rustc_const_eval/interpret/machine.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
//! This module contains everything needed to instantiate an interpreter.
//! This separation exists to ensure that no fancy miri features like
//! interpreting common C functions leak into CTFE.
use std::borrow::{Borrow, Cow};
use std::fmt::Debug;
use std::hash::Hash;
use rustc_abi::{Align, ExternAbi, Size};
use rustc_apfloat::{Float, FloatConvert};
use rustc_ast::{InlineAsmOptions, InlineAsmTemplatePiece};
use rustc_middle::query::TyCtxtAt;
use rustc_middle::ty::Ty;
use rustc_middle::ty::layout::TyAndLayout;
use rustc_middle::{mir, ty};
use rustc_span::Span;
use rustc_span::def_id::DefId;
use super::{
AllocBytes, AllocId, AllocKind, AllocRange, Allocation, CTFE_ALLOC_SALT, ConstAllocation,
CtfeProvenance, FnArg, Frame, ImmTy, InterpCx, InterpResult, MPlaceTy, MemoryKind,
Misalignment, OpTy, PlaceTy, Pointer, Provenance, RangeSet, interp_ok, throw_unsup,
throw_unsup_format,
};
/// Data returned by [`Machine::after_stack_pop`], and consumed by
/// [`InterpCx::return_from_current_stack_frame`] to determine what actions should be done when
/// returning from a stack frame.
#[derive(Eq, PartialEq, Debug, Copy, Clone)]
pub enum ReturnAction {
/// Indicates that no special handling should be
/// done - we'll either return normally or unwind
/// based on the terminator for the function
/// we're leaving.
Normal,
/// Indicates that we should *not* jump to the return/unwind address, as the callback already
/// took care of everything.
NoJump,
/// Returned by [`InterpCx::pop_stack_frame_raw`] when no cleanup should be done.
NoCleanup,
}
/// Whether this kind of memory is allowed to leak
pub trait MayLeak: Copy {
fn may_leak(self) -> bool;
}
/// The functionality needed by memory to manage its allocations
pub trait AllocMap<K: Hash + Eq, V> {
/// Tests if the map contains the given key.
/// Deliberately takes `&mut` because that is sufficient, and some implementations
/// can be more efficient then (using `RefCell::get_mut`).
fn contains_key<Q: ?Sized + Hash + Eq>(&mut self, k: &Q) -> bool
where
K: Borrow<Q>;
/// Callers should prefer [`AllocMap::contains_key`] when it is possible to call because it may
/// be more efficient. This function exists for callers that only have a shared reference
/// (which might make it slightly less efficient than `contains_key`, e.g. if
/// the data is stored inside a `RefCell`).
fn contains_key_ref<Q: ?Sized + Hash + Eq>(&self, k: &Q) -> bool
where
K: Borrow<Q>;
/// Inserts a new entry into the map.
fn insert(&mut self, k: K, v: V) -> Option<V>;
/// Removes an entry from the map.
fn remove<Q: ?Sized + Hash + Eq>(&mut self, k: &Q) -> Option<V>
where
K: Borrow<Q>;
/// Returns data based on the keys and values in the map.
fn filter_map_collect<T>(&self, f: impl FnMut(&K, &V) -> Option<T>) -> Vec<T>;
/// Returns a reference to entry `k`. If no such entry exists, call
/// `vacant` and either forward its error, or add its result to the map
/// and return a reference to *that*.
fn get_or<E>(&self, k: K, vacant: impl FnOnce() -> Result<V, E>) -> Result<&V, E>;
/// Returns a mutable reference to entry `k`. If no such entry exists, call
/// `vacant` and either forward its error, or add its result to the map
/// and return a reference to *that*.
fn get_mut_or<E>(&mut self, k: K, vacant: impl FnOnce() -> Result<V, E>) -> Result<&mut V, E>;
/// Read-only lookup.
fn get(&self, k: K) -> Option<&V> {
self.get_or(k, || Err(())).ok()
}
/// Mutable lookup.
fn get_mut(&mut self, k: K) -> Option<&mut V> {
self.get_mut_or(k, || Err(())).ok()
}
}
/// Methods of this trait signifies a point where CTFE evaluation would fail
/// and some use case dependent behaviour can instead be applied.
