1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
//! Validation of patterns/matches.

mod check_match;
mod const_to_pat;
mod deconstruct_pat;
mod usefulness;

pub(crate) use self::check_match::check_match;

use crate::thir::util::UserAnnotatedTyHelpers;

use rustc_errors::struct_span_err;
use rustc_hir as hir;
use rustc_hir::def::{CtorOf, DefKind, Res};
use rustc_hir::pat_util::EnumerateAndAdjustIterator;
use rustc_hir::RangeEnd;
use rustc_index::vec::Idx;
use rustc_middle::mir::interpret::{get_slice_bytes, ConstValue};
use rustc_middle::mir::interpret::{ErrorHandled, LitToConstError, LitToConstInput};
use rustc_middle::mir::UserTypeProjection;
use rustc_middle::mir::{BorrowKind, Field, Mutability};
use rustc_middle::thir::{Ascription, BindingMode, FieldPat, Pat, PatKind, PatRange, PatTyProj};
use rustc_middle::ty::subst::{GenericArg, SubstsRef};
use rustc_middle::ty::{self, AdtDef, ConstKind, DefIdTree, Region, Ty, TyCtxt, UserType};
use rustc_span::{Span, Symbol};

use std::cmp::Ordering;

#[derive(Clone, Debug)]
crate enum PatternError {
    AssocConstInPattern(Span),
    ConstParamInPattern(Span),
    StaticInPattern(Span),
    NonConstPath(Span),
}

crate struct PatCtxt<'a, 'tcx> {
    crate tcx: TyCtxt<'tcx>,
    crate param_env: ty::ParamEnv<'tcx>,
    crate typeck_results: &'a ty::TypeckResults<'tcx>,
    crate errors: Vec<PatternError>,
    include_lint_checks: bool,
}

crate fn pat_from_hir<'a, 'tcx>(
    tcx: TyCtxt<'tcx>,
    param_env: ty::ParamEnv<'tcx>,
    typeck_results: &'a ty::TypeckResults<'tcx>,
    pat: &'tcx hir::Pat<'tcx>,
) -> Pat<'tcx> {
    let mut pcx = PatCtxt::new(tcx, param_env, typeck_results);
    let result = pcx.lower_pattern(pat);
    if !pcx.errors.is_empty() {
        let msg = format!("encountered errors lowering pattern: {:?}", pcx.errors);
        tcx.sess.delay_span_bug(pat.span, &msg);
    }
    debug!("pat_from_hir({:?}) = {:?}", pat, result);
    result
}

impl<'a, 'tcx> PatCtxt<'a, 'tcx> {
    crate fn new(
        tcx: TyCtxt<'tcx>,
        param_env: ty::ParamEnv<'tcx>,
        typeck_results: &'a ty::TypeckResults<'tcx>,
    ) -> Self {
        PatCtxt { tcx, param_env, typeck_results, errors: vec![], include_lint_checks: false }
    }

    crate fn include_lint_checks(&mut self) -> &mut Self {
        self.include_lint_checks = true;
        self
    }

    crate fn lower_pattern(&mut self, pat: &'tcx hir::Pat<'tcx>) -> Pat<'tcx> {
        // When implicit dereferences have been inserted in this pattern, the unadjusted lowered
        // pattern has the type that results *after* dereferencing. For example, in this code:
        //
        // ```
        // match &&Some(0i32) {
        //     Some(n) => { ... },
        //     _ => { ... },
        // }
        // ```
        //
        // the type assigned to `Some(n)` in `unadjusted_pat` would be `Option<i32>` (this is
        // determined in rustc_typeck::check::match). The adjustments would be
        //
        // `vec![&&Option<i32>, &Option<i32>]`.
        //
        // Applying the adjustments, we want to instead output `&&Some(n)` (as a THIR pattern). So
        // we wrap the unadjusted pattern in `PatKind::Deref` repeatedly, consuming the
        // adjustments in *reverse order* (last-in-first-out, so that the last `Deref` inserted
        // gets the least-dereferenced type).
        let unadjusted_pat = self.lower_pattern_unadjusted(pat);
        self.typeck_results.pat_adjustments().get(pat.hir_id).unwrap_or(&vec![]).iter().rev().fold(
            unadjusted_pat,
            |pat, ref_ty| {
                debug!("{:?}: wrapping pattern with type {:?}", pat, ref_ty);
                Pat {
                    span: pat.span,
                    ty: ref_ty,
                    kind: Box::new(PatKind::Deref { subpattern: pat }),
                }
            },
        )
    }

