rustc_abi/layout/
ty.rs

1use std::fmt;
2use std::ops::Deref;
3
4use rustc_data_structures::intern::Interned;
5use rustc_macros::HashStable_Generic;
6
7use crate::{
8    AbiAlign, Align, BackendRepr, FieldsShape, Float, HasDataLayout, LayoutData, Niche,
9    PointeeInfo, Primitive, Scalar, Size, TargetDataLayout, Variants,
10};
11
12// Explicitly import `Float` to avoid ambiguity with `Primitive::Float`.
13
14rustc_index::newtype_index! {
15    /// The *source-order* index of a field in a variant.
16    ///
17    /// This is how most code after type checking refers to fields, rather than
18    /// using names (as names have hygiene complications and more complex lookup).
19    ///
20    /// Particularly for `repr(Rust)` types, this may not be the same as *layout* order.
21    /// (It is for `repr(C)` `struct`s, however.)
22    ///
23    /// For example, in the following types,
24    /// ```rust
25    /// # enum Never {}
26    /// # #[repr(u16)]
27    /// enum Demo1 {
28    ///    Variant0 { a: Never, b: i32 } = 100,
29    ///    Variant1 { c: u8, d: u64 } = 10,
30    /// }
31    /// struct Demo2 { e: u8, f: u16, g: u8 }
32    /// ```
33    /// `b` is `FieldIdx(1)` in `VariantIdx(0)`,
34    /// `d` is `FieldIdx(1)` in `VariantIdx(1)`, and
35    /// `f` is `FieldIdx(1)` in `VariantIdx(0)`.
36    #[derive(HashStable_Generic)]
37    #[encodable]
38    #[orderable]
39    pub struct FieldIdx {}
40}
41
42impl FieldIdx {
43    /// The second field, at index 1.
44    ///
45    /// For use alongside [`FieldIdx::ZERO`], particularly with scalar pairs.
46    pub const ONE: FieldIdx = FieldIdx::from_u32(1);
47}
48
49rustc_index::newtype_index! {
50    /// The *source-order* index of a variant in a type.
51    ///
52    /// For enums, these are always `0..variant_count`, regardless of any
53    /// custom discriminants that may have been defined, and including any
54    /// variants that may end up uninhabited due to field types.  (Some of the
55    /// variants may not be present in a monomorphized ABI [`Variants`], but
56    /// those skipped variants are always counted when determining the *index*.)
57    ///
58    /// `struct`s, `tuples`, and `unions`s are considered to have a single variant
59    /// with variant index zero, aka [`FIRST_VARIANT`].
60    #[derive(HashStable_Generic)]
61    #[encodable]
62    #[orderable]
63    pub struct VariantIdx {
64        /// Equivalent to `VariantIdx(0)`.
65        const FIRST_VARIANT = 0;
66    }
67}
68#[derive(Copy, Clone, PartialEq, Eq, Hash, HashStable_Generic)]
69#[rustc_pass_by_value]
70pub struct Layout<'a>(pub Interned<'a, LayoutData<FieldIdx, VariantIdx>>);
71
72impl<'a> fmt::Debug for Layout<'a> {
73    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
74        // See comment on `<LayoutData as Debug>::fmt` above.
75        self.0.0.fmt(f)
76    }
77}
78
79impl<'a> Deref for Layout<'a> {
80    type Target = &'a LayoutData<FieldIdx, VariantIdx>;
81    fn deref(&self) -> &&'a LayoutData<FieldIdx, VariantIdx> {
82        &self.0.0
83    }
84}
85
86impl<'a> Layout<'a> {
87    pub fn fields(self) -> &'a FieldsShape<FieldIdx> {
88        &self.0.0.fields
89    }
90
91    pub fn variants(self) -> &'a Variants<FieldIdx, VariantIdx> {
92        &self.0.0.variants
93    }
94
95    pub fn backend_repr(self) -> BackendRepr {
96        self.0.0.backend_repr
97    }
98
99    pub fn largest_niche(self) -> Option<Niche> {
100        self.0.0.largest_niche
101    }
102
103    pub fn align(self) -> AbiAlign {
104        self.0.0.align
105    }
106
107    pub fn size(self) -> Size {
108        self.0.0.size
109    }
110
111    pub fn max_repr_align(self) -> Option<Align> {
112        self.0.0.max_repr_align
113    }
114
115    pub fn unadjusted_abi_align(self) -> Align {
116        self.0.0.unadjusted_abi_align
117    }
118
119    /// Whether the layout is from a type that implements [`std::marker::PointerLike`].
120    ///
121    /// Currently, that means that the type is pointer-sized, pointer-aligned,
122    /// and has a initialized (non-union), scalar ABI.
123    pub fn is_pointer_like(self, data_layout: &TargetDataLayout) -> bool {
124        self.size() == data_layout.pointer_size
125            && self.align().abi == data_layout.pointer_align.abi
126            && matches!(self.backend_repr(), BackendRepr::Scalar(Scalar::Initialized { .. }))
127    }
128}
129
130/// The layout of a type, alongside the type itself.
131/// Provides various type traversal APIs (e.g., recursing into fields).
132///
133/// Note that the layout is NOT guaranteed to always be identical
134/// to that obtained from `layout_of(ty)`, as we need to produce
135/// layouts for which Rust types do not exist, such as enum variants
136/// or synthetic fields of enums (i.e., discriminants) and wide pointers.
137#[derive(Copy, Clone, PartialEq, Eq, Hash, HashStable_Generic)]
138pub struct TyAndLayout<'a, Ty> {
139    pub ty: Ty,
140    pub layout: Layout<'a>,
141}
142
143impl<'a, Ty: fmt::Display> fmt::Debug for TyAndLayout<'a, Ty> {
144    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
145        // Print the type in a readable way, not its debug representation.
