1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
//! Validation of patterns/matches.

mod check_match;
mod const_to_pat;

pub(crate) use self::check_match::check_match;

use crate::errors::*;
use crate::thir::util::UserAnnotatedTyHelpers;

use rustc_errors::codes::*;
use rustc_hir::def::{CtorOf, DefKind, Res};
use rustc_hir::pat_util::EnumerateAndAdjustIterator;
use rustc_hir::{self as hir, RangeEnd};
use rustc_index::Idx;
use rustc_middle::mir::interpret::{ErrorHandled, GlobalId, LitToConstError, LitToConstInput};
use rustc_middle::mir::{self, Const};
use rustc_middle::thir::{
    Ascription, FieldPat, LocalVarId, Pat, PatKind, PatRange, PatRangeBoundary,
};
use rustc_middle::ty::layout::IntegerExt;
use rustc_middle::ty::{self, CanonicalUserTypeAnnotation, Ty, TyCtxt, TypeVisitableExt};
use rustc_span::def_id::LocalDefId;
use rustc_span::{ErrorGuaranteed, Span};
use rustc_target::abi::{FieldIdx, Integer};

use std::cmp::Ordering;

struct PatCtxt<'a, 'tcx> {
    tcx: TyCtxt<'tcx>,
    param_env: ty::ParamEnv<'tcx>,
    typeck_results: &'a ty::TypeckResults<'tcx>,
}

pub(super) fn pat_from_hir<'a, 'tcx>(
    tcx: TyCtxt<'tcx>,
    param_env: ty::ParamEnv<'tcx>,
    typeck_results: &'a ty::TypeckResults<'tcx>,
    pat: &'tcx hir::Pat<'tcx>,
) -> Box<Pat<'tcx>> {
    let mut pcx = PatCtxt { tcx, param_env, typeck_results };
    let result = pcx.lower_pattern(pat);
    debug!("pat_from_hir({:?}) = {:?}", pat, result);
    result
}

impl<'a, 'tcx> PatCtxt<'a, 'tcx> {
    fn lower_pattern(&mut self, pat: &'tcx hir::Pat<'tcx>) -> Box<Pat<'tcx>> {
        // When implicit dereferences have been inserted in this pattern, the unadjusted lowered
        // pattern has the type that results *after* dereferencing. For example, in this code:
        //
        // ```
        // match &&Some(0i32) {
        //     Some(n) => { ... },
        //     _ => { ... },
        // }
        // ```
        //
        // the type assigned to `Some(n)` in `unadjusted_pat` would be `Option<i32>` (this is
        // determined in rustc_hir_analysis::check::match). The adjustments would be
        //
        // `vec![&&Option<i32>, &Option<i32>]`.
        //
        // Applying the adjustments, we want to instead output `&&Some(n)` (as a THIR pattern). So
        // we wrap the unadjusted pattern in `PatKind::Deref` repeatedly, consuming the
        // adjustments in *reverse order* (last-in-first-out, so that the last `Deref` inserted
        // gets the least-dereferenced type).
        let unadjusted_pat = match pat.kind {
            hir::PatKind::Ref(inner, _)
                if self.typeck_results.skipped_ref_pats().contains(pat.hir_id) =>
            {
                self.lower_pattern(inner)
            }
            _ => self.lower_pattern_unadjusted(pat),
        };
        self.typeck_results.pat_adjustments().get(pat.hir_id).unwrap_or(&vec![]).iter().rev().fold(
            unadjusted_pat,
            |pat: Box<_>, ref_ty| {
                debug!("{:?}: wrapping pattern with type {:?}", pat, ref_ty);
                Box::new(Pat {
                    span: pat.span,
                    ty: *ref_ty,
                    kind: PatKind::Deref { subpattern: pat },
                })
            },
        )
    }

