rustc_hir_typeck/fn_ctxt/checks.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744
use std::{iter, mem};
use itertools::Itertools;
use rustc_data_structures::fx::FxIndexSet;
use rustc_errors::codes::*;
use rustc_errors::{
Applicability, Diag, ErrorGuaranteed, MultiSpan, StashKey, a_or_an,
display_list_with_comma_and, pluralize,
};
use rustc_hir::def::{CtorOf, DefKind, Res};
use rustc_hir::def_id::DefId;
use rustc_hir::intravisit::Visitor;
use rustc_hir::{ExprKind, HirId, Node, QPath};
use rustc_hir_analysis::check::intrinsicck::InlineAsmCtxt;
use rustc_hir_analysis::check::potentially_plural_count;
use rustc_hir_analysis::hir_ty_lowering::HirTyLowerer;
use rustc_index::IndexVec;
use rustc_infer::infer::{DefineOpaqueTypes, InferOk, TypeTrace};
use rustc_middle::ty::adjustment::AllowTwoPhase;
use rustc_middle::ty::error::TypeError;
use rustc_middle::ty::visit::TypeVisitableExt;
use rustc_middle::ty::{self, IsSuggestable, Ty, TyCtxt};
use rustc_middle::{bug, span_bug};
use rustc_session::Session;
use rustc_span::symbol::{Ident, kw};
use rustc_span::{DUMMY_SP, Span, sym};
use rustc_trait_selection::error_reporting::infer::{FailureCode, ObligationCauseExt};
use rustc_trait_selection::infer::InferCtxtExt;
use rustc_trait_selection::traits::{self, ObligationCauseCode, ObligationCtxt, SelectionContext};
use tracing::debug;
use {rustc_ast as ast, rustc_hir as hir};
use crate::Expectation::*;
use crate::TupleArgumentsFlag::*;
use crate::coercion::CoerceMany;
use crate::errors::SuggestPtrNullMut;
use crate::fn_ctxt::arg_matrix::{ArgMatrix, Compatibility, Error, ExpectedIdx, ProvidedIdx};
use crate::fn_ctxt::infer::FnCall;
use crate::gather_locals::Declaration;
use crate::method::MethodCallee;
use crate::method::probe::IsSuggestion;
use crate::method::probe::Mode::MethodCall;
use crate::method::probe::ProbeScope::TraitsInScope;
use crate::{
BreakableCtxt, Diverges, Expectation, FnCtxt, LoweredTy, Needs, TupleArgumentsFlag, errors,
struct_span_code_err,
};
#[derive(Clone, Copy, Default)]
pub(crate) enum DivergingBlockBehavior {
/// This is the current stable behavior:
///
/// ```rust
/// {
/// return;
/// } // block has type = !, even though we are supposedly dropping it with `;`
/// ```
#[default]
Never,
/// Alternative behavior:
///
/// ```ignore (very-unstable-new-attribute)
/// #![rustc_never_type_options(diverging_block_default = "unit")]
/// {
/// return;
/// } // block has type = (), since we are dropping `!` from `return` with `;`
/// ```
Unit,
}
impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
pub(in super::super) fn check_casts(&mut self) {
// don't hold the borrow to deferred_cast_checks while checking to avoid borrow checker errors
// when writing to `self.param_env`.
let mut deferred_cast_checks = mem::take(&mut *self.deferred_cast_checks.borrow_mut());
debug!("FnCtxt::check_casts: {} deferred checks", deferred_cast_checks.len());
for cast in deferred_cast_checks.drain(..) {
cast.check(self);
}
*self.deferred_cast_checks.borrow_mut() = deferred_cast_checks;
}
pub(in super::super) fn check_transmutes(&self) {
let mut deferred_transmute_checks = self.deferred_transmute_checks.borrow_mut();
debug!("FnCtxt::check_transmutes: {} deferred checks", deferred_transmute_checks.len());
for (from, to, hir_id) in deferred_transmute_checks.drain(..) {
self.check_transmute(from, to, hir_id);
}
}
pub(in super::super) fn check_asms(&self) {
let mut deferred_asm_checks = self.deferred_asm_checks.borrow_mut();
debug!("FnCtxt::check_asm: {} deferred checks", deferred_asm_checks.len());
for (asm, hir_id) in deferred_asm_checks.drain(..) {
let enclosing_id = self.tcx.hir().enclosing_body_owner(hir_id);
let get_operand_ty = |expr| {
let ty = self.typeck_results.borrow().expr_ty_adjusted(expr);
let ty = self.resolve_vars_if_possible(ty);
if ty.has_non_region_infer() {
Ty::new_misc_error(self.tcx)
} else {
self.tcx.erase_regions(ty)
}
};
InlineAsmCtxt::new_in_fn(
self.tcx,
