rustc_pattern_analysis/usefulness.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882
//! # Match exhaustiveness and redundancy algorithm
//!
//! This file contains the logic for exhaustiveness and usefulness checking for pattern-matching.
//! Specifically, given a list of patterns in a match, we can tell whether:
//! (a) a given pattern is redundant
//! (b) the patterns cover every possible value for the type (exhaustiveness)
//!
//! The algorithm implemented here is inspired from the one described in [this
//! paper](http://moscova.inria.fr/~maranget/papers/warn/index.html). We have however changed it in
//! various ways to accommodate the variety of patterns that Rust supports. We thus explain our
//! version here, without being as precise.
//!
//! Fun fact: computing exhaustiveness is NP-complete, because we can encode a SAT problem as an
//! exhaustiveness problem. See [here](https://niedzejkob.p4.team/rust-np) for the fun details.
//!
//!
//! # Summary
//!
//! The algorithm is given as input a list of patterns, one for each arm of a match, and computes
//! the following:
//! - a set of values that match none of the patterns (if any),
//! - for each subpattern (taking into account or-patterns), whether removing it would change
//! anything about how the match executes, i.e. whether it is useful/not redundant.
//!
//! To a first approximation, the algorithm works by exploring all possible values for the type
//! being matched on, and determining which arm(s) catch which value. To make this tractable we
//! cleverly group together values, as we'll see below.
//!
//! The entrypoint of this file is the [`compute_match_usefulness`] function, which computes
//! usefulness for each subpattern and exhaustiveness for the whole match.
//!
//! In this page we explain the necessary concepts to understand how the algorithm works.
//!
//!
//! # Usefulness
//!
//! The central concept of this file is the notion of "usefulness". Given some patterns `p_1 ..
//! p_n`, a pattern `q` is said to be *useful* if there is a value that is matched by `q` and by
//! none of the `p_i`. We write `usefulness(p_1 .. p_n, q)` for a function that returns a list of
//! such values. The aim of this file is to compute it efficiently.
//!
//! This is enough to compute usefulness: a pattern in a `match` expression is redundant iff it is
//! not useful w.r.t. the patterns above it:
//! ```compile_fail,E0004
//! # fn foo() {
//! match Some(0u32) {
//! Some(0..100) => {},
//! Some(90..190) => {}, // useful: `Some(150)` is matched by this but not the branch above
//! Some(50..150) => {}, // redundant: all the values this matches are already matched by
//! // the branches above
//! None => {}, // useful: `None` is matched by this but not the branches above
//! }
//! # }
//! ```
//!
//! This is also enough to compute exhaustiveness: a match is exhaustive iff the wildcard `_`
//! pattern is _not_ useful w.r.t. the patterns in the match. The values returned by `usefulness`
//! are used to tell the user which values are missing.
//! ```compile_fail,E0004
//! # fn foo(x: Option<u32>) {
//! match x {
//! None => {},
//! Some(0) => {},
//! // not exhaustive: `_` is useful because it matches `Some(1)`
//! }
//! # }
//! ```
//!
//!
//! # Constructors and fields
//!
//! In the value `Pair(Some(0), true)`, `Pair` is called the constructor of the value, and `Some(0)`
//! and `true` are its fields. Every matcheable value can be decomposed in this way. Examples of
//! constructors are: `Some`, `None`, `(,)` (the 2-tuple constructor), `Foo {..}` (the constructor
//! for a struct `Foo`), and `2` (the constructor for the number `2`).
//!
//! Each constructor takes a fixed number of fields; this is called its arity. `Pair` and `(,)` have
//! arity 2, `Some` has arity 1, `None` and `42` have arity 0. Each type has a known set of
//! constructors. Some types have many constructors (like `u64`) or even an infinitely many (like
//! `&str` and `&[T]`).
//!
//! Patterns are similar: `Pair(Some(_), _)` has constructor `Pair` and two fields. The difference
//! is that we get some extra pattern-only constructors, namely: the wildcard `_`, variable
//! bindings, integer ranges like `0..=10`, and variable-length slices like `[_, .., _]`. We treat
//! or-patterns separately, see the dedicated section below.
//!
//! Now to check if a value `v` matches a pattern `p`, we check if `v`'s constructor matches `p`'s
//! constructor, then recursively compare their fields if necessary. A few representative examples:
//!
//! - `matches!(v, _) := true`
//! - `matches!((v0, v1), (p0, p1)) := matches!(v0, p0) && matches!(v1, p1)`
//! - `matches!(Foo { bar: v0, baz: v1 }, Foo { bar: p0, baz: p1 }) := matches!(v0, p0) && matches!(v1, p1)`
//! - `matches!(Ok(v0), Ok(p0)) := matches!(v0, p0)`
//! - `matches!(Ok(v0), Err(p0)) := false` (incompatible variants)
//! - `matches!(v, 1..=100) := matches!(v, 1) || ... || matches!(v, 100)`
//! - `matches!([v0], [p0, .., p1]) := false` (incompatible lengths)
//! - `matches!([v0, v1, v2], [p0, .., p1]) := matches!(v0, p0) && matches!(v2, p1)`
//!
//! Constructors and relevant operations are defined in the [`crate::constructor`] module. A
//! representation of patterns that uses constructors is available in [`crate::pat`]. The question
//! of whether a constructor is matched by another one is answered by
//! [`Constructor::is_covered_by`].
//!
//! Note 1: variable bindings (like the `x` in `Some(x)`) match anything, so we treat them as wildcards.
//! Note 2: this only applies to matcheable values. For example a value of type `Rc<u64>` can't be
//! deconstructed that way.
//!
//!
//!
//! # Specialization
//!
//! The examples in the previous section motivate the operation at the heart of the algorithm:
//! "specialization". It captures this idea of "removing one layer of constructor".
//!
//! `specialize(c, p)` takes a value-only constructor `c` and a pattern `p`, and returns a
//! pattern-tuple or nothing. It works as follows:
//!
//! - Specializing for the wrong constructor returns nothing
//!
//! - `specialize(None, Some(p0)) := <nothing>`
//! - `specialize([,,,], [p0]) := <nothing>`
//!
//! - Specializing for the correct constructor returns a tuple of the fields
//!
//! - `specialize(Variant1, Variant1(p0, p1, p2)) := (p0, p1, p2)`
//! - `specialize(Foo{ bar, baz, quz }, Foo { bar: p0, baz: p1, .. }) := (p0, p1, _)`
//! - `specialize([,,,], [p0, .., p1]) := (p0, _, _, p1)`
//!
//! We get the following property: for any values `v_1, .., v_n` of appropriate types, we have:
//! ```text
//! matches!(c(v_1, .., v_n), p)
//! <=> specialize(c, p) returns something
//! && matches!((v_1, .., v_n), specialize(c, p))
//! ```
//!
//! We also extend specialization to pattern-tuples by applying it to the first pattern:
//! `specialize(c, (p_0, .., p_n)) := specialize(c, p_0) ++ (p_1, .., p_m)`
//! where `++` is concatenation of tuples.
//!
//!
//! The previous property extends to pattern-tuples:
//! ```text
//! matches!((c(v_1, .., v_n), w_1, .., w_m), (p_0, p_1, .., p_m))
//! <=> specialize(c, p_0) does not error
//! && matches!((v_1, .., v_n, w_1, .., w_m), specialize(c, (p_0, p_1, .., p_m)))
//! ```
//!
//! Whether specialization returns something or not is given by [`Constructor::is_covered_by`].
//! Specialization of a pattern is computed in [`DeconstructedPat::specialize`]. Specialization for
//! a pattern-tuple is computed in [`PatStack::pop_head_constructor`]. Finally, specialization for a
//! set of pattern-tuples is computed in [`Matrix::specialize_constructor`].
//!
//!
//!
//! # Undoing specialization
//!
//! To construct witnesses we will need an inverse of specialization. If `c` is a constructor of
//! arity `n`, we define `unspecialize` as:
//! `unspecialize(c, (p_1, .., p_n, q_1, .., q_m)) := (c(p_1, .., p_n), q_1, .., q_m)`.
//!
//! This is done for a single witness-tuple in [`WitnessStack::apply_constructor`], and for a set of
//! witness-tuples in [`WitnessMatrix::apply_constructor`].
//!
//!
//!
//! # Computing usefulness
//!
//! We now present a naive version of the algorithm for computing usefulness. From now on we operate
//! on pattern-tuples.
//!
//! Let `pt_1, .., pt_n` and `qt` be length-m tuples of patterns for the same type `(T_1, .., T_m)`.
//! We compute `usefulness(tp_1, .., tp_n, tq)` as follows:
//!
//! - Base case: `m == 0`.
//! The pattern-tuples are all empty, i.e. they're all `()`. Thus `tq` is useful iff there are
//! no rows above it, i.e. if `n == 0`. In that case we return `()` as a witness-tuple of
//! usefulness of `tq`.
//!
//! - Inductive case: `m > 0`.
//! In this naive version, we list all the possible constructors for values of type `T1` (we
//! will be more clever in the next section).
//!
//! - For each such constructor `c` for which `specialize(c, tq)` is not nothing:
//! - We recursively compute `usefulness(specialize(c, tp_1) ... specialize(c, tp_n), specialize(c, tq))`,
//! where we discard any `specialize(c, p_i)` that returns nothing.
//! - For each witness-tuple `w` found, we apply `unspecialize(c, w)` to it.
//!
//! - We return the all the witnesses found, if any.
//!
//!
