rustc_const_eval/interpret/visitor.rs
1//! Visitor for a run-time value with a given layout: Traverse enums, structs and other compound
2//! types until we arrive at the leaves, with custom handling for primitive types.
3
4use std::num::NonZero;
5
6use rustc_abi::{FieldIdx, FieldsShape, VariantIdx, Variants};
7use rustc_middle::mir::interpret::InterpResult;
8use rustc_middle::ty::{self, Ty};
9use tracing::trace;
10
11use super::{InterpCx, MPlaceTy, Machine, Projectable, interp_ok, throw_inval};
12
13/// How to traverse a value and what to do when we are at the leaves.
14pub trait ValueVisitor<'tcx, M: Machine<'tcx>>: Sized {
15 type V: Projectable<'tcx, M::Provenance> + From<MPlaceTy<'tcx, M::Provenance>>;
16
17 /// The visitor must have an `InterpCx` in it.
18 fn ecx(&self) -> &InterpCx<'tcx, M>;
19
20 /// `read_discriminant` can be hooked for better error messages.
21 #[inline(always)]
22 fn read_discriminant(&mut self, v: &Self::V) -> InterpResult<'tcx, VariantIdx> {
23 self.ecx().read_discriminant(&v.to_op(self.ecx())?)
24 }
25
26 // Recursive actions, ready to be overloaded.
27 /// Visits the given value, dispatching as appropriate to more specialized visitors.
28 #[inline(always)]
29 fn visit_value(&mut self, v: &Self::V) -> InterpResult<'tcx> {
30 self.walk_value(v)
31 }
32 /// Visits the given value as a union. No automatic recursion can happen here.
33 #[inline(always)]
34 fn visit_union(&mut self, _v: &Self::V, _fields: NonZero<usize>) -> InterpResult<'tcx> {
35 interp_ok(())
36 }
37 /// Visits the given value as the pointer of a `Box`. There is nothing to recurse into.
38 /// The type of `v` will be a raw pointer to `T`, but this is a field of `Box<T>` and the
39 /// pointee type is the actual `T`. `box_ty` provides the full type of the `Box` itself.
40 #[inline(always)]
41 fn visit_box(&mut self, _box_ty: Ty<'tcx>, _v: &Self::V) -> InterpResult<'tcx> {
42 interp_ok(())
43 }
44
45 /// Called each time we recurse down to a field of a "product-like" aggregate
46 /// (structs, tuples, arrays and the like, but not enums), passing in old (outer)
47 /// and new (inner) value.
48 /// This gives the visitor the chance to track the stack of nested fields that
49 /// we are descending through.
50 #[inline(always)]
51 fn visit_field(
52 &mut self,
53 _old_val: &Self::V,
54 _field: usize,
55 new_val: &Self::V,
56 ) -> InterpResult<'tcx> {
57 self.visit_value(new_val)
58 }
59 /// Called when recursing into an enum variant.
60 /// This gives the visitor the chance to track the stack of nested fields that
61 /// we are descending through.
62 #[inline(always)]
63 fn visit_variant(
64 &mut self,
65 _old_val: &Self::V,
66 _variant: VariantIdx,
67 new_val: &Self::V,
68 ) -> InterpResult<'tcx> {
69 self.visit_value(new_val)
70 }
71
72 /// Traversal logic; should not be overloaded.
73 fn walk_value(&mut self, v: &Self::V) -> InterpResult<'tcx> {
74 let ty = v.layout().ty;
75 trace!("walk_value: type: {ty}");
76
77 // Special treatment for special types, where the (static) layout is not sufficient.
78 match *ty.kind() {
79 // If it is a trait object, switch to the real type that was used to create it.
80 ty::Dynamic(data, _) => {
81 // Dyn types. This is unsized, and the actual dynamic type of the data is given by the
82 // vtable stored in the place metadata.
83 // unsized values are never immediate, so we can assert_mem_place
84 let op = v.to_op(self.ecx())?;
85 let dest = op.assert_mem_place();
86 let inner_mplace = self.ecx().unpack_dyn_trait(&dest, data)?;
87 trace!("walk_value: dyn object layout: {:#?}", inner_mplace.layout);
88 // recurse with the inner type
89 return self.visit_field(v, 0, &inner_mplace.into());
90 }
91 // Slices do not need special handling here: they have `Array` field
92 // placement with length 0, so we enter the `Array` case below which
93 // indirectly uses the metadata to determine the actual length.
94
95 // However, `Box`... let's talk about `Box`.
