miri/borrow_tracker/stacked_borrows/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
//! Implements "Stacked Borrows". See <https://github.com/rust-lang/unsafe-code-guidelines/blob/master/wip/stacked-borrows.md>
//! for further information.
pub mod diagnostics;
mod item;
mod stack;
use std::cell::RefCell;
use std::fmt::Write;
use std::{cmp, mem};
use rustc_abi::{BackendRepr, Size};
use rustc_data_structures::fx::FxHashSet;
use rustc_middle::mir::{Mutability, RetagKind};
use rustc_middle::ty::layout::HasTypingEnv;
use rustc_middle::ty::{self, Ty};
use self::diagnostics::{RetagCause, RetagInfo};
pub use self::item::{Item, Permission};
pub use self::stack::Stack;
use crate::borrow_tracker::stacked_borrows::diagnostics::{
AllocHistory, DiagnosticCx, DiagnosticCxBuilder,
};
use crate::borrow_tracker::{GlobalStateInner, ProtectorKind};
use crate::concurrency::data_race::{NaReadType, NaWriteType};
use crate::*;
pub type AllocState = Stacks;
/// Extra per-allocation state.
#[derive(Clone, Debug)]
pub struct Stacks {
// Even reading memory can have effects on the stack, so we need a `RefCell` here.
stacks: RangeMap<Stack>,
/// Stores past operations on this allocation
history: AllocHistory,
/// The set of tags that have been exposed inside this allocation.
exposed_tags: FxHashSet<BorTag>,
}
/// Indicates which permissions to grant to the retagged pointer.
#[derive(Clone, Debug)]
enum NewPermission {
Uniform {
perm: Permission,
access: Option<AccessKind>,
protector: Option<ProtectorKind>,
},
FreezeSensitive {
freeze_perm: Permission,
freeze_access: Option<AccessKind>,
freeze_protector: Option<ProtectorKind>,
nonfreeze_perm: Permission,
nonfreeze_access: Option<AccessKind>,
// nonfreeze_protector must always be None
},
}
impl NewPermission {
/// A key function: determine the permissions to grant at a retag for the given kind of
/// reference/pointer.
fn from_ref_ty<'tcx>(ty: Ty<'tcx>, kind: RetagKind, cx: &crate::MiriInterpCx<'tcx>) -> Self {
let protector = (kind == RetagKind::FnEntry).then_some(ProtectorKind::StrongProtector);
match ty.kind() {
ty::Ref(_, pointee, Mutability::Mut) => {
if kind == RetagKind::TwoPhase {
// We mostly just give up on 2phase-borrows, and treat these exactly like raw pointers.
assert!(protector.is_none()); // RetagKind can't be both FnEntry and TwoPhase.
NewPermission::Uniform {
perm: Permission::SharedReadWrite,
access: None,
protector: None,
}
} else if pointee.is_unpin(*cx.tcx, cx.typing_env()) {
// A regular full mutable reference. On `FnEntry` this is `noalias` and `dereferenceable`.
NewPermission::Uniform {
perm: Permission::Unique,
access: Some(AccessKind::Write),
protector,
}
} else {
// `!Unpin` dereferences do not get `noalias` nor `dereferenceable`.
NewPermission::Uniform {
perm: Permission::SharedReadWrite,
access: None,
protector: None,
}
}
}
ty::RawPtr(_, Mutability::Mut) => {
assert!(protector.is_none()); // RetagKind can't be both FnEntry and Raw.
// Mutable raw pointer. No access, not protected.
NewPermission::Uniform {
perm: Permission::SharedReadWrite,
access: None,
protector: None,
}
}
ty::Ref(_, _pointee, Mutability::Not) => {
// Shared references. If frozen, these get `noalias` and `dereferenceable`; otherwise neither.
NewPermission::FreezeSensitive {
freeze_perm: Permission::SharedReadOnly,
freeze_access: Some(AccessKind::Read),
freeze_protector: protector,
nonfreeze_perm: Permission::SharedReadWrite,
// Inside UnsafeCell, this does *not* count as an access, as there
// might actually be mutable references further up the stack that
// we have to keep alive.
nonfreeze_access: None,
// We do not protect inside UnsafeCell.
// This fixes https://github.com/rust-lang/rust/issues/55005.
}
}
ty::RawPtr(_, Mutability::Not) => {
assert!(protector.is_none()); // RetagKind can't be both FnEntry and Raw.
// `*const T`, when freshly created, are read-only in the frozen part.
NewPermission::FreezeSensitive {
freeze_perm: Permission::SharedReadOnly,
freeze_access: Some(AccessKind::Read),
freeze_protector: None,
nonfreeze_perm: Permission::SharedReadWrite,
nonfreeze_access: None,
}
}
_ => unreachable!(),
}
}
fn from_box_ty<'tcx>(ty: Ty<'tcx>, kind: RetagKind, cx: &crate::MiriInterpCx<'tcx>) -> Self {
// `ty` is not the `Box` but the field of the Box with this pointer (due to allocator handling).
let pointee = ty.builtin_deref(true).unwrap();
if pointee.is_unpin(*cx.tcx, cx.typing_env()) {
// A regular box. On `FnEntry` this is `noalias`, but not `dereferenceable` (hence only
// a weak protector).