//! Let's take the following example:
//! ```compile_fail,E0004
//! # enum Enum { Variant1(()), Variant2(Option<bool>, u32)}
//! # use Enum::*;
//! # fn foo(x: Enum) {
//! match x {
//! Variant1(_) => {} // `p1`
//! Variant2(None, 0) => {} // `p2`
//! Variant2(Some(_), 0) => {} // `q`
//! }
//! # }
//! ```
//!
//! To compute the usefulness of `q`, we would proceed as follows:
//! ```text
//! Start:
//! `tp1 = [Variant1(_)]`
//! `tp2 = [Variant2(None, 0)]`
//! `tq = [Variant2(Some(true), 0)]`
//!
//! Constructors are `Variant1` and `Variant2`. Only `Variant2` can specialize `tq`.
//! Specialize with `Variant2`:
//! `tp2 = [None, 0]`
//! `tq = [Some(true), 0]`
//!
//! Constructors are `None` and `Some`. Only `Some` can specialize `tq`.
//! Specialize with `Some`:
//! `tq = [true, 0]`
//!
//! Constructors are `false` and `true`. Only `true` can specialize `tq`.
//! Specialize with `true`:
//! `tq = [0]`
//!
//! Constructors are `0`, `1`, .. up to infinity. Only `0` can specialize `tq`.
//! Specialize with `0`:
//! `tq = []`
//!
//! m == 0 and n == 0, so `tq` is useful with witness `[]`.
//! `witness = []`
//!
//! Unspecialize with `0`:
//! `witness = [0]`
//! Unspecialize with `true`:
//! `witness = [true, 0]`
//! Unspecialize with `Some`:
//! `witness = [Some(true), 0]`
//! Unspecialize with `Variant2`:
//! `witness = [Variant2(Some(true), 0)]`
//! ```
//!
//! Therefore `usefulness(tp_1, tp_2, tq)` returns the single witness-tuple `[Variant2(Some(true), 0)]`.
//!
//!
//! Computing the set of constructors for a type is done in [`PatCx::ctors_for_ty`]. See
//! the following sections for more accurate versions of the algorithm and corresponding links.
//!
//!
//!
//! # Computing usefulness and exhaustiveness in one go
//!
//! The algorithm we have described so far computes usefulness of each pattern in turn, and ends by
//! checking if `_` is useful to determine exhaustiveness of the whole match. In practice, instead
//! of doing "for each pattern { for each constructor { ... } }", we do "for each constructor { for
//! each pattern { ... } }". This allows us to compute everything in one go.
//!
//! [`Matrix`] stores the set of pattern-tuples under consideration. We track usefulness of each
//! row mutably in the matrix as we go along. We ignore witnesses of usefulness of the match rows.
//! We gather witnesses of the usefulness of `_` in [`WitnessMatrix`]. The algorithm that computes
//! all this is in [`compute_exhaustiveness_and_usefulness`].
//!
//! See the full example at the bottom of this documentation.
//!
//!
//!
//! # Making usefulness tractable: constructor splitting
//!
//! We're missing one last detail: which constructors do we list? Naively listing all value
//! constructors cannot work for types like `u64` or `&str`, so we need to be more clever. The final
//! clever idea for this algorithm is that we can group together constructors that behave the same.
//!
//! Examples:
//! ```compile_fail,E0004
//! match (0, false) {
//! (0 ..=100, true) => {}
//! (50..=150, false) => {}
//! (0 ..=200, _) => {}
//! }
//! ```
//!
//! In this example, trying any of `0`, `1`, .., `49` will give the same specialized matrix, and
//! thus the same usefulness/exhaustiveness results. We can thus accelerate the algorithm by
//! trying them all at once. Here in fact, the only cases we need to consider are: `0..50`,
//! `50..=100`, `101..=150`,`151..=200` and `201..`.
//!
//! ```
//! enum Direction { North, South, East, West }
//! # let wind = (Direction::North, 0u8);
//! match wind {
//! (Direction::North, 50..) => {}
//! (_, _) => {}
//! }
//! ```
//!
//! In this example, trying any of `South`, `East`, `West` will give the same specialized matrix. By
//! the same reasoning, we only need to try two cases: `North`, and "everything else".
//!
//! We call _constructor splitting_ the operation that computes such a minimal set of cases to try.
//! This is done in [`ConstructorSet::split`] and explained in [`crate::constructor`].
//!
//!
//!
//! # `Missing` and relevancy
//!
//! ## Relevant values
//!
//! Take the following example:
//!
//! ```compile_fail,E0004
//! # let foo = (true, true);
//! match foo {
//! (true, _) => 1,
//! (_, true) => 2,
//! };
//! ```
//!
//! Consider the value `(true, true)`:
//! - Row 2 does not distinguish `(true, true)` and `(false, true)`;
//! - `false` does not show up in the first column of the match, so without knowing anything else we
//! can deduce that `(false, true)` matches the same or fewer rows than `(true, true)`.
//!
//! Using those two facts together, we deduce that `(true, true)` will not give us more usefulness
//! information about row 2 than `(false, true)` would. We say that "`(true, true)` is made
//! irrelevant for row 2 by `(false, true)`". We will use this idea to prune the search tree.
//!
//!
//! ## Computing relevancy
//!
//! We now generalize from the above example to approximate relevancy in a simple way. Note that we
//! will only compute an approximation: we can sometimes determine when a case is irrelevant, but
//! computing this precisely is at least as hard as computing usefulness.
//!
//! Our computation of relevancy relies on the `Missing` constructor. As explained in
//! [`crate::constructor`], `Missing` represents the constructors not present in a given column. For
//! example in the following:
//!
//! ```compile_fail,E0004
//! enum Direction { North, South, East, West }
//! # let wind = (Direction::North, 0u8);
//! match wind {
//! (Direction::North, _) => 1,
//! (_, 50..) => 2,
//! };
//! ```
//!
//! Here `South`, `East` and `West` are missing in the first column, and `0..50` is missing in the
//! second. Both of these sets are represented by `Constructor::Missing` in their corresponding
//! column.
//!
//! We then compute relevancy as follows: during the course of the algorithm, for a row `r`:
//! - if `r` has a wildcard in the first column;
//! - and some constructors are missing in that column;
//! - then any `c != Missing` is considered irrelevant for row `r`.
//!
//! By this we mean that continuing the algorithm by specializing with `c` is guaranteed not to
//! contribute more information about the usefulness of row `r` than what we would get by
//! specializing with `Missing`. The argument is the same as in the previous subsection.
//!
//! Once we've specialized by a constructor `c` that is irrelevant for row `r`, we're guaranteed to
//! only explore values irrelevant for `r`. If we then ever reach a point where we're only exploring
//! values that are irrelevant to all of the rows (including the virtual wildcard row used for
//! exhaustiveness), we skip that case entirely.
//!
//!
//! ## Example
//!
//! Let's go through a variation on the first example:
//!
//! ```compile_fail,E0004
//! # let foo = (true, true, true);
//! match foo {
//! (true, _, true) => 1,
//! (_, true, _) => 2,
//! };
//! ```
//!
//! ```text
//! ┐ Patterns:
//! │ 1. `[(true, _, true)]`
//! │ 2. `[(_, true, _)]`
//! │ 3. `[_]` // virtual extra wildcard row
//! │
//! │ Specialize with `(,,)`:
//! ├─┐ Patterns:
//! │ │ 1. `[true, _, true]`
//! │ │ 2. `[_, true, _]`
//! │ │ 3. `[_, _, _]`
//! │ │
//! │ │ There are missing constructors in the first column (namely `false`), hence
//! │ │ `true` is irrelevant for rows 2 and 3.
//! │ │
//! │ │ Specialize with `true`:
//! │ ├─┐ Patterns:
//! │ │ │ 1. `[_, true]`
//! │ │ │ 2. `[true, _]` // now exploring irrelevant cases
//! │ │ │ 3. `[_, _]` // now exploring irrelevant cases
//! │ │ │
//! │ │ │ There are missing constructors in the first column (namely `false`), hence
//! │ │ │ `true` is irrelevant for rows 1 and 3.
//! │ │ │
//! │ │ │ Specialize with `true`:
//! │ │ ├─┐ Patterns:
//! │ │ │ │ 1. `[true]` // now exploring irrelevant cases
//! │ │ │ │ 2. `[_]` // now exploring irrelevant cases
//! │ │ │ │ 3. `[_]` // now exploring irrelevant cases
//! │ │ │ │
//! │ │ │ │ The current case is irrelevant for all rows: we backtrack immediately.
//! │ │ ├─┘
//! │ │ │
//! │ │ │ Specialize with `false`:
//! │ │ ├─┐ Patterns:
//! │ │ │ │ 1. `[true]`
//! │ │ │ │ 3. `[_]` // now exploring irrelevant cases
//! │ │ │ │
//! │ │ │ │ Specialize with `true`:
//! │ │ │ ├─┐ Patterns:
//! │ │ │ │ │ 1. `[]`
//! │ │ │ │ │ 3. `[]` // now exploring irrelevant cases
//! │ │ │ │ │
//! │ │ │ │ │ Row 1 is therefore useful.
//! │ │ │ ├─┘
//! <etc...>
//! ```
//!
//! Relevancy allowed us to skip the case `(true, true, _)` entirely. In some cases this pruning can
//! give drastic speedups. The case this was built for is the following (#118437):
//!
//! ```ignore(illustrative)
//! match foo {
//! (true, _, _, _, ..) => 1,
//! (_, true, _, _, ..) => 2,
//! (_, _, true, _, ..) => 3,
//! (_, _, _, true, ..) => 4,
//! ...