self.infcx.typing_env(self.param_env),
get_operand_ty,
)
.check_asm(asm, enclosing_id);
}
}
pub(in super::super) fn check_method_argument_types(
&self,
sp: Span,
expr: &'tcx hir::Expr<'tcx>,
method: Result<MethodCallee<'tcx>, ErrorGuaranteed>,
args_no_rcvr: &'tcx [hir::Expr<'tcx>],
tuple_arguments: TupleArgumentsFlag,
expected: Expectation<'tcx>,
) -> Ty<'tcx> {
let has_error = match method {
Ok(method) => method.args.error_reported().and(method.sig.error_reported()),
Err(guar) => Err(guar),
};
if let Err(guar) = has_error {
let err_inputs = self.err_args(args_no_rcvr.len(), guar);
let err_output = Ty::new_error(self.tcx, guar);
let err_inputs = match tuple_arguments {
DontTupleArguments => err_inputs,
TupleArguments => vec![Ty::new_tup(self.tcx, &err_inputs)],
};
self.check_argument_types(
sp,
expr,
&err_inputs,
err_output,
NoExpectation,
args_no_rcvr,
false,
tuple_arguments,
method.ok().map(|method| method.def_id),
);
return err_output;
}
let method = method.unwrap();
self.check_argument_types(
sp,
expr,
&method.sig.inputs()[1..],
method.sig.output(),
expected,
args_no_rcvr,
method.sig.c_variadic,
tuple_arguments,
Some(method.def_id),
);
method.sig.output()
}
/// Generic function that factors out common logic from function calls,
/// method calls and overloaded operators.
pub(in super::super) fn check_argument_types(
&self,
// Span enclosing the call site
call_span: Span,
// Expression of the call site
call_expr: &'tcx hir::Expr<'tcx>,
// Types (as defined in the *signature* of the target function)
formal_input_tys: &[Ty<'tcx>],
formal_output: Ty<'tcx>,
// Expected output from the parent expression or statement
expectation: Expectation<'tcx>,
// The expressions for each provided argument
provided_args: &'tcx [hir::Expr<'tcx>],
// Whether the function is variadic, for example when imported from C
c_variadic: bool,
// Whether the arguments have been bundled in a tuple (ex: closures)
tuple_arguments: TupleArgumentsFlag,
// The DefId for the function being called, for better error messages
fn_def_id: Option<DefId>,
) {
let tcx = self.tcx;
// Conceptually, we've got some number of expected inputs, and some number of provided arguments
// and we can form a grid of whether each argument could satisfy a given input:
// in1 | in2 | in3 | ...
// arg1 ? | | |
// arg2 | ? | |
// arg3 | | ? |
// ...
// Initially, we just check the diagonal, because in the case of correct code
// these are the only checks that matter
// However, in the unhappy path, we'll fill in this whole grid to attempt to provide
// better error messages about invalid method calls.
// All the input types from the fn signature must outlive the call
// so as to validate implied bounds.
for (&fn_input_ty, arg_expr) in iter::zip(formal_input_tys, provided_args) {
self.register_wf_obligation(
fn_input_ty.into(),
arg_expr.span,
ObligationCauseCode::Misc,
);
}
// First, let's unify the formal method signature with the expectation eagerly.
// We use this to guide coercion inference; it's output is "fudged" which means
// any remaining type variables are assigned to new, unrelated variables. This
// is because the inference guidance here is only speculative.
let formal_output = self.resolve_vars_with_obligations(formal_output);
let expected_input_tys: Option<Vec<_>> = expectation
.only_has_type(self)
.and_then(|expected_output| {
self.fudge_inference_if_ok(|| {
let ocx = ObligationCtxt::new(self);
// Attempt to apply a subtyping relationship between the formal
// return type (likely containing type variables if the function
// is polymorphic) and the expected return type.
// No argument expectations are produced if unification fails.
let origin = self.misc(call_span);
ocx.sup(&origin, self.param_env, expected_output, formal_output)?;
if !ocx.select_where_possible().is_empty() {
return Err(TypeError::Mismatch);
}
// Record all the argument types, with the args
// produced from the above subtyping unification.
