rustc_const_eval/interpret/machine.rs
1//! This module contains everything needed to instantiate an interpreter.
2//! This separation exists to ensure that no fancy miri features like
3//! interpreting common C functions leak into CTFE.
4
5use std::borrow::{Borrow, Cow};
6use std::fmt::Debug;
7use std::hash::Hash;
8
9use rustc_abi::{Align, Size};
10use rustc_apfloat::{Float, FloatConvert};
11use rustc_middle::query::TyCtxtAt;
12use rustc_middle::ty::Ty;
13use rustc_middle::ty::layout::TyAndLayout;
14use rustc_middle::{mir, ty};
15use rustc_span::Span;
16use rustc_span::def_id::DefId;
17use rustc_target::callconv::FnAbi;
18
19use super::{
20 AllocBytes, AllocId, AllocKind, AllocRange, Allocation, CTFE_ALLOC_SALT, ConstAllocation,
21 CtfeProvenance, FnArg, Frame, ImmTy, InterpCx, InterpResult, MPlaceTy, MemoryKind,
22 Misalignment, OpTy, PlaceTy, Pointer, Provenance, RangeSet, interp_ok, throw_unsup,
23};
24
25/// Data returned by [`Machine::after_stack_pop`], and consumed by
26/// [`InterpCx::return_from_current_stack_frame`] to determine what actions should be done when
27/// returning from a stack frame.
28#[derive(Eq, PartialEq, Debug, Copy, Clone)]
29pub enum ReturnAction {
30 /// Indicates that no special handling should be
31 /// done - we'll either return normally or unwind
32 /// based on the terminator for the function
33 /// we're leaving.
34 Normal,
35
36 /// Indicates that we should *not* jump to the return/unwind address, as the callback already
37 /// took care of everything.
38 NoJump,
39
40 /// Returned by [`InterpCx::pop_stack_frame_raw`] when no cleanup should be done.
41 NoCleanup,
42}
43
44/// Whether this kind of memory is allowed to leak
45pub trait MayLeak: Copy {
46 fn may_leak(self) -> bool;
47}
48
49/// The functionality needed by memory to manage its allocations
50pub trait AllocMap<K: Hash + Eq, V> {
51 /// Tests if the map contains the given key.
52 /// Deliberately takes `&mut` because that is sufficient, and some implementations
53 /// can be more efficient then (using `RefCell::get_mut`).
54 fn contains_key<Q: ?Sized + Hash + Eq>(&mut self, k: &Q) -> bool
55 where
56 K: Borrow<Q>;
57
58 /// Callers should prefer [`AllocMap::contains_key`] when it is possible to call because it may
59 /// be more efficient. This function exists for callers that only have a shared reference
60 /// (which might make it slightly less efficient than `contains_key`, e.g. if
61 /// the data is stored inside a `RefCell`).
62 fn contains_key_ref<Q: ?Sized + Hash + Eq>(&self, k: &Q) -> bool
63 where
64 K: Borrow<Q>;
65
66 /// Inserts a new entry into the map.
67 fn insert(&mut self, k: K, v: V) -> Option<V>;
68
69 /// Removes an entry from the map.
70 fn remove<Q: ?Sized + Hash + Eq>(&mut self, k: &Q) -> Option<V>
71 where
72 K: Borrow<Q>;
73
74 /// Returns data based on the keys and values in the map.
75 fn filter_map_collect<T>(&self, f: impl FnMut(&K, &V) -> Option<T>) -> Vec<T>;
76
77 /// Returns a reference to entry `k`. If no such entry exists, call
78 /// `vacant` and either forward its error, or add its result to the map
79 /// and return a reference to *that*.
80 fn get_or<E>(&self, k: K, vacant: impl FnOnce() -> Result<V, E>) -> Result<&V, E>;
81
82 /// Returns a mutable reference to entry `k`. If no such entry exists, call
83 /// `vacant` and either forward its error, or add its result to the map
84 /// and return a reference to *that*.
85 fn get_mut_or<E>(&mut self, k: K, vacant: impl FnOnce() -> Result<V, E>) -> Result<&mut V, E>;
86
87 /// Read-only lookup.
88 fn get(&self, k: K) -> Option<&V> {
89 self.get_or(k, || Err(())).ok()
90 }
91
92 /// Mutable lookup.