    fn lower_pattern_range_endpoint(
        &mut self,
        expr: Option<&'tcx hir::Expr<'tcx>>,
    ) -> Result<
        (Option<PatRangeBoundary<'tcx>>, Option<Ascription<'tcx>>, Option<LocalDefId>),
        ErrorGuaranteed,
    > {
        match expr {
            None => Ok((None, None, None)),
            Some(expr) => {
                let (kind, ascr, inline_const) = match self.lower_lit(expr) {
                    PatKind::InlineConstant { subpattern, def } => {
                        (subpattern.kind, None, Some(def))
                    }
                    PatKind::AscribeUserType { ascription, subpattern: box Pat { kind, .. } } => {
                        (kind, Some(ascription), None)
                    }
                    kind => (kind, None, None),
                };
                let value = if let PatKind::Constant { value } = kind {
                    value
                } else {
                    let msg = format!(
                        "found bad range pattern endpoint `{expr:?}` outside of error recovery"
                    );
                    return Err(self.tcx.dcx().span_delayed_bug(expr.span, msg));
                };
                Ok((Some(PatRangeBoundary::Finite(value)), ascr, inline_const))
            }
        }
    }

    /// Overflowing literals are linted against in a late pass. This is mostly fine, except when we
    /// encounter a range pattern like `-130i8..2`: if we believe `eval_bits`, this looks like a
    /// range where the endpoints are in the wrong order. To avoid a confusing error message, we
    /// check for overflow then.
    /// This is only called when the range is already known to be malformed.
    fn error_on_literal_overflow(
        &self,
        expr: Option<&'tcx hir::Expr<'tcx>>,
        ty: Ty<'tcx>,
    ) -> Result<(), ErrorGuaranteed> {
        use hir::{ExprKind, UnOp};
        use rustc_ast::ast::LitKind;

        let Some(mut expr) = expr else {
            return Ok(());
        };
        let span = expr.span;

        // We need to inspect the original expression, because if we only inspect the output of
        // `eval_bits`, an overflowed value has already been wrapped around.
        // We mostly copy the logic from the `rustc_lint::OVERFLOWING_LITERALS` lint.
        let mut negated = false;
        if let ExprKind::Unary(UnOp::Neg, sub_expr) = expr.kind {
            negated = true;
            expr = sub_expr;
        }
        let ExprKind::Lit(lit) = expr.kind else {
            return Ok(());
        };
        let LitKind::Int(lit_val, _) = lit.node else {
            return Ok(());
        };
        let (min, max): (i128, u128) = match ty.kind() {
            ty::Int(ity) => {
                let size = Integer::from_int_ty(&self.tcx, *ity).size();
                (size.signed_int_min(), size.signed_int_max() as u128)
            }
            ty::Uint(uty) => {
                let size = Integer::from_uint_ty(&self.tcx, *uty).size();
                (0, size.unsigned_int_max())
            }
            _ => {
                return Ok(());
            }
        };
        // Detect literal value out of range `[min, max]` inclusive, avoiding use of `-min` to
        // prevent overflow/panic.
        if (negated && lit_val > max + 1) || (!negated && lit_val > max) {
            return Err(self.tcx.dcx().emit_err(LiteralOutOfRange { span, ty, min, max }));
        }
        Ok(())
    }

    fn lower_pattern_range(
        &mut self,
        lo_expr: Option<&'tcx hir::Expr<'tcx>>,
        hi_expr: Option<&'tcx hir::Expr<'tcx>>,
        end: RangeEnd,
        ty: Ty<'tcx>,
        span: Span,
    ) -> Result<PatKind<'tcx>, ErrorGuaranteed> {
        if lo_expr.is_none() && hi_expr.is_none() {
            let msg = "found twice-open range pattern (`..`) outside of error recovery";
            self.tcx.dcx().span_bug(span, msg);
        }

        let (lo, lo_ascr, lo_inline) = self.lower_pattern_range_endpoint(lo_expr)?;
        let (hi, hi_ascr, hi_inline) = self.lower_pattern_range_endpoint(hi_expr)?;

        let lo = lo.unwrap_or(PatRangeBoundary::NegInfinity);
        let hi = hi.unwrap_or(PatRangeBoundary::PosInfinity);