NewPermission::Uniform {
perm: Permission::Unique,
access: Some(AccessKind::Write),
protector: (kind == RetagKind::FnEntry).then_some(ProtectorKind::WeakProtector),
}
} else {
// `!Unpin` boxes do not get `noalias` nor `dereferenceable`.
NewPermission::Uniform {
perm: Permission::SharedReadWrite,
access: None,
protector: None,
}
}
}
fn protector(&self) -> Option<ProtectorKind> {
match self {
NewPermission::Uniform { protector, .. } => *protector,
NewPermission::FreezeSensitive { freeze_protector, .. } => *freeze_protector,
}
}
}
// # Stacked Borrows Core Begin
/// We need to make at least the following things true:
///
/// U1: After creating a `Uniq`, it is at the top.
/// U2: If the top is `Uniq`, accesses must be through that `Uniq` or remove it.
/// U3: If an access happens with a `Uniq`, it requires the `Uniq` to be in the stack.
///
/// F1: After creating a `&`, the parts outside `UnsafeCell` have our `SharedReadOnly` on top.
/// F2: If a write access happens, it pops the `SharedReadOnly`. This has three pieces:
/// F2a: If a write happens granted by an item below our `SharedReadOnly`, the `SharedReadOnly`
/// gets popped.
/// F2b: No `SharedReadWrite` or `Unique` will ever be added on top of our `SharedReadOnly`.
/// F3: If an access happens with an `&` outside `UnsafeCell`,
/// it requires the `SharedReadOnly` to still be in the stack.
///
/// Core relation on `Permission` to define which accesses are allowed
impl Permission {
/// This defines for a given permission, whether it permits the given kind of access.
fn grants(self, access: AccessKind) -> bool {
// Disabled grants nothing. Otherwise, all items grant read access, and except for SharedReadOnly they grant write access.
self != Permission::Disabled
&& (access == AccessKind::Read || self != Permission::SharedReadOnly)
}
}
/// Determines whether an item was invalidated by a conflicting access, or by deallocation.
#[derive(Copy, Clone, Debug)]
enum ItemInvalidationCause {
Conflict,
Dealloc,
}
/// Core per-location operations: access, dealloc, reborrow.
impl<'tcx> Stack {
/// Find the first write-incompatible item above the given one --
/// i.e, find the height to which the stack will be truncated when writing to `granting`.
fn find_first_write_incompatible(&self, granting: usize) -> usize {
let perm = self.get(granting).unwrap().perm();
match perm {
Permission::SharedReadOnly => bug!("Cannot use SharedReadOnly for writing"),
Permission::Disabled => bug!("Cannot use Disabled for anything"),
Permission::Unique => {
// On a write, everything above us is incompatible.
granting + 1
}
Permission::SharedReadWrite => {
// The SharedReadWrite *just* above us are compatible, to skip those.
let mut idx = granting + 1;
while let Some(item) = self.get(idx) {
if item.perm() == Permission::SharedReadWrite {
// Go on.
idx += 1;
} else {
// Found first incompatible!
break;
}
}
idx
}
}
}
/// The given item was invalidated -- check its protectors for whether that will cause UB.
fn item_invalidated(
item: &Item,
global: &GlobalStateInner,
dcx: &DiagnosticCx<'_, '_, 'tcx>,
cause: ItemInvalidationCause,
) -> InterpResult<'tcx> {
if !global.tracked_pointer_tags.is_empty() {
dcx.check_tracked_tag_popped(item, global);
}
if !item.protected() {
return interp_ok(());
}
// We store tags twice, once in global.protected_tags and once in each call frame.
// We do this because consulting a single global set in this function is faster
// than attempting to search all call frames in the program for the `FrameExtra`
// (if any) which is protecting the popped tag.
//
// This duplication trades off making `end_call` slower to make this function faster. This
// trade-off is profitable in practice for a combination of two reasons.
// 1. A single protected tag can (and does in some programs) protect thousands of `Item`s.
// Therefore, adding overhead in function call/return is profitable even if it only
// saves a little work in this function.
// 2. Most frames protect only one or two tags. So this duplicative global turns a search
// which ends up about linear in the number of protected tags in the program into a
// constant time check (and a slow linear, because the tags in the frames aren't contiguous).
if let Some(&protector_kind) = global.protected_tags.get(&item.tag()) {
// The only way this is okay is if the protector is weak and we are deallocating with
// the right pointer.
let allowed = matches!(cause, ItemInvalidationCause::Dealloc)
&& matches!(protector_kind, ProtectorKind::WeakProtector);
if !allowed {
return Err(dcx.protector_error(item, protector_kind)).into();
}
}
interp_ok(())
}
/// Test if a memory `access` using pointer tagged `tag` is granted.
/// If yes, return the index of the item that granted it.