93 fn get_mut(&mut self, k: K) -> Option<&mut V> {
94 self.get_mut_or(k, || Err(())).ok()
95 }
96}
97
98/// Methods of this trait signifies a point where CTFE evaluation would fail
99/// and some use case dependent behaviour can instead be applied.
100pub trait Machine<'tcx>: Sized {
101 /// Additional memory kinds a machine wishes to distinguish from the builtin ones
102 type MemoryKind: Debug + std::fmt::Display + MayLeak + Eq + 'static;
103
104 /// Pointers are "tagged" with provenance information; typically the `AllocId` they belong to.
105 type Provenance: Provenance + Eq + Hash + 'static;
106
107 /// When getting the AllocId of a pointer, some extra data is also obtained from the provenance
108 /// that is passed to memory access hooks so they can do things with it.
109 type ProvenanceExtra: Copy + 'static;
110
111 /// Machines can define extra (non-instance) things that represent values of function pointers.
112 /// For example, Miri uses this to return a function pointer from `dlsym`
113 /// that can later be called to execute the right thing.
114 type ExtraFnVal: Debug + Copy;
115
116 /// Extra data stored in every call frame.
117 type FrameExtra;
118
119 /// Extra data stored in every allocation.
120 type AllocExtra: Debug + Clone + 'tcx;
121
122 /// Type for the bytes of the allocation.
123 type Bytes: AllocBytes + 'static;
124
125 /// Memory's allocation map
126 type MemoryMap: AllocMap<
127 AllocId,
128 (
129 MemoryKind<Self::MemoryKind>,
130 Allocation<Self::Provenance, Self::AllocExtra, Self::Bytes>,
131 ),
132 > + Default
133 + Clone;
134
135 /// The memory kind to use for copied global memory (held in `tcx`) --
136 /// or None if such memory should not be mutated and thus any such attempt will cause
137 /// a `ModifiedStatic` error to be raised.
138 /// Statics are copied under two circumstances: When they are mutated, and when
139 /// `adjust_allocation` (see below) returns an owned allocation
140 /// that is added to the memory so that the work is not done twice.
141 const GLOBAL_KIND: Option<Self::MemoryKind>;
142
143 /// Should the machine panic on allocation failures?
144 const PANIC_ON_ALLOC_FAIL: bool;
145
146 /// Determines whether `eval_mir_constant` can never fail because all required consts have
147 /// already been checked before.
148 const ALL_CONSTS_ARE_PRECHECKED: bool = true;
149
150 /// Whether memory accesses should be alignment-checked.
151 fn enforce_alignment(ecx: &InterpCx<'tcx, Self>) -> bool;
152
153 /// Gives the machine a chance to detect more misalignment than the built-in checks would catch.
154 #[inline(always)]
155 fn alignment_check(
156 _ecx: &InterpCx<'tcx, Self>,
157 _alloc_id: AllocId,
158 _alloc_align: Align,
159 _alloc_kind: AllocKind,
160 _offset: Size,
161 _align: Align,
162 ) -> Option<Misalignment> {
163 None
164 }
165
166 /// Whether to enforce the validity invariant for a specific layout.
167 fn enforce_validity(ecx: &InterpCx<'tcx, Self>, layout: TyAndLayout<'tcx>) -> bool;
168 /// Whether to enforce the validity invariant *recursively*.
169 fn enforce_validity_recursively(
170 _ecx: &InterpCx<'tcx, Self>,
171 _layout: TyAndLayout<'tcx>,
172 ) -> bool {
173 false
174 }
175
176 /// Whether Assert(OverflowNeg) and Assert(Overflow) MIR terminators should actually
177 /// check for overflow.
178 fn ignore_optional_overflow_checks(_ecx: &InterpCx<'tcx, Self>) -> bool;
179
180 /// Entry point for obtaining the MIR of anything that should get evaluated.
181 /// So not just functions and shims, but also const/static initializers, anonymous
182 /// constants, ...
183 fn load_mir(
184 ecx: &InterpCx<'tcx, Self>,
185 instance: ty::InstanceKind<'tcx>,
186 ) -> InterpResult<'tcx, &'tcx mir::Body<'tcx>> {
187 interp_ok(ecx.tcx.instance_mir(instance))
188 }
189
190 /// Entry point to all function calls.