pub trait Machine<'tcx>: Sized {
/// Additional memory kinds a machine wishes to distinguish from the builtin ones
type MemoryKind: Debug + std::fmt::Display + MayLeak + Eq + 'static;
/// Pointers are "tagged" with provenance information; typically the `AllocId` they belong to.
type Provenance: Provenance + Eq + Hash + 'static;
/// When getting the AllocId of a pointer, some extra data is also obtained from the provenance
/// that is passed to memory access hooks so they can do things with it.
type ProvenanceExtra: Copy + 'static;
/// Machines can define extra (non-instance) things that represent values of function pointers.
/// For example, Miri uses this to return a function pointer from `dlsym`
/// that can later be called to execute the right thing.
type ExtraFnVal: Debug + Copy;
/// Extra data stored in every call frame.
type FrameExtra;
/// Extra data stored in every allocation.
type AllocExtra: Debug + Clone + 'tcx;
/// Type for the bytes of the allocation.
type Bytes: AllocBytes + 'static;
/// Memory's allocation map
type MemoryMap: AllocMap<
AllocId,
(
MemoryKind<Self::MemoryKind>,
Allocation<Self::Provenance, Self::AllocExtra, Self::Bytes>,
),
> + Default
+ Clone;
/// The memory kind to use for copied global memory (held in `tcx`) --
/// or None if such memory should not be mutated and thus any such attempt will cause
/// a `ModifiedStatic` error to be raised.
/// Statics are copied under two circumstances: When they are mutated, and when
/// `adjust_allocation` (see below) returns an owned allocation
/// that is added to the memory so that the work is not done twice.
const GLOBAL_KIND: Option<Self::MemoryKind>;
/// Should the machine panic on allocation failures?
const PANIC_ON_ALLOC_FAIL: bool;
/// Determines whether `eval_mir_constant` can never fail because all required consts have
/// already been checked before.
const ALL_CONSTS_ARE_PRECHECKED: bool = true;
/// Whether memory accesses should be alignment-checked.
fn enforce_alignment(ecx: &InterpCx<'tcx, Self>) -> bool;
/// Gives the machine a chance to detect more misalignment than the built-in checks would catch.
#[inline(always)]
fn alignment_check(
_ecx: &InterpCx<'tcx, Self>,
_alloc_id: AllocId,
_alloc_align: Align,
_alloc_kind: AllocKind,
_offset: Size,
_align: Align,
) -> Option<Misalignment> {
None
}
/// Whether to enforce the validity invariant for a specific layout.
fn enforce_validity(ecx: &InterpCx<'tcx, Self>, layout: TyAndLayout<'tcx>) -> bool;
/// Whether to enforce the validity invariant *recursively*.
fn enforce_validity_recursively(
_ecx: &InterpCx<'tcx, Self>,
_layout: TyAndLayout<'tcx>,
) -> bool {
false
}
/// Whether Assert(OverflowNeg) and Assert(Overflow) MIR terminators should actually
/// check for overflow.
fn ignore_optional_overflow_checks(_ecx: &InterpCx<'tcx, Self>) -> bool;
/// Entry point for obtaining the MIR of anything that should get evaluated.
/// So not just functions and shims, but also const/static initializers, anonymous
/// constants, ...
fn load_mir(
ecx: &InterpCx<'tcx, Self>,
instance: ty::InstanceKind<'tcx>,
) -> InterpResult<'tcx, &'tcx mir::Body<'tcx>> {
interp_ok(ecx.tcx.instance_mir(instance))
}
/// Entry point to all function calls.
///
/// Returns either the mir to use for the call, or `None` if execution should
/// just proceed (which usually means this hook did all the work that the
/// called function should usually have done). In the latter case, it is
/// this hook's responsibility to advance the instruction pointer!
/// (This is to support functions like `__rust_maybe_catch_panic` that neither find a MIR
/// nor just jump to `ret`, but instead push their own stack frame.)
