rustc_target/callconv/
x86.rs

1use rustc_abi::{
2    AddressSpace, Align, BackendRepr, HasDataLayout, Primitive, Reg, RegKind, TyAbiInterface,
3    TyAndLayout,
4};
5
6use crate::callconv::{ArgAttribute, FnAbi, PassMode};
7use crate::spec::{HasTargetSpec, RustcAbi};
8
9#[derive(PartialEq)]
10pub(crate) enum Flavor {
11    General,
12    FastcallOrVectorcall,
13}
14
15pub(crate) struct X86Options {
16    pub flavor: Flavor,
17    pub regparm: Option<u32>,
18    pub reg_struct_return: bool,
19}
20
21pub(crate) fn compute_abi_info<'a, Ty, C>(cx: &C, fn_abi: &mut FnAbi<'a, Ty>, opts: X86Options)
22where
23    Ty: TyAbiInterface<'a, C> + Copy,
24    C: HasDataLayout + HasTargetSpec,
25{
26    if !fn_abi.ret.is_ignore() {
27        if fn_abi.ret.layout.is_aggregate() && fn_abi.ret.layout.is_sized() {
28            // Returning a structure. Most often, this will use
29            // a hidden first argument. On some platforms, though,
30            // small structs are returned as integers.
31            //
32            // Some links:
33            // https://www.angelcode.com/dev/callconv/callconv.html
34            // Clang's ABI handling is in lib/CodeGen/TargetInfo.cpp
35            let t = cx.target_spec();
36            if t.abi_return_struct_as_int || opts.reg_struct_return {
37                // According to Clang, everyone but MSVC returns single-element
38                // float aggregates directly in a floating-point register.
39                if fn_abi.ret.layout.is_single_fp_element(cx) {
40                    match fn_abi.ret.layout.size.bytes() {
41                        4 => fn_abi.ret.cast_to(Reg::f32()),
42                        8 => fn_abi.ret.cast_to(Reg::f64()),
43                        _ => fn_abi.ret.make_indirect(),
44                    }
45                } else {
46                    match fn_abi.ret.layout.size.bytes() {
47                        1 => fn_abi.ret.cast_to(Reg::i8()),
48                        2 => fn_abi.ret.cast_to(Reg::i16()),
49                        4 => fn_abi.ret.cast_to(Reg::i32()),
50                        8 => fn_abi.ret.cast_to(Reg::i64()),
51                        _ => fn_abi.ret.make_indirect(),
52                    }
53                }
54            } else {
55                fn_abi.ret.make_indirect();
56            }
57        } else {
58            fn_abi.ret.extend_integer_width_to(32);
59        }
60    }
61
62    for arg in fn_abi.args.iter_mut() {
63        if arg.is_ignore() || !arg.layout.is_sized() {
64            continue;
65        }
66
67        if arg.layout.pass_indirectly_in_non_rustic_abis(cx) {
68            arg.make_indirect();
69            continue;
70        }
71
72        let t = cx.target_spec();
73        let align_4 = Align::from_bytes(4).unwrap();
74        let align_16 = Align::from_bytes(16).unwrap();
75
76        if arg.layout.is_aggregate() {
77            // We need to compute the alignment of the `byval` argument. The rules can be found in
78            // `X86_32ABIInfo::getTypeStackAlignInBytes` in Clang's `TargetInfo.cpp`. Summarized
79            // here, they are:
80            //
81            // 1. If the natural alignment of the type is <= 4, the alignment is 4.
82            //
83            // 2. Otherwise, on Linux, the alignment of any vector type is the natural alignment.
84            // This doesn't matter here because we only pass aggregates via `byval`, not vectors.
85            //
86            // 3. Otherwise, on Apple platforms, the alignment of anything that contains a vector
87            // type is 16.
88            //
89            // 4. If none of these conditions are true, the alignment is 4.
90
91            fn contains_vector<'a, Ty, C>(cx: &C, layout: TyAndLayout<'a, Ty>) -> bool
92            where
93                Ty: TyAbiInterface<'a, C> + Copy,
94            {
95                match layout.backend_repr {
96                    BackendRepr::Scalar(_) | BackendRepr::ScalarPair(..) => false,
97                    BackendRepr::SimdVector { .. } => true,
98                    BackendRepr::Memory { .. } => {
99                        for i in 0..layout.fields.count() {
100                            if contains_vector(cx, layout.field(cx, i)) {
101                                return true;
102                            }
103                        }
104                        false
105                    }
106                    BackendRepr::ScalableVector { .. } => {
107                        panic!("scalable vectors are unsupported")
108                    }
109                }
110            }
111
112            let byval_align = if arg.layout.align.abi < align_4 {
113                // (1.)
114                align_4
115            } else if t.is_like_darwin && contains_vector(cx, arg.layout) {
116                // (3.)
117                align_16
118            } else {
119                // (4.)