191 ///
192 /// Returns either the mir to use for the call, or `None` if execution should
193 /// just proceed (which usually means this hook did all the work that the
194 /// called function should usually have done). In the latter case, it is
195 /// this hook's responsibility to advance the instruction pointer!
196 /// (This is to support functions like `__rust_maybe_catch_panic` that neither find a MIR
197 /// nor just jump to `ret`, but instead push their own stack frame.)
198 /// Passing `dest`and `ret` in the same `Option` proved very annoying when only one of them
199 /// was used.
200 fn find_mir_or_eval_fn(
201 ecx: &mut InterpCx<'tcx, Self>,
202 instance: ty::Instance<'tcx>,
203 abi: &FnAbi<'tcx, Ty<'tcx>>,
204 args: &[FnArg<'tcx, Self::Provenance>],
205 destination: &MPlaceTy<'tcx, Self::Provenance>,
206 target: Option<mir::BasicBlock>,
207 unwind: mir::UnwindAction,
208 ) -> InterpResult<'tcx, Option<(&'tcx mir::Body<'tcx>, ty::Instance<'tcx>)>>;
209
210 /// Execute `fn_val`. It is the hook's responsibility to advance the instruction
211 /// pointer as appropriate.
212 fn call_extra_fn(
213 ecx: &mut InterpCx<'tcx, Self>,
214 fn_val: Self::ExtraFnVal,
215 abi: &FnAbi<'tcx, Ty<'tcx>>,
216 args: &[FnArg<'tcx, Self::Provenance>],
217 destination: &MPlaceTy<'tcx, Self::Provenance>,
218 target: Option<mir::BasicBlock>,
219 unwind: mir::UnwindAction,
220 ) -> InterpResult<'tcx>;
221
222 /// Directly process an intrinsic without pushing a stack frame. It is the hook's
223 /// responsibility to advance the instruction pointer as appropriate.
224 ///
225 /// Returns `None` if the intrinsic was fully handled.
226 /// Otherwise, returns an `Instance` of the function that implements the intrinsic.
227 fn call_intrinsic(
228 ecx: &mut InterpCx<'tcx, Self>,
229 instance: ty::Instance<'tcx>,
230 args: &[OpTy<'tcx, Self::Provenance>],
231 destination: &MPlaceTy<'tcx, Self::Provenance>,
232 target: Option<mir::BasicBlock>,
233 unwind: mir::UnwindAction,
234 ) -> InterpResult<'tcx, Option<ty::Instance<'tcx>>>;
235
236 /// Check whether the given function may be executed on the current machine, in terms of the
237 /// target features is requires.
238 fn check_fn_target_features(
239 _ecx: &InterpCx<'tcx, Self>,
240 _instance: ty::Instance<'tcx>,
241 ) -> InterpResult<'tcx>;
242
243 /// Called to evaluate `Assert` MIR terminators that trigger a panic.
244 fn assert_panic(
245 ecx: &mut InterpCx<'tcx, Self>,
246 msg: &mir::AssertMessage<'tcx>,
247 unwind: mir::UnwindAction,
248 ) -> InterpResult<'tcx>;
249
250 /// Called to trigger a non-unwinding panic.
251 fn panic_nounwind(_ecx: &mut InterpCx<'tcx, Self>, msg: &str) -> InterpResult<'tcx>;
252
253 /// Called when unwinding reached a state where execution should be terminated.
254 fn unwind_terminate(
255 ecx: &mut InterpCx<'tcx, Self>,
256 reason: mir::UnwindTerminateReason,
257 ) -> InterpResult<'tcx>;
258
259 /// Called for all binary operations where the LHS has pointer type.
260 ///
261 /// Returns a (value, overflowed) pair if the operation succeeded
262 fn binary_ptr_op(
263 ecx: &InterpCx<'tcx, Self>,
264 bin_op: mir::BinOp,
265 left: &ImmTy<'tcx, Self::Provenance>,
266 right: &ImmTy<'tcx, Self::Provenance>,
267 ) -> InterpResult<'tcx, ImmTy<'tcx, Self::Provenance>>;
268
269 /// Generate the NaN returned by a float operation, given the list of inputs.
270 /// (This is all inputs, not just NaN inputs!)