Ok(Some(
formal_input_tys
.iter()
.map(|&ty| self.resolve_vars_if_possible(ty))
.collect(),
))
})
.ok()
})
.unwrap_or_default();
let mut err_code = E0061;
// If the arguments should be wrapped in a tuple (ex: closures), unwrap them here
let (formal_input_tys, expected_input_tys) = if tuple_arguments == TupleArguments {
let tuple_type = self.structurally_resolve_type(call_span, formal_input_tys[0]);
match tuple_type.kind() {
// We expected a tuple and got a tuple
ty::Tuple(arg_types) => {
// Argument length differs
if arg_types.len() != provided_args.len() {
err_code = E0057;
}
let expected_input_tys = match expected_input_tys {
Some(expected_input_tys) => match expected_input_tys.get(0) {
Some(ty) => match ty.kind() {
ty::Tuple(tys) => Some(tys.iter().collect()),
_ => None,
},
None => None,
},
None => None,
};
(arg_types.iter().collect(), expected_input_tys)
}
_ => {
// Otherwise, there's a mismatch, so clear out what we're expecting, and set
// our input types to err_args so we don't blow up the error messages
let guar = struct_span_code_err!(
self.dcx(),
call_span,
E0059,
"cannot use call notation; the first type parameter \
for the function trait is neither a tuple nor unit"
)
.emit();
(self.err_args(provided_args.len(), guar), None)
}
}
} else {
(formal_input_tys.to_vec(), expected_input_tys)
};
// If there are no external expectations at the call site, just use the types from the function defn
let expected_input_tys = if let Some(expected_input_tys) = expected_input_tys {
assert_eq!(expected_input_tys.len(), formal_input_tys.len());
expected_input_tys
} else {
formal_input_tys.clone()
};
let minimum_input_count = expected_input_tys.len();
let provided_arg_count = provided_args.len();
// We introduce a helper function to demand that a given argument satisfy a given input
// This is more complicated than just checking type equality, as arguments could be coerced
// This version writes those types back so further type checking uses the narrowed types
let demand_compatible = |idx| {
let formal_input_ty: Ty<'tcx> = formal_input_tys[idx];
let expected_input_ty: Ty<'tcx> = expected_input_tys[idx];
let provided_arg = &provided_args[idx];
debug!("checking argument {}: {:?} = {:?}", idx, provided_arg, formal_input_ty);
// We're on the happy path here, so we'll do a more involved check and write back types
// To check compatibility, we'll do 3 things:
// 1. Unify the provided argument with the expected type
let expectation = Expectation::rvalue_hint(self, expected_input_ty);
let checked_ty = self.check_expr_with_expectation(provided_arg, expectation);
// 2. Coerce to the most detailed type that could be coerced
// to, which is `expected_ty` if `rvalue_hint` returns an
// `ExpectHasType(expected_ty)`, or the `formal_ty` otherwise.
let coerced_ty = expectation.only_has_type(self).unwrap_or(formal_input_ty);
// Cause selection errors caused by resolving a single argument to point at the
// argument and not the call. This lets us customize the span pointed to in the
// fulfillment error to be more accurate.
let coerced_ty = self.resolve_vars_with_obligations(coerced_ty);
let coerce_error =
self.coerce(provided_arg, checked_ty, coerced_ty, AllowTwoPhase::Yes, None).err();
if coerce_error.is_some() {
return Compatibility::Incompatible(coerce_error);
}
// 3. Check if the formal type is actually equal to the checked one
// and register any such obligations for future type checks.
let formal_ty_error = self.at(&self.misc(provided_arg.span), self.param_env).eq(
DefineOpaqueTypes::Yes,
formal_input_ty,
coerced_ty,
);
// If neither check failed, the types are compatible
match formal_ty_error {
Ok(InferOk { obligations, value: () }) => {
self.register_predicates(obligations);
Compatibility::Compatible
}
Err(err) => Compatibility::Incompatible(Some(err)),
}
};
// To start, we only care "along the diagonal", where we expect every
// provided arg to be in the right spot
let mut compatibility_diagonal =
vec![Compatibility::Incompatible(None); provided_args.len()];
// Keep track of whether we *could possibly* be satisfied, i.e. whether we're on the happy path
// if the wrong number of arguments were supplied, we CAN'T be satisfied,
// and if we're c_variadic, the supplied arguments must be >= the minimum count from the function
// otherwise, they need to be identical, because rust doesn't currently support variadic functions
let mut call_appears_satisfied = if c_variadic {
provided_arg_count >= minimum_input_count
} else {
provided_arg_count == minimum_input_count
};
// Check the arguments.
// We do this in a pretty awful way: first we type-check any arguments
// that are not closures, then we type-check the closures. This is so
// that we have more information about the types of arguments when we
// type-check the functions. This isn't really the right way to do this.
for check_closures in [false, true] {
// More awful hacks: before we check argument types, try to do
// an "opportunistic" trait resolution of any trait bounds on
// the call. This helps coercions.
if check_closures {
self.select_obligations_where_possible(|_| {})
}
// Check each argument, to satisfy the input it was provided for
// Visually, we're traveling down the diagonal of the compatibility matrix
for (idx, arg) in provided_args.iter().enumerate() {
// Warn only for the first loop (the "no closures" one).
// Closure arguments themselves can't be diverging, but
// a previous argument can, e.g., `foo(panic!(), || {})`.
if !check_closures {
self.warn_if_unreachable(arg.hir_id, arg.span, "expression");
}
// For C-variadic functions, we don't have a declared type for all of
// the arguments hence we only do our usual type checking with
// the arguments who's types we do know. However, we *can* check
// for unreachable expressions (see above).
