clone(),
                    });
                    d_inputs.push(shadow_arg);
                }
                DiffActivity::Const => {
                    // Nothing to do here.
                }
                DiffActivity::None | DiffActivity::FakeActivitySize => {
                    panic!("Should not happen");
                }
            }
            if let PatKind::Ident(_, ident, _) = arg.pat.kind {
                idents.push(ident.clone());
            } else {
                panic!("not an ident?");
            }
        }

        let active_only_ret = x.ret_activity == DiffActivity::ActiveOnly;
        if active_only_ret {
            assert!(x.mode.is_rev());
        }

        // If we return a scalar in the primal and the scalar is active,
        // then add it as last arg to the inputs.
        if x.mode.is_rev() {
            match x.ret_activity {
                DiffActivity::Active | DiffActivity::ActiveOnly => {
                    let ty = match d_decl.output {
                        FnRetTy::Ty(ref ty) => ty.clone(),
                        FnRetTy::Default(span) => {
                            panic!("Did not expect Default ret ty: {:?}", span);
                        }
                    };
                    let name = "dret".to_string();
                    let ident = Ident::from_str_and_span(&name, ty.span);
                    let shadow_arg = ast::Param {
                        attrs: ThinVec::new(),
                        ty: ty.clone(),
                        pat: P(ast::Pat {
                            id: ast::DUMMY_NODE_ID,
                            kind: PatKind::Ident(BindingMode::NONE, ident, None),
                            span: ty.span,
                            tokens: None,
                        }),
                        id: ast::DUMMY_NODE_ID,
                        span: ty.span,
                        is_placeholder: false,
                    };
                    d_inputs.push(shadow_arg);
                    new_inputs.push(name);
                }
                _ => {}
            }
        }
        d_decl.inputs = d_inputs.into();

        if x.mode.is_fwd() {
            if let DiffActivity::Dual = x.ret_activity {
                let ty = match d_decl.output {
                    FnRetTy::Ty(ref ty) => ty.clone(),
                    FnRetTy::Default(span) => {
                        panic!("Did not expect Default ret ty: {:?}", span);
                    }
                };
                // Dual can only be used for f32/f64 ret.
                // In that case we return now a tuple with two floats.
                let kind = TyKind::Tup(thin_vec![ty.clone(), ty.clone()]);
                let ty = P(rustc_ast::Ty { kind, id: ty.id, span: ty.span, tokens: None });
                d_decl.output = FnRetTy::Ty(ty);
            }
            if let DiffActivity::DualOnly = x.ret_activity {
                // No need to change the return type,
                // we will just return the shadow in place
                // of the primal return.
            }
        }

        // If we use ActiveOnly, drop the original return value.
        d_decl.output =
            if active_only_ret { FnRetTy::Default(span) } else { d_decl.output.clone() };

        trace!("act_ret: {:?}", act_ret);

        // If we have an active input scalar, add it's gradient to the
        // return type. This might require changing the return type to a
        // tuple.
        if act_ret.len() > 0 {
            let ret_ty = match d_decl.output {
                FnRetTy::Ty(ref ty) => {
                    if !active_only_ret {
                        act_ret.insert(0, ty.clone());
                    }
                    let kind = TyKind::Tup(act_ret);
                    P(rustc_ast::Ty { kind, id: ty.id, span: ty.span, tokens: None })
                }
                FnRetTy::Default(span) => {
                    if act_ret.len() == 1 {
                        act_ret[0].clone()
                    } else {
                        let kind = TyKind::Tup(act_ret.iter().map(|arg| arg.clone()).collect());
                        P(rustc_ast::Ty { kind, id: ast::DUMMY_NODE_ID, span, tokens: None })
                    }
                }
            };
            d_decl.output = FnRetTy::Ty(ret_ty);
        }

        let mut d_header = sig.header.clone();
        if unsafe_activities {
            d_header.safety = rustc_ast::Safety::Unsafe(span);
        }
        let d_sig = FnSig { header: d_header, decl: d_decl, span };
        trace!("Generated signature: {:?}", d_sig);
        (d_sig, new_inputs, idents, false)
    }
}

#[cfg(not(llvm_enzyme))]
mod ad_fallback {
    use rustc_ast::ast;
    use rustc_expand::base::{Annotatable, ExtCtxt};
    use rustc_span::Span;

    use crate::errors;
    pub(crate) fn expand(
        ecx: &mut ExtCtxt<'_>,
        _expand_span: Span,
        meta_item: &ast::MetaItem,
        item: Annotatable,
    ) -> Vec<Annotatable> {
        ecx.sess.dcx().emit_err(errors::AutoDiffSupportNotBuild { span: meta_item.span });
        return vec![item];
    }
}

#[cfg(not(llvm_enzyme))]
pub(crate) use ad_fallback::expand;
#[cfg(llvm_enzyme)]
pub(crate) use llvm_enzyme::expand;