    fn lower_range_expr(
        &mut self,
        expr: &'tcx hir::Expr<'tcx>,
    ) -> (PatKind<'tcx>, Option<Ascription<'tcx>>) {
        match self.lower_lit(expr) {
            PatKind::AscribeUserType { ascription, subpattern: Pat { kind: box kind, .. } } => {
                (kind, Some(ascription))
            }
            kind => (kind, None),
        }
    }

    fn lower_pattern_range(
        &mut self,
        ty: Ty<'tcx>,
        lo: &'tcx ty::Const<'tcx>,
        hi: &'tcx ty::Const<'tcx>,
        end: RangeEnd,
        span: Span,
    ) -> PatKind<'tcx> {
        assert_eq!(lo.ty, ty);
        assert_eq!(hi.ty, ty);
        let cmp = compare_const_vals(self.tcx, lo, hi, self.param_env, ty);
        match (end, cmp) {
            // `x..y` where `x < y`.
            // Non-empty because the range includes at least `x`.
            (RangeEnd::Excluded, Some(Ordering::Less)) => PatKind::Range(PatRange { lo, hi, end }),
            // `x..y` where `x >= y`. The range is empty => error.
            (RangeEnd::Excluded, _) => {
                struct_span_err!(
                    self.tcx.sess,
                    span,
                    E0579,
                    "lower range bound must be less than upper"
                )
                .emit();
                PatKind::Wild
            }
            // `x..=y` where `x == y`.
            (RangeEnd::Included, Some(Ordering::Equal)) => PatKind::Constant { value: lo },
            // `x..=y` where `x < y`.
            (RangeEnd::Included, Some(Ordering::Less)) => PatKind::Range(PatRange { lo, hi, end }),
            // `x..=y` where `x > y` hence the range is empty => error.
            (RangeEnd::Included, _) => {
                let mut err = struct_span_err!(
                    self.tcx.sess,
                    span,
                    E0030,
                    "lower range bound must be less than or equal to upper"
                );
                err.span_label(span, "lower bound larger than upper bound");
                if self.tcx.sess.teach(&err.get_code().unwrap()) {
                    err.note(
                        "When matching against a range, the compiler \
                              verifies that the range is non-empty. Range \
                              patterns include both end-points, so this is \
                              equivalent to requiring the start of the range \
                              to be less than or equal to the end of the range.",
                    );
                }
                err.emit();
                PatKind::Wild
            }
        }
    }

    fn normalize_range_pattern_ends(
        &self,
        ty: Ty<'tcx>,
        lo: Option<&PatKind<'tcx>>,
        hi: Option<&PatKind<'tcx>>,
    ) -> Option<(&'tcx ty::Const<'tcx>, &'tcx ty::Const<'tcx>)> {
        match (lo, hi) {
            (Some(PatKind::Constant { value: lo }), Some(PatKind::Constant { value: hi })) => {
                Some((lo, hi))
            }
            (Some(PatKind::Constant { value: lo }), None) => {
                Some((lo, ty.numeric_max_val(self.tcx)?))
            }
            (None, Some(PatKind::Constant { value: hi })) => {
                Some((ty.numeric_min_val(self.tcx)?, hi))
            }
            _ => None,
        }
    }

    fn lower_pattern_unadjusted(&mut self, pat: &'tcx hir::Pat<'tcx>) -> Pat<'tcx> {
        let mut ty = self.typeck_results.node_type(pat.hir_id);