        let cmp = lo.compare_with(hi, ty, self.tcx, self.param_env);
        let mut kind = PatKind::Range(Box::new(PatRange { lo, hi, end, ty }));
        match (end, cmp) {
            // `x..y` where `x < y`.
            (RangeEnd::Excluded, Some(Ordering::Less)) => {}
            // `x..=y` where `x < y`.
            (RangeEnd::Included, Some(Ordering::Less)) => {}
            // `x..=y` where `x == y` and `x` and `y` are finite.
            (RangeEnd::Included, Some(Ordering::Equal)) if lo.is_finite() && hi.is_finite() => {
                kind = PatKind::Constant { value: lo.as_finite().unwrap() };
            }
            // `..=x` where `x == ty::MIN`.
            (RangeEnd::Included, Some(Ordering::Equal)) if !lo.is_finite() => {}
            // `x..` where `x == ty::MAX` (yes, `x..` gives `RangeEnd::Included` since it is meant
            // to include `ty::MAX`).
            (RangeEnd::Included, Some(Ordering::Equal)) if !hi.is_finite() => {}
            // `x..y` where `x >= y`, or `x..=y` where `x > y`. The range is empty => error.
            _ => {
                // Emit a more appropriate message if there was overflow.
                self.error_on_literal_overflow(lo_expr, ty)?;
                self.error_on_literal_overflow(hi_expr, ty)?;
                let e = match end {
                    RangeEnd::Included => {
                        self.tcx.dcx().emit_err(LowerRangeBoundMustBeLessThanOrEqualToUpper {
                            span,
                            teach: self.tcx.sess.teach(E0030).then_some(()),
                        })
                    }
                    RangeEnd::Excluded => {
                        self.tcx.dcx().emit_err(LowerRangeBoundMustBeLessThanUpper { span })
                    }
                };
                return Err(e);
            }
        }

        // If we are handling a range with associated constants (e.g.
        // `Foo::<'a>::A..=Foo::B`), we need to put the ascriptions for the associated
        // constants somewhere. Have them on the range pattern.
        for ascription in [lo_ascr, hi_ascr].into_iter().flatten() {
            kind = PatKind::AscribeUserType {
                ascription,
                subpattern: Box::new(Pat { span, ty, kind }),
            };
        }
        for def in [lo_inline, hi_inline].into_iter().flatten() {
            kind = PatKind::InlineConstant { def, subpattern: Box::new(Pat { span, ty, kind }) };
        }
        Ok(kind)
    }

    #[instrument(skip(self), level = "debug")]
    fn lower_pattern_unadjusted(&mut self, pat: &'tcx hir::Pat<'tcx>) -> Box<Pat<'tcx>> {
        let mut ty = self.typeck_results.node_type(pat.hir_id);
        let mut span = pat.span;

        let kind = match pat.kind {
            hir::PatKind::Wild => PatKind::Wild,

            hir::PatKind::Never => PatKind::Never,

            hir::PatKind::Lit(value) => self.lower_lit(value),

            hir::PatKind::Range(ref lo_expr, ref hi_expr, end) => {
                let (lo_expr, hi_expr) = (lo_expr.as_deref(), hi_expr.as_deref());
                self.lower_pattern_range(lo_expr, hi_expr, end, ty, span)
                    .unwrap_or_else(PatKind::Error)
            }

            hir::PatKind::Path(ref qpath) => {
                return self.lower_path(qpath, pat.hir_id, pat.span);
            }

            hir::PatKind::Deref(subpattern) => {
                PatKind::DerefPattern { subpattern: self.lower_pattern(subpattern) }
            }
            hir::PatKind::Ref(subpattern, _) | hir::PatKind::Box(subpattern) => {
                PatKind::Deref { subpattern: self.lower_pattern(subpattern) }
            }

            hir::PatKind::Slice(prefix, ref slice, suffix) => {
                self.slice_or_array_pattern(pat.span, ty, prefix, slice, suffix)
            }

            hir::PatKind::Tuple(pats, ddpos) => {
                let ty::Tuple(tys) = ty.kind() else {
                    span_bug!(pat.span, "unexpected type for tuple pattern: {:?}", ty);
                };
                let subpatterns = self.lower_tuple_subpats(pats, tys.len(), ddpos);
                PatKind::Leaf { subpatterns }
            }

            hir::PatKind::Binding(_, id, ident, ref sub) => {
                if let Some(ident_span) = ident.span.find_ancestor_inside(span) {
                    span = span.with_hi(ident_span.hi());
                }

                let mode = *self
                    .typeck_results
                    .pat_binding_modes()
                    .get(pat.hir_id)
                    .expect("missing binding mode");