// FIXME: unreachable warning current isn't emitted
if idx >= minimum_input_count {
continue;
}
// For this check, we do *not* want to treat async coroutine closures (async blocks)
// as proper closures. Doing so would regress type inference when feeding
// the return value of an argument-position async block to an argument-position
// closure wrapped in a block.
// See <https://github.com/rust-lang/rust/issues/112225>.
let is_closure = if let ExprKind::Closure(closure) = arg.kind {
!tcx.coroutine_is_async(closure.def_id.to_def_id())
} else {
false
};
if is_closure != check_closures {
continue;
}
let compatible = demand_compatible(idx);
let is_compatible = matches!(compatible, Compatibility::Compatible);
compatibility_diagonal[idx] = compatible;
if !is_compatible {
call_appears_satisfied = false;
}
}
}
if c_variadic && provided_arg_count < minimum_input_count {
err_code = E0060;
}
for arg in provided_args.iter().skip(minimum_input_count) {
// Make sure we've checked this expr at least once.
let arg_ty = self.check_expr(arg);
// If the function is c-style variadic, we skipped a bunch of arguments
// so we need to check those, and write out the types
// Ideally this would be folded into the above, for uniform style
// but c-variadic is already a corner case
if c_variadic {
fn variadic_error<'tcx>(
sess: &'tcx Session,
span: Span,
ty: Ty<'tcx>,
cast_ty: &str,
) {
sess.dcx().emit_err(errors::PassToVariadicFunction {
span,
ty,
cast_ty,
sugg_span: span.shrink_to_hi(),
teach: sess.teach(E0617),
});
}
// There are a few types which get autopromoted when passed via varargs
// in C but we just error out instead and require explicit casts.
let arg_ty = self.structurally_resolve_type(arg.span, arg_ty);
match arg_ty.kind() {
ty::Float(ty::FloatTy::F32) => {
variadic_error(tcx.sess, arg.span, arg_ty, "c_double");
}
ty::Int(ty::IntTy::I8 | ty::IntTy::I16) | ty::Bool => {
variadic_error(tcx.sess, arg.span, arg_ty, "c_int");
}
ty::Uint(ty::UintTy::U8 | ty::UintTy::U16) => {
variadic_error(tcx.sess, arg.span, arg_ty, "c_uint");
}
ty::FnDef(..) => {
let fn_ptr = Ty::new_fn_ptr(self.tcx, arg_ty.fn_sig(self.tcx));
let fn_ptr = self.resolve_vars_if_possible(fn_ptr).to_string();
let fn_item_spa = arg.span;
tcx.sess.dcx().emit_err(errors::PassFnItemToVariadicFunction {
span: fn_item_spa,
sugg_span: fn_item_spa.shrink_to_hi(),
replace: fn_ptr,
});
}
_ => {}
}
}
}
if !call_appears_satisfied {
let compatibility_diagonal = IndexVec::from_raw(compatibility_diagonal);
let provided_args = IndexVec::from_iter(provided_args.iter().take(if c_variadic {
minimum_input_count
} else {
provided_arg_count
}));
debug_assert_eq!(
formal_input_tys.len(),
expected_input_tys.len(),
"expected formal_input_tys to be the same size as expected_input_tys"
);
let formal_and_expected_inputs = IndexVec::from_iter(
formal_input_tys
.iter()
.copied()
.zip_eq(expected_input_tys.iter().copied())
.map(|vars| self.resolve_vars_if_possible(vars)),
);
self.report_arg_errors(
compatibility_diagonal,
formal_and_expected_inputs,
provided_args,
c_variadic,
err_code,
fn_def_id,
call_span,
call_expr,
tuple_arguments,
);
}
}
fn report_arg_errors(
&self,
compatibility_diagonal: IndexVec<ProvidedIdx, Compatibility<'tcx>>,
formal_and_expected_inputs: IndexVec<ExpectedIdx, (Ty<'tcx>, Ty<'tcx>)>,
provided_args: IndexVec<ProvidedIdx, &'tcx hir::Expr<'tcx>>,
c_variadic: bool,
err_code: ErrCode,
fn_def_id: Option<DefId>,
call_span: Span,
call_expr: &'tcx hir::Expr<'tcx>,
tuple_arguments: TupleArgumentsFlag,
) -> ErrorGuaranteed {
// Next, let's construct the error
let (error_span, call_ident, full_call_span, call_name, is_method) = match &call_expr.kind {
hir::ExprKind::Call(
hir::Expr { hir_id, span, kind: hir::ExprKind::Path(qpath), .. },
_,
) => {
if let Res::Def(DefKind::Ctor(of, _), _) =
self.typeck_results.borrow().qpath_res(qpath, *hir_id)
{
let name = match of {
CtorOf::Struct => "struct",
CtorOf::Variant => "enum variant",
};
(call_span, None, *span, name, false)
} else {
(call_span, None, *span, "function", false)
}
}
hir::ExprKind::Call(hir::Expr { span, .. }, _) => {
(call_span, None, *span, "function", false)
}
hir::ExprKind::MethodCall(path_segment, _, _, span) => {
let ident_span = path_segment.ident.span;
let ident_span = if let Some(args) = path_segment.args {
ident_span.with_hi(args.span_ext.hi())
} else {
ident_span
};
(*span, Some(path_segment.ident), ident_span, "method", true)
}
k => span_bug!(call_span, "checking argument types on a non-call: `{:?}`", k),
};
let args_span = error_span.trim_start(full_call_span).unwrap_or(error_span);
// Don't print if it has error types or is just plain `_`
fn has_error_or_infer<'tcx>(tys: impl IntoIterator<Item = Ty<'tcx>>) -> bool {
tys.into_iter().any(|ty| ty.references_error() || ty.is_ty_var())
}
let tcx = self.tcx;
// Get the argument span in the context of the call span so that
// suggestions and labels are (more) correct when an arg is a
// macro invocation.