        let kind = match pat.kind {
            hir::PatKind::Wild => PatKind::Wild,

            hir::PatKind::Lit(ref value) => self.lower_lit(value),

            hir::PatKind::Range(ref lo_expr, ref hi_expr, end) => {
                let (lo_expr, hi_expr) = (lo_expr.as_deref(), hi_expr.as_deref());
                let lo_span = lo_expr.map_or(pat.span, |e| e.span);
                let lo = lo_expr.map(|e| self.lower_range_expr(e));
                let hi = hi_expr.map(|e| self.lower_range_expr(e));

                let (lp, hp) = (lo.as_ref().map(|x| &x.0), hi.as_ref().map(|x| &x.0));
                let mut kind = match self.normalize_range_pattern_ends(ty, lp, hp) {
                    Some((lc, hc)) => self.lower_pattern_range(ty, lc, hc, end, lo_span),
                    None => {
                        let msg = &format!(
                            "found bad range pattern `{:?}` outside of error recovery",
                            (&lo, &hi),
                        );
                        self.tcx.sess.delay_span_bug(pat.span, msg);
                        PatKind::Wild
                    }
                };

                // If we are handling a range with associated constants (e.g.
                // `Foo::<'a>::A..=Foo::B`), we need to put the ascriptions for the associated
                // constants somewhere. Have them on the range pattern.
                for end in &[lo, hi] {
                    if let Some((_, Some(ascription))) = end {
                        let subpattern = Pat { span: pat.span, ty, kind: Box::new(kind) };
                        kind = PatKind::AscribeUserType { ascription: *ascription, subpattern };
                    }
                }

                kind
            }

            hir::PatKind::Path(ref qpath) => {
                return self.lower_path(qpath, pat.hir_id, pat.span);
            }

            hir::PatKind::Ref(ref subpattern, _) | hir::PatKind::Box(ref subpattern) => {
                PatKind::Deref { subpattern: self.lower_pattern(subpattern) }
            }

            hir::PatKind::Slice(ref prefix, ref slice, ref suffix) => {
                self.slice_or_array_pattern(pat.span, ty, prefix, slice, suffix)
            }

            hir::PatKind::Tuple(ref pats, ddpos) => {
                let tys = match ty.kind() {
                    ty::Tuple(ref tys) => tys,
                    _ => span_bug!(pat.span, "unexpected type for tuple pattern: {:?}", ty),
                };
                let subpatterns = self.lower_tuple_subpats(pats, tys.len(), ddpos);
                PatKind::Leaf { subpatterns }
            }

            hir::PatKind::Binding(_, id, ident, ref sub) => {
                let bm = *self
                    .typeck_results
                    .pat_binding_modes()
                    .get(pat.hir_id)
                    .expect("missing binding mode");
                let (mutability, mode) = match bm {
                    ty::BindByValue(mutbl) => (mutbl, BindingMode::ByValue),
                    ty::BindByReference(hir::Mutability::Mut) => (
                        Mutability::Not,
                        BindingMode::ByRef(BorrowKind::Mut { allow_two_phase_borrow: false }),
                    ),
                    ty::BindByReference(hir::Mutability::Not) => {
                        (Mutability::Not, BindingMode::ByRef(BorrowKind::Shared))
                    }
                };

                // A ref x pattern is the same node used for x, and as such it has
                // x's type, which is &T, where we want T (the type being matched).
                let var_ty = ty;
                if let ty::BindByReference(_) = bm {
                    if let ty::Ref(_, rty, _) = ty.kind() {
                        ty = rty;
                    } else {
                        bug!("`ref {}` has wrong type {}", ident, ty);
                    }
                };