/// `range` refers the entire operation, and `offset` refers to the specific offset into the
/// allocation that we are currently checking.
fn access(
&mut self,
access: AccessKind,
tag: ProvenanceExtra,
global: &GlobalStateInner,
dcx: &mut DiagnosticCx<'_, '_, 'tcx>,
exposed_tags: &FxHashSet<BorTag>,
) -> InterpResult<'tcx> {
// Two main steps: Find granting item, remove incompatible items above.
// Step 1: Find granting item.
let granting_idx =
self.find_granting(access, tag, exposed_tags).map_err(|()| dcx.access_error(self))?;
// Step 2: Remove incompatible items above them. Make sure we do not remove protected
// items. Behavior differs for reads and writes.
// In case of wildcards/unknown matches, we remove everything that is *definitely* gone.
if access == AccessKind::Write {
// Remove everything above the write-compatible items, like a proper stack. This makes sure read-only and unique
// pointers become invalid on write accesses (ensures F2a, and ensures U2 for write accesses).
let first_incompatible_idx = if let Some(granting_idx) = granting_idx {
// The granting_idx *might* be approximate, but any lower idx would remove more
// things. Even if this is a Unique and the lower idx is an SRW (which removes
// less), there is an SRW group boundary here so strictly more would get removed.
self.find_first_write_incompatible(granting_idx)
} else {
// We are writing to something in the unknown part.
// There is a SRW group boundary between the unknown and the known, so everything is incompatible.
0
};
self.pop_items_after(first_incompatible_idx, |item| {
Stack::item_invalidated(&item, global, dcx, ItemInvalidationCause::Conflict)?;
dcx.log_invalidation(item.tag());
interp_ok(())
})?;
} else {
// On a read, *disable* all `Unique` above the granting item. This ensures U2 for read accesses.
// The reason this is not following the stack discipline (by removing the first Unique and
// everything on top of it) is that in `let raw = &mut *x as *mut _; let _val = *x;`, the second statement
// would pop the `Unique` from the reborrow of the first statement, and subsequently also pop the
// `SharedReadWrite` for `raw`.
// This pattern occurs a lot in the standard library: create a raw pointer, then also create a shared
// reference and use that.
// We *disable* instead of removing `Unique` to avoid "connecting" two neighbouring blocks of SRWs.
let first_incompatible_idx = if let Some(granting_idx) = granting_idx {
// The granting_idx *might* be approximate, but any lower idx would disable more things.
granting_idx + 1
} else {
// We are reading from something in the unknown part. That means *all* `Unique` we know about are dead now.
0
};
self.disable_uniques_starting_at(first_incompatible_idx, |item| {
Stack::item_invalidated(&item, global, dcx, ItemInvalidationCause::Conflict)?;
dcx.log_invalidation(item.tag());
interp_ok(())
})?;
}
// If this was an approximate action, we now collapse everything into an unknown.
if granting_idx.is_none() || matches!(tag, ProvenanceExtra::Wildcard) {
// Compute the upper bound of the items that remain.
// (This is why we did all the work above: to reduce the items we have to consider here.)
let mut max = BorTag::one();
for i in 0..self.len() {
let item = self.get(i).unwrap();
// Skip disabled items, they cannot be matched anyway.
if !matches!(item.perm(), Permission::Disabled) {
// We are looking for a strict upper bound, so add 1 to this tag.
max = cmp::max(item.tag().succ().unwrap(), max);
}
}
if let Some(unk) = self.unknown_bottom() {
max = cmp::max(unk, max);
}
// Use `max` as new strict upper bound for everything.
trace!(
"access: forgetting stack to upper bound {max} due to wildcard or unknown access",
max = max.get(),
);
self.set_unknown_bottom(max);
}
// Done.
interp_ok(())
}
/// Deallocate a location: Like a write access, but also there must be no
/// active protectors at all because we will remove all items.
fn dealloc(
&mut self,
tag: ProvenanceExtra,
global: &GlobalStateInner,
dcx: &mut DiagnosticCx<'_, '_, 'tcx>,
exposed_tags: &FxHashSet<BorTag>,
) -> InterpResult<'tcx> {
// Step 1: Make a write access.
// As part of this we do regular protector checking, i.e. even weakly protected items cause UB when popped.
self.access(AccessKind::Write, tag, global, dcx, exposed_tags)?;
// Step 2: Pretend we remove the remaining items, checking if any are strongly protected.
for idx in (0..self.len()).rev() {
let item = self.get(idx).unwrap();
Stack::item_invalidated(&item, global, dcx, ItemInvalidationCause::Dealloc)?;
}
interp_ok(())
}
/// Derive a new pointer from one with the given tag.
///
/// `access` indicates which kind of memory access this retag itself should correspond to.
fn grant(
&mut self,
derived_from: ProvenanceExtra,
new: Item,
access: Option<AccessKind>,
global: &GlobalStateInner,
dcx: &mut DiagnosticCx<'_, '_, 'tcx>,
exposed_tags: &FxHashSet<BorTag>,
) -> InterpResult<'tcx> {
dcx.start_grant(new.perm());
// Compute where to put the new item.