let normalize_span = |span: Span| -> Span {
let normalized_span = span.find_ancestor_inside_same_ctxt(error_span).unwrap_or(span);
// Sometimes macros mess up the spans, so do not normalize the
// arg span to equal the error span, because that's less useful
// than pointing out the arg expr in the wrong context.
if normalized_span.source_equal(error_span) { span } else { normalized_span }
};
// Precompute the provided types and spans, since that's all we typically need for below
let provided_arg_tys: IndexVec<ProvidedIdx, (Ty<'tcx>, Span)> = provided_args
.iter()
.map(|expr| {
let ty = self
.typeck_results
.borrow()
.expr_ty_adjusted_opt(*expr)
.unwrap_or_else(|| Ty::new_misc_error(tcx));
(self.resolve_vars_if_possible(ty), normalize_span(expr.span))
})
.collect();
let callee_expr = match &call_expr.peel_blocks().kind {
hir::ExprKind::Call(callee, _) => Some(*callee),
hir::ExprKind::MethodCall(_, receiver, ..) => {
if let Some((DefKind::AssocFn, def_id)) =
self.typeck_results.borrow().type_dependent_def(call_expr.hir_id)
&& let Some(assoc) = tcx.opt_associated_item(def_id)
&& assoc.fn_has_self_parameter
{
Some(*receiver)
} else {
None
}
}
_ => None,
};
let callee_ty = callee_expr
.and_then(|callee_expr| self.typeck_results.borrow().expr_ty_adjusted_opt(callee_expr));
// Obtain another method on `Self` that have similar name.
let similar_assoc = |call_name: Ident| -> Option<(ty::AssocItem, ty::FnSig<'_>)> {
if let Some(callee_ty) = callee_ty
&& let Ok(Some(assoc)) = self.probe_op(
call_name.span,
MethodCall,
Some(call_name),
None,
IsSuggestion(true),
callee_ty.peel_refs(),
callee_expr.unwrap().hir_id,
TraitsInScope,
|mut ctxt| ctxt.probe_for_similar_candidate(),
)
&& let ty::AssocKind::Fn = assoc.kind
&& assoc.fn_has_self_parameter
{
let args = self.infcx.fresh_args_for_item(call_name.span, assoc.def_id);
let fn_sig = tcx.fn_sig(assoc.def_id).instantiate(tcx, args);
self.instantiate_binder_with_fresh_vars(call_name.span, FnCall, fn_sig);
}
None
};
let suggest_confusable = |err: &mut Diag<'_>| {
let Some(call_name) = call_ident else {
return;
};
let Some(callee_ty) = callee_ty else {
return;
};
let input_types: Vec<Ty<'_>> = provided_arg_tys.iter().map(|(ty, _)| *ty).collect();
// Check for other methods in the following order
// - methods marked as `rustc_confusables` with the provided arguments
// - methods with the same argument type/count and short levenshtein distance
// - methods marked as `rustc_confusables` (done)
// - methods with short levenshtein distance
// Look for commonly confusable method names considering arguments.
if let Some(_name) = self.confusable_method_name(
err,
callee_ty.peel_refs(),
call_name,
Some(input_types.clone()),
) {
return;
}
// Look for method names with short levenshtein distance, considering arguments.
if let Some((assoc, fn_sig)) = similar_assoc(call_name)
&& fn_sig.inputs()[1..]