                PatKind::Binding {
                    mutability,
                    mode,
                    name: ident.name,
                    var: id,
                    ty: var_ty,
                    subpattern: self.lower_opt_pattern(sub),
                    is_primary: id == pat.hir_id,
                }
            }

            hir::PatKind::TupleStruct(ref qpath, ref pats, ddpos) => {
                let res = self.typeck_results.qpath_res(qpath, pat.hir_id);
                let adt_def = match ty.kind() {
                    ty::Adt(adt_def, _) => adt_def,
                    _ => span_bug!(pat.span, "tuple struct pattern not applied to an ADT {:?}", ty),
                };
                let variant_def = adt_def.variant_of_res(res);
                let subpatterns = self.lower_tuple_subpats(pats, variant_def.fields.len(), ddpos);
                self.lower_variant_or_leaf(res, pat.hir_id, pat.span, ty, subpatterns)
            }

            hir::PatKind::Struct(ref qpath, ref fields, _) => {
                let res = self.typeck_results.qpath_res(qpath, pat.hir_id);
                let subpatterns = fields
                    .iter()
                    .map(|field| FieldPat {
                        field: Field::new(self.tcx.field_index(field.hir_id, self.typeck_results)),
                        pattern: self.lower_pattern(&field.pat),
                    })
                    .collect();

                self.lower_variant_or_leaf(res, pat.hir_id, pat.span, ty, subpatterns)
            }

            hir::PatKind::Or(ref pats) => PatKind::Or { pats: self.lower_patterns(pats) },
        };

        Pat { span: pat.span, ty, kind: Box::new(kind) }
    }

    fn lower_tuple_subpats(
        &mut self,
        pats: &'tcx [hir::Pat<'tcx>],
        expected_len: usize,
        gap_pos: Option<usize>,
    ) -> Vec<FieldPat<'tcx>> {
        pats.iter()
            .enumerate_and_adjust(expected_len, gap_pos)
            .map(|(i, subpattern)| FieldPat {
                field: Field::new(i),
                pattern: self.lower_pattern(subpattern),
            })
            .collect()
    }

    fn lower_patterns(&mut self, pats: &'tcx [hir::Pat<'tcx>]) -> Vec<Pat<'tcx>> {
        pats.iter().map(|p| self.lower_pattern(p)).collect()
    }

    fn lower_opt_pattern(&mut self, pat: &'tcx Option<&'tcx hir::Pat<'tcx>>) -> Option<Pat<'tcx>> {
        pat.as_ref().map(|p| self.lower_pattern(p))
    }

    fn slice_or_array_pattern(
        &mut self,
        span: Span,
        ty: Ty<'tcx>,
        prefix: &'tcx [hir::Pat<'tcx>],
        slice: &'tcx Option<&'tcx hir::Pat<'tcx>>,
        suffix: &'tcx [hir::Pat<'tcx>],
    ) -> PatKind<'tcx> {
        let prefix = self.lower_patterns(prefix);
        let slice = self.lower_opt_pattern(slice);
        let suffix = self.lower_patterns(suffix);
        match ty.kind() {
            // Matching a slice, `[T]`.
            ty::Slice(..) => PatKind::Slice { prefix, slice, suffix },
            // Fixed-length array, `[T; len]`.
            ty::Array(_, len) => {
                let len = len.eval_usize(self.tcx, self.param_env);
                assert!(len >= prefix.len() as u64 + suffix.len() as u64);
                PatKind::Array { prefix, slice, suffix }
            }
            _ => span_bug!(span, "bad slice pattern type {:?}", ty),
        }
    }

    fn lower_variant_or_leaf(
        &mut self,
        res: Res,
        hir_id: hir::HirId,
        span: Span,
        ty: Ty<'tcx>,
        subpatterns: Vec<FieldPat<'tcx>>,
    ) -> PatKind<'tcx> {
        let res = match res {
            Res::Def(DefKind::Ctor(CtorOf::Variant, ..), variant_ctor_id) => {
                let variant_id = self.tcx.parent(variant_ctor_id).unwrap();
                Res::Def(DefKind::Variant, variant_id)
            }
            res => res,
        };