//! }
//! ```
//!
//! Without considering relevancy, we would explore all 2^n combinations of the `true` and `Missing`
//! constructors. Relevancy tells us that e.g. `(true, true, false, false, false, ...)` is
//! irrelevant for all the rows. This allows us to skip all cases with more than one `true`
//! constructor, changing the runtime from exponential to linear.
//!
//!
//! ## Relevancy and exhaustiveness
//!
//! For exhaustiveness, we do something slightly different w.r.t relevancy: we do not report
//! witnesses of non-exhaustiveness that are irrelevant for the virtual wildcard row. For example,
//! in:
//!
//! ```ignore(illustrative)
//! match foo {
//! (true, true) => {}
//! }
//! ```
//!
//! we only report `(false, _)` as missing. This was a deliberate choice made early in the
//! development of rust, for diagnostic and performance purposes. As showed in the previous section,
//! ignoring irrelevant cases preserves usefulness, so this choice still correctly computes whether
//! a match is exhaustive.
//!
//!
//!
//! # Or-patterns
//!
//! What we have described so far works well if there are no or-patterns. To handle them, if the
//! first pattern of any row in the matrix is an or-pattern, we expand it by duplicating the rest of
//! the row as necessary. For code reuse, this is implemented as "specializing with the `Or`
//! constructor".
//!
//! This makes usefulness tracking subtle, because we also want to compute whether an alternative of
//! an or-pattern is redundant, e.g. in `Some(_) | Some(0)`. We therefore track usefulness of each
//! subpattern of the match.
//!
//!
//!
//! # Constants and opaques
//!
//! There are two kinds of constants in patterns:
//!
//! * literals (`1`, `true`, `"foo"`)
//! * named or inline consts (`FOO`, `const { 5 + 6 }`)
//!
//! The latter are converted into the corresponding patterns by a previous phase. For example
//! `const_to_pat(const { [1, 2, 3] })` becomes an `Array(vec![Const(1), Const(2), Const(3)])`
//! pattern. This gets problematic when comparing the constant via `==` would behave differently
//! from matching on the constant converted to a pattern. The situation around this is currently
//! unclear and the lang team is working on clarifying what we want to do there. In any case, there
//! are constants we will not turn into patterns. We capture these with `Constructor::Opaque`. These
//! `Opaque` patterns do not participate in exhaustiveness, specialization or overlap checking.
//!
//!
//!
//! # Usefulness vs reachability, validity, and empty patterns
//!
//! This is likely the subtlest aspect of the algorithm. To be fully precise, a match doesn't
//! operate on a value, it operates on a place. In certain unsafe circumstances, it is possible for
//! a place to not contain valid data for its type. This has subtle consequences for empty types.
//! Take the following:
//!
//! ```rust
//! enum Void {}
//! let x: u8 = 0;
//! let ptr: *const Void = &x as *const u8 as *const Void;
//! unsafe {
//! match *ptr {
//! _ => println!("Reachable!"),
//! }
//! }
//! ```
//!
//! In this example, `ptr` is a valid pointer pointing to a place with invalid data. The `_` pattern
//! does not look at the contents of `*ptr`, so this is ok and the arm is taken. In other words,
//! despite the place we are inspecting being of type `Void`, there is a reachable arm. If the
//! arm had a binding however:
//!
//! ```rust
//! # #[derive(Copy, Clone)]
//! # enum Void {}
//! # let x: u8 = 0;
//! # let ptr: *const Void = &x as *const u8 as *const Void;
//! # unsafe {
//! match *ptr {
//! _a => println!("Unreachable!"),
//! }
//! # }
//! ```
//!
//! Here the binding loads the value of type `Void` from the `*ptr` place. In this example, this
//! causes UB since the data is not valid. In the general case, this asserts validity of the data at
//! `*ptr`. Either way, this arm will never be taken.
//!
//! Finally, let's consider the empty match `match *ptr {}`. If we consider this exhaustive, then
//! having invalid data at `*ptr` is invalid. In other words, the empty match is semantically
//! equivalent to the `_a => ...` match. In the interest of explicitness, we prefer the case with an
//! arm, hence we won't tell the user to remove the `_a` arm. In other words, the `_a` arm is
//! unreachable yet not redundant. This is why we lint on redundant arms rather than unreachable
//! arms, despite the fact that the lint says "unreachable".
//!
//! These considerations only affects certain places, namely those that can contain non-valid data
//! without UB. These are: pointer dereferences, reference dereferences, and union field accesses.
//! We track in the algorithm whether a given place is known to contain valid data. This is done
//! first by inspecting the scrutinee syntactically (which gives us `cx.known_valid_scrutinee`), and
//! then by tracking validity of each column of the matrix (which correspond to places) as we
//! recurse into subpatterns. That second part is done through [`PlaceValidity`], most notably
//! [`PlaceValidity::specialize`].
//!
//! Having said all that, we don't fully follow what's been presented in this section. For
//! backwards-compatibility, we ignore place validity when checking whether a pattern is required
//! for exhaustiveness in two cases: when the `exhaustive_patterns` feature gate is on, or when the
//! match scrutinee itself has type `!` or `EmptyEnum`. I (Nadrieril) hope to deprecate this
//! exception.
//!
//!
//!
//! # Full example
//!
//! We illustrate a full run of the algorithm on the following match.
//!
//! ```compile_fail,E0004
//! # struct Pair(Option<u32>, bool);
//! # fn foo(x: Pair) -> u32 {
//! match x {
//! Pair(Some(0), _) => 1,
//! Pair(_, false) => 2,
//! Pair(Some(0), false) => 3,
//! }
//! # }
//! ```
//!
//! We keep track of the original row for illustration purposes, this is not what the algorithm
//! actually does (it tracks usefulness as a boolean on each row).
//!
//! ```text
//! ┐ Patterns:
//! │ 1. `[Pair(Some(0), _)]`
//! │ 2. `[Pair(_, false)]`
//! │ 3. `[Pair(Some(0), false)]`
//! │
//! │ Specialize with `Pair`:
//! ├─┐ Patterns:
//! │ │ 1. `[Some(0), _]`
//! │ │ 2. `[_, false]`
//! │ │ 3. `[Some(0), false]`
//! │ │
//! │ │ Specialize with `Some`:
//! │ ├─┐ Patterns:
//! │ │ │ 1. `[0, _]`
//! │ │ │ 2. `[_, false]`
//! │ │ │ 3. `[0, false]`
//! │ │ │
//! │ │ │ Specialize with `0`:
//! │ │ ├─┐ Patterns:
//! │ │ │ │ 1. `[_]`
//! │ │ │ │ 3. `[false]`
//! │ │ │ │
//! │ │ │ │ Specialize with `true`:
//! │ │ │ ├─┐ Patterns:
//! │ │ │ │ │ 1. `[]`
//! │ │ │ │ │
//! │ │ │ │ │ We note arm 1 is useful (by `Pair(Some(0), true)`).
//! │ │ │ ├─┘
//! │ │ │ │
//! │ │ │ │ Specialize with `false`:
//! │ │ │ ├─┐ Patterns:
//! │ │ │ │ │ 1. `[]`
//! │ │ │ │ │ 3. `[]`
//! │ │ │ │ │
//! │ │ │ │ │ We note arm 1 is useful (by `Pair(Some(0), false)`).
//! │ │ │ ├─┘
//! │ │ ├─┘
//! │ │ │
//! │ │ │ Specialize with `1..`:
//! │ │ ├─┐ Patterns:
//! │ │ │ │ 2. `[false]`
//! │ │ │ │
//! │ │ │ │ Specialize with `true`:
//! │ │ │ ├─┐ Patterns:
//! │ │ │ │ │ // no rows left
//! │ │ │ │ │
//! │ │ │ │ │ We have found an unmatched value (`Pair(Some(1..), true)`)! This gives us a witness.
//! │ │ │ │ │ New witnesses:
//! │ │ │ │ │ `[]`
//! │ │ │ ├─┘
//! │ │ │ │ Unspecialize new witnesses with `true`:
//! │ │ │ │ `[true]`
//! │ │ │ │
//! │ │ │ │ Specialize with `false`:
//! │ │ │ ├─┐ Patterns:
//! │ │ │ │ │ 2. `[]`
//! │ │ │ │ │
//! │ │ │ │ │ We note arm 2 is useful (by `Pair(Some(1..), false)`).
//! │ │ │ ├─┘
//! │ │ │ │
//! │ │ │ │ Total witnesses for `1..`:
//! │ │ │ │ `[true]`
//! │ │ ├─┘
//! │ │ │ Unspecialize new witnesses with `1..`:
//! │ │ │ `[1.., true]`
//! │ │ │
//! │ │ │ Total witnesses for `Some`:
//! │ │ │ `[1.., true]`
//! │ ├─┘
//! │ │ Unspecialize new witnesses with `Some`:
//! │ │ `[Some(1..), true]`
//! │ │
//! │ │ Specialize with `None`:
//! │ ├─┐ Patterns:
//! │ │ │ 2. `[false]`
//! │ │ │
//! │ │ │ Specialize with `true`:
//! │ │ ├─┐ Patterns:
//! │ │ │ │ // no rows left
//! │ │ │ │
//! │ │ │ │ We have found an unmatched value (`Pair(None, true)`)! This gives us a witness.