// Either way, we ensure that we insert the new item in a way such that between
// `derived_from` and the new one, there are only items *compatible with* `derived_from`.
let new_idx = if let Some(access) = access {
// Simple case: We are just a regular memory access, and then push our thing on top,
// like a regular stack.
// This ensures F2b for `Unique`, by removing offending `SharedReadOnly`.
self.access(access, derived_from, global, dcx, exposed_tags)?;
// We insert "as far up as possible": We know only compatible items are remaining
// on top of `derived_from`, and we want the new item at the top so that we
// get the strongest possible guarantees.
// This ensures U1 and F1.
self.len()
} else {
// The tricky case: creating a new SRW permission without actually being an access.
assert!(new.perm() == Permission::SharedReadWrite);
// First we figure out which item grants our parent (`derived_from`) this kind of access.
// We use that to determine where to put the new item.
let granting_idx = self
.find_granting(AccessKind::Write, derived_from, exposed_tags)
.map_err(|()| dcx.grant_error(self))?;
let (Some(granting_idx), ProvenanceExtra::Concrete(_)) = (granting_idx, derived_from)
else {
// The parent is a wildcard pointer or matched the unknown bottom.
// This is approximate. Nobody knows what happened, so forget everything.
// The new thing is SRW anyway, so we cannot push it "on top of the unknown part"
// (for all we know, it might join an SRW group inside the unknown).
trace!(
"reborrow: forgetting stack entirely due to SharedReadWrite reborrow from wildcard or unknown"
);
self.set_unknown_bottom(global.next_ptr_tag);
return interp_ok(());
};
// SharedReadWrite can coexist with "existing loans", meaning they don't act like a write
// access. Instead of popping the stack, we insert the item at the place the stack would
// be popped to (i.e., we insert it above all the write-compatible items).
// This ensures F2b by adding the new item below any potentially existing `SharedReadOnly`.
self.find_first_write_incompatible(granting_idx)
};
// Put the new item there.
trace!("reborrow: adding item {:?}", new);
self.insert(new_idx, new);
interp_ok(())
}
}
// # Stacked Borrows Core End
/// Integration with the BorTag garbage collector
impl Stacks {
pub fn remove_unreachable_tags(&mut self, live_tags: &FxHashSet<BorTag>) {
for (_stack_range, stack) in self.stacks.iter_mut_all() {
stack.retain(live_tags);
}
self.history.retain(live_tags);
}
}
impl VisitProvenance for Stacks {
fn visit_provenance(&self, visit: &mut VisitWith<'_>) {
for tag in self.exposed_tags.iter().copied() {
visit(None, Some(tag));
}
}
}
/// Map per-stack operations to higher-level per-location-range operations.
impl<'tcx> Stacks {
/// Creates a new stack with an initial tag. For diagnostic purposes, we also need to know
/// the [`AllocId`] of the allocation this is associated with.
fn new(
size: Size,
perm: Permission,
tag: BorTag,
id: AllocId,
machine: &MiriMachine<'_>,
) -> Self {
let item = Item::new(tag, perm, false);
let stack = Stack::new(item);
Stacks {
stacks: RangeMap::new(size, stack),
history: AllocHistory::new(id, item, machine),
exposed_tags: FxHashSet::default(),
}
}
/// Call `f` on every stack in the range.
fn for_each(
&mut self,
range: AllocRange,
mut dcx_builder: DiagnosticCxBuilder<'_, 'tcx>,
mut f: impl FnMut(
&mut Stack,
&mut DiagnosticCx<'_, '_, 'tcx>,
&mut FxHashSet<BorTag>,
) -> InterpResult<'tcx>,
) -> InterpResult<'tcx> {
for (stack_range, stack) in self.stacks.iter_mut(range.start, range.size) {
let mut dcx = dcx_builder.build(&mut self.history, Size::from_bytes(stack_range.start));
f(stack, &mut dcx, &mut self.exposed_tags)?;
dcx_builder = dcx.unbuild();
}
interp_ok(())
}
}
/// Glue code to connect with Miri Machine Hooks
impl Stacks {
pub fn new_allocation(
id: AllocId,
size: Size,
state: &mut GlobalStateInner,
kind: MemoryKind,
machine: &MiriMachine<'_>,
) -> Self {
let (base_tag, perm) = match kind {
// New unique borrow. This tag is not accessible by the program,
// so it will only ever be used when using the local directly (i.e.,
// not through a pointer). That is, whenever we directly write to a local, this will pop
// everything else off the stack, invalidating all previous pointers,
// and in particular, *all* raw pointers.
MemoryKind::Stack => (state.root_ptr_tag(id, machine), Permission::Unique),
// Everything else is shared by default.