        let mut kind = match res {
            Res::Def(DefKind::Variant, variant_id) => {
                let enum_id = self.tcx.parent(variant_id).unwrap();
                let adt_def = self.tcx.adt_def(enum_id);
                if adt_def.is_enum() {
                    let substs = match ty.kind() {
                        ty::Adt(_, substs) | ty::FnDef(_, substs) => substs,
                        ty::Error(_) => {
                            // Avoid ICE (#50585)
                            return PatKind::Wild;
                        }
                        _ => bug!("inappropriate type for def: {:?}", ty),
                    };
                    PatKind::Variant {
                        adt_def,
                        substs,
                        variant_index: adt_def.variant_index_with_id(variant_id),
                        subpatterns,
                    }
                } else {
                    PatKind::Leaf { subpatterns }
                }
            }

            Res::Def(
                DefKind::Struct
                | DefKind::Ctor(CtorOf::Struct, ..)
                | DefKind::Union
                | DefKind::TyAlias
                | DefKind::AssocTy,
                _,
            )
            | Res::SelfTy(..)
            | Res::SelfCtor(..) => PatKind::Leaf { subpatterns },
            _ => {
                let pattern_error = match res {
                    Res::Def(DefKind::ConstParam, _) => PatternError::ConstParamInPattern(span),
                    Res::Def(DefKind::Static, _) => PatternError::StaticInPattern(span),
                    _ => PatternError::NonConstPath(span),
                };
                self.errors.push(pattern_error);
                PatKind::Wild
            }
        };

        if let Some(user_ty) = self.user_substs_applied_to_ty_of_hir_id(hir_id) {
            debug!("lower_variant_or_leaf: kind={:?} user_ty={:?} span={:?}", kind, user_ty, span);
            kind = PatKind::AscribeUserType {
                subpattern: Pat { span, ty, kind: Box::new(kind) },
                ascription: Ascription {
                    user_ty: PatTyProj::from_user_type(user_ty),
                    user_ty_span: span,
                    variance: ty::Variance::Covariant,
                },
            };
        }

        kind
    }

    /// Takes a HIR Path. If the path is a constant, evaluates it and feeds
    /// it to `const_to_pat`. Any other path (like enum variants without fields)
    /// is converted to the corresponding pattern via `lower_variant_or_leaf`.
    fn lower_path(&mut self, qpath: &hir::QPath<'_>, id: hir::HirId, span: Span) -> Pat<'tcx> {
        let ty = self.typeck_results.node_type(id);
        let res = self.typeck_results.qpath_res(qpath, id);

        let pat_from_kind = |kind| Pat { span, ty, kind: Box::new(kind) };

        let (def_id, is_associated_const) = match res {
            Res::Def(DefKind::Const, def_id) => (def_id, false),
            Res::Def(DefKind::AssocConst, def_id) => (def_id, true),

            _ => return pat_from_kind(self.lower_variant_or_leaf(res, id, span, ty, vec![])),
        };

        // Use `Reveal::All` here because patterns are always monomorphic even if their function
        // isn't.
        let param_env_reveal_all = self.param_env.with_reveal_all_normalized(self.tcx);
        let substs = self.typeck_results.node_substs(id);
        let instance = match ty::Instance::resolve(self.tcx, param_env_reveal_all, def_id, substs) {
            Ok(Some(i)) => i,
            Ok(None) => {
                // It should be assoc consts if there's no error but we cannot resolve it.
                debug_assert!(is_associated_const);

                self.errors.push(PatternError::AssocConstInPattern(span));

                return pat_from_kind(PatKind::Wild);
            }

            Err(_) => {
                self.tcx.sess.span_err(span, "could not evaluate constant pattern");
                return pat_from_kind(PatKind::Wild);
            }
        };