/// Passing `dest`and `ret` in the same `Option` proved very annoying when only one of them
/// was used.
fn find_mir_or_eval_fn(
ecx: &mut InterpCx<'tcx, Self>,
instance: ty::Instance<'tcx>,
abi: ExternAbi,
args: &[FnArg<'tcx, Self::Provenance>],
destination: &MPlaceTy<'tcx, Self::Provenance>,
target: Option<mir::BasicBlock>,
unwind: mir::UnwindAction,
) -> InterpResult<'tcx, Option<(&'tcx mir::Body<'tcx>, ty::Instance<'tcx>)>>;
/// Execute `fn_val`. It is the hook's responsibility to advance the instruction
/// pointer as appropriate.
fn call_extra_fn(
ecx: &mut InterpCx<'tcx, Self>,
fn_val: Self::ExtraFnVal,
abi: ExternAbi,
args: &[FnArg<'tcx, Self::Provenance>],
destination: &MPlaceTy<'tcx, Self::Provenance>,
target: Option<mir::BasicBlock>,
unwind: mir::UnwindAction,
) -> InterpResult<'tcx>;
/// Directly process an intrinsic without pushing a stack frame. It is the hook's
/// responsibility to advance the instruction pointer as appropriate.
///
/// Returns `None` if the intrinsic was fully handled.
/// Otherwise, returns an `Instance` of the function that implements the intrinsic.
fn call_intrinsic(
ecx: &mut InterpCx<'tcx, Self>,
instance: ty::Instance<'tcx>,
args: &[OpTy<'tcx, Self::Provenance>],
destination: &MPlaceTy<'tcx, Self::Provenance>,
target: Option<mir::BasicBlock>,
unwind: mir::UnwindAction,
) -> InterpResult<'tcx, Option<ty::Instance<'tcx>>>;
/// Check whether the given function may be executed on the current machine, in terms of the
/// target features is requires.
fn check_fn_target_features(
_ecx: &InterpCx<'tcx, Self>,
_instance: ty::Instance<'tcx>,
) -> InterpResult<'tcx>;
/// Called to evaluate `Assert` MIR terminators that trigger a panic.
fn assert_panic(
ecx: &mut InterpCx<'tcx, Self>,
msg: &mir::AssertMessage<'tcx>,
unwind: mir::UnwindAction,
) -> InterpResult<'tcx>;
/// Called to trigger a non-unwinding panic.
fn panic_nounwind(_ecx: &mut InterpCx<'tcx, Self>, msg: &str) -> InterpResult<'tcx>;
/// Called when unwinding reached a state where execution should be terminated.
fn unwind_terminate(
ecx: &mut InterpCx<'tcx, Self>,
reason: mir::UnwindTerminateReason,
) -> InterpResult<'tcx>;
/// Called for all binary operations where the LHS has pointer type.
///
/// Returns a (value, overflowed) pair if the operation succeeded
fn binary_ptr_op(
ecx: &InterpCx<'tcx, Self>,
bin_op: mir::BinOp,
left: &ImmTy<'tcx, Self::Provenance>,
right: &ImmTy<'tcx, Self::Provenance>,
) -> InterpResult<'tcx, ImmTy<'tcx, Self::Provenance>>;
/// Generate the NaN returned by a float operation, given the list of inputs.
/// (This is all inputs, not just NaN inputs!)
fn generate_nan<F1: Float + FloatConvert<F2>, F2: Float>(
_ecx: &InterpCx<'tcx, Self>,
_inputs: &[F1],
) -> F2 {
// By default we always return the preferred NaN.
F2::NAN
}
/// Called before a basic block terminator is executed.
#[inline]
fn before_terminator(_ecx: &mut InterpCx<'tcx, Self>) -> InterpResult<'tcx> {
interp_ok(())
}
/// Determines the result of a `NullaryOp::UbChecks` invocation.
fn ub_checks(_ecx: &InterpCx<'tcx, Self>) -> InterpResult<'tcx, bool>;
/// Called when the interpreter encounters a `StatementKind::ConstEvalCounter` instruction.
/// You can use this to detect long or endlessly running programs.
#[inline]
fn increment_const_eval_counter(_ecx: &mut InterpCx<'tcx, Self>) -> InterpResult<'tcx> {
interp_ok(())
}
/// Called before a global allocation is accessed.
/// `def_id` is `Some` if this is the "lazy" allocation of a static.