                // A ref x pattern is the same node used for x, and as such it has
                // x's type, which is &T, where we want T (the type being matched).
                let var_ty = ty;
                if let hir::ByRef::Yes(_) = mode.0 {
                    if let ty::Ref(_, rty, _) = ty.kind() {
                        ty = *rty;
                    } else {
                        bug!("`ref {}` has wrong type {}", ident, ty);
                    }
                };

                PatKind::Binding {
                    mode,
                    name: ident.name,
                    var: LocalVarId(id),
                    ty: var_ty,
                    subpattern: self.lower_opt_pattern(sub),
                    is_primary: id == pat.hir_id,
                }
            }

            hir::PatKind::TupleStruct(ref qpath, pats, ddpos) => {
                let res = self.typeck_results.qpath_res(qpath, pat.hir_id);
                let ty::Adt(adt_def, _) = ty.kind() else {
                    span_bug!(pat.span, "tuple struct pattern not applied to an ADT {:?}", ty);
                };
                let variant_def = adt_def.variant_of_res(res);
                let subpatterns = self.lower_tuple_subpats(pats, variant_def.fields.len(), ddpos);
                self.lower_variant_or_leaf(res, pat.hir_id, pat.span, ty, subpatterns)
            }

            hir::PatKind::Struct(ref qpath, fields, _) => {
                let res = self.typeck_results.qpath_res(qpath, pat.hir_id);
                let subpatterns = fields
                    .iter()
                    .map(|field| FieldPat {
                        field: self.typeck_results.field_index(field.hir_id),
                        pattern: self.lower_pattern(field.pat),
                    })
                    .collect();

                self.lower_variant_or_leaf(res, pat.hir_id, pat.span, ty, subpatterns)
            }

            hir::PatKind::Or(pats) => PatKind::Or { pats: self.lower_patterns(pats) },

            hir::PatKind::Err(guar) => PatKind::Error(guar),
        };

        Box::new(Pat { span, ty, kind })
    }

    fn lower_tuple_subpats(
        &mut self,
        pats: &'tcx [hir::Pat<'tcx>],
        expected_len: usize,
        gap_pos: hir::DotDotPos,
    ) -> Vec<FieldPat<'tcx>> {
        pats.iter()
            .enumerate_and_adjust(expected_len, gap_pos)
            .map(|(i, subpattern)| FieldPat {
                field: FieldIdx::new(i),
                pattern: self.lower_pattern(subpattern),
            })
            .collect()
    }

    fn lower_patterns(&mut self, pats: &'tcx [hir::Pat<'tcx>]) -> Box<[Box<Pat<'tcx>>]> {
        pats.iter().map(|p| self.lower_pattern(p)).collect()
    }

    fn lower_opt_pattern(
        &mut self,
        pat: &'tcx Option<&'tcx hir::Pat<'tcx>>,
    ) -> Option<Box<Pat<'tcx>>> {
        pat.map(|p| self.lower_pattern(p))
    }

    fn slice_or_array_pattern(
        &mut self,
        span: Span,
        ty: Ty<'tcx>,
        prefix: &'tcx [hir::Pat<'tcx>],
        slice: &'tcx Option<&'tcx hir::Pat<'tcx>>,
        suffix: &'tcx [hir::Pat<'tcx>],
    ) -> PatKind<'tcx> {
        let prefix = self.lower_patterns(prefix);
        let slice = self.lower_opt_pattern(slice);
        let suffix = self.lower_patterns(suffix);
        match ty.kind() {
            // Matching a slice, `[T]`.
            ty::Slice(..) => PatKind::Slice { prefix, slice, suffix },
            // Fixed-length array, `[T; len]`.
            ty::Array(_, len) => {
                let len = len.eval_target_usize(self.tcx, self.param_env);
                assert!(len >= prefix.len() as u64 + suffix.len() as u64);
                PatKind::Array { prefix, slice, suffix }
            }
            _ => span_bug!(span, "bad slice pattern type {:?}", ty),
        }
    }