//! │ │ │ │ New witnesses:
//! │ │ │ │ `[]`
//! │ │ ├─┘
//! │ │ │ Unspecialize new witnesses with `true`:
//! │ │ │ `[true]`
//! │ │ │
//! │ │ │ Specialize with `false`:
//! │ │ ├─┐ Patterns:
//! │ │ │ │ 2. `[]`
//! │ │ │ │
//! │ │ │ │ We note arm 2 is useful (by `Pair(None, false)`).
//! │ │ ├─┘
//! │ │ │
//! │ │ │ Total witnesses for `None`:
//! │ │ │ `[true]`
//! │ ├─┘
//! │ │ Unspecialize new witnesses with `None`:
//! │ │ `[None, true]`
//! │ │
//! │ │ Total witnesses for `Pair`:
//! │ │ `[Some(1..), true]`
//! │ │ `[None, true]`
//! ├─┘
//! │ Unspecialize new witnesses with `Pair`:
//! │ `[Pair(Some(1..), true)]`
//! │ `[Pair(None, true)]`
//! │
//! │ Final witnesses:
//! │ `[Pair(Some(1..), true)]`
//! │ `[Pair(None, true)]`
//! ┘
//! ```
//!
//! We conclude:
//! - Arm 3 is redundant (it was never marked as useful);
//! - The match is not exhaustive;
//! - Adding arms with `Pair(Some(1..), true)` and `Pair(None, true)` would make the match exhaustive.
//!
//! Note that when we're deep in the algorithm, we don't know what specialization steps got us here.
//! We can only figure out what our witnesses correspond to by unspecializing back up the stack.
//!
//!
//! # Tests
//!
//! Note: tests specific to this file can be found in:
//!
//! - `ui/pattern/usefulness`
//! - `ui/or-patterns`
//! - `ui/consts/const_in_pattern`
//! - `ui/rfc-2008-non-exhaustive`
//! - `ui/half-open-range-patterns`
//! - probably many others
//!
//! I (Nadrieril) prefer to put new tests in `ui/pattern/usefulness` unless there's a specific
//! reason not to, for example if they crucially depend on a particular feature like `or_patterns`.
use std::fmt;
#[cfg(feature = "rustc")]
use rustc_data_structures::stack::ensure_sufficient_stack;
use rustc_hash::{FxHashMap, FxHashSet};
use rustc_index::bit_set::BitSet;
use smallvec::{SmallVec, smallvec};
use tracing::{debug, instrument};
use self::PlaceValidity::*;
use crate::constructor::{Constructor, ConstructorSet, IntRange};
use crate::pat::{DeconstructedPat, PatId, PatOrWild, WitnessPat};
use crate::{Captures, MatchArm, PatCx, PrivateUninhabitedField};
#[cfg(not(feature = "rustc"))]
pub fn ensure_sufficient_stack<R>(f: impl FnOnce() -> R) -> R {
f()
}
/// A pattern is a "branch" if it is the immediate child of an or-pattern, or if it is the whole
/// pattern of a match arm. These are the patterns that can be meaningfully considered "redundant",
/// since e.g. `0` in `(0, 1)` cannot be redundant on its own.
///
/// We track for each branch pattern whether it is useful, and if not why.
struct BranchPatUsefulness<'p, Cx: PatCx> {
/// Whether this pattern is useful.
useful: bool,
/// A set of patterns that:
/// - come before this one in the match;
/// - intersect this one;
/// - at the end of the algorithm, if `!self.useful`, their union covers this pattern.
covered_by: FxHashSet<&'p DeconstructedPat<Cx>>,
}
impl<'p, Cx: PatCx> BranchPatUsefulness<'p, Cx> {
/// Update `self` with the usefulness information found in `row`.
fn update(&mut self, row: &MatrixRow<'p, Cx>, matrix: &Matrix<'p, Cx>) {
self.useful |= row.useful;
// This deserves an explanation: `intersects_at_least` does not contain all intersections
// because we skip irrelevant values (see the docs for `intersects_at_least` for an
// example). Yet we claim this suffices to build a covering set.
//
// Let `p` be our pattern. Assume it is found not useful. For a value `v`, if the value was
// relevant then we explored that value and found that there was another pattern `q` before
// `p` that matches it too. We therefore recorded an intersection with `q`. If `v` was
// irrelevant, we know there's another value `v2` that matches strictly fewer rows (while
// still matching our row) and is relevant. Since `p` is not useful, there must have been a
// `q` before `p` that matches `v2`, and we recorded that intersection. Since `v2` matches
// strictly fewer rows than `v`, `q` also matches `v`. In either case, we recorded in
// `intersects_at_least` a pattern that matches `v`. Hence using `intersects_at_least` is
// sufficient to build a covering set.
for row_id in row.intersects_at_least.iter() {
let row = &matrix.rows[row_id];
if row.useful && !row.is_under_guard {
if let PatOrWild::Pat(intersecting) = row.head() {
self.covered_by.insert(intersecting);
}
}
}
}
/// Check whether this pattern is redundant, and if so explain why.
fn is_redundant(&self) -> Option<RedundancyExplanation<'p, Cx>> {
if self.useful {
None
} else {
// We avoid instability by sorting by `uid`. The order of `uid`s only depends on the
// pattern structure.
#[cfg_attr(feature = "rustc", allow(rustc::potential_query_instability))]
let mut covered_by: Vec<_> = self.covered_by.iter().copied().collect();
covered_by.sort_by_key(|pat| pat.uid); // sort to avoid instability
Some(RedundancyExplanation { covered_by })
}
}
}
impl<'p, Cx: PatCx> Default for BranchPatUsefulness<'p, Cx> {
fn default() -> Self {
Self { useful: Default::default(), covered_by: Default::default() }
}
}
/// Context that provides information for usefulness checking.
struct UsefulnessCtxt<'a, 'p, Cx: PatCx> {
/// The context for type information.
tycx: &'a Cx,
/// Track information about the usefulness of branch patterns (see definition of "branch
/// pattern" at [`BranchPatUsefulness`]).
branch_usefulness: FxHashMap<PatId, BranchPatUsefulness<'p, Cx>>,
complexity_limit: Option<usize>,
complexity_level: usize,
}
impl<'a, 'p, Cx: PatCx> UsefulnessCtxt<'a, 'p, Cx> {
fn increase_complexity_level(&mut self, complexity_add: usize) -> Result<(), Cx::Error> {
self.complexity_level += complexity_add;
if self
.complexity_limit
.is_some_and(|complexity_limit| complexity_limit < self.complexity_level)
{
return self.tycx.complexity_exceeded();
}
Ok(())
}
}
/// Context that provides information local to a place under investigation.
struct PlaceCtxt<'a, Cx: PatCx> {
cx: &'a Cx,
/// Type of the place under investigation.
ty: &'a Cx::Ty,
}
impl<'a, Cx: PatCx> Copy for PlaceCtxt<'a, Cx> {}
impl<'a, Cx: PatCx> Clone for PlaceCtxt<'a, Cx> {
fn clone(&self) -> Self {
Self { cx: self.cx, ty: self.ty }
}
}
impl<'a, Cx: PatCx> fmt::Debug for PlaceCtxt<'a, Cx> {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt.debug_struct("PlaceCtxt").field("ty", self.ty).finish()
}
}
impl<'a, Cx: PatCx> PlaceCtxt<'a, Cx> {
fn ctor_arity(&self, ctor: &Constructor<Cx>) -> usize {
self.cx.ctor_arity(ctor, self.ty)
}
fn wild_from_ctor(&self, ctor: Constructor<Cx>) -> WitnessPat<Cx> {
WitnessPat::wild_from_ctor(self.cx, ctor, self.ty.clone())
}
}
/// Track whether a given place (aka column) is known to contain a valid value or not.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub enum PlaceValidity {
ValidOnly,
MaybeInvalid,
}
impl PlaceValidity {
pub fn from_bool(is_valid_only: bool) -> Self {
if is_valid_only { ValidOnly } else { MaybeInvalid }
}
fn is_known_valid(self) -> bool {
matches!(self, ValidOnly)
}
/// If the place has validity given by `self` and we read that the value at the place has
/// constructor `ctor`, this computes what we can assume about the validity of the constructor
/// fields.
///
/// Pending further opsem decisions, the current behavior is: validity is preserved, except
/// inside `&` and union fields where validity is reset to `MaybeInvalid`.
fn specialize<Cx: PatCx>(self, ctor: &Constructor<Cx>) -> Self {
// We preserve validity except when we go inside a reference or a union field.
if matches!(ctor, Constructor::Ref | Constructor::UnionField) {
// Validity of `x: &T` does not imply validity of `*x: T`.
MaybeInvalid
} else {
self
}
}
}
impl fmt::Display for PlaceValidity {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let s = match self {
ValidOnly => "✓",
MaybeInvalid => "?",
};
write!(f, "{s}")
}
}
/// Data about a place under investigation. Its methods contain a lot of the logic used to analyze
/// the constructors in the matrix.
struct PlaceInfo<Cx: PatCx> {
/// The type of the place.
ty: Cx::Ty,
/// Whether the place is a private uninhabited field. If so we skip this field during analysis
/// so that we don't observe its emptiness.
private_uninhabited: bool,
/// Whether the place is known to contain valid data.
validity: PlaceValidity,
/// Whether the place is the scrutinee itself or a subplace of it.
is_scrutinee: bool,
}
impl<Cx: PatCx> PlaceInfo<Cx> {
/// Given a constructor for the current place, we return one `PlaceInfo` for each field of the
/// constructor.
fn specialize<'a>(
&'a self,
cx: &'a Cx,
ctor: &'a Constructor<Cx>,
) -> impl Iterator<Item = Self> + ExactSizeIterator + Captures<'a> {
let ctor_sub_tys = cx.ctor_sub_tys(ctor, &self.ty);
let ctor_sub_validity = self.validity.specialize(ctor);
ctor_sub_tys.map(move |(ty, PrivateUninhabitedField(private_uninhabited))| PlaceInfo {
ty,
private_uninhabited,
validity: ctor_sub_validity,
is_scrutinee: false,
})
}
/// This analyzes a column of constructors corresponding to the current place. It returns a pair
/// `(split_ctors, missing_ctors)`.