271 fn generate_nan<F1: Float + FloatConvert<F2>, F2: Float>(
272 _ecx: &InterpCx<'tcx, Self>,
273 _inputs: &[F1],
274 ) -> F2 {
275 // By default we always return the preferred NaN.
276 F2::NAN
277 }
278
279 /// Determines the result of `min`/`max` on floats when the arguments are equal.
280 fn equal_float_min_max<F: Float>(_ecx: &InterpCx<'tcx, Self>, a: F, _b: F) -> F {
281 // By default, we pick the left argument.
282 a
283 }
284
285 /// Called before a basic block terminator is executed.
286 #[inline]
287 fn before_terminator(_ecx: &mut InterpCx<'tcx, Self>) -> InterpResult<'tcx> {
288 interp_ok(())
289 }
290
291 /// Determines the result of a `NullaryOp::UbChecks` invocation.
292 fn ub_checks(_ecx: &InterpCx<'tcx, Self>) -> InterpResult<'tcx, bool>;
293
294 /// Determines the result of a `NullaryOp::ContractChecks` invocation.
295 fn contract_checks(_ecx: &InterpCx<'tcx, Self>) -> InterpResult<'tcx, bool>;
296
297 /// Called when the interpreter encounters a `StatementKind::ConstEvalCounter` instruction.
298 /// You can use this to detect long or endlessly running programs.
299 #[inline]
300 fn increment_const_eval_counter(_ecx: &mut InterpCx<'tcx, Self>) -> InterpResult<'tcx> {
301 interp_ok(())
302 }
303
304 /// Called before a global allocation is accessed.
305 /// `def_id` is `Some` if this is the "lazy" allocation of a static.
306 #[inline]
307 fn before_access_global(
308 _tcx: TyCtxtAt<'tcx>,
309 _machine: &Self,
310 _alloc_id: AllocId,
311 _allocation: ConstAllocation<'tcx>,
312 _static_def_id: Option<DefId>,
313 _is_write: bool,
314 ) -> InterpResult<'tcx> {
315 interp_ok(())
316 }
317
318 /// Return the `AllocId` for the given thread-local static in the current thread.
319 fn thread_local_static_pointer(
320 _ecx: &mut InterpCx<'tcx, Self>,
321 def_id: DefId,
322 ) -> InterpResult<'tcx, Pointer<Self::Provenance>> {
323 throw_unsup!(ThreadLocalStatic(def_id))
324 }
325
326 /// Return the `AllocId` for the given `extern static`.
327 fn extern_static_pointer(
328 ecx: &InterpCx<'tcx, Self>,
329 def_id: DefId,
330 ) -> InterpResult<'tcx, Pointer<Self::Provenance>>;
331
332 /// "Int-to-pointer cast"
333 fn ptr_from_addr_cast(
334 ecx: &InterpCx<'tcx, Self>,
335 addr: u64,
336 ) -> InterpResult<'tcx, Pointer<Option<Self::Provenance>>>;
337
338 /// Marks a pointer as exposed, allowing its provenance
339 /// to be recovered. "Pointer-to-int cast"
340 fn expose_provenance(
341 ecx: &InterpCx<'tcx, Self>,
342 provenance: Self::Provenance,
343 ) -> InterpResult<'tcx>;
344
345 /// Convert a pointer with provenance into an allocation-offset pair and extra provenance info.
346 /// `size` says how many bytes of memory are expected at that pointer. The *sign* of `size` can
347 /// be used to disambiguate situations where a wildcard pointer sits right in between two
348 /// allocations.
349 ///
350 /// If `ptr.provenance.get_alloc_id()` is `Some(p)`, the returned `AllocId` must be `p`.
351 /// The resulting `AllocId` will just be used for that one step and the forgotten again
352 /// (i.e., we'll never turn the data returned here back into a `Pointer` that might be
353 /// stored in machine state).
354 ///
355 /// When this fails, that means the pointer does not point to a live allocation.
356 fn ptr_get_alloc(
357 ecx: &InterpCx<'tcx, Self>,
358 ptr: Pointer<Self::Provenance>,
359 size: i64,
360 ) -> Option<(AllocId, Size, Self::ProvenanceExtra)>;
361
362 /// Return a "root" pointer for the given allocation: the one that is used for direct
363 /// accesses to this static/const/fn allocation, or the one returned from the heap allocator.