120                align_4
121            };
122
123            arg.pass_by_stack_offset(Some(byval_align));
124        } else {
125            arg.extend_integer_width_to(32);
126        }
127    }
128
129    fill_inregs(cx, fn_abi, opts, false);
130}
131
132pub(crate) fn fill_inregs<'a, Ty, C>(
133    cx: &C,
134    fn_abi: &mut FnAbi<'a, Ty>,
135    opts: X86Options,
136    rust_abi: bool,
137) where
138    Ty: TyAbiInterface<'a, C> + Copy,
139{
140    if opts.flavor != Flavor::FastcallOrVectorcall && opts.regparm.is_none_or(|x| x == 0) {
141        return;
142    }
143    // Mark arguments as InReg like clang does it,
144    // so our fastcall/vectorcall is compatible with C/C++ fastcall/vectorcall.
145
146    // Clang reference: lib/CodeGen/TargetInfo.cpp
147    // See X86_32ABIInfo::shouldPrimitiveUseInReg(), X86_32ABIInfo::updateFreeRegs()
148
149    // IsSoftFloatABI is only set to true on ARM platforms,
150    // which in turn can't be x86?
151
152    // 2 for fastcall/vectorcall, regparm limited by 3 otherwise
153    let mut free_regs = opts.regparm.unwrap_or(2).into();
154
155    // For types generating PassMode::Cast, InRegs will not be set.
156    // Maybe, this is a FIXME
157    let has_casts = fn_abi.args.iter().any(|arg| matches!(arg.mode, PassMode::Cast { .. }));
158    if has_casts && rust_abi {
159        return;
160    }
161
162    for arg in fn_abi.args.iter_mut() {
163        let attrs = match arg.mode {
164            PassMode::Ignore | PassMode::Indirect { attrs: _, meta_attrs: None, on_stack: _ } => {
165                continue;
166            }
167            PassMode::Direct(ref mut attrs) => attrs,
168            PassMode::Pair(..)
169            | PassMode::Indirect { attrs: _, meta_attrs: Some(_), on_stack: _ }
170            | PassMode::Cast { .. } => {
171                unreachable!("x86 shouldn't be passing arguments by {:?}", arg.mode)
172            }
173        };
174
175        // At this point we know this must be a primitive of sorts.
176        let unit = arg.layout.homogeneous_aggregate(cx).unwrap().unit().unwrap();
177        assert_eq!(unit.size, arg.layout.size);
178        if matches!(unit.kind, RegKind::Float | RegKind::Vector) {
179            continue;
180        }
181
182        let size_in_regs = arg.layout.size.bits().div_ceil(32);
183
184        if size_in_regs == 0 {
185            continue;
186        }
187
188        if size_in_regs > free_regs {
189            break;
190        }
191
192        free_regs -= size_in_regs;
193
194        if arg.layout.size.bits() <= 32 && unit.kind == RegKind::Integer {
195            attrs.set(ArgAttribute::InReg);
196        }
197
198        if free_regs == 0 {
199            break;
200        }
201    }
202}
203
204pub(crate) fn compute_rust_abi_info<'a, Ty, C>(cx: &C, fn_abi: &mut FnAbi<'a, Ty>)
205where
206    Ty: TyAbiInterface<'a, C> + Copy,
207    C: HasDataLayout + HasTargetSpec,
208{
209    // Avoid returning floats in x87 registers on x86 as loading and storing from x87
210    // registers will quiet signalling NaNs. Also avoid using SSE registers since they
211    // are not always available (depending on target features).
212    if !fn_abi.ret.is_ignore() {
213        let has_float = match fn_abi.ret.layout.backend_repr {
214            BackendRepr::Scalar(s) => matches!(s.primitive(), Primitive::Float(_)),
215            BackendRepr::ScalarPair(s1, s2) => {
216                matches!(s1.primitive(), Primitive::Float(_))
217                    || matches!(s2.primitive(), Primitive::Float(_))
218            }
219            _ => false, // anyway not passed via registers on x86
220        };
221        if has_float {
222            if cx.target_spec().rustc_abi == Some(RustcAbi::X86Sse2)
223                && fn_abi.ret.layout.backend_repr.is_scalar()
224                && fn_abi.ret.layout.size.bits() <= 128
225            {
226                // This is a single scalar that fits into an SSE register, and the target uses the
227                // SSE ABI. We prefer this over integer registers as float scalars need to be in SSE
228                // registers for float operations, so that's the best place to pass them around.
229                fn_abi.ret.cast_to(Reg { kind: RegKind::Vector, size: fn_abi.ret.layout.size });
230            } else if fn_abi.ret.layout.size <= Primitive::Pointer(AddressSpace::ZERO).size(cx) {
231                // Same size or smaller than pointer, return in an integer register.
232                fn_abi.ret.cast_to(Reg { kind: RegKind::Integer, size: fn_abi.ret.layout.size });
233            } else {
234                // Larger than a pointer, return indirectly.
235                fn_abi.ret.make_indirect();
236            }
237            return;
238        }
239    }
240}