_ => (state.root_ptr_tag(id, machine), Permission::SharedReadWrite),
};
Stacks::new(size, perm, base_tag, id, machine)
}
#[inline(always)]
pub fn before_memory_read<'ecx, 'tcx>(
&mut self,
alloc_id: AllocId,
tag: ProvenanceExtra,
range: AllocRange,
machine: &'ecx MiriMachine<'tcx>,
) -> InterpResult<'tcx>
where
'tcx: 'ecx,
{
trace!(
"read access with tag {:?}: {:?}, size {}",
tag,
interpret::Pointer::new(alloc_id, range.start),
range.size.bytes()
);
let dcx = DiagnosticCxBuilder::read(machine, tag, range);
let state = machine.borrow_tracker.as_ref().unwrap().borrow();
self.for_each(range, dcx, |stack, dcx, exposed_tags| {
stack.access(AccessKind::Read, tag, &state, dcx, exposed_tags)
})
}
#[inline(always)]
pub fn before_memory_write<'tcx>(
&mut self,
alloc_id: AllocId,
tag: ProvenanceExtra,
range: AllocRange,
machine: &MiriMachine<'tcx>,
) -> InterpResult<'tcx> {
trace!(
"write access with tag {:?}: {:?}, size {}",
tag,
interpret::Pointer::new(alloc_id, range.start),
range.size.bytes()
);
let dcx = DiagnosticCxBuilder::write(machine, tag, range);
let state = machine.borrow_tracker.as_ref().unwrap().borrow();
self.for_each(range, dcx, |stack, dcx, exposed_tags| {
stack.access(AccessKind::Write, tag, &state, dcx, exposed_tags)
})
}
#[inline(always)]
pub fn before_memory_deallocation<'tcx>(
&mut self,
alloc_id: AllocId,
tag: ProvenanceExtra,
size: Size,
machine: &MiriMachine<'tcx>,
) -> InterpResult<'tcx> {
trace!("deallocation with tag {:?}: {:?}, size {}", tag, alloc_id, size.bytes());
let dcx = DiagnosticCxBuilder::dealloc(machine, tag);
let state = machine.borrow_tracker.as_ref().unwrap().borrow();
self.for_each(alloc_range(Size::ZERO, size), dcx, |stack, dcx, exposed_tags| {
stack.dealloc(tag, &state, dcx, exposed_tags)
})?;
interp_ok(())
}
}
/// Retagging/reborrowing. There is some policy in here, such as which permissions
/// to grant for which references, and when to add protectors.
impl<'tcx, 'ecx> EvalContextPrivExt<'tcx, 'ecx> for crate::MiriInterpCx<'tcx> {}
trait EvalContextPrivExt<'tcx, 'ecx>: crate::MiriInterpCxExt<'tcx> {
/// Returns the provenance that should be used henceforth.
fn sb_reborrow(
&mut self,
place: &MPlaceTy<'tcx>,
size: Size,
new_perm: NewPermission,
new_tag: BorTag,
retag_info: RetagInfo, // diagnostics info about this retag
) -> InterpResult<'tcx, Option<Provenance>> {
let this = self.eval_context_mut();
// Ensure we bail out if the pointer goes out-of-bounds (see miri#1050).
this.check_ptr_access(place.ptr(), size, CheckInAllocMsg::InboundsTest)?;
// It is crucial that this gets called on all code paths, to ensure we track tag creation.
let log_creation = |this: &MiriInterpCx<'tcx>,
loc: Option<(AllocId, Size, ProvenanceExtra)>| // alloc_id, base_offset, orig_tag
-> InterpResult<'tcx> {
let global = this.machine.borrow_tracker.as_ref().unwrap().borrow();
let ty = place.layout.ty;
if global.tracked_pointer_tags.contains(&new_tag) {
let mut kind_str = String::new();
match new_perm {
NewPermission::Uniform { perm, .. } =>
write!(kind_str, "{perm:?} permission").unwrap(),
NewPermission::FreezeSensitive { freeze_perm, .. } if ty.is_freeze(*this.tcx, this.typing_env()) =>
write!(kind_str, "{freeze_perm:?} permission").unwrap(),
NewPermission::FreezeSensitive { freeze_perm, nonfreeze_perm, .. } =>
write!(kind_str, "{freeze_perm:?}/{nonfreeze_perm:?} permission for frozen/non-frozen parts").unwrap(),
}
write!(kind_str, " (pointee type {ty})").unwrap();
this.emit_diagnostic(NonHaltingDiagnostic::CreatedPointerTag(
new_tag.inner(),
Some(kind_str),
loc.map(|(alloc_id, base_offset, orig_tag)| (alloc_id, alloc_range(base_offset, size), orig_tag)),
));
}
drop(global); // don't hold that reference any longer than we have to
let Some((alloc_id, base_offset, orig_tag)) = loc else {
return interp_ok(())
};
let alloc_kind = this.get_alloc_info(alloc_id).kind;
match alloc_kind {
AllocKind::LiveData => {
// This should have alloc_extra data, but `get_alloc_extra` can still fail
// if converting this alloc_id from a global to a local one
// uncovers a non-supported `extern static`.
let extra = this.get_alloc_extra(alloc_id)?;
let mut stacked_borrows = extra
.borrow_tracker_sb()
.borrow_mut();
// Note that we create a *second* `DiagnosticCxBuilder` below for the actual retag.