364 ///
365 /// Not called on `extern` or thread-local statics (those use the methods above).
366 ///
367 /// `kind` is the kind of the allocation the pointer points to; it can be `None` when
368 /// it's a global and `GLOBAL_KIND` is `None`.
369 fn adjust_alloc_root_pointer(
370 ecx: &InterpCx<'tcx, Self>,
371 ptr: Pointer,
372 kind: Option<MemoryKind<Self::MemoryKind>>,
373 ) -> InterpResult<'tcx, Pointer<Self::Provenance>>;
374
375 /// Called to adjust global allocations to the Provenance and AllocExtra of this machine.
376 ///
377 /// If `alloc` contains pointers, then they are all pointing to globals.
378 ///
379 /// This should avoid copying if no work has to be done! If this returns an owned
380 /// allocation (because a copy had to be done to adjust things), machine memory will
381 /// cache the result. (This relies on `AllocMap::get_or` being able to add the
382 /// owned allocation to the map even when the map is shared.)
383 fn adjust_global_allocation<'b>(
384 ecx: &InterpCx<'tcx, Self>,
385 id: AllocId,
386 alloc: &'b Allocation,
387 ) -> InterpResult<'tcx, Cow<'b, Allocation<Self::Provenance, Self::AllocExtra, Self::Bytes>>>;
388
389 /// Initialize the extra state of an allocation local to this machine.
390 ///
391 /// This is guaranteed to be called exactly once on all allocations local to this machine.
392 /// It will not be called automatically for global allocations; `adjust_global_allocation`
393 /// has to do that itself if that is desired.
394 fn init_local_allocation(
395 ecx: &InterpCx<'tcx, Self>,
396 id: AllocId,
397 kind: MemoryKind<Self::MemoryKind>,
398 size: Size,
399 align: Align,
400 ) -> InterpResult<'tcx, Self::AllocExtra>;
401
402 /// Hook for performing extra checks on a memory read access.
403 /// `ptr` will always be a pointer with the provenance in `prov` pointing to the beginning of
404 /// `range`.
405 ///
406 /// This will *not* be called during validation!
407 ///
408 /// Takes read-only access to the allocation so we can keep all the memory read
409 /// operations take `&self`. Use a `RefCell` in `AllocExtra` if you
410 /// need to mutate.
411 ///
412 /// This is not invoked for ZST accesses, as no read actually happens.
413 #[inline(always)]
414 fn before_memory_read(
415 _tcx: TyCtxtAt<'tcx>,
416 _machine: &Self,
417 _alloc_extra: &Self::AllocExtra,
418 _ptr: Pointer<Option<Self::Provenance>>,
419 _prov: (AllocId, Self::ProvenanceExtra),
420 _range: AllocRange,
421 ) -> InterpResult<'tcx> {
422 interp_ok(())
423 }
424
425 /// Hook for performing extra checks on any memory read access,
426 /// that involves an allocation, even ZST reads.
427 ///
428 /// This will *not* be called during validation!
429 ///
430 /// Used to prevent statics from self-initializing by reading from their own memory
431 /// as it is being initialized.
432 fn before_alloc_read(_ecx: &InterpCx<'tcx, Self>, _alloc_id: AllocId) -> InterpResult<'tcx> {
433 interp_ok(())
434 }
435
436 /// Hook for performing extra checks on a memory write access.
437 /// This is not invoked for ZST accesses, as no write actually happens.
438 /// `ptr` will always be a pointer with the provenance in `prov` pointing to the beginning of
439 /// `range`.
440 #[inline(always)]
441 fn before_memory_write(
442 _tcx: TyCtxtAt<'tcx>,
443 _machine: &mut Self,
444 _alloc_extra: &mut Self::AllocExtra,
445 _ptr: Pointer<Option<Self::Provenance>>,
446 _prov: (AllocId, Self::ProvenanceExtra),
447 _range: AllocRange,
448 ) -> InterpResult<'tcx> {
449 interp_ok(())
450 }
451
452 /// Hook for performing extra operations on a memory deallocation.
453 /// `ptr` will always be a pointer with the provenance in `prov` pointing to the beginning of
454 /// the allocation.