#[inline]
fn before_access_global(
_tcx: TyCtxtAt<'tcx>,
_machine: &Self,
_alloc_id: AllocId,
_allocation: ConstAllocation<'tcx>,
_static_def_id: Option<DefId>,
_is_write: bool,
) -> InterpResult<'tcx> {
interp_ok(())
}
/// Return the `AllocId` for the given thread-local static in the current thread.
fn thread_local_static_pointer(
_ecx: &mut InterpCx<'tcx, Self>,
def_id: DefId,
) -> InterpResult<'tcx, Pointer<Self::Provenance>> {
throw_unsup!(ThreadLocalStatic(def_id))
}
/// Return the `AllocId` for the given `extern static`.
fn extern_static_pointer(
ecx: &InterpCx<'tcx, Self>,
def_id: DefId,
) -> InterpResult<'tcx, Pointer<Self::Provenance>>;
/// "Int-to-pointer cast"
fn ptr_from_addr_cast(
ecx: &InterpCx<'tcx, Self>,
addr: u64,
) -> InterpResult<'tcx, Pointer<Option<Self::Provenance>>>;
/// Marks a pointer as exposed, allowing it's provenance
/// to be recovered. "Pointer-to-int cast"
fn expose_ptr(
ecx: &mut InterpCx<'tcx, Self>,
ptr: Pointer<Self::Provenance>,
) -> InterpResult<'tcx>;
/// Convert a pointer with provenance into an allocation-offset pair and extra provenance info.
/// `size` says how many bytes of memory are expected at that pointer. The *sign* of `size` can
/// be used to disambiguate situations where a wildcard pointer sits right in between two
/// allocations.
///
/// If `ptr.provenance.get_alloc_id()` is `Some(p)`, the returned `AllocId` must be `p`.
/// The resulting `AllocId` will just be used for that one step and the forgotten again
/// (i.e., we'll never turn the data returned here back into a `Pointer` that might be
/// stored in machine state).
///
/// When this fails, that means the pointer does not point to a live allocation.
fn ptr_get_alloc(
ecx: &InterpCx<'tcx, Self>,
ptr: Pointer<Self::Provenance>,
size: i64,
) -> Option<(AllocId, Size, Self::ProvenanceExtra)>;
/// Called to adjust global allocations to the Provenance and AllocExtra of this machine.
///
/// If `alloc` contains pointers, then they are all pointing to globals.
///
/// This should avoid copying if no work has to be done! If this returns an owned
/// allocation (because a copy had to be done to adjust things), machine memory will
/// cache the result. (This relies on `AllocMap::get_or` being able to add the
/// owned allocation to the map even when the map is shared.)
fn adjust_global_allocation<'b>(
ecx: &InterpCx<'tcx, Self>,
id: AllocId,
alloc: &'b Allocation,
) -> InterpResult<'tcx, Cow<'b, Allocation<Self::Provenance, Self::AllocExtra, Self::Bytes>>>;
/// Initialize the extra state of an allocation.
///
/// This is guaranteed to be called exactly once on all allocations that are accessed by the
/// program.
fn init_alloc_extra(
ecx: &InterpCx<'tcx, Self>,
id: AllocId,
kind: MemoryKind<Self::MemoryKind>,
size: Size,
align: Align,
) -> InterpResult<'tcx, Self::AllocExtra>;
/// Return a "root" pointer for the given allocation: the one that is used for direct
/// accesses to this static/const/fn allocation, or the one returned from the heap allocator.
///
/// Not called on `extern` or thread-local statics (those use the methods above).
///
/// `kind` is the kind of the allocation the pointer points to; it can be `None` when
/// it's a global and `GLOBAL_KIND` is `None`.
fn adjust_alloc_root_pointer(
ecx: &InterpCx<'tcx, Self>,
ptr: Pointer,
kind: Option<MemoryKind<Self::MemoryKind>>,
) -> InterpResult<'tcx, Pointer<Self::Provenance>>;
/// Evaluate the inline assembly.