        // `mir_const_qualif` must be called with the `DefId` of the item where the const is
        // defined, not where it is declared. The difference is significant for associated
        // constants.
        let mir_structural_match_violation = self.tcx.mir_const_qualif(instance.def_id()).custom_eq;
        debug!("mir_structural_match_violation({:?}) -> {}", qpath, mir_structural_match_violation);

        match self.tcx.const_eval_instance(param_env_reveal_all, instance, Some(span)) {
            Ok(value) => {
                let const_ =
                    ty::Const::from_value(self.tcx, value, self.typeck_results.node_type(id));

                let pattern = self.const_to_pat(&const_, id, span, mir_structural_match_violation);

                if !is_associated_const {
                    return pattern;
                }

                let user_provided_types = self.typeck_results().user_provided_types();
                if let Some(u_ty) = user_provided_types.get(id) {
                    let user_ty = PatTyProj::from_user_type(*u_ty);
                    Pat {
                        span,
                        kind: Box::new(PatKind::AscribeUserType {
                            subpattern: pattern,
                            ascription: Ascription {
                                /// Note that use `Contravariant` here. See the
                                /// `variance` field documentation for details.
                                variance: ty::Variance::Contravariant,
                                user_ty,
                                user_ty_span: span,
                            },
                        }),
                        ty: const_.ty,
                    }
                } else {
                    pattern
                }
            }
            Err(ErrorHandled::TooGeneric) => {
                // While `Reported | Linted` cases will have diagnostics emitted already
                // it is not true for TooGeneric case, so we need to give user more information.
                self.tcx.sess.span_err(span, "constant pattern depends on a generic parameter");
                pat_from_kind(PatKind::Wild)
            }
            Err(_) => {
                self.tcx.sess.span_err(span, "could not evaluate constant pattern");
                pat_from_kind(PatKind::Wild)
            }
        }
    }

    /// Converts literals, paths and negation of literals to patterns.
    /// The special case for negation exists to allow things like `-128_i8`
    /// which would overflow if we tried to evaluate `128_i8` and then negate
    /// afterwards.
    fn lower_lit(&mut self, expr: &'tcx hir::Expr<'tcx>) -> PatKind<'tcx> {
        if let hir::ExprKind::Path(ref qpath) = expr.kind {
            *self.lower_path(qpath, expr.hir_id, expr.span).kind
        } else {
            let (lit, neg) = match expr.kind {
                hir::ExprKind::ConstBlock(ref anon_const) => {
                    let anon_const_def_id = self.tcx.hir().local_def_id(anon_const.hir_id);
                    let value = ty::Const::from_inline_const(self.tcx, anon_const_def_id);
                    if matches!(value.val, ConstKind::Param(_)) {
                        let span = self.tcx.hir().span(anon_const.hir_id);
                        self.errors.push(PatternError::ConstParamInPattern(span));
                        return PatKind::Wild;
                    }
                    return *self.const_to_pat(value, expr.hir_id, expr.span, false).kind;
                }
                hir::ExprKind::Lit(ref lit) => (lit, false),
                hir::ExprKind::Unary(hir::UnOp::Neg, ref expr) => {
                    let lit = match expr.kind {
                        hir::ExprKind::Lit(ref lit) => lit,
                        _ => span_bug!(expr.span, "not a literal: {:?}", expr),
                    };
                    (lit, true)
                }
                _ => span_bug!(expr.span, "not a literal: {:?}", expr),
            };

            let lit_input =
                LitToConstInput { lit: &lit.node, ty: self.typeck_results.expr_ty(expr), neg };
            match self.tcx.at(expr.span).lit_to_const(lit_input) {
                Ok(val) => *self.const_to_pat(val, expr.hir_id, lit.span, false).kind,
                Err(LitToConstError::Reported) => PatKind::Wild,
                Err(LitToConstError::TypeError) => bug!("lower_lit: had type error"),
            }
        }
    }
}

impl<'tcx> UserAnnotatedTyHelpers<'tcx> for PatCtxt<'_, 'tcx> {
    fn tcx(&self) -> TyCtxt<'tcx> {
        self.tcx
    }

    fn typeck_results(&self) -> &ty::TypeckResults<'tcx> {
        self.typeck_results
    }
}

crate trait PatternFoldable<'tcx>: Sized {
    fn fold_with<F: PatternFolder<'tcx>>(&self, folder: &mut F) -> Self {
        self.super_fold_with(folder)
    }