455 #[inline(always)]
456 fn before_memory_deallocation(
457 _tcx: TyCtxtAt<'tcx>,
458 _machine: &mut Self,
459 _alloc_extra: &mut Self::AllocExtra,
460 _ptr: Pointer<Option<Self::Provenance>>,
461 _prov: (AllocId, Self::ProvenanceExtra),
462 _size: Size,
463 _align: Align,
464 _kind: MemoryKind<Self::MemoryKind>,
465 ) -> InterpResult<'tcx> {
466 interp_ok(())
467 }
468
469 /// Executes a retagging operation for a single pointer.
470 /// Returns the possibly adjusted pointer.
471 #[inline]
472 fn retag_ptr_value(
473 _ecx: &mut InterpCx<'tcx, Self>,
474 _kind: mir::RetagKind,
475 val: &ImmTy<'tcx, Self::Provenance>,
476 ) -> InterpResult<'tcx, ImmTy<'tcx, Self::Provenance>> {
477 interp_ok(val.clone())
478 }
479
480 /// Executes a retagging operation on a compound value.
481 /// Replaces all pointers stored in the given place.
482 #[inline]
483 fn retag_place_contents(
484 _ecx: &mut InterpCx<'tcx, Self>,
485 _kind: mir::RetagKind,
486 _place: &PlaceTy<'tcx, Self::Provenance>,
487 ) -> InterpResult<'tcx> {
488 interp_ok(())
489 }
490
491 /// Called on places used for in-place function argument and return value handling.
492 ///
493 /// These places need to be protected to make sure the program cannot tell whether the
494 /// argument/return value was actually copied or passed in-place..
495 fn protect_in_place_function_argument(
496 ecx: &mut InterpCx<'tcx, Self>,
497 mplace: &MPlaceTy<'tcx, Self::Provenance>,
498 ) -> InterpResult<'tcx> {
499 // Without an aliasing model, all we can do is put `Uninit` into the place.
500 // Conveniently this also ensures that the place actually points to suitable memory.
501 ecx.write_uninit(mplace)
502 }
503
504 /// Called immediately before a new stack frame gets pushed.
505 fn init_frame(
506 ecx: &mut InterpCx<'tcx, Self>,
507 frame: Frame<'tcx, Self::Provenance>,
508 ) -> InterpResult<'tcx, Frame<'tcx, Self::Provenance, Self::FrameExtra>>;
509
510 /// Borrow the current thread's stack.
511 fn stack<'a>(
512 ecx: &'a InterpCx<'tcx, Self>,
513 ) -> &'a [Frame<'tcx, Self::Provenance, Self::FrameExtra>];
514
515 /// Mutably borrow the current thread's stack.
516 fn stack_mut<'a>(
517 ecx: &'a mut InterpCx<'tcx, Self>,
518 ) -> &'a mut Vec<Frame<'tcx, Self::Provenance, Self::FrameExtra>>;
519
520 /// Called immediately after a stack frame got pushed and its locals got initialized.
521 fn after_stack_push(_ecx: &mut InterpCx<'tcx, Self>) -> InterpResult<'tcx> {
522 interp_ok(())
523 }
524
525 /// Called just before the return value is copied to the caller-provided return place.
526 fn before_stack_pop(
527 _ecx: &InterpCx<'tcx, Self>,
528 _frame: &Frame<'tcx, Self::Provenance, Self::FrameExtra>,
529 ) -> InterpResult<'tcx> {
530 interp_ok(())
531 }
532
533 /// Called immediately after a stack frame got popped, but before jumping back to the caller.
534 /// The `locals` have already been destroyed!
535 #[inline(always)]
536 fn after_stack_pop(
537 _ecx: &mut InterpCx<'tcx, Self>,
538 _frame: Frame<'tcx, Self::Provenance, Self::FrameExtra>,
539 unwinding: bool,
540 ) -> InterpResult<'tcx, ReturnAction> {
541 // By default, we do not support unwinding from panics
542 assert!(!unwinding);
543 interp_ok(ReturnAction::Normal)
544 }
545
546 /// Called immediately after an "immediate" local variable is read in a given frame
547 /// (i.e., this is called for reads that do not end up accessing addressable memory).