///
/// This should take care of jumping to the next block (one of `targets`) when asm goto
/// is triggered, `targets[0]` when the assembly falls through, or diverge in case of
/// naked_asm! or `InlineAsmOptions::NORETURN` being set.
fn eval_inline_asm(
_ecx: &mut InterpCx<'tcx, Self>,
_template: &'tcx [InlineAsmTemplatePiece],
_operands: &[mir::InlineAsmOperand<'tcx>],
_options: InlineAsmOptions,
_targets: &[mir::BasicBlock],
) -> InterpResult<'tcx> {
throw_unsup_format!("inline assembly is not supported")
}
/// Hook for performing extra checks on a memory read access.
///
/// This will *not* be called during validation!
///
/// Takes read-only access to the allocation so we can keep all the memory read
/// operations take `&self`. Use a `RefCell` in `AllocExtra` if you
/// need to mutate.
///
/// This is not invoked for ZST accesses, as no read actually happens.
#[inline(always)]
fn before_memory_read(
_tcx: TyCtxtAt<'tcx>,
_machine: &Self,
_alloc_extra: &Self::AllocExtra,
_prov: (AllocId, Self::ProvenanceExtra),
_range: AllocRange,
) -> InterpResult<'tcx> {
interp_ok(())
}
/// Hook for performing extra checks on any memory read access,
/// that involves an allocation, even ZST reads.
///
/// This will *not* be called during validation!
///
/// Used to prevent statics from self-initializing by reading from their own memory
/// as it is being initialized.
fn before_alloc_read(_ecx: &InterpCx<'tcx, Self>, _alloc_id: AllocId) -> InterpResult<'tcx> {
interp_ok(())
}
/// Hook for performing extra checks on a memory write access.
/// This is not invoked for ZST accesses, as no write actually happens.
#[inline(always)]
fn before_memory_write(
_tcx: TyCtxtAt<'tcx>,
_machine: &mut Self,
_alloc_extra: &mut Self::AllocExtra,
_prov: (AllocId, Self::ProvenanceExtra),
_range: AllocRange,
) -> InterpResult<'tcx> {
interp_ok(())
}
/// Hook for performing extra operations on a memory deallocation.
#[inline(always)]
fn before_memory_deallocation(
_tcx: TyCtxtAt<'tcx>,
_machine: &mut Self,
_alloc_extra: &mut Self::AllocExtra,
_prov: (AllocId, Self::ProvenanceExtra),
_size: Size,
_align: Align,
_kind: MemoryKind<Self::MemoryKind>,
) -> InterpResult<'tcx> {
interp_ok(())
}
/// Executes a retagging operation for a single pointer.
/// Returns the possibly adjusted pointer.
#[inline]
fn retag_ptr_value(
_ecx: &mut InterpCx<'tcx, Self>,
_kind: mir::RetagKind,
val: &ImmTy<'tcx, Self::Provenance>,
) -> InterpResult<'tcx, ImmTy<'tcx, Self::Provenance>> {
interp_ok(val.clone())
}
/// Executes a retagging operation on a compound value.
/// Replaces all pointers stored in the given place.
#[inline]
fn retag_place_contents(
_ecx: &mut InterpCx<'tcx, Self>,
_kind: mir::RetagKind,
_place: &PlaceTy<'tcx, Self::Provenance>,
) -> InterpResult<'tcx> {
interp_ok(())
}
/// Called on places used for in-place function argument and return value handling.
///
/// These places need to be protected to make sure the program cannot tell whether the
/// argument/return value was actually copied or passed in-place..
fn protect_in_place_function_argument(
ecx: &mut InterpCx<'tcx, Self>,
mplace: &MPlaceTy<'tcx, Self::Provenance>,
) -> InterpResult<'tcx> {
// Without an aliasing model, all we can do is put `Uninit` into the place.
// Conveniently this also ensures that the place actually points to suitable memory.
ecx.write_uninit(mplace)
}
/// Called immediately before a new stack frame gets pushed.
fn init_frame(
ecx: &mut InterpCx<'tcx, Self>,
frame: Frame<'tcx, Self::Provenance>,
) -> InterpResult<'tcx, Frame<'tcx, Self::Provenance, Self::FrameExtra>>;
/// Borrow the current thread's stack.
fn stack<'a>(
ecx: &'a InterpCx<'tcx, Self>,
) -> &'a [Frame<'tcx, Self::Provenance, Self::FrameExtra>];
/// Mutably borrow the current thread's stack.