    fn super_fold_with<F: PatternFolder<'tcx>>(&self, folder: &mut F) -> Self;
}

crate trait PatternFolder<'tcx>: Sized {
    fn fold_pattern(&mut self, pattern: &Pat<'tcx>) -> Pat<'tcx> {
        pattern.super_fold_with(self)
    }

    fn fold_pattern_kind(&mut self, kind: &PatKind<'tcx>) -> PatKind<'tcx> {
        kind.super_fold_with(self)
    }
}

impl<'tcx, T: PatternFoldable<'tcx>> PatternFoldable<'tcx> for Box<T> {
    fn super_fold_with<F: PatternFolder<'tcx>>(&self, folder: &mut F) -> Self {
        let content: T = (**self).fold_with(folder);
        Box::new(content)
    }
}

impl<'tcx, T: PatternFoldable<'tcx>> PatternFoldable<'tcx> for Vec<T> {
    fn super_fold_with<F: PatternFolder<'tcx>>(&self, folder: &mut F) -> Self {
        self.iter().map(|t| t.fold_with(folder)).collect()
    }
}

impl<'tcx, T: PatternFoldable<'tcx>> PatternFoldable<'tcx> for Option<T> {
    fn super_fold_with<F: PatternFolder<'tcx>>(&self, folder: &mut F) -> Self {
        self.as_ref().map(|t| t.fold_with(folder))
    }
}

macro_rules! CloneImpls {
    (<$lt_tcx:tt> $($ty:ty),+) => {
        $(
            impl<$lt_tcx> PatternFoldable<$lt_tcx> for $ty {
                fn super_fold_with<F: PatternFolder<$lt_tcx>>(&self, _: &mut F) -> Self {
                    Clone::clone(self)
                }
            }
        )+
    }
}

CloneImpls! { <'tcx>
    Span, Field, Mutability, Symbol, hir::HirId, usize, ty::Const<'tcx>,
    Region<'tcx>, Ty<'tcx>, BindingMode, &'tcx AdtDef,
    SubstsRef<'tcx>, &'tcx GenericArg<'tcx>, UserType<'tcx>,
    UserTypeProjection, PatTyProj<'tcx>
}

impl<'tcx> PatternFoldable<'tcx> for FieldPat<'tcx> {
    fn super_fold_with<F: PatternFolder<'tcx>>(&self, folder: &mut F) -> Self {
        FieldPat { field: self.field.fold_with(folder), pattern: self.pattern.fold_with(folder) }
    }
}

impl<'tcx> PatternFoldable<'tcx> for Pat<'tcx> {
    fn fold_with<F: PatternFolder<'tcx>>(&self, folder: &mut F) -> Self {
        folder.fold_pattern(self)
    }

    fn super_fold_with<F: PatternFolder<'tcx>>(&self, folder: &mut F) -> Self {
        Pat {
            ty: self.ty.fold_with(folder),
            span: self.span.fold_with(folder),
            kind: self.kind.fold_with(folder),
        }
    }
}

impl<'tcx> PatternFoldable<'tcx> for PatKind<'tcx> {
    fn fold_with<F: PatternFolder<'tcx>>(&self, folder: &mut F) -> Self {
        folder.fold_pattern_kind(self)
    }