146        f.debug_struct("TyAndLayout")
147            .field("ty", &format_args!("{}", self.ty))
148            .field("layout", &self.layout)
149            .finish()
150    }
151}
152
153impl<'a, Ty> Deref for TyAndLayout<'a, Ty> {
154    type Target = &'a LayoutData<FieldIdx, VariantIdx>;
155    fn deref(&self) -> &&'a LayoutData<FieldIdx, VariantIdx> {
156        &self.layout.0.0
157    }
158}
159
160impl<'a, Ty> AsRef<LayoutData<FieldIdx, VariantIdx>> for TyAndLayout<'a, Ty> {
161    fn as_ref(&self) -> &LayoutData<FieldIdx, VariantIdx> {
162        &*self.layout.0.0
163    }
164}
165
166/// Trait that needs to be implemented by the higher-level type representation
167/// (e.g. `rustc_middle::ty::Ty`), to provide `rustc_target::abi` functionality.
168pub trait TyAbiInterface<'a, C>: Sized + std::fmt::Debug {
169    fn ty_and_layout_for_variant(
170        this: TyAndLayout<'a, Self>,
171        cx: &C,
172        variant_index: VariantIdx,
173    ) -> TyAndLayout<'a, Self>;
174    fn ty_and_layout_field(this: TyAndLayout<'a, Self>, cx: &C, i: usize) -> TyAndLayout<'a, Self>;
175    fn ty_and_layout_pointee_info_at(
176        this: TyAndLayout<'a, Self>,
177        cx: &C,
178        offset: Size,
179    ) -> Option<PointeeInfo>;
180    fn is_adt(this: TyAndLayout<'a, Self>) -> bool;
181    fn is_never(this: TyAndLayout<'a, Self>) -> bool;
182    fn is_tuple(this: TyAndLayout<'a, Self>) -> bool;
183    fn is_unit(this: TyAndLayout<'a, Self>) -> bool;
184    fn is_transparent(this: TyAndLayout<'a, Self>) -> bool;
185}
186
187impl<'a, Ty> TyAndLayout<'a, Ty> {
188    pub fn for_variant<C>(self, cx: &C, variant_index: VariantIdx) -> Self
189    where
190        Ty: TyAbiInterface<'a, C>,
191    {
192        Ty::ty_and_layout_for_variant(self, cx, variant_index)
193    }
194
195    pub fn field<C>(self, cx: &C, i: usize) -> Self
196    where
197        Ty: TyAbiInterface<'a, C>,
198    {
199        Ty::ty_and_layout_field(self, cx, i)
200    }
201
202    pub fn pointee_info_at<C>(self, cx: &C, offset: Size) -> Option<PointeeInfo>
203    where
204        Ty: TyAbiInterface<'a, C>,
205    {
206        Ty::ty_and_layout_pointee_info_at(self, cx, offset)
207    }
208
209    pub fn is_single_fp_element<C>(self, cx: &C) -> bool
210    where
211        Ty: TyAbiInterface<'a, C>,
212        C: HasDataLayout,
213    {
214        match self.backend_repr {
215            BackendRepr::Scalar(scalar) => {
216                matches!(scalar.primitive(), Primitive::Float(Float::F32 | Float::F64))
217            }
218            BackendRepr::Memory { .. } => {
219                if self.fields.count() == 1 && self.fields.offset(0).bytes() == 0 {
220                    self.field(cx, 0).is_single_fp_element(cx)
221                } else {
222                    false
223                }
224            }
225            _ => false,
226        }
227    }
228
229    pub fn is_single_vector_element<C>(self, cx: &C, expected_size: Size) -> bool
230    where
231        Ty: TyAbiInterface<'a, C>,
232        C: HasDataLayout,
233    {
234        match self.backend_repr {
235            BackendRepr::SimdVector { .. } => self.size == expected_size,
236            BackendRepr::Memory { .. } => {
237                if self.fields.count() == 1 && self.fields.offset(0).bytes() == 0 {
238                    self.field(cx, 0).is_single_vector_element(cx, expected_size)
239                } else {
240                    false
241                }
242            }
243            _ => false,
244        }
245    }
246
247    pub fn is_adt<C>(self) -> bool
248    where
249        Ty: TyAbiInterface<'a, C>,
250    {
251        Ty::is_adt(self)
252    }
253
254    pub fn is_never<C>(self) -> bool
255    where
256        Ty: TyAbiInterface<'a, C>,
257    {
258        Ty::is_never(self)
259    }
260
261    pub fn is_tuple<C>(self) -> bool
262    where
263        Ty: TyAbiInterface<'a, C>,
264    {
265        Ty::is_tuple(self)
266    }
267
268    pub fn is_unit<C>(self) -> bool
269    where
270        Ty: TyAbiInterface<'a, C>,
271    {
272        Ty::is_unit(self)
273    }
274
275    pub fn is_transparent<C>(self) -> bool
276    where
277        Ty: TyAbiInterface<'a, C>,
278    {
279        Ty::is_transparent(self)
280    }
281
282    /// Finds the one field that is not a 1-ZST.
283    /// Returns `None` if there are multiple non-1-ZST fields or only 1-ZST-fields.
284    pub fn non_1zst_field<C>(&self, cx: &C) -> Option<(FieldIdx, Self)>
285    where
286        Ty: TyAbiInterface<'a, C> + Copy,
287    {
288        let mut found = None;
289        for field_idx in 0..self.fields.count() {
290            let field = self.field(cx, field_idx);
291            if field.is_1zst() {
292                continue;
293            }
294            if found.is_some() {
295                // More than one non-1-ZST field.
296                return None;
297            }
298            found = Some((FieldIdx::from_usize(field_idx), field));
299        }
300        found
301    }
302}