1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
//! Code for the 'normalization' query. This consists of a wrapper
//! which folds deeply, invoking the underlying
//! `normalize_canonicalized_projection_ty` query when it encounters projections.

use crate::infer::at::At;
use crate::infer::canonical::OriginalQueryValues;
use crate::infer::{InferCtxt, InferOk};
use crate::traits::error_reporting::OverflowCause;
use crate::traits::error_reporting::TypeErrCtxtExt;
use crate::traits::normalize::needs_normalization;
use crate::traits::{BoundVarReplacer, PlaceholderReplacer};
use crate::traits::{ObligationCause, PredicateObligation, Reveal};
use rustc_data_structures::sso::SsoHashMap;
use rustc_data_structures::stack::ensure_sufficient_stack;
use rustc_infer::traits::Normalized;
use rustc_macros::extension;
use rustc_middle::ty::fold::{FallibleTypeFolder, TypeFoldable, TypeSuperFoldable};
use rustc_middle::ty::visit::{TypeSuperVisitable, TypeVisitable, TypeVisitableExt};
use rustc_middle::ty::{self, Ty, TyCtxt, TypeVisitor};
use rustc_span::DUMMY_SP;

use super::NoSolution;

pub use rustc_middle::traits::query::NormalizationResult;

#[extension(pub trait QueryNormalizeExt<'tcx>)]
impl<'cx, 'tcx> At<'cx, 'tcx> {
    /// Normalize `value` in the context of the inference context,
    /// yielding a resulting type, or an error if `value` cannot be
    /// normalized. If you don't care about regions, you should prefer
    /// `normalize_erasing_regions`, which is more efficient.
    ///
    /// If the normalization succeeds and is unambiguous, returns back
    /// the normalized value along with various outlives relations (in
    /// the form of obligations that must be discharged).
    ///
    /// N.B., this will *eventually* be the main means of
    /// normalizing, but for now should be used only when we actually
    /// know that normalization will succeed, since error reporting
    /// and other details are still "under development".
    ///
    /// This normalization should *only* be used when the projection does not
    /// have possible ambiguity or may not be well-formed.
    ///
    /// After codegen, when lifetimes do not matter, it is preferable to instead
    /// use [`TyCtxt::normalize_erasing_regions`], which wraps this procedure.
    fn query_normalize<T>(self, value: T) -> Result<Normalized<'tcx, T>, NoSolution>
    where
        T: TypeFoldable<TyCtxt<'tcx>>,
    {
        debug!(
            "normalize::<{}>(value={:?}, param_env={:?}, cause={:?})",
            std::any::type_name::<T>(),
            value,
            self.param_env,
            self.cause,
        );

        // This is actually a consequence by the way `normalize_erasing_regions` works currently.
        // Because it needs to call the `normalize_generic_arg_after_erasing_regions`, it folds
        // through tys and consts in a `TypeFoldable`. Importantly, it skips binders, leaving us
        // with trying to normalize with escaping bound vars.
        //
        // Here, we just add the universes that we *would* have created had we passed through the binders.
        //
        // We *could* replace escaping bound vars eagerly here, but it doesn't seem really necessary.
        // The rest of the code is already set up to be lazy about replacing bound vars,
        // and only when we actually have to normalize.
        let universes = if value.has_escaping_bound_vars() {
            let mut max_visitor =
                MaxEscapingBoundVarVisitor { outer_index: ty::INNERMOST, escaping: 0 };
            value.visit_with(&mut max_visitor);
            vec![None; max_visitor.escaping]
        } else {
            vec![]
        };

        if self.infcx.next_trait_solver() {
            match crate::solve::deeply_normalize_with_skipped_universes(self, value, universes) {
                Ok(value) => return Ok(Normalized { value, obligations: vec![] }),
                Err(_errors) => {
                    return Err(NoSolution);
                }
            }
        }

        if !needs_normalization(&value, self.param_env.reveal()) {
            return Ok(Normalized { value, obligations: vec![] });
        }

        let mut normalizer = QueryNormalizer {
            infcx: self.infcx,
            cause: self.cause,
            param_env: self.param_env,
            obligations: vec![],
            cache: SsoHashMap::new(),
            anon_depth: 0,
            universes,
        };

        let result = value.try_fold_with(&mut normalizer);
        info!(
            "normalize::<{}>: result={:?} with {} obligations",
            std::any::type_name::<T>(),
            result,
            normalizer.obligations.len(),
        );
        debug!(
            "normalize::<{}>: obligations={:?}",
            std::any::type_name::<T>(),
            normalizer.obligations,
        );
        result.map(|value| Normalized { value, obligations: normalizer.obligations })
    }
}