///
/// `split_ctors` is a splitted list of constructors that cover the whole type. This will be
/// used to specialize the matrix.
///
/// `missing_ctors` is a list of the constructors not found in the column, for reporting
/// purposes.
fn split_column_ctors<'a>(
&self,
cx: &Cx,
ctors: impl Iterator<Item = &'a Constructor<Cx>> + Clone,
) -> Result<(SmallVec<[Constructor<Cx>; 1]>, Vec<Constructor<Cx>>), Cx::Error>
where
Cx: 'a,
{
debug!(?self.ty);
if self.private_uninhabited {
// Skip the whole column
return Ok((smallvec![Constructor::PrivateUninhabited], vec![]));
}
if ctors.clone().any(|c| matches!(c, Constructor::Or)) {
// If any constructor is `Or`, we expand or-patterns.
return Ok((smallvec![Constructor::Or], vec![]));
}
let ctors_for_ty = cx.ctors_for_ty(&self.ty)?;
debug!(?ctors_for_ty);
// We treat match scrutinees of type `!` or `EmptyEnum` differently.
let is_toplevel_exception =
self.is_scrutinee && matches!(ctors_for_ty, ConstructorSet::NoConstructors);
// Whether empty patterns are counted as useful or not. We only warn an empty arm unreachable if
// it is guaranteed unreachable by the opsem (i.e. if the place is `known_valid`).
// We don't want to warn empty patterns as unreachable by default just yet. We will in a
// later version of rust or under a different lint name, see
// https://github.com/rust-lang/rust/pull/129103.
let empty_arms_are_unreachable = self.validity.is_known_valid()
&& (is_toplevel_exception || cx.is_exhaustive_patterns_feature_on());
// Whether empty patterns can be omitted for exhaustiveness. We ignore place validity in the
// toplevel exception and `exhaustive_patterns` cases for backwards compatibility.
let can_omit_empty_arms = self.validity.is_known_valid()
|| is_toplevel_exception
|| cx.is_exhaustive_patterns_feature_on();
// Analyze the constructors present in this column.
let mut split_set = ctors_for_ty.split(ctors);
debug!(?split_set);
let all_missing = split_set.present.is_empty();
// Build the set of constructors we will specialize with. It must cover the whole type, so
// we add `Missing` to represent the missing ones. This is explained under "Constructor
// Splitting" at the top of this file.
let mut split_ctors = split_set.present;
if !(split_set.missing.is_empty()
&& (split_set.missing_empty.is_empty() || empty_arms_are_unreachable))
{
split_ctors.push(Constructor::Missing);
}
// Which empty constructors are considered missing. We ensure that
// `!missing_ctors.is_empty() => split_ctors.contains(Missing)`. The converse usually holds
// except when `!self.validity.is_known_valid()`.
let mut missing_ctors = split_set.missing;
if !can_omit_empty_arms {
missing_ctors.append(&mut split_set.missing_empty);
}
// Whether we should report "Enum::A and Enum::C are missing" or "_ is missing". At the top
// level we prefer to list all constructors.
let report_individual_missing_ctors = self.is_scrutinee || !all_missing;
if !missing_ctors.is_empty() && !report_individual_missing_ctors {
// Report `_` as missing.
missing_ctors = vec![Constructor::Wildcard];
} else if missing_ctors.iter().any(|c| c.is_non_exhaustive()) {
// We need to report a `_` anyway, so listing other constructors would be redundant.
// `NonExhaustive` is displayed as `_` just like `Wildcard`, but it will be picked
// up by diagnostics to add a note about why `_` is required here.
missing_ctors = vec![Constructor::NonExhaustive];
}
Ok((split_ctors, missing_ctors))
}
}
impl<Cx: PatCx> Clone for PlaceInfo<Cx> {
fn clone(&self) -> Self {
Self {
ty: self.ty.clone(),
private_uninhabited: self.private_uninhabited,
validity: self.validity,
is_scrutinee: self.is_scrutinee,
}
}
}
/// Represents a pattern-tuple under investigation.
// The three lifetimes are:
// - 'p coming from the input
// - Cx global compilation context
struct PatStack<'p, Cx: PatCx> {
// Rows of len 1 are very common, which is why `SmallVec[_; 2]` works well.
pats: SmallVec<[PatOrWild<'p, Cx>; 2]>,
/// Sometimes we know that as far as this row is concerned, the current case is already handled
/// by a different, more general, case. When the case is irrelevant for all rows this allows us
/// to skip a case entirely. This is purely an optimization. See at the top for details.
relevant: bool,
}
impl<'p, Cx: PatCx> Clone for PatStack<'p, Cx> {
fn clone(&self) -> Self {
Self { pats: self.pats.clone(), relevant: self.relevant }
}
}
impl<'p, Cx: PatCx> PatStack<'p, Cx> {
fn from_pattern(pat: &'p DeconstructedPat<Cx>) -> Self {
PatStack { pats: smallvec![PatOrWild::Pat(pat)], relevant: true }
}
fn len(&self) -> usize {
self.pats.len()
}
fn head(&self) -> PatOrWild<'p, Cx> {
self.pats[0]
}
fn iter(&self) -> impl Iterator<Item = PatOrWild<'p, Cx>> + Captures<'_> {
self.pats.iter().copied()
}
// Expand the first or-pattern into its subpatterns. Only useful if the pattern is an
// or-pattern. Panics if `self` is empty.
fn expand_or_pat(&self) -> impl Iterator<Item = PatStack<'p, Cx>> + Captures<'_> {
self.head().expand_or_pat().into_iter().map(move |pat| {
let mut new = self.clone();
new.pats[0] = pat;
new
})
}
/// This computes `specialize(ctor, self)`. See top of the file for explanations.
/// Only call if `ctor.is_covered_by(self.head().ctor())` is true.
fn pop_head_constructor(
&self,
cx: &Cx,
ctor: &Constructor<Cx>,
ctor_arity: usize,
ctor_is_relevant: bool,
) -> Result<PatStack<'p, Cx>, Cx::Error> {
let head_pat = self.head();
if head_pat.as_pat().is_some_and(|pat| pat.arity() > ctor_arity) {
// Arity can be smaller in case of variable-length slices, but mustn't be larger.
return Err(cx.bug(format_args!(
"uncaught type error: pattern {:?} has inconsistent arity (expected arity <= {ctor_arity})",
head_pat.as_pat().unwrap()
)));
}
// We pop the head pattern and push the new fields extracted from the arguments of
// `self.head()`.
let mut new_pats = head_pat.specialize(ctor, ctor_arity);
new_pats.extend_from_slice(&self.pats[1..]);
// `ctor` is relevant for this row if it is the actual constructor of this row, or if the
// row has a wildcard and `ctor` is relevant for wildcards.
let ctor_is_relevant =
!matches!(self.head().ctor(), Constructor::Wildcard) || ctor_is_relevant;
Ok(PatStack { pats: new_pats, relevant: self.relevant && ctor_is_relevant })
}
}
impl<'p, Cx: PatCx> fmt::Debug for PatStack<'p, Cx> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
// We pretty-print similarly to the `Debug` impl of `Matrix`.
write!(f, "+")?;
for pat in self.iter() {
write!(f, " {pat:?} +")?;
}
Ok(())
}
}
/// A row of the matrix.
#[derive(Clone)]
struct MatrixRow<'p, Cx: PatCx> {
// The patterns in the row.
pats: PatStack<'p, Cx>,
/// Whether the original arm had a guard. This is inherited when specializing.
is_under_guard: bool,
/// When we specialize, we remember which row of the original matrix produced a given row of the
/// specialized matrix. When we unspecialize, we use this to propagate usefulness back up the
/// callstack. On creation, this stores the index of the original match arm.
parent_row: usize,
/// False when the matrix is just built. This is set to `true` by
/// [`compute_exhaustiveness_and_usefulness`] if the arm is found to be useful.
/// This is reset to `false` when specializing.
useful: bool,
/// Tracks some rows above this one that have an intersection with this one, i.e. such that
/// there is a value that matches both rows.
/// Because of relevancy we may miss some intersections. The intersections we do find are
/// correct. In other words, this is an underapproximation of the real set of intersections.
///
/// For example:
/// ```rust,ignore(illustrative)
/// match ... {
/// (true, _, _) => {} // `intersects_at_least = []`
/// (_, true, 0..=10) => {} // `intersects_at_least = []`
/// (_, true, 5..15) => {} // `intersects_at_least = [1]`
/// }
/// ```
/// Here the `(true, true)` case is irrelevant. Since we skip it, we will not detect that row 0
/// intersects rows 1 and 2.
intersects_at_least: BitSet<usize>,
/// Whether the head pattern is a branch (see definition of "branch pattern" at
/// [`BranchPatUsefulness`])
head_is_branch: bool,
}
impl<'p, Cx: PatCx> MatrixRow<'p, Cx> {
fn new(arm: &MatchArm<'p, Cx>, arm_id: usize) -> Self {
MatrixRow {
pats: PatStack::from_pattern(arm.pat),
parent_row: arm_id,
is_under_guard: arm.has_guard,
useful: false,
intersects_at_least: BitSet::new_empty(0), // Initialized in `Matrix::push`.