.iter()
.zip(input_types.iter())
.all(|(expected, found)| self.may_coerce(*expected, *found))
&& fn_sig.inputs()[1..].len() == input_types.len()
{
err.span_suggestion_verbose(
call_name.span,
format!("you might have meant to use `{}`", assoc.name),
assoc.name,
Applicability::MaybeIncorrect,
);
return;
}
// Look for commonly confusable method names disregarding arguments.
if let Some(_name) =
self.confusable_method_name(err, callee_ty.peel_refs(), call_name, None)
{
return;
}
// Look for similarly named methods with levenshtein distance with the right
// number of arguments.
if let Some((assoc, fn_sig)) = similar_assoc(call_name)
&& fn_sig.inputs()[1..].len() == input_types.len()
{
err.span_note(
tcx.def_span(assoc.def_id),
format!(
"there's is a method with similar name `{}`, but the arguments don't match",
assoc.name,
),
);
return;
}
// Fallthrough: look for similarly named methods with levenshtein distance.
if let Some((assoc, _)) = similar_assoc(call_name) {
err.span_note(
tcx.def_span(assoc.def_id),
format!(
"there's is a method with similar name `{}`, but their argument count \
doesn't match",
assoc.name,
),
);
return;
}
};
// A "softer" version of the `demand_compatible`, which checks types without persisting them,
// and treats error types differently
// This will allow us to "probe" for other argument orders that would likely have been correct
let check_compatible = |provided_idx: ProvidedIdx, expected_idx: ExpectedIdx| {
if provided_idx.as_usize() == expected_idx.as_usize() {
return compatibility_diagonal[provided_idx].clone();
}
let (formal_input_ty, expected_input_ty) = formal_and_expected_inputs[expected_idx];
// If either is an error type, we defy the usual convention and consider them to *not* be
// coercible. This prevents our error message heuristic from trying to pass errors into
// every argument.
if (formal_input_ty, expected_input_ty).references_error() {
return Compatibility::Incompatible(None);
}
let (arg_ty, arg_span) = provided_arg_tys[provided_idx];
let expectation = Expectation::rvalue_hint(self, expected_input_ty);
let coerced_ty = expectation.only_has_type(self).unwrap_or(formal_input_ty);
let can_coerce = self.may_coerce(arg_ty, coerced_ty);
if !can_coerce {
return Compatibility::Incompatible(Some(ty::error::TypeError::Sorts(
ty::error::ExpectedFound::new(coerced_ty, arg_ty),
)));
}
// Using probe here, since we don't want this subtyping to affect inference.
let subtyping_error = self.probe(|_| {
self.at(&self.misc(arg_span), self.param_env)
.sup(DefineOpaqueTypes::Yes, formal_input_ty, coerced_ty)
.err()
});
// Same as above: if either the coerce type or the checked type is an error type,
// consider them *not* compatible.
let references_error = (coerced_ty, arg_ty).references_error();
match (references_error, subtyping_error) {
(false, None) => Compatibility::Compatible,
(_, subtyping_error) => Compatibility::Incompatible(subtyping_error),
}
};
let mk_trace = |span, (formal_ty, expected_ty), provided_ty| {
let mismatched_ty = if expected_ty == provided_ty {
// If expected == provided, then we must have failed to sup
// the formal type. Avoid printing out "expected Ty, found Ty"
// in that case.
formal_ty
} else {
expected_ty
};
TypeTrace::types(&self.misc(span), mismatched_ty, provided_ty)
};
// The algorithm here is inspired by levenshtein distance and longest common subsequence.
// We'll try to detect 4 different types of mistakes:
// - An extra parameter has been provided that doesn't satisfy *any* of the other inputs
// - An input is missing, which isn't satisfied by *any* of the other arguments
// - Some number of arguments have been provided in the wrong order
// - A type is straight up invalid
// First, let's find the errors
let (mut errors, matched_inputs) =
ArgMatrix::new(provided_args.len(), formal_and_expected_inputs.len(), check_compatible)
.find_errors();
// First, check if we just need to wrap some arguments in a tuple.
if let Some((mismatch_idx, terr)) =
compatibility_diagonal.iter().enumerate().find_map(|(i, c)| {
if let Compatibility::Incompatible(Some(terr)) = c {
Some((i, *terr))
} else {
None
}
})
{
// Is the first bad expected argument a tuple?
// Do we have as many extra provided arguments as the tuple's length?
// If so, we might have just forgotten to wrap some args in a tuple.
if let Some(ty::Tuple(tys)) =
formal_and_expected_inputs.get(mismatch_idx.into()).map(|tys| tys.1.kind())
// If the tuple is unit, we're not actually wrapping any arguments.
&& !tys.is_empty()
&& provided_arg_tys.len() == formal_and_expected_inputs.len() - 1 + tys.len()
{
// Wrap up the N provided arguments starting at this position in a tuple.
let provided_as_tuple = Ty::new_tup_from_iter(
tcx,
provided_arg_tys.iter().map(|(ty, _)| *ty).skip(mismatch_idx).take(tys.len()),
);
let mut satisfied = true;
// Check if the newly wrapped tuple + rest of the arguments are compatible.
for ((_, expected_ty), provided_ty) in std::iter::zip(
formal_and_expected_inputs.iter().skip(mismatch_idx),
[provided_as_tuple].into_iter().chain(
provided_arg_tys.iter().map(|(ty, _)| *ty).skip(mismatch_idx + tys.len()),
),
) {
if !self.may_coerce(provided_ty, *expected_ty) {
satisfied = false;
break;
}
}
// If they're compatible, suggest wrapping in an arg, and we're done!