// Visitor to find the maximum escaping bound var
struct MaxEscapingBoundVarVisitor {
    // The index which would count as escaping
    outer_index: ty::DebruijnIndex,
    escaping: usize,
}

impl<'tcx> TypeVisitor<TyCtxt<'tcx>> for MaxEscapingBoundVarVisitor {
    fn visit_binder<T: TypeVisitable<TyCtxt<'tcx>>>(&mut self, t: &ty::Binder<'tcx, T>) {
        self.outer_index.shift_in(1);
        t.super_visit_with(self);
        self.outer_index.shift_out(1);
    }

    #[inline]
    fn visit_ty(&mut self, t: Ty<'tcx>) {
        if t.outer_exclusive_binder() > self.outer_index {
            self.escaping = self
                .escaping
                .max(t.outer_exclusive_binder().as_usize() - self.outer_index.as_usize());
        }
    }

    #[inline]
    fn visit_region(&mut self, r: ty::Region<'tcx>) {
        match *r {
            ty::ReBound(debruijn, _) if debruijn > self.outer_index => {
                self.escaping =
                    self.escaping.max(debruijn.as_usize() - self.outer_index.as_usize());
            }
            _ => {}
        }
    }

    fn visit_const(&mut self, ct: ty::Const<'tcx>) {
        if ct.outer_exclusive_binder() > self.outer_index {
            self.escaping = self
                .escaping
                .max(ct.outer_exclusive_binder().as_usize() - self.outer_index.as_usize());
        }
    }
}

struct QueryNormalizer<'cx, 'tcx> {
    infcx: &'cx InferCtxt<'tcx>,
    cause: &'cx ObligationCause<'tcx>,
    param_env: ty::ParamEnv<'tcx>,
    obligations: Vec<PredicateObligation<'tcx>>,
    cache: SsoHashMap<Ty<'tcx>, Ty<'tcx>>,
    anon_depth: usize,
    universes: Vec<Option<ty::UniverseIndex>>,
}

impl<'cx, 'tcx> FallibleTypeFolder<TyCtxt<'tcx>> for QueryNormalizer<'cx, 'tcx> {
    type Error = NoSolution;

    fn interner(&self) -> TyCtxt<'tcx> {
        self.infcx.tcx
    }

    fn try_fold_binder<T: TypeFoldable<TyCtxt<'tcx>>>(
        &mut self,
        t: ty::Binder<'tcx, T>,
    ) -> Result<ty::Binder<'tcx, T>, Self::Error> {
        self.universes.push(None);
        let t = t.try_super_fold_with(self);
        self.universes.pop();
        t
    }

    #[instrument(level = "debug", skip(self))]
    fn try_fold_ty(&mut self, ty: Ty<'tcx>) -> Result<Ty<'tcx>, Self::Error> {
        if !needs_normalization(&ty, self.param_env.reveal()) {
            return Ok(ty);
        }

        if let Some(ty) = self.cache.get(&ty) {
            return Ok(*ty);
        }

        let (kind, data) = match *ty.kind() {
            ty::Alias(kind, data) => (kind, data),
            _ => {
                let res = ty.try_super_fold_with(self)?;
                self.cache.insert(ty, res);
                return Ok(res);
            }
        };

        // See note in `rustc_trait_selection::traits::project` about why we
        // wait to fold the args.

        // Wrap this in a closure so we don't accidentally return from the outer function
        let res = match kind {
            ty::Opaque => {
                // Only normalize `impl Trait` outside of type inference, usually in codegen.
                match self.param_env.reveal() {
                    Reveal::UserFacing => ty.try_super_fold_with(self)?,

                    Reveal::All => {
                        let args = data.args.try_fold_with(self)?;
                        let recursion_limit = self.interner().recursion_limit();

                        if !recursion_limit.value_within_limit(self.anon_depth) {
                            let guar = self
                                .infcx
                                .err_ctxt()
                                .build_overflow_error(
                                    OverflowCause::DeeplyNormalize(data),
                                    self.cause.span,
                                    true,
                                )
                                .delay_as_bug();
                            return Ok(Ty::new_error(self.interner(), guar));
                        }