// This pattern is a branch because it comes from a match arm.
head_is_branch: true,
}
}
fn len(&self) -> usize {
self.pats.len()
}
fn head(&self) -> PatOrWild<'p, Cx> {
self.pats.head()
}
fn iter(&self) -> impl Iterator<Item = PatOrWild<'p, Cx>> + Captures<'_> {
self.pats.iter()
}
// Expand the first or-pattern (if any) into its subpatterns. Panics if `self` is empty.
fn expand_or_pat(
&self,
parent_row: usize,
) -> impl Iterator<Item = MatrixRow<'p, Cx>> + Captures<'_> {
let is_or_pat = self.pats.head().is_or_pat();
self.pats.expand_or_pat().map(move |patstack| MatrixRow {
pats: patstack,
parent_row,
is_under_guard: self.is_under_guard,
useful: false,
intersects_at_least: BitSet::new_empty(0), // Initialized in `Matrix::push`.
head_is_branch: is_or_pat,
})
}
/// This computes `specialize(ctor, self)`. See top of the file for explanations.
/// Only call if `ctor.is_covered_by(self.head().ctor())` is true.
fn pop_head_constructor(
&self,
cx: &Cx,
ctor: &Constructor<Cx>,
ctor_arity: usize,
ctor_is_relevant: bool,
parent_row: usize,
) -> Result<MatrixRow<'p, Cx>, Cx::Error> {
Ok(MatrixRow {
pats: self.pats.pop_head_constructor(cx, ctor, ctor_arity, ctor_is_relevant)?,
parent_row,
is_under_guard: self.is_under_guard,
useful: false,
intersects_at_least: BitSet::new_empty(0), // Initialized in `Matrix::push`.
head_is_branch: false,
})
}
}
impl<'p, Cx: PatCx> fmt::Debug for MatrixRow<'p, Cx> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
self.pats.fmt(f)
}
}
/// A 2D matrix. Represents a list of pattern-tuples under investigation.
///
/// Invariant: each row must have the same length, and each column must have the same type.
///
/// Invariant: the first column must not contain or-patterns. This is handled by
/// [`Matrix::push`].
///
/// In fact each column corresponds to a place inside the scrutinee of the match. E.g. after
/// specializing `(,)` and `Some` on a pattern of type `(Option<u32>, bool)`, the first column of
/// the matrix will correspond to `scrutinee.0.Some.0` and the second column to `scrutinee.1`.
#[derive(Clone)]
struct Matrix<'p, Cx: PatCx> {
/// Vector of rows. The rows must form a rectangular 2D array. Moreover, all the patterns of
/// each column must have the same type. Each column corresponds to a place within the
/// scrutinee.
rows: Vec<MatrixRow<'p, Cx>>,
/// Track info about each place. Each place corresponds to a column in `rows`, and their types
/// must match.
place_info: SmallVec<[PlaceInfo<Cx>; 2]>,
/// Track whether the virtual wildcard row used to compute exhaustiveness is relevant. See top
/// of the file for details on relevancy.
wildcard_row_is_relevant: bool,
}
impl<'p, Cx: PatCx> Matrix<'p, Cx> {
/// Pushes a new row to the matrix. Internal method, prefer [`Matrix::new`].
fn push(&mut self, mut row: MatrixRow<'p, Cx>) {
row.intersects_at_least = BitSet::new_empty(self.rows.len());
self.rows.push(row);
}
/// Build a new matrix from an iterator of `MatchArm`s.
fn new(arms: &[MatchArm<'p, Cx>], scrut_ty: Cx::Ty, scrut_validity: PlaceValidity) -> Self {
let place_info = PlaceInfo {
ty: scrut_ty,
private_uninhabited: false,
validity: scrut_validity,
is_scrutinee: true,
};
let mut matrix = Matrix {
rows: Vec::with_capacity(arms.len()),
place_info: smallvec![place_info],
wildcard_row_is_relevant: true,
};
for (arm_id, arm) in arms.iter().enumerate() {
matrix.push(MatrixRow::new(arm, arm_id));
}
matrix
}
fn head_place(&self) -> Option<&PlaceInfo<Cx>> {
self.place_info.first()
}
fn column_count(&self) -> usize {
self.place_info.len()
}
fn rows(
&self,
) -> impl Iterator<Item = &MatrixRow<'p, Cx>> + Clone + DoubleEndedIterator + ExactSizeIterator
{
self.rows.iter()
}
fn rows_mut(
&mut self,
) -> impl Iterator<Item = &mut MatrixRow<'p, Cx>> + DoubleEndedIterator + ExactSizeIterator
{
self.rows.iter_mut()
}
/// Iterate over the first pattern of each row.
fn heads(&self) -> impl Iterator<Item = PatOrWild<'p, Cx>> + Clone + Captures<'_> {
self.rows().map(|r| r.head())
}
/// This computes `specialize(ctor, self)`. See top of the file for explanations.
fn specialize_constructor(
&self,
pcx: &PlaceCtxt<'_, Cx>,
ctor: &Constructor<Cx>,
ctor_is_relevant: bool,
) -> Result<Matrix<'p, Cx>, Cx::Error> {
if matches!(ctor, Constructor::Or) {
// Specializing with `Or` means expanding rows with or-patterns.
let mut matrix = Matrix {
rows: Vec::new(),
place_info: self.place_info.clone(),
wildcard_row_is_relevant: self.wildcard_row_is_relevant,
};
for (i, row) in self.rows().enumerate() {
for new_row in row.expand_or_pat(i) {
matrix.push(new_row);
}
}
Ok(matrix)
} else {
let subfield_place_info = self.place_info[0].specialize(pcx.cx, ctor);
let arity = subfield_place_info.len();
let specialized_place_info =
subfield_place_info.chain(self.place_info[1..].iter().cloned()).collect();
let mut matrix = Matrix {
rows: Vec::new(),
place_info: specialized_place_info,
wildcard_row_is_relevant: self.wildcard_row_is_relevant && ctor_is_relevant,
};
for (i, row) in self.rows().enumerate() {
if ctor.is_covered_by(pcx.cx, row.head().ctor())? {
let new_row =
row.pop_head_constructor(pcx.cx, ctor, arity, ctor_is_relevant, i)?;
matrix.push(new_row);
}
}
Ok(matrix)
}
}
/// Recover row usefulness and intersection information from a processed specialized matrix.
/// `specialized` must come from `self.specialize_constructor`.
fn unspecialize(&mut self, specialized: Self) {
for child_row in specialized.rows() {
let parent_row_id = child_row.parent_row;
let parent_row = &mut self.rows[parent_row_id];
// A parent row is useful if any of its children is.
parent_row.useful |= child_row.useful;
for child_intersection in child_row.intersects_at_least.iter() {
// Convert the intersecting ids into ids for the parent matrix.
let parent_intersection = specialized.rows[child_intersection].parent_row;
// Note: self-intersection can happen with or-patterns.
if parent_intersection != parent_row_id {
parent_row.intersects_at_least.insert(parent_intersection);
}
}
}
}
}
/// Pretty-printer for matrices of patterns, example:
///
/// ```text
/// + _ + [] +
/// + true + [First] +
/// + true + [Second(true)] +
/// + false + [_] +
/// + _ + [_, _, tail @ ..] +
/// | ✓ | ? | // validity
/// ```
impl<'p, Cx: PatCx> fmt::Debug for Matrix<'p, Cx> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "\n")?;
let mut pretty_printed_matrix: Vec<Vec<String>> = self
.rows
.iter()
.map(|row| row.iter().map(|pat| format!("{pat:?}")).collect())
.collect();
pretty_printed_matrix
.push(self.place_info.iter().map(|place| format!("{}", place.validity)).collect());
let column_count = self.column_count();
assert!(self.rows.iter().all(|row| row.len() == column_count));
assert!(self.place_info.len() == column_count);
let column_widths: Vec<usize> = (0..column_count)
.map(|col| pretty_printed_matrix.iter().map(|row| row[col].len()).max().unwrap_or(0))
.collect();
for (row_i, row) in pretty_printed_matrix.into_iter().enumerate() {
let is_validity_row = row_i == self.rows.len();
let sep = if is_validity_row { "|" } else { "+" };
write!(f, "{sep}")?;
for (column, pat_str) in row.into_iter().enumerate() {
write!(f, " ")?;
write!(f, "{:1$}", pat_str, column_widths[column])?;
write!(f, " {sep}")?;
}
if is_validity_row {
write!(f, " // validity")?;
}
write!(f, "\n")?;
}
Ok(())
}
}
/// A witness-tuple of non-exhaustiveness for error reporting, represented as a list of patterns (in
/// reverse order of construction).
///
/// This mirrors `PatStack`: they function similarly, except `PatStack` contains user patterns we
/// are inspecting, and `WitnessStack` contains witnesses we are constructing.
/// FIXME(Nadrieril): use the same order of patterns for both.
///
/// A `WitnessStack` should have the same types and length as the `PatStack`s we are inspecting
/// (except we store the patterns in reverse order). The same way `PatStack` starts with length 1,
/// at the end of the algorithm this will have length 1. In the middle of the algorithm, it can
/// contain multiple patterns.