// Take some care with spans, so we don't suggest wrapping a macro's
// innards in parenthesis, for example.
if satisfied
&& let Some((_, lo)) =
provided_arg_tys.get(ProvidedIdx::from_usize(mismatch_idx))
&& let Some((_, hi)) =
provided_arg_tys.get(ProvidedIdx::from_usize(mismatch_idx + tys.len() - 1))
{
let mut err;
if tys.len() == 1 {
// A tuple wrap suggestion actually occurs within,
// so don't do anything special here.
err = self.err_ctxt().report_and_explain_type_error(
mk_trace(
*lo,
formal_and_expected_inputs[mismatch_idx.into()],
provided_arg_tys[mismatch_idx.into()].0,
),
self.param_env,
terr,
);
err.span_label(
full_call_span,
format!("arguments to this {call_name} are incorrect"),
);
} else {
err = self.dcx().struct_span_err(
full_call_span,
format!(
"{call_name} takes {}{} but {} {} supplied",
if c_variadic { "at least " } else { "" },
potentially_plural_count(
formal_and_expected_inputs.len(),
"argument"
),
potentially_plural_count(provided_args.len(), "argument"),
pluralize!("was", provided_args.len())
),
);
err.code(err_code.to_owned());
err.multipart_suggestion_verbose(
"wrap these arguments in parentheses to construct a tuple",
vec![
(lo.shrink_to_lo(), "(".to_string()),
(hi.shrink_to_hi(), ")".to_string()),
],
Applicability::MachineApplicable,
);
};
self.label_fn_like(
&mut err,
fn_def_id,
callee_ty,
call_expr,
None,
Some(mismatch_idx),
&matched_inputs,
&formal_and_expected_inputs,
is_method,
tuple_arguments,
);
suggest_confusable(&mut err);
return err.emit();
}
}
}
// Okay, so here's where it gets complicated in regards to what errors
// we emit and how.
// There are 3 different "types" of errors we might encounter.
// 1) Missing/extra/swapped arguments
// 2) Valid but incorrect arguments
// 3) Invalid arguments
// - Currently I think this only comes up with `CyclicTy`
//
// We first need to go through, remove those from (3) and emit those
// as their own error, particularly since they're error code and
// message is special. From what I can tell, we *must* emit these
// here (vs somewhere prior to this function) since the arguments
// become invalid *because* of how they get used in the function.
// It is what it is.
if errors.is_empty() {
if cfg!(debug_assertions) {
span_bug!(error_span, "expected errors from argument matrix");
} else {
let mut err =
self.dcx().create_err(errors::ArgMismatchIndeterminate { span: error_span });
suggest_confusable(&mut err);
return err.emit();
}
}
let detect_dotdot = |err: &mut Diag<'_>, ty: Ty<'_>, expr: &hir::Expr<'_>| {
if let ty::Adt(adt, _) = ty.kind()
&& self.tcx().lang_items().get(hir::LangItem::RangeFull) == Some(adt.did())
&& let hir::ExprKind::Struct(
hir::QPath::LangItem(hir::LangItem::RangeFull, _),
[],
_,
) = expr.kind
{
// We have `Foo(a, .., c)`, where the user might be trying to use the "rest" syntax
// from default field values, which is not supported on tuples.
let explanation = if self.tcx.features().default_field_values() {
"this is only supported on non-tuple struct literals"
} else if self.tcx.sess.is_nightly_build() {
"this is only supported on non-tuple struct literals when \
`#![feature(default_field_values)]` is enabled"
} else {
"this is not supported"
};
let msg = format!(
"you might have meant to use `..` to skip providing a value for \
expected fields, but {explanation}; it is instead interpreted as a \
`std::ops::RangeFull` literal",
);
err.span_help(expr.span, msg);
}
};
let mut reported = None;
errors.retain(|error| {
let Error::Invalid(provided_idx, expected_idx, Compatibility::Incompatible(Some(e))) =
error
else {
return true;
};
let (provided_ty, provided_span) = provided_arg_tys[*provided_idx];
let trace =
mk_trace(provided_span, formal_and_expected_inputs[*expected_idx], provided_ty);
if !matches!(trace.cause.as_failure_code(*e), FailureCode::Error0308) {
let mut err =
self.err_ctxt().report_and_explain_type_error(trace, self.param_env, *e);
suggest_confusable(&mut err);
reported = Some(err.emit());
return false;
}
true
});
// We're done if we found errors, but we already emitted them.
if let Some(reported) = reported
&& errors.is_empty()
{
return reported;
}
assert!(!errors.is_empty());
// Okay, now that we've emitted the special errors separately, we
// are only left missing/extra/swapped and mismatched arguments, both
// can be collated pretty easily if needed.