    fn lower_variant_or_leaf(
        &mut self,
        res: Res,
        hir_id: hir::HirId,
        span: Span,
        ty: Ty<'tcx>,
        subpatterns: Vec<FieldPat<'tcx>>,
    ) -> PatKind<'tcx> {
        let res = match res {
            Res::Def(DefKind::Ctor(CtorOf::Variant, ..), variant_ctor_id) => {
                let variant_id = self.tcx.parent(variant_ctor_id);
                Res::Def(DefKind::Variant, variant_id)
            }
            res => res,
        };

        let mut kind = match res {
            Res::Def(DefKind::Variant, variant_id) => {
                let enum_id = self.tcx.parent(variant_id);
                let adt_def = self.tcx.adt_def(enum_id);
                if adt_def.is_enum() {
                    let args = match ty.kind() {
                        ty::Adt(_, args) | ty::FnDef(_, args) => args,
                        ty::Error(e) => {
                            // Avoid ICE (#50585)
                            return PatKind::Error(*e);
                        }
                        _ => bug!("inappropriate type for def: {:?}", ty),
                    };
                    PatKind::Variant {
                        adt_def,
                        args,
                        variant_index: adt_def.variant_index_with_id(variant_id),
                        subpatterns,
                    }
                } else {
                    PatKind::Leaf { subpatterns }
                }
            }

            Res::Def(
                DefKind::Struct
                | DefKind::Ctor(CtorOf::Struct, ..)
                | DefKind::Union
                | DefKind::TyAlias
                | DefKind::AssocTy,
                _,
            )
            | Res::SelfTyParam { .. }
            | Res::SelfTyAlias { .. }
            | Res::SelfCtor(..) => PatKind::Leaf { subpatterns },
            _ => {
                let e = match res {
                    Res::Def(DefKind::ConstParam, _) => {
                        self.tcx.dcx().emit_err(ConstParamInPattern { span })
                    }
                    Res::Def(DefKind::Static { .. }, _) => {
                        self.tcx.dcx().emit_err(StaticInPattern { span })
                    }
                    _ => self.tcx.dcx().emit_err(NonConstPath { span }),
                };
                PatKind::Error(e)
            }
        };

        if let Some(user_ty) = self.user_args_applied_to_ty_of_hir_id(hir_id) {
            debug!("lower_variant_or_leaf: kind={:?} user_ty={:?} span={:?}", kind, user_ty, span);
            let annotation = CanonicalUserTypeAnnotation {
                user_ty: Box::new(user_ty),
                span,
                inferred_ty: self.typeck_results.node_type(hir_id),
            };
            kind = PatKind::AscribeUserType {
                subpattern: Box::new(Pat { span, ty, kind }),
                ascription: Ascription { annotation, variance: ty::Variance::Covariant },
            };
        }

        kind
    }

    /// Takes a HIR Path. If the path is a constant, evaluates it and feeds
    /// it to `const_to_pat`. Any other path (like enum variants without fields)
    /// is converted to the corresponding pattern via `lower_variant_or_leaf`.
    #[instrument(skip(self), level = "debug")]
    fn lower_path(&mut self, qpath: &hir::QPath<'_>, id: hir::HirId, span: Span) -> Box<Pat<'tcx>> {
        let ty = self.typeck_results.node_type(id);
        let res = self.typeck_results.qpath_res(qpath, id);

        let pat_from_kind = |kind| Box::new(Pat { span, ty, kind });

        let (def_id, is_associated_const) = match res {
            Res::Def(DefKind::Const, def_id) => (def_id, false),
            Res::Def(DefKind::AssocConst, def_id) => (def_id, true),

            _ => return pat_from_kind(self.lower_variant_or_leaf(res, id, span, ty, vec![])),
        };