fn stack_mut<'a>(
ecx: &'a mut InterpCx<'tcx, Self>,
) -> &'a mut Vec<Frame<'tcx, Self::Provenance, Self::FrameExtra>>;
/// Called immediately after a stack frame got pushed and its locals got initialized.
fn after_stack_push(_ecx: &mut InterpCx<'tcx, Self>) -> InterpResult<'tcx> {
interp_ok(())
}
/// Called just before the return value is copied to the caller-provided return place.
fn before_stack_pop(
_ecx: &InterpCx<'tcx, Self>,
_frame: &Frame<'tcx, Self::Provenance, Self::FrameExtra>,
) -> InterpResult<'tcx> {
interp_ok(())
}
/// Called immediately after a stack frame got popped, but before jumping back to the caller.
/// The `locals` have already been destroyed!
#[inline(always)]
fn after_stack_pop(
_ecx: &mut InterpCx<'tcx, Self>,
_frame: Frame<'tcx, Self::Provenance, Self::FrameExtra>,
unwinding: bool,
) -> InterpResult<'tcx, ReturnAction> {
// By default, we do not support unwinding from panics
assert!(!unwinding);
interp_ok(ReturnAction::Normal)
}
/// Called immediately after an "immediate" local variable is read
/// (i.e., this is called for reads that do not end up accessing addressable memory).
#[inline(always)]
fn after_local_read(_ecx: &InterpCx<'tcx, Self>, _local: mir::Local) -> InterpResult<'tcx> {
interp_ok(())
}
/// Called immediately after an "immediate" local variable is assigned a new value
/// (i.e., this is called for writes that do not end up in memory).
/// `storage_live` indicates whether this is the initial write upon `StorageLive`.
#[inline(always)]
fn after_local_write(
_ecx: &mut InterpCx<'tcx, Self>,
_local: mir::Local,
_storage_live: bool,
) -> InterpResult<'tcx> {
interp_ok(())
}
/// Called immediately after actual memory was allocated for a local
/// but before the local's stack frame is updated to point to that memory.
#[inline(always)]
fn after_local_moved_to_memory(
_ecx: &mut InterpCx<'tcx, Self>,
_local: mir::Local,
_mplace: &MPlaceTy<'tcx, Self::Provenance>,
) -> InterpResult<'tcx> {
interp_ok(())
}
/// Evaluate the given constant. The `eval` function will do all the required evaluation,
/// but this hook has the chance to do some pre/postprocessing.
#[inline(always)]
fn eval_mir_constant<F>(
ecx: &InterpCx<'tcx, Self>,
val: mir::Const<'tcx>,
span: Span,
layout: Option<TyAndLayout<'tcx>>,
eval: F,
) -> InterpResult<'tcx, OpTy<'tcx, Self::Provenance>>
where
F: Fn(
&InterpCx<'tcx, Self>,
mir::Const<'tcx>,
Span,
Option<TyAndLayout<'tcx>>,
) -> InterpResult<'tcx, OpTy<'tcx, Self::Provenance>>,
{
eval(ecx, val, span, layout)
}
/// Returns the salt to be used for a deduplicated global alloation.
/// If the allocation is for a function, the instance is provided as well
/// (this lets Miri ensure unique addresses for some functions).
fn get_global_alloc_salt(
ecx: &InterpCx<'tcx, Self>,
instance: Option<ty::Instance<'tcx>>,
) -> usize;
fn cached_union_data_range<'e>(
_ecx: &'e mut InterpCx<'tcx, Self>,
_ty: Ty<'tcx>,
compute_range: impl FnOnce() -> RangeSet,
) -> Cow<'e, RangeSet> {
// Default to no caching.