// FIXME: can this be done cleaner?
let dcx = DiagnosticCxBuilder::retag(
&this.machine,
retag_info,
new_tag,
orig_tag,
alloc_range(base_offset, size),
);
let mut dcx = dcx.build(&mut stacked_borrows.history, base_offset);
dcx.log_creation();
if new_perm.protector().is_some() {
dcx.log_protector();
}
},
AllocKind::Function | AllocKind::VTable | AllocKind::Dead => {
// No stacked borrows on these allocations.
}
}
interp_ok(())
};
if size == Size::ZERO {
trace!(
"reborrow of size 0: reference {:?} derived from {:?} (pointee {})",
new_tag,
place.ptr(),
place.layout.ty,
);
// Don't update any stacks for a zero-sized access; borrow stacks are per-byte and this
// touches no bytes so there is no stack to put this tag in.
// However, if the pointer for this operation points at a real allocation we still
// record where it was created so that we can issue a helpful diagnostic if there is an
// attempt to use it for a non-zero-sized access.
// Dangling slices are a common case here; it's valid to get their length but with raw
// pointer tagging for example all calls to get_unchecked on them are invalid.
if let Ok((alloc_id, base_offset, orig_tag)) = this.ptr_try_get_alloc_id(place.ptr(), 0)
{
log_creation(this, Some((alloc_id, base_offset, orig_tag)))?;
// Still give it the new provenance, it got retagged after all.
return interp_ok(Some(Provenance::Concrete { alloc_id, tag: new_tag }));
} else {
// This pointer doesn't come with an AllocId. :shrug:
log_creation(this, None)?;
// Provenance unchanged.
return interp_ok(place.ptr().provenance);
}
}
let (alloc_id, base_offset, orig_tag) = this.ptr_get_alloc_id(place.ptr(), 0)?;
log_creation(this, Some((alloc_id, base_offset, orig_tag)))?;
trace!(
"reborrow: reference {:?} derived from {:?} (pointee {}): {:?}, size {}",
new_tag,
orig_tag,
place.layout.ty,
interpret::Pointer::new(alloc_id, base_offset),
size.bytes()
);
if let Some(protect) = new_perm.protector() {
// See comment in `Stack::item_invalidated` for why we store the tag twice.
this.frame_mut()
.extra
.borrow_tracker
.as_mut()
.unwrap()
.protected_tags
.push((alloc_id, new_tag));
this.machine
.borrow_tracker
.as_mut()
.unwrap()
.get_mut()
.protected_tags
.insert(new_tag, protect);
}
// Update the stacks, according to the new permission information we are given.
match new_perm {
NewPermission::Uniform { perm, access, protector } => {
assert!(perm != Permission::SharedReadOnly);
// Here we can avoid `borrow()` calls because we have mutable references.
// Note that this asserts that the allocation is mutable -- but since we are creating a
// mutable pointer, that seems reasonable.
let (alloc_extra, machine) = this.get_alloc_extra_mut(alloc_id)?;
let stacked_borrows = alloc_extra.borrow_tracker_sb_mut().get_mut();
let item = Item::new(new_tag, perm, protector.is_some());
let range = alloc_range(base_offset, size);
let global = machine.borrow_tracker.as_ref().unwrap().borrow();
let dcx = DiagnosticCxBuilder::retag(
machine,
retag_info,
new_tag,
orig_tag,
alloc_range(base_offset, size),
);
stacked_borrows.for_each(range, dcx, |stack, dcx, exposed_tags| {
stack.grant(orig_tag, item, access, &global, dcx, exposed_tags)
})?;
drop(global);
if let Some(access) = access {
assert_eq!(access, AccessKind::Write);
// Make sure the data race model also knows about this.
if let Some(data_race) = alloc_extra.data_race.as_mut() {
data_race.write(
alloc_id,
range,
NaWriteType::Retag,
Some(place.layout.ty),
machine,
)?;
}
}
}
NewPermission::FreezeSensitive {
freeze_perm,
freeze_access,
freeze_protector,
nonfreeze_perm,
nonfreeze_access,
} => {
// The permission is not uniform across the entire range!
// We need a frozen-sensitive reborrow.
// We have to use shared references to alloc/memory_extra here since
// `visit_freeze_sensitive` needs to access the global state.
let alloc_extra = this.get_alloc_extra(alloc_id)?;
let mut stacked_borrows = alloc_extra.borrow_tracker_sb().borrow_mut();
this.visit_freeze_sensitive(place, size, |mut range, frozen| {
// Adjust range.
range.start += base_offset;
// We are only ever `SharedReadOnly` inside the frozen bits.
let (perm, access, protector) = if frozen {
(freeze_perm, freeze_access, freeze_protector)
} else {
(nonfreeze_perm, nonfreeze_access, None)
};
let item = Item::new(new_tag, perm, protector.is_some());
let global = this.machine.borrow_tracker.as_ref().unwrap().borrow();
let dcx = DiagnosticCxBuilder::retag(
&this.machine,
retag_info,
new_tag,
orig_tag,
alloc_range(base_offset, size),
);
stacked_borrows.for_each(range, dcx, |stack, dcx, exposed_tags| {
stack.grant(orig_tag, item, access, &global, dcx, exposed_tags)
})?;
drop(global);
if let Some(access) = access {
assert_eq!(access, AccessKind::Read);
// Make sure the data race model also knows about this.