96 ty::Adt(def, ..) if def.is_box() => {
97 // `Box` is a hybrid primitive-library-defined type that one the one hand is
98 // a dereferenceable pointer, on the other hand has *basically arbitrary
99 // user-defined layout* since the user controls the 'allocator' field. So it
100 // cannot be treated like a normal pointer, since it does not fit into an
101 // `Immediate`. Yeah, it is quite terrible. But many visitors want to do
102 // something with "all boxed pointers", so we handle this mess for them.
103 //
104 // When we hit a `Box`, we do not do the usual field recursion; instead,
105 // we (a) call `visit_box` on the pointer value, and (b) recurse on the
106 // allocator field. We also assert tons of things to ensure we do not miss
107 // any other fields.
108
109 // `Box` has two fields: the pointer we care about, and the allocator.
110 assert_eq!(v.layout().fields.count(), 2, "`Box` must have exactly 2 fields");
111 let [unique_ptr, alloc] =
112 self.ecx().project_fields(v, [FieldIdx::ZERO, FieldIdx::ONE])?;
113
114 // Unfortunately there is some type junk in the way here: `unique_ptr` is a `Unique`...
115 // (which means another 2 fields, the second of which is a `PhantomData`)
116 assert_eq!(unique_ptr.layout().fields.count(), 2);
117 let [nonnull_ptr, phantom] =
118 self.ecx().project_fields(&unique_ptr, [FieldIdx::ZERO, FieldIdx::ONE])?;
119 assert!(
120 phantom.layout().ty.ty_adt_def().is_some_and(|adt| adt.is_phantom_data()),
121 "2nd field of `Unique` should be PhantomData but is {:?}",
122 phantom.layout().ty,
123 );
124
125 // ... that contains a `NonNull`... (gladly, only a single field here)
126 assert_eq!(nonnull_ptr.layout().fields.count(), 1);
127 let raw_ptr = self.ecx().project_field(&nonnull_ptr, FieldIdx::ZERO)?; // the actual raw ptr
128
129 // ... whose only field finally is a raw ptr we can dereference.
130 self.visit_box(ty, &raw_ptr)?;
131
132 // The second `Box` field is the allocator, which we recursively check for validity
133 // like in regular structs.
134 self.visit_field(v, 1, &alloc)?;
135
136 // We visited all parts of this one.
137 return interp_ok(());
138 }
139
140 // Non-normalized types should never show up here.
141 ty::Param(..)
142 | ty::Alias(..)
143 | ty::Bound(..)
144 | ty::Placeholder(..)
145 | ty::Infer(..)
146 | ty::Error(..) => throw_inval!(TooGeneric),
147
148 // The rest is handled below.
149 _ => {}
150 };
151
152 // Visit the fields of this value.
153 match &v.layout().fields {
154 FieldsShape::Primitive => {}
155 &FieldsShape::Union(fields) => {
156 self.visit_union(v, fields)?;
157 }
158 FieldsShape::Arbitrary { in_memory_order, .. } => {
159 for idx in in_memory_order.iter().copied() {
160 let field = self.ecx().project_field(v, idx)?;
161 self.visit_field(v, idx.as_usize(), &field)?;
162 }
163 }
164 FieldsShape::Array { .. } => {
165 let mut iter = self.ecx().project_array_fields(v)?;
166 while let Some((idx, field)) = iter.next(self.ecx())? {
167 self.visit_field(v, idx.try_into().unwrap(), &field)?;
168 }
169 }
170 }
171
172 match v.layout().variants {
173 // If this is a multi-variant layout, find the right variant and proceed
174 // with *its* fields.
175 Variants::Multiple { .. } => {
176 let idx = self.read_discriminant(v)?;
177 // There are 3 cases where downcasts can turn a Scalar/ScalarPair into a different ABI which
178 // could be a problem for `ImmTy` (see layout_sanity_check):
179 // - variant.size == Size::ZERO: works fine because `ImmTy::offset` has a special case for
180 // zero-sized layouts.
181 // - variant.fields.count() == 0: works fine because `ImmTy::offset` has a special case for
182 // zero-field aggregates.
183 // - variant.abi.is_uninhabited(): triggers UB in `read_discriminant` so we never get here.
184 let inner = self.ecx().project_downcast(v, idx)?;
185 trace!("walk_value: variant layout: {:#?}", inner.layout());
186 // recurse with the inner type
187 self.visit_variant(v, idx, &inner)?;
188 }
189 // For single-variant layouts, we already did everything there is to do.
190 Variants::Single { .. } | Variants::Empty => {}
191 }
192
193 interp_ok(())
194 }
195}