    fn super_fold_with<F: PatternFolder<'tcx>>(&self, folder: &mut F) -> Self {
        match *self {
            PatKind::Wild => PatKind::Wild,
            PatKind::AscribeUserType {
                ref subpattern,
                ascription: Ascription { variance, ref user_ty, user_ty_span },
            } => PatKind::AscribeUserType {
                subpattern: subpattern.fold_with(folder),
                ascription: Ascription {
                    user_ty: user_ty.fold_with(folder),
                    variance,
                    user_ty_span,
                },
            },
            PatKind::Binding { mutability, name, mode, var, ty, ref subpattern, is_primary } => {
                PatKind::Binding {
                    mutability: mutability.fold_with(folder),
                    name: name.fold_with(folder),
                    mode: mode.fold_with(folder),
                    var: var.fold_with(folder),
                    ty: ty.fold_with(folder),
                    subpattern: subpattern.fold_with(folder),
                    is_primary,
                }
            }
            PatKind::Variant { adt_def, substs, variant_index, ref subpatterns } => {
                PatKind::Variant {
                    adt_def: adt_def.fold_with(folder),
                    substs: substs.fold_with(folder),
                    variant_index,
                    subpatterns: subpatterns.fold_with(folder),
                }
            }
            PatKind::Leaf { ref subpatterns } => {
                PatKind::Leaf { subpatterns: subpatterns.fold_with(folder) }
            }
            PatKind::Deref { ref subpattern } => {
                PatKind::Deref { subpattern: subpattern.fold_with(folder) }
            }
            PatKind::Constant { value } => PatKind::Constant { value },
            PatKind::Range(range) => PatKind::Range(range),
            PatKind::Slice { ref prefix, ref slice, ref suffix } => PatKind::Slice {
                prefix: prefix.fold_with(folder),
                slice: slice.fold_with(folder),
                suffix: suffix.fold_with(folder),
            },
            PatKind::Array { ref prefix, ref slice, ref suffix } => PatKind::Array {
                prefix: prefix.fold_with(folder),
                slice: slice.fold_with(folder),
                suffix: suffix.fold_with(folder),
            },
            PatKind::Or { ref pats } => PatKind::Or { pats: pats.fold_with(folder) },
        }
    }
}

crate fn compare_const_vals<'tcx>(
    tcx: TyCtxt<'tcx>,
    a: &'tcx ty::Const<'tcx>,
    b: &'tcx ty::Const<'tcx>,
    param_env: ty::ParamEnv<'tcx>,
    ty: Ty<'tcx>,
) -> Option<Ordering> {
    trace!("compare_const_vals: {:?}, {:?}", a, b);

    let from_bool = |v: bool| v.then_some(Ordering::Equal);

    let fallback = || from_bool(a == b);

    // Use the fallback if any type differs
    if a.ty != b.ty || a.ty != ty {
        return fallback();
    }

    // Early return for equal constants (so e.g. references to ZSTs can be compared, even if they
    // are just integer addresses).
    if a.val == b.val {
        return from_bool(true);
    }

    let a_bits = a.try_eval_bits(tcx, param_env, ty);
    let b_bits = b.try_eval_bits(tcx, param_env, ty);

    if let (Some(a), Some(b)) = (a_bits, b_bits) {
        use rustc_apfloat::Float;
        return match *ty.kind() {
            ty::Float(ty::FloatTy::F32) => {
                let l = rustc_apfloat::ieee::Single::from_bits(a);
                let r = rustc_apfloat::ieee::Single::from_bits(b);
                l.partial_cmp(&r)
            }
            ty::Float(ty::FloatTy::F64) => {
                let l = rustc_apfloat::ieee::Double::from_bits(a);
                let r = rustc_apfloat::ieee::Double::from_bits(b);
                l.partial_cmp(&r)
            }
            ty::Int(ity) => {
                use rustc_middle::ty::layout::IntegerExt;
                let size = rustc_target::abi::Integer::from_int_ty(&tcx, ity).size();
                let a = size.sign_extend(a);
                let b = size.sign_extend(b);
                Some((a as i128).cmp(&(b as i128)))
            }
            _ => Some(a.cmp(&b)),
        };
    }

    if let ty::Str = ty.kind() {
        if let (
            ty::ConstKind::Value(a_val @ ConstValue::Slice { .. }),
            ty::ConstKind::Value(b_val @ ConstValue::Slice { .. }),
        ) = (a.val, b.val)
        {
            let a_bytes = get_slice_bytes(&tcx, a_val);
            let b_bytes = get_slice_bytes(&tcx, b_val);
            return from_bool(a_bytes == b_bytes);
        }
    }
    fallback()
}