if let Some(data_race) = alloc_extra.data_race.as_ref() {
data_race.read(
alloc_id,
range,
NaReadType::Retag,
Some(place.layout.ty),
&this.machine,
)?;
}
}
interp_ok(())
})?;
}
}
interp_ok(Some(Provenance::Concrete { alloc_id, tag: new_tag }))
}
fn sb_retag_place(
&mut self,
place: &MPlaceTy<'tcx>,
new_perm: NewPermission,
info: RetagInfo, // diagnostics info about this retag
) -> InterpResult<'tcx, MPlaceTy<'tcx>> {
let this = self.eval_context_mut();
let size = this.size_and_align_of_mplace(place)?.map(|(size, _)| size);
// FIXME: If we cannot determine the size (because the unsized tail is an `extern type`),
// bail out -- we cannot reasonably figure out which memory range to reborrow.
// See https://github.com/rust-lang/unsafe-code-guidelines/issues/276.
let size = match size {
Some(size) => size,
None => {
// The first time this happens, show a warning.
thread_local! { static WARNING_SHOWN: RefCell<bool> = const { RefCell::new(false) }; }
WARNING_SHOWN.with_borrow_mut(|shown| {
if *shown {
return;
}
// Not yet shown. Show it!
*shown = true;
this.emit_diagnostic(NonHaltingDiagnostic::ExternTypeReborrow);
});
return interp_ok(place.clone());
}
};
// Compute new borrow.
let new_tag = this.machine.borrow_tracker.as_mut().unwrap().get_mut().new_ptr();
// Reborrow.
let new_prov = this.sb_reborrow(place, size, new_perm, new_tag, info)?;
// Adjust place.
// (If the closure gets called, that means the old provenance was `Some`, and hence the new
// one must also be `Some`.)
interp_ok(place.clone().map_provenance(|_| new_prov.unwrap()))
}
/// Retags an individual pointer, returning the retagged version.
/// `kind` indicates what kind of reference is being created.
fn sb_retag_reference(
&mut self,
val: &ImmTy<'tcx>,
new_perm: NewPermission,
info: RetagInfo, // diagnostics info about this retag
) -> InterpResult<'tcx, ImmTy<'tcx>> {
let this = self.eval_context_mut();
let place = this.ref_to_mplace(val)?;
let new_place = this.sb_retag_place(&place, new_perm, info)?;
interp_ok(ImmTy::from_immediate(new_place.to_ref(this), val.layout))
}
}
impl<'tcx> EvalContextExt<'tcx> for crate::MiriInterpCx<'tcx> {}
pub trait EvalContextExt<'tcx>: crate::MiriInterpCxExt<'tcx> {
fn sb_retag_ptr_value(
&mut self,
kind: RetagKind,
val: &ImmTy<'tcx>,
) -> InterpResult<'tcx, ImmTy<'tcx>> {
let this = self.eval_context_mut();
let new_perm = NewPermission::from_ref_ty(val.layout.ty, kind, this);
let cause = match kind {
RetagKind::TwoPhase { .. } => RetagCause::TwoPhase,
RetagKind::FnEntry => unreachable!(),
RetagKind::Raw | RetagKind::Default => RetagCause::Normal,
};
this.sb_retag_reference(val, new_perm, RetagInfo { cause, in_field: false })
}
fn sb_retag_place_contents(
&mut self,
kind: RetagKind,
place: &PlaceTy<'tcx>,
) -> InterpResult<'tcx> {
let this = self.eval_context_mut();
let retag_fields = this.machine.borrow_tracker.as_mut().unwrap().get_mut().retag_fields;
let retag_cause = match kind {
RetagKind::TwoPhase { .. } => unreachable!(), // can only happen in `retag_ptr_value`
RetagKind::FnEntry => RetagCause::FnEntry,
RetagKind::Default | RetagKind::Raw => RetagCause::Normal,
};
let mut visitor =
RetagVisitor { ecx: this, kind, retag_cause, retag_fields, in_field: false };
return visitor.visit_value(place);
// The actual visitor.
struct RetagVisitor<'ecx, 'tcx> {
ecx: &'ecx mut MiriInterpCx<'tcx>,
kind: RetagKind,
retag_cause: RetagCause,
retag_fields: RetagFields,
in_field: bool,
}
impl<'ecx, 'tcx> RetagVisitor<'ecx, 'tcx> {
#[inline(always)] // yes this helps in our benchmarks
fn retag_ptr_inplace(
&mut self,
place: &PlaceTy<'tcx>,
new_perm: NewPermission,
) -> InterpResult<'tcx> {
let val = self.ecx.read_immediate(&self.ecx.place_to_op(place)?)?;
let val = self.ecx.sb_retag_reference(&val, new_perm, RetagInfo {
cause: self.retag_cause,
in_field: self.in_field,
})?;
self.ecx.write_immediate(*val, place)?;
interp_ok(())
}
}
impl<'ecx, 'tcx> ValueVisitor<'tcx, MiriMachine<'tcx>> for RetagVisitor<'ecx, 'tcx> {
type V = PlaceTy<'tcx>;
#[inline(always)]
fn ecx(&self) -> &MiriInterpCx<'tcx> {
self.ecx
}
fn visit_box(&mut self, box_ty: Ty<'tcx>, place: &PlaceTy<'tcx>) -> InterpResult<'tcx> {
// Only boxes for the global allocator get any special treatment.