        // Use `Reveal::All` here because patterns are always monomorphic even if their function
        // isn't.
        let param_env_reveal_all = self.param_env.with_reveal_all_normalized(self.tcx);
        // N.B. There is no guarantee that args collected in typeck results are fully normalized,
        // so they need to be normalized in order to pass to `Instance::resolve`, which will ICE
        // if given unnormalized types.
        let args = self
            .tcx
            .normalize_erasing_regions(param_env_reveal_all, self.typeck_results.node_args(id));
        let instance = match ty::Instance::resolve(self.tcx, param_env_reveal_all, def_id, args) {
            Ok(Some(i)) => i,
            Ok(None) => {
                // It should be assoc consts if there's no error but we cannot resolve it.
                debug_assert!(is_associated_const);

                let e = self.tcx.dcx().emit_err(AssocConstInPattern { span });
                return pat_from_kind(PatKind::Error(e));
            }

            Err(_) => {
                let e = self.tcx.dcx().emit_err(CouldNotEvalConstPattern { span });
                return pat_from_kind(PatKind::Error(e));
            }
        };

        let cid = GlobalId { instance, promoted: None };
        // Prefer valtrees over opaque constants.
        let const_value = self
            .tcx
            .const_eval_global_id_for_typeck(param_env_reveal_all, cid, span)
            .map(|val| match val {
                Some(valtree) => mir::Const::Ty(ty::Const::new_value(self.tcx, valtree, ty)),
                None => mir::Const::Val(
                    self.tcx
                        .const_eval_global_id(param_env_reveal_all, cid, span)
                        .expect("const_eval_global_id_for_typeck should have already failed"),
                    ty,
                ),
            });

        match const_value {
            Ok(const_) => {
                let pattern = self.const_to_pat(const_, id, span);

                if !is_associated_const {
                    return pattern;
                }

                let user_provided_types = self.typeck_results().user_provided_types();
                if let Some(&user_ty) = user_provided_types.get(id) {
                    let annotation = CanonicalUserTypeAnnotation {
                        user_ty: Box::new(user_ty),
                        span,
                        inferred_ty: self.typeck_results().node_type(id),
                    };
                    Box::new(Pat {
                        span,
                        kind: PatKind::AscribeUserType {
                            subpattern: pattern,
                            ascription: Ascription {
                                annotation,
                                // Note that use `Contravariant` here. See the
                                // `variance` field documentation for details.
                                variance: ty::Variance::Contravariant,
                            },
                        },
                        ty: const_.ty(),
                    })
                } else {
                    pattern
                }
            }
            Err(ErrorHandled::TooGeneric(_)) => {
                // While `Reported | Linted` cases will have diagnostics emitted already
                // it is not true for TooGeneric case, so we need to give user more information.
                let e = self.tcx.dcx().emit_err(ConstPatternDependsOnGenericParameter { span });
                pat_from_kind(PatKind::Error(e))
            }
            Err(_) => {
                let e = self.tcx.dcx().emit_err(CouldNotEvalConstPattern { span });
                pat_from_kind(PatKind::Error(e))
            }
        }
    }

    /// Converts inline const patterns.
    fn lower_inline_const(
        &mut self,
        block: &'tcx hir::ConstBlock,
        id: hir::HirId,
        span: Span,
    ) -> PatKind<'tcx> {
        let tcx = self.tcx;
        let def_id = block.def_id;
        let body_id = block.body;
        let expr = &tcx.hir().body(body_id).value;
        let ty = tcx.typeck(def_id).node_type(block.hir_id);