Cow::Owned(compute_range())
}
}
/// A lot of the flexibility above is just needed for `Miri`, but all "compile-time" machines
/// (CTFE and ConstProp) use the same instance. Here, we share that code.
pub macro compile_time_machine(<$tcx: lifetime>) {
type Provenance = CtfeProvenance;
type ProvenanceExtra = bool; // the "immutable" flag
type ExtraFnVal = !;
type MemoryMap =
rustc_data_structures::fx::FxIndexMap<AllocId, (MemoryKind<Self::MemoryKind>, Allocation)>;
const GLOBAL_KIND: Option<Self::MemoryKind> = None; // no copying of globals from `tcx` to machine memory
type AllocExtra = ();
type FrameExtra = ();
type Bytes = Box<[u8]>;
#[inline(always)]
fn ignore_optional_overflow_checks(_ecx: &InterpCx<$tcx, Self>) -> bool {
false
}
#[inline(always)]
fn unwind_terminate(
_ecx: &mut InterpCx<$tcx, Self>,
_reason: mir::UnwindTerminateReason,
) -> InterpResult<$tcx> {
unreachable!("unwinding cannot happen during compile-time evaluation")
}
#[inline(always)]
fn check_fn_target_features(
_ecx: &InterpCx<$tcx, Self>,
_instance: ty::Instance<$tcx>,
) -> InterpResult<$tcx> {
// For now we don't do any checking here. We can't use `tcx.sess` because that can differ
// between crates, and we need to ensure that const-eval always behaves the same.
interp_ok(())
}
#[inline(always)]
fn call_extra_fn(
_ecx: &mut InterpCx<$tcx, Self>,
fn_val: !,
_abi: ExternAbi,
_args: &[FnArg<$tcx>],
_destination: &MPlaceTy<$tcx, Self::Provenance>,
_target: Option<mir::BasicBlock>,
_unwind: mir::UnwindAction,
) -> InterpResult<$tcx> {
match fn_val {}
}
#[inline(always)]
fn ub_checks(_ecx: &InterpCx<$tcx, Self>) -> InterpResult<$tcx, bool> {
// We can't look at `tcx.sess` here as that can differ across crates, which can lead to
// unsound differences in evaluating the same constant at different instantiation sites.
interp_ok(true)
}
#[inline(always)]
fn adjust_global_allocation<'b>(
_ecx: &InterpCx<$tcx, Self>,
_id: AllocId,
alloc: &'b Allocation,
) -> InterpResult<$tcx, Cow<'b, Allocation<Self::Provenance>>> {
// Overwrite default implementation: no need to adjust anything.
interp_ok(Cow::Borrowed(alloc))
}
fn init_alloc_extra(
_ecx: &InterpCx<$tcx, Self>,
_id: AllocId,
_kind: MemoryKind<Self::MemoryKind>,
_size: Size,
_align: Align,
) -> InterpResult<$tcx, Self::AllocExtra> {
interp_ok(())
}
fn extern_static_pointer(
ecx: &InterpCx<$tcx, Self>,
def_id: DefId,
) -> InterpResult<$tcx, Pointer> {
// Use the `AllocId` associated with the `DefId`. Any actual *access* will fail.
interp_ok(Pointer::new(ecx.tcx.reserve_and_set_static_alloc(def_id).into(), Size::ZERO))
}
#[inline(always)]
fn adjust_alloc_root_pointer(
_ecx: &InterpCx<$tcx, Self>,
ptr: Pointer<CtfeProvenance>,
_kind: Option<MemoryKind<Self::MemoryKind>>,
) -> InterpResult<$tcx, Pointer<CtfeProvenance>> {
interp_ok(ptr)
}
#[inline(always)]
fn ptr_from_addr_cast(
_ecx: &InterpCx<$tcx, Self>,
addr: u64,
) -> InterpResult<$tcx, Pointer<Option<CtfeProvenance>>> {
// Allow these casts, but make the pointer not dereferenceable.
// (I.e., they behave like transmutation.)
// This is correct because no pointers can ever be exposed in compile-time evaluation.
interp_ok(Pointer::from_addr_invalid(addr))
}
#[inline(always)]
fn ptr_get_alloc(
_ecx: &InterpCx<$tcx, Self>,
ptr: Pointer<CtfeProvenance>,
_size: i64,
) -> Option<(AllocId, Size, Self::ProvenanceExtra)> {
// We know `offset` is relative to the allocation, so we can use `into_parts`.
let (prov, offset) = ptr.into_parts();
Some((prov.alloc_id(), offset, prov.immutable()))
}
#[inline(always)]
fn get_global_alloc_salt(
_ecx: &InterpCx<$tcx, Self>,
_instance: Option<ty::Instance<$tcx>>,
) -> usize {
CTFE_ALLOC_SALT
}
}