if box_ty.is_box_global(*self.ecx.tcx) {
// Boxes get a weak protectors, since they may be deallocated.
let new_perm = NewPermission::from_box_ty(place.layout.ty, self.kind, self.ecx);
self.retag_ptr_inplace(place, new_perm)?;
}
interp_ok(())
}
fn visit_value(&mut self, place: &PlaceTy<'tcx>) -> InterpResult<'tcx> {
// If this place is smaller than a pointer, we know that it can't contain any
// pointers we need to retag, so we can stop recursion early.
// This optimization is crucial for ZSTs, because they can contain way more fields
// than we can ever visit.
if place.layout.is_sized() && place.layout.size < self.ecx.pointer_size() {
return interp_ok(());
}
// Check the type of this value to see what to do with it (retag, or recurse).
match place.layout.ty.kind() {
ty::Ref(..) | ty::RawPtr(..) => {
if matches!(place.layout.ty.kind(), ty::Ref(..))
|| self.kind == RetagKind::Raw
{
let new_perm =
NewPermission::from_ref_ty(place.layout.ty, self.kind, self.ecx);
self.retag_ptr_inplace(place, new_perm)?;
}
}
ty::Adt(adt, _) if adt.is_box() => {
// Recurse for boxes, they require some tricky handling and will end up in `visit_box` above.
// (Yes this means we technically also recursively retag the allocator itself
// even if field retagging is not enabled. *shrug*)
self.walk_value(place)?;
}
_ => {
// Not a reference/pointer/box. Only recurse if configured appropriately.
let recurse = match self.retag_fields {
RetagFields::No => false,
RetagFields::Yes => true,
RetagFields::OnlyScalar => {
// Matching `ArgAbi::new` at the time of writing, only fields of
// `Scalar` and `ScalarPair` ABI are considered.
matches!(
place.layout.backend_repr,
BackendRepr::Scalar(..) | BackendRepr::ScalarPair(..)
)
}
};
if recurse {
let in_field = mem::replace(&mut self.in_field, true); // remember and restore old value
self.walk_value(place)?;
self.in_field = in_field;
}
}
}
interp_ok(())
}
}
}
/// Protect a place so that it cannot be used any more for the duration of the current function
/// call.
///
/// This is used to ensure soundness of in-place function argument/return passing.
fn sb_protect_place(&mut self, place: &MPlaceTy<'tcx>) -> InterpResult<'tcx, MPlaceTy<'tcx>> {
let this = self.eval_context_mut();
// Retag it. With protection! That is the entire point.
let new_perm = NewPermission::Uniform {
perm: Permission::Unique,
access: Some(AccessKind::Write),
protector: Some(ProtectorKind::StrongProtector),
};
this.sb_retag_place(place, new_perm, RetagInfo {
cause: RetagCause::InPlaceFnPassing,
in_field: false,
})
}
/// Mark the given tag as exposed. It was found on a pointer with the given AllocId.
fn sb_expose_tag(&mut self, alloc_id: AllocId, tag: BorTag) -> InterpResult<'tcx> {
let this = self.eval_context_mut();
// Function pointers and dead objects don't have an alloc_extra so we ignore them.
// This is okay because accessing them is UB anyway, no need for any Stacked Borrows checks.
// NOT using `get_alloc_extra_mut` since this might be a read-only allocation!
let kind = this.get_alloc_info(alloc_id).kind;
match kind {
AllocKind::LiveData => {
// This should have alloc_extra data, but `get_alloc_extra` can still fail
// if converting this alloc_id from a global to a local one
// uncovers a non-supported `extern static`.
let alloc_extra = this.get_alloc_extra(alloc_id)?;
trace!("Stacked Borrows tag {tag:?} exposed in {alloc_id:?}");
alloc_extra.borrow_tracker_sb().borrow_mut().exposed_tags.insert(tag);
}
AllocKind::Function | AllocKind::VTable | AllocKind::Dead => {
// No stacked borrows on these allocations.
}
}
interp_ok(())
}
fn print_stacks(&mut self, alloc_id: AllocId) -> InterpResult<'tcx> {
let this = self.eval_context_mut();
let alloc_extra = this.get_alloc_extra(alloc_id)?;
let stacks = alloc_extra.borrow_tracker_sb().borrow();
for (range, stack) in stacks.stacks.iter_all() {
print!("{range:?}: [");
if let Some(bottom) = stack.unknown_bottom() {
print!(" unknown-bottom(..{bottom:?})");
}
for i in 0..stack.len() {
let item = stack.get(i).unwrap();
print!(" {:?}{:?}", item.perm(), item.tag());
}
println!(" ]");
}
interp_ok(())
}
}