///
/// For example, if we are constructing a witness for the match against
///
/// ```compile_fail,E0004
/// struct Pair(Option<(u32, u32)>, bool);
/// # fn foo(p: Pair) {
/// match p {
/// Pair(None, _) => {}
/// Pair(_, false) => {}
/// }
/// # }
/// ```
///
/// We'll perform the following steps (among others):
/// ```text
/// - Start with a matrix representing the match
/// `PatStack(vec![Pair(None, _)])`
/// `PatStack(vec![Pair(_, false)])`
/// - Specialize with `Pair`
/// `PatStack(vec![None, _])`
/// `PatStack(vec![_, false])`
/// - Specialize with `Some`
/// `PatStack(vec![_, false])`
/// - Specialize with `_`
/// `PatStack(vec![false])`
/// - Specialize with `true`
/// // no patstacks left
/// - This is a non-exhaustive match: we have the empty witness stack as a witness.
/// `WitnessStack(vec![])`
/// - Apply `true`
/// `WitnessStack(vec![true])`
/// - Apply `_`
/// `WitnessStack(vec![true, _])`
/// - Apply `Some`
/// `WitnessStack(vec![true, Some(_)])`
/// - Apply `Pair`
/// `WitnessStack(vec![Pair(Some(_), true)])`
/// ```
///
/// The final `Pair(Some(_), true)` is then the resulting witness.
///
/// See the top of the file for more detailed explanations and examples.
#[derive(Debug)]
struct WitnessStack<Cx: PatCx>(Vec<WitnessPat<Cx>>);
impl<Cx: PatCx> Clone for WitnessStack<Cx> {
fn clone(&self) -> Self {
Self(self.0.clone())
}
}
impl<Cx: PatCx> WitnessStack<Cx> {
/// Asserts that the witness contains a single pattern, and returns it.
fn single_pattern(self) -> WitnessPat<Cx> {
assert_eq!(self.0.len(), 1);
self.0.into_iter().next().unwrap()
}
/// Reverses specialization by the `Missing` constructor by pushing a whole new pattern.
fn push_pattern(&mut self, pat: WitnessPat<Cx>) {
self.0.push(pat);
}
/// Reverses specialization. Given a witness obtained after specialization, this constructs a
/// new witness valid for before specialization. See the section on `unspecialize` at the top of
/// the file.
///
/// Examples:
/// ```text
/// ctor: tuple of 2 elements
/// pats: [false, "foo", _, true]
/// result: [(false, "foo"), _, true]
///
/// ctor: Enum::Variant { a: (bool, &'static str), b: usize}
/// pats: [(false, "foo"), _, true]
/// result: [Enum::Variant { a: (false, "foo"), b: _ }, true]
/// ```
fn apply_constructor(
mut self,
pcx: &PlaceCtxt<'_, Cx>,
ctor: &Constructor<Cx>,
) -> SmallVec<[Self; 1]> {
let len = self.0.len();
let arity = pcx.ctor_arity(ctor);
let fields: Vec<_> = self.0.drain((len - arity)..).rev().collect();
if matches!(ctor, Constructor::UnionField)
&& fields.iter().filter(|p| !matches!(p.ctor(), Constructor::Wildcard)).count() >= 2
{
// Convert a `Union { a: p, b: q }` witness into `Union { a: p }` and `Union { b: q }`.
// First add `Union { .. }` to `self`.
self.0.push(WitnessPat::wild_from_ctor(pcx.cx, ctor.clone(), pcx.ty.clone()));
fields
.into_iter()
.enumerate()
.filter(|(_, p)| !matches!(p.ctor(), Constructor::Wildcard))
.map(|(i, p)| {
let mut ret = self.clone();
// Fill the `i`th field of the union with `p`.
ret.0.last_mut().unwrap().fields[i] = p;
ret
})
.collect()
} else {
self.0.push(WitnessPat::new(ctor.clone(), fields, pcx.ty.clone()));
smallvec![self]
}
}
}
/// Represents a set of pattern-tuples that are witnesses of non-exhaustiveness for error
/// reporting. This has similar invariants as `Matrix` does.
///
/// The `WitnessMatrix` returned by [`compute_exhaustiveness_and_usefulness`] obeys the invariant
/// that the union of the input `Matrix` and the output `WitnessMatrix` together matches the type
/// exhaustively.
///
/// Just as the `Matrix` starts with a single column, by the end of the algorithm, this has a single
/// column, which contains the patterns that are missing for the match to be exhaustive.
#[derive(Debug)]
struct WitnessMatrix<Cx: PatCx>(Vec<WitnessStack<Cx>>);
impl<Cx: PatCx> Clone for WitnessMatrix<Cx> {
fn clone(&self) -> Self {
Self(self.0.clone())
}
}
impl<Cx: PatCx> WitnessMatrix<Cx> {
/// New matrix with no witnesses.
fn empty() -> Self {
WitnessMatrix(Vec::new())
}
/// New matrix with one `()` witness, i.e. with no columns.
fn unit_witness() -> Self {
WitnessMatrix(vec![WitnessStack(Vec::new())])
}
/// Whether this has any witnesses.
fn is_empty(&self) -> bool {
self.0.is_empty()
}
/// Asserts that there is a single column and returns the patterns in it.
fn single_column(self) -> Vec<WitnessPat<Cx>> {
self.0.into_iter().map(|w| w.single_pattern()).collect()
}
/// Reverses specialization by the `Missing` constructor by pushing a whole new pattern.
fn push_pattern(&mut self, pat: WitnessPat<Cx>) {
for witness in self.0.iter_mut() {
witness.push_pattern(pat.clone())
}
}
/// Reverses specialization by `ctor`. See the section on `unspecialize` at the top of the file.
fn apply_constructor(
&mut self,
pcx: &PlaceCtxt<'_, Cx>,
missing_ctors: &[Constructor<Cx>],
ctor: &Constructor<Cx>,
) {
// The `Or` constructor indicates that we expanded or-patterns. This doesn't affect
// witnesses.
if self.is_empty() || matches!(ctor, Constructor::Or) {
return;
}
if matches!(ctor, Constructor::Missing) {
// We got the special `Missing` constructor that stands for the constructors not present
// in the match. For each missing constructor `c`, we add a `c(_, _, _)` witness
// appropriately filled with wildcards.
let mut ret = Self::empty();
for ctor in missing_ctors {
let pat = pcx.wild_from_ctor(ctor.clone());
// Clone `self` and add `c(_, _, _)` to each of its witnesses.
let mut wit_matrix = self.clone();
wit_matrix.push_pattern(pat);
ret.extend(wit_matrix);
}
*self = ret;
} else {
// Any other constructor we unspecialize as expected.
for witness in std::mem::take(&mut self.0) {
self.0.extend(witness.apply_constructor(pcx, ctor));
}
}
}
/// Merges the witnesses of two matrices. Their column types must match.
fn extend(&mut self, other: Self) {
self.0.extend(other.0)
}
}
/// Collect ranges that overlap like `lo..=overlap`/`overlap..=hi`. Must be called during
/// exhaustiveness checking, if we find a singleton range after constructor splitting. This reuses
/// row intersection information to only detect ranges that truly overlap.
///
/// If two ranges overlapped, the split set will contain their intersection as a singleton.
/// Specialization will then select rows that match the overlap, and exhaustiveness will compute
/// which rows have an intersection that includes the overlap. That gives us all the info we need to
/// compute overlapping ranges without false positives.
///
/// We can however get false negatives because exhaustiveness does not explore all cases. See the
/// section on relevancy at the top of the file.
fn collect_overlapping_range_endpoints<'p, Cx: PatCx>(
cx: &Cx,
overlap_range: IntRange,
matrix: &Matrix<'p, Cx>,
specialized_matrix: &Matrix<'p, Cx>,
) {
let overlap = overlap_range.lo;
// Ranges that look like `lo..=overlap`.
let mut prefixes: SmallVec<[_; 1]> = Default::default();
// Ranges that look like `overlap..=hi`.
let mut suffixes: SmallVec<[_; 1]> = Default::default();
// Iterate on patterns that contained `overlap`. We iterate on `specialized_matrix` which
// contains only rows that matched the current `ctor` as well as accurate intersection
// information. It doesn't contain the column that contains the range; that can be found in
// `matrix`.
for (child_row_id, child_row) in specialized_matrix.rows().enumerate() {
let PatOrWild::Pat(pat) = matrix.rows[child_row.parent_row].head() else { continue };
let Constructor::IntRange(this_range) = pat.ctor() else { continue };
// Don't lint when one of the ranges is a singleton.
if this_range.is_singleton() {
continue;
}
if this_range.lo == overlap {
// `this_range` looks like `overlap..=this_range.hi`; it overlaps with any
// ranges that look like `lo..=overlap`.
if !prefixes.is_empty() {
let overlaps_with: Vec<_> = prefixes
.iter()
.filter(|&&(other_child_row_id, _)| {
child_row.intersects_at_least.contains(other_child_row_id)
})
.map(|&(_, pat)| pat)
.collect();
if !overlaps_with.is_empty() {
cx.lint_overlapping_range_endpoints(pat, overlap_range, &overlaps_with);
}
}
suffixes.push((child_row_id, pat))
} else if Some(this_range.hi) == overlap.plus_one() {
// `this_range` looks like `this_range.lo..=overlap`; it overlaps with any
// ranges that look like `overlap..=hi`.
if !suffixes.is_empty() {
let overlaps_with: Vec<_> = suffixes
.iter()
.filter(|&&(other_child_row_id, _)| {
child_row.intersects_at_least.contains(other_child_row_id)
})
.map(|&(_, pat)| pat)
.collect();
if !overlaps_with.is_empty() {
cx.lint_overlapping_range_endpoints(pat, overlap_range, &overlaps_with);
}
}
prefixes.push((child_row_id, pat))
}
}
}
/// Collect ranges that have a singleton gap between them.
fn collect_non_contiguous_range_endpoints<'p, Cx: PatCx>(
cx: &Cx,
gap_range: &IntRange,
matrix: &Matrix<'p, Cx>,
) {
let gap = gap_range.lo;
// Ranges that look like `lo..gap`.
let mut onebefore: SmallVec<[_; 1]> = Default::default();
// Ranges that start on `gap+1` or singletons `gap+1`.
let mut oneafter: SmallVec<[_; 1]> = Default::default();
// Look through the column for ranges near the gap.
for pat in matrix.heads() {
let PatOrWild::Pat(pat) = pat else { continue };
let Constructor::IntRange(this_range) = pat.ctor() else { continue };
if gap == this_range.hi {
onebefore.push(pat)
} else if gap.plus_one() == Some(this_range.lo) {
oneafter.push(pat)
}
}
for pat_before in onebefore {
cx.lint_non_contiguous_range_endpoints(pat_before, *gap_range, oneafter.as_slice());
}
}
/// The core of the algorithm.