        // Special case inline consts that are just literals. This is solely
        // a performance optimization, as we could also just go through the regular
        // const eval path below.
        // FIXME: investigate the performance impact of removing this.
        let lit_input = match expr.kind {
            hir::ExprKind::Lit(lit) => Some(LitToConstInput { lit: &lit.node, ty, neg: false }),
            hir::ExprKind::Unary(hir::UnOp::Neg, expr) => match expr.kind {
                hir::ExprKind::Lit(lit) => Some(LitToConstInput { lit: &lit.node, ty, neg: true }),
                _ => None,
            },
            _ => None,
        };
        if let Some(lit_input) = lit_input {
            match tcx.at(expr.span).lit_to_const(lit_input) {
                Ok(c) => return self.const_to_pat(Const::Ty(c), id, span).kind,
                // If an error occurred, ignore that it's a literal
                // and leave reporting the error up to const eval of
                // the unevaluated constant below.
                Err(_) => {}
            }
        }

        let typeck_root_def_id = tcx.typeck_root_def_id(def_id.to_def_id());
        let parent_args =
            tcx.erase_regions(ty::GenericArgs::identity_for_item(tcx, typeck_root_def_id));
        let args = ty::InlineConstArgs::new(tcx, ty::InlineConstArgsParts { parent_args, ty }).args;

        let uneval = mir::UnevaluatedConst { def: def_id.to_def_id(), args, promoted: None };
        debug_assert!(!args.has_free_regions());

        let ct = ty::UnevaluatedConst { def: def_id.to_def_id(), args };
        // First try using a valtree in order to destructure the constant into a pattern.
        // FIXME: replace "try to do a thing, then fall back to another thing"
        // but something more principled, like a trait query checking whether this can be turned into a valtree.
        if let Ok(Some(valtree)) = self.tcx.const_eval_resolve_for_typeck(self.param_env, ct, span)
        {
            let subpattern =
                self.const_to_pat(Const::Ty(ty::Const::new_value(self.tcx, valtree, ty)), id, span);
            PatKind::InlineConstant { subpattern, def: def_id }
        } else {
            // If that fails, convert it to an opaque constant pattern.
            match tcx.const_eval_resolve(self.param_env, uneval, span) {
                Ok(val) => self.const_to_pat(mir::Const::Val(val, ty), id, span).kind,
                Err(ErrorHandled::TooGeneric(_)) => {
                    // If we land here it means the const can't be evaluated because it's `TooGeneric`.
                    let e = self.tcx.dcx().emit_err(ConstPatternDependsOnGenericParameter { span });
                    PatKind::Error(e)
                }
                Err(ErrorHandled::Reported(err, ..)) => PatKind::Error(err.into()),
            }
        }
    }

    /// Converts literals, paths and negation of literals to patterns.
    /// The special case for negation exists to allow things like `-128_i8`
    /// which would overflow if we tried to evaluate `128_i8` and then negate
    /// afterwards.
    fn lower_lit(&mut self, expr: &'tcx hir::Expr<'tcx>) -> PatKind<'tcx> {
        let (lit, neg) = match expr.kind {
            hir::ExprKind::Path(ref qpath) => {
                return self.lower_path(qpath, expr.hir_id, expr.span).kind;
            }
            hir::ExprKind::ConstBlock(ref anon_const) => {
                return self.lower_inline_const(anon_const, expr.hir_id, expr.span);
            }
            hir::ExprKind::Lit(ref lit) => (lit, false),
            hir::ExprKind::Unary(hir::UnOp::Neg, ref expr) => {
                let hir::ExprKind::Lit(ref lit) = expr.kind else {
                    span_bug!(expr.span, "not a literal: {:?}", expr);
                };
                (lit, true)
            }
            _ => span_bug!(expr.span, "not a literal: {:?}", expr),
        };

        let lit_input =
            LitToConstInput { lit: &lit.node, ty: self.typeck_results.expr_ty(expr), neg };
        match self.tcx.at(expr.span).lit_to_const(lit_input) {
            Ok(constant) => self.const_to_pat(Const::Ty(constant), expr.hir_id, lit.span).kind,
            Err(LitToConstError::Reported(e)) => PatKind::Error(e),
            Err(LitToConstError::TypeError) => bug!("lower_lit: had type error"),
        }
    }
}

impl<'tcx> UserAnnotatedTyHelpers<'tcx> for PatCtxt<'_, 'tcx> {
    fn tcx(&self) -> TyCtxt<'tcx> {
        self.tcx
    }

    fn typeck_results(&self) -> &ty::TypeckResults<'tcx> {
        self.typeck_results
    }
}