548 #[inline(always)]
549 fn after_local_read(
550 _ecx: &InterpCx<'tcx, Self>,
551 _frame: &Frame<'tcx, Self::Provenance, Self::FrameExtra>,
552 _local: mir::Local,
553 ) -> InterpResult<'tcx> {
554 interp_ok(())
555 }
556
557 /// Called immediately after an "immediate" local variable is assigned a new value
558 /// (i.e., this is called for writes that do not end up in memory).
559 /// `storage_live` indicates whether this is the initial write upon `StorageLive`.
560 #[inline(always)]
561 fn after_local_write(
562 _ecx: &mut InterpCx<'tcx, Self>,
563 _local: mir::Local,
564 _storage_live: bool,
565 ) -> InterpResult<'tcx> {
566 interp_ok(())
567 }
568
569 /// Called immediately after actual memory was allocated for a local
570 /// but before the local's stack frame is updated to point to that memory.
571 #[inline(always)]
572 fn after_local_moved_to_memory(
573 _ecx: &mut InterpCx<'tcx, Self>,
574 _local: mir::Local,
575 _mplace: &MPlaceTy<'tcx, Self::Provenance>,
576 ) -> InterpResult<'tcx> {
577 interp_ok(())
578 }
579
580 /// Evaluate the given constant. The `eval` function will do all the required evaluation,
581 /// but this hook has the chance to do some pre/postprocessing.
582 #[inline(always)]
583 fn eval_mir_constant<F>(
584 ecx: &InterpCx<'tcx, Self>,
585 val: mir::Const<'tcx>,
586 span: Span,
587 layout: Option<TyAndLayout<'tcx>>,
588 eval: F,
589 ) -> InterpResult<'tcx, OpTy<'tcx, Self::Provenance>>
590 where
591 F: Fn(
592 &InterpCx<'tcx, Self>,
593 mir::Const<'tcx>,
594 Span,
595 Option<TyAndLayout<'tcx>>,
596 ) -> InterpResult<'tcx, OpTy<'tcx, Self::Provenance>>,
597 {
598 eval(ecx, val, span, layout)
599 }
600
601 /// Returns the salt to be used for a deduplicated global alloation.
602 /// If the allocation is for a function, the instance is provided as well
603 /// (this lets Miri ensure unique addresses for some functions).
604 fn get_global_alloc_salt(
605 ecx: &InterpCx<'tcx, Self>,
606 instance: Option<ty::Instance<'tcx>>,
607 ) -> usize;
608
609 fn cached_union_data_range<'e>(
610 _ecx: &'e mut InterpCx<'tcx, Self>,
611 _ty: Ty<'tcx>,
612 compute_range: impl FnOnce() -> RangeSet,
613 ) -> Cow<'e, RangeSet> {
614 // Default to no caching.
615 Cow::Owned(compute_range())
616 }
617}
618
619/// A lot of the flexibility above is just needed for `Miri`, but all "compile-time" machines
620/// (CTFE and ConstProp) use the same instance. Here, we share that code.
621pub macro compile_time_machine(<$tcx: lifetime>) {
622 type Provenance = CtfeProvenance;
623 type ProvenanceExtra = bool; // the "immutable" flag
624
625 type ExtraFnVal = !;
626
627 type MemoryMap =
628 rustc_data_structures::fx::FxIndexMap<AllocId, (MemoryKind<Self::MemoryKind>, Allocation)>;
629 const GLOBAL_KIND: Option<Self::MemoryKind> = None; // no copying of globals from `tcx` to machine memory
630
631 type AllocExtra = ();
632 type FrameExtra = ();
633 type Bytes = Box<[u8]>;
634
635 #[inline(always)]
636 fn ignore_optional_overflow_checks(_ecx: &InterpCx<$tcx, Self>) -> bool {
637 false
638 }
639
640 #[inline(always)]
641 fn unwind_terminate(
642 _ecx: &mut InterpCx<$tcx, Self>,
643 _reason: mir::UnwindTerminateReason,
644 ) -> InterpResult<$tcx> {
645 unreachable!("unwinding cannot happen during compile-time evaluation")
646 }
647
648 #[inline(always)]
649 fn check_fn_target_features(
650 _ecx: &InterpCx<$tcx, Self>,
651 _instance: ty::Instance<$tcx>,
652 ) -> InterpResult<$tcx> {
653 // For now we don't do any checking here. We can't use `tcx.sess` because that can differ
654 // between crates, and we need to ensure that const-eval always behaves the same.