                        let generic_ty = self.interner().type_of(data.def_id);
                        let mut concrete_ty = generic_ty.instantiate(self.interner(), args);
                        self.anon_depth += 1;
                        if concrete_ty == ty {
                            concrete_ty = Ty::new_error_with_message(
                                self.interner(),
                                DUMMY_SP,
                                "recursive opaque type",
                            );
                        }
                        let folded_ty = ensure_sufficient_stack(|| self.try_fold_ty(concrete_ty));
                        self.anon_depth -= 1;
                        folded_ty?
                    }
                }
            }

            ty::Projection | ty::Inherent | ty::Weak => {
                // See note in `rustc_trait_selection::traits::project`

                let infcx = self.infcx;
                let tcx = infcx.tcx;
                // Just an optimization: When we don't have escaping bound vars,
                // we don't need to replace them with placeholders.
                let (data, maps) = if data.has_escaping_bound_vars() {
                    let (data, mapped_regions, mapped_types, mapped_consts) =
                        BoundVarReplacer::replace_bound_vars(infcx, &mut self.universes, data);
                    (data, Some((mapped_regions, mapped_types, mapped_consts)))
                } else {
                    (data, None)
                };
                let data = data.try_fold_with(self)?;

                let mut orig_values = OriginalQueryValues::default();
                let c_data = infcx.canonicalize_query(self.param_env.and(data), &mut orig_values);
                debug!("QueryNormalizer: c_data = {:#?}", c_data);
                debug!("QueryNormalizer: orig_values = {:#?}", orig_values);
                let result = match kind {
                    ty::Projection => tcx.normalize_canonicalized_projection_ty(c_data),
                    ty::Weak => tcx.normalize_canonicalized_weak_ty(c_data),
                    ty::Inherent => tcx.normalize_canonicalized_inherent_projection_ty(c_data),
                    kind => unreachable!("did not expect {kind:?} due to match arm above"),
                }?;
                // We don't expect ambiguity.
                if !result.value.is_proven() {
                    // Rustdoc normalizes possibly not well-formed types, so only
                    // treat this as a bug if we're not in rustdoc.
                    if !tcx.sess.opts.actually_rustdoc {
                        tcx.dcx()
                            .delayed_bug(format!("unexpected ambiguity: {c_data:?} {result:?}"));
                    }
                    return Err(NoSolution);
                }
                let InferOk { value: result, obligations } = infcx
                    .instantiate_query_response_and_region_obligations(
                        self.cause,
                        self.param_env,
                        &orig_values,
                        result,
                    )?;
                debug!("QueryNormalizer: result = {:#?}", result);
                debug!("QueryNormalizer: obligations = {:#?}", obligations);
                self.obligations.extend(obligations);
                let res = if let Some((mapped_regions, mapped_types, mapped_consts)) = maps {
                    PlaceholderReplacer::replace_placeholders(
                        infcx,
                        mapped_regions,
                        mapped_types,
                        mapped_consts,
                        &self.universes,
                        result.normalized_ty,
                    )
                } else {
                    result.normalized_ty
                };
                // `tcx.normalize_canonicalized_projection_ty` may normalize to a type that
                // still has unevaluated consts, so keep normalizing here if that's the case.
                // Similarly, `tcx.normalize_canonicalized_weak_ty` will only unwrap one layer
                // of type and we need to continue folding it to reveal the TAIT behind it.
                if res != ty
                    && (res.has_type_flags(ty::TypeFlags::HAS_CT_PROJECTION) || kind == ty::Weak)
                {
                    res.try_fold_with(self)?
                } else {
                    res
                }
            }
        };

        self.cache.insert(ty, res);
        Ok(res)
    }

    fn try_fold_const(
        &mut self,
        constant: ty::Const<'tcx>,
    ) -> Result<ty::Const<'tcx>, Self::Error> {
        if !needs_normalization(&constant, self.param_env.reveal()) {
            return Ok(constant);
        }

        let constant = constant.try_super_fold_with(self)?;
        debug!(?constant, ?self.param_env);
        Ok(crate::traits::with_replaced_escaping_bound_vars(
            self.infcx,
            &mut self.universes,
            constant,
            |constant| constant.normalize(self.infcx.tcx, self.param_env),
        ))
    }

    #[inline]
    fn try_fold_predicate(
        &mut self,
        p: ty::Predicate<'tcx>,
    ) -> Result<ty::Predicate<'tcx>, Self::Error> {
        if p.allow_normalization() && needs_normalization(&p, self.param_env.reveal()) {
            p.try_super_fold_with(self)
        } else {
            Ok(p)
        }
    }
}