///
/// This recursively computes witnesses of the non-exhaustiveness of `matrix` (if any). Also tracks
/// usefulness of each row in the matrix (in `row.useful`). We track usefulness of subpatterns in
/// `mcx.branch_usefulness`.
///
/// The input `Matrix` and the output `WitnessMatrix` together match the type exhaustively.
///
/// The key steps are:
/// - specialization, where we dig into the rows that have a specific constructor and call ourselves
/// recursively;
/// - unspecialization, where we lift the results from the previous step into results for this step
/// (using `apply_constructor` and by updating `row.useful` for each parent row).
/// This is all explained at the top of the file.
#[instrument(level = "debug", skip(mcx), ret)]
fn compute_exhaustiveness_and_usefulness<'a, 'p, Cx: PatCx>(
mcx: &mut UsefulnessCtxt<'a, 'p, Cx>,
matrix: &mut Matrix<'p, Cx>,
) -> Result<WitnessMatrix<Cx>, Cx::Error> {
debug_assert!(matrix.rows().all(|r| r.len() == matrix.column_count()));
if !matrix.wildcard_row_is_relevant && matrix.rows().all(|r| !r.pats.relevant) {
// Here we know that nothing will contribute further to exhaustiveness or usefulness. This
// is purely an optimization: skipping this check doesn't affect correctness. See the top of
// the file for details.
return Ok(WitnessMatrix::empty());
}
let Some(place) = matrix.head_place() else {
mcx.increase_complexity_level(matrix.rows().len())?;
// The base case: there are no columns in the matrix. We are morally pattern-matching on ().
// A row is useful iff it has no (unguarded) rows above it.
let mut useful = true; // Whether the next row is useful.
for (i, row) in matrix.rows_mut().enumerate() {
row.useful = useful;
row.intersects_at_least.insert_range(0..i);
// The next rows stays useful if this one is under a guard.
useful &= row.is_under_guard;
}
return if useful && matrix.wildcard_row_is_relevant {
// The wildcard row is useful; the match is non-exhaustive.
Ok(WitnessMatrix::unit_witness())
} else {
// Either the match is exhaustive, or we choose not to report anything because of
// relevancy. See at the top for details.
Ok(WitnessMatrix::empty())
};
};
// Analyze the constructors present in this column.
let ctors = matrix.heads().map(|p| p.ctor());
let (split_ctors, missing_ctors) = place.split_column_ctors(mcx.tycx, ctors)?;
let ty = &place.ty.clone(); // Clone it out so we can mutate `matrix` later.
let pcx = &PlaceCtxt { cx: mcx.tycx, ty };
let mut ret = WitnessMatrix::empty();
for ctor in split_ctors {
// Dig into rows that match `ctor`.
debug!("specialize({:?})", ctor);
// `ctor` is *irrelevant* if there's another constructor in `split_ctors` that matches
// strictly fewer rows. In that case we can sometimes skip it. See the top of the file for
// details.
let ctor_is_relevant = matches!(ctor, Constructor::Missing) || missing_ctors.is_empty();
let mut spec_matrix = matrix.specialize_constructor(pcx, &ctor, ctor_is_relevant)?;
let mut witnesses = ensure_sufficient_stack(|| {
compute_exhaustiveness_and_usefulness(mcx, &mut spec_matrix)
})?;
// Transform witnesses for `spec_matrix` into witnesses for `matrix`.
witnesses.apply_constructor(pcx, &missing_ctors, &ctor);
// Accumulate the found witnesses.
ret.extend(witnesses);
// Detect ranges that overlap on their endpoints.
if let Constructor::IntRange(overlap_range) = ctor {
if overlap_range.is_singleton()
&& spec_matrix.rows.len() >= 2
&& spec_matrix.rows.iter().any(|row| !row.intersects_at_least.is_empty())
{
collect_overlapping_range_endpoints(mcx.tycx, overlap_range, matrix, &spec_matrix);
}
}
matrix.unspecialize(spec_matrix);
}
// Detect singleton gaps between ranges.
if missing_ctors.iter().any(|c| matches!(c, Constructor::IntRange(..))) {
for missing in &missing_ctors {
if let Constructor::IntRange(gap) = missing {
if gap.is_singleton() {
collect_non_contiguous_range_endpoints(mcx.tycx, gap, matrix);
}
}
}
}
// Record usefulness of the branch patterns.
for row in matrix.rows() {
if row.head_is_branch {
if let PatOrWild::Pat(pat) = row.head() {
mcx.branch_usefulness.entry(pat.uid).or_default().update(row, matrix);
}
}
}
Ok(ret)
}
/// Indicates why a given pattern is considered redundant.
#[derive(Clone, Debug)]
pub struct RedundancyExplanation<'p, Cx: PatCx> {
/// All the values matched by this pattern are already matched by the given set of patterns.
/// This list is not guaranteed to be minimal but the contained patterns are at least guaranteed
/// to intersect this pattern.
pub covered_by: Vec<&'p DeconstructedPat<Cx>>,
}
/// Indicates whether or not a given arm is useful.
#[derive(Clone, Debug)]
pub enum Usefulness<'p, Cx: PatCx> {
/// The arm is useful. This additionally carries a set of or-pattern branches that have been
/// found to be redundant despite the overall arm being useful. Used only in the presence of
/// or-patterns, otherwise it stays empty.
Useful(Vec<(&'p DeconstructedPat<Cx>, RedundancyExplanation<'p, Cx>)>),
/// The arm is redundant and can be removed without changing the behavior of the match
/// expression.
Redundant(RedundancyExplanation<'p, Cx>),
}
/// The output of checking a match for exhaustiveness and arm usefulness.
pub struct UsefulnessReport<'p, Cx: PatCx> {
/// For each arm of the input, whether that arm is useful after the arms above it.
pub arm_usefulness: Vec<(MatchArm<'p, Cx>, Usefulness<'p, Cx>)>,
/// If the match is exhaustive, this is empty. If not, this contains witnesses for the lack of
/// exhaustiveness.
pub non_exhaustiveness_witnesses: Vec<WitnessPat<Cx>>,
/// For each arm, a set of indices of arms above it that have non-empty intersection, i.e. there
/// is a value matched by both arms. This may miss real intersections.
pub arm_intersections: Vec<BitSet<usize>>,
}
/// Computes whether a match is exhaustive and which of its arms are useful.
#[instrument(skip(tycx, arms), level = "debug")]
pub fn compute_match_usefulness<'p, Cx: PatCx>(
tycx: &Cx,
arms: &[MatchArm<'p, Cx>],
scrut_ty: Cx::Ty,
scrut_validity: PlaceValidity,
complexity_limit: Option<usize>,
) -> Result<UsefulnessReport<'p, Cx>, Cx::Error> {
let mut cx = UsefulnessCtxt {
tycx,
branch_usefulness: FxHashMap::default(),
complexity_limit,
complexity_level: 0,
};
let mut matrix = Matrix::new(arms, scrut_ty, scrut_validity);
let non_exhaustiveness_witnesses = compute_exhaustiveness_and_usefulness(&mut cx, &mut matrix)?;
let non_exhaustiveness_witnesses: Vec<_> = non_exhaustiveness_witnesses.single_column();
let arm_usefulness: Vec<_> = arms
.iter()
.copied()
.map(|arm| {
debug!(?arm);
let usefulness = cx.branch_usefulness.get(&arm.pat.uid).unwrap();
let usefulness = if let Some(explanation) = usefulness.is_redundant() {
Usefulness::Redundant(explanation)
} else {
let mut redundant_subpats = Vec::new();
arm.pat.walk(&mut |subpat| {
if let Some(u) = cx.branch_usefulness.get(&subpat.uid) {
if let Some(explanation) = u.is_redundant() {
redundant_subpats.push((subpat, explanation));
false // stop recursing
} else {
true // keep recursing
}
} else {
true // keep recursing
}
});
Usefulness::Useful(redundant_subpats)
};
debug!(?usefulness);
(arm, usefulness)
})
.collect();
let arm_intersections: Vec<_> =
matrix.rows().map(|row| row.intersects_at_least.clone()).collect();
Ok(UsefulnessReport { arm_usefulness, non_exhaustiveness_witnesses, arm_intersections })
}