655 interp_ok(())
656 }
657
658 #[inline(always)]
659 fn call_extra_fn(
660 _ecx: &mut InterpCx<$tcx, Self>,
661 fn_val: !,
662 _abi: &FnAbi<$tcx, Ty<$tcx>>,
663 _args: &[FnArg<$tcx>],
664 _destination: &MPlaceTy<$tcx, Self::Provenance>,
665 _target: Option<mir::BasicBlock>,
666 _unwind: mir::UnwindAction,
667 ) -> InterpResult<$tcx> {
668 match fn_val {}
669 }
670
671 #[inline(always)]
672 fn ub_checks(_ecx: &InterpCx<$tcx, Self>) -> InterpResult<$tcx, bool> {
673 // We can't look at `tcx.sess` here as that can differ across crates, which can lead to
674 // unsound differences in evaluating the same constant at different instantiation sites.
675 interp_ok(true)
676 }
677
678 #[inline(always)]
679 fn contract_checks(_ecx: &InterpCx<$tcx, Self>) -> InterpResult<$tcx, bool> {
680 // We can't look at `tcx.sess` here as that can differ across crates, which can lead to
681 // unsound differences in evaluating the same constant at different instantiation sites.
682 interp_ok(true)
683 }
684
685 #[inline(always)]
686 fn adjust_global_allocation<'b>(
687 _ecx: &InterpCx<$tcx, Self>,
688 _id: AllocId,
689 alloc: &'b Allocation,
690 ) -> InterpResult<$tcx, Cow<'b, Allocation<Self::Provenance>>> {
691 // Overwrite default implementation: no need to adjust anything.
692 interp_ok(Cow::Borrowed(alloc))
693 }
694
695 fn init_local_allocation(
696 _ecx: &InterpCx<$tcx, Self>,
697 _id: AllocId,
698 _kind: MemoryKind<Self::MemoryKind>,
699 _size: Size,
700 _align: Align,
701 ) -> InterpResult<$tcx, Self::AllocExtra> {
702 interp_ok(())
703 }
704
705 fn extern_static_pointer(
706 ecx: &InterpCx<$tcx, Self>,
707 def_id: DefId,
708 ) -> InterpResult<$tcx, Pointer> {
709 // Use the `AllocId` associated with the `DefId`. Any actual *access* will fail.
710 interp_ok(Pointer::new(ecx.tcx.reserve_and_set_static_alloc(def_id).into(), Size::ZERO))
711 }
712
713 #[inline(always)]
714 fn adjust_alloc_root_pointer(
715 _ecx: &InterpCx<$tcx, Self>,
716 ptr: Pointer<CtfeProvenance>,
717 _kind: Option<MemoryKind<Self::MemoryKind>>,
718 ) -> InterpResult<$tcx, Pointer<CtfeProvenance>> {
719 interp_ok(ptr)
720 }
721
722 #[inline(always)]
723 fn ptr_from_addr_cast(
724 _ecx: &InterpCx<$tcx, Self>,
725 addr: u64,
726 ) -> InterpResult<$tcx, Pointer<Option<CtfeProvenance>>> {
727 // Allow these casts, but make the pointer not dereferenceable.
728 // (I.e., they behave like transmutation.)
729 // This is correct because no pointers can ever be exposed in compile-time evaluation.
730 interp_ok(Pointer::from_addr_invalid(addr))
731 }
732
733 #[inline(always)]
734 fn ptr_get_alloc(
735 _ecx: &InterpCx<$tcx, Self>,
736 ptr: Pointer<CtfeProvenance>,
737 _size: i64,
738 ) -> Option<(AllocId, Size, Self::ProvenanceExtra)> {
739 // We know `offset` is relative to the allocation, so we can use `into_parts`.
740 let (prov, offset) = ptr.into_parts();
741 Some((prov.alloc_id(), offset, prov.immutable()))
742 }
743
744 #[inline(always)]
745 fn get_global_alloc_salt(
746 _ecx: &InterpCx<$tcx, Self>,
747 _instance: Option<ty::Instance<$tcx>>,
748 ) -> usize {
749 CTFE_ALLOC_SALT
750 }
751}