// Next special case: if there is only one "Incompatible" error, just emit that
if let &[
Error::Invalid(provided_idx, expected_idx, Compatibility::Incompatible(Some(err))),
] = &errors[..]
{
let (formal_ty, expected_ty) = formal_and_expected_inputs[expected_idx];
let (provided_ty, provided_arg_span) = provided_arg_tys[provided_idx];
let trace = mk_trace(provided_arg_span, (formal_ty, expected_ty), provided_ty);
let mut err = self.err_ctxt().report_and_explain_type_error(trace, self.param_env, err);
self.emit_coerce_suggestions(
&mut err,
provided_args[provided_idx],
provided_ty,
Expectation::rvalue_hint(self, expected_ty)
.only_has_type(self)
.unwrap_or(formal_ty),
None,
None,
);
err.span_label(full_call_span, format!("arguments to this {call_name} are incorrect"));
self.label_generic_mismatches(
&mut err,
fn_def_id,
&matched_inputs,
&provided_arg_tys,
&formal_and_expected_inputs,
is_method,
);
if let hir::ExprKind::MethodCall(_, rcvr, _, _) = call_expr.kind
&& provided_idx.as_usize() == expected_idx.as_usize()
{
self.note_source_of_type_mismatch_constraint(
&mut err,
rcvr,
crate::demand::TypeMismatchSource::Arg {
call_expr,
incompatible_arg: provided_idx.as_usize(),
},
);
}
self.suggest_ptr_null_mut(
expected_ty,
provided_ty,
provided_args[provided_idx],
&mut err,
);
self.suggest_deref_unwrap_or(
&mut err,
callee_ty,
call_ident,
expected_ty,
provided_ty,
provided_args[provided_idx],
is_method,
);
// Call out where the function is defined
self.label_fn_like(
&mut err,
fn_def_id,
callee_ty,
call_expr,
Some(expected_ty),
Some(expected_idx.as_usize()),
&matched_inputs,
&formal_and_expected_inputs,
is_method,
tuple_arguments,
);
suggest_confusable(&mut err);
detect_dotdot(&mut err, provided_ty, provided_args[provided_idx]);
return err.emit();
}
// Special case, we found an extra argument is provided, which is very common in practice.
// but there is a obviously better removing suggestion compared to the current one,
// try to find the argument with Error type, if we removed it all the types will become good,
// then we will replace the current suggestion.
if let [Error::Extra(provided_idx)] = &errors[..] {
let remove_idx_is_perfect = |idx: usize| -> bool {
let removed_arg_tys = provided_arg_tys
.iter()
.enumerate()
.filter_map(|(j, arg)| if idx == j { None } else { Some(arg) })
.collect::<IndexVec<ProvidedIdx, _>>();
std::iter::zip(formal_and_expected_inputs.iter(), removed_arg_tys.iter()).all(
|((expected_ty, _), (provided_ty, _))| {
!provided_ty.references_error()
&& self.may_coerce(*provided_ty, *expected_ty)
},
)
};
if !remove_idx_is_perfect(provided_idx.as_usize()) {
if let Some(i) = (0..provided_args.len()).find(|&i| remove_idx_is_perfect(i)) {
errors = vec![Error::Extra(ProvidedIdx::from_usize(i))];
}
}
}
let mut err = if formal_and_expected_inputs.len() == provided_args.len() {
struct_span_code_err!(
self.dcx(),
full_call_span,
E0308,
"arguments to this {} are incorrect",
call_name,
)
} else {
self.dcx()
.struct_span_err(
full_call_span,
format!(
"this {} takes {}{} but {} {} supplied",
call_name,
if c_variadic { "at least " } else { "" },
potentially_plural_count(formal_and_expected_inputs.len(), "argument"),
potentially_plural_count(provided_args.len(), "argument"),
pluralize!("was", provided_args.len())
),
)
.with_code(err_code.to_owned())
};
suggest_confusable(&mut err);
// As we encounter issues, keep track of what we want to provide for the suggestion
let mut labels = vec![];
// If there is a single error, we give a specific suggestion; otherwise, we change to
// "did you mean" with the suggested function call
enum SuggestionText {
None,
Provide(bool),
Remove(bool),
Swap,
Reorder,
DidYouMean,
}
let mut suggestion_text = SuggestionText::None;
let ty_to_snippet = |ty: Ty<'tcx>, expected_idx: ExpectedIdx| {
if ty.is_unit() {
"()".to_string()
} else if ty.is_suggestable(tcx, false) {
format!("/* {ty} */")
} else if let Some(fn_def_id) = fn_def_id
&& self.tcx.def_kind(fn_def_id).is_fn_like()
&& let self_implicit =
matches!(call_expr.kind, hir::ExprKind::MethodCall(..)) as usize
&& let Some(arg) =
self.tcx.fn_arg_names(fn_def_id).get(expected_idx.as_usize() + self_implicit)
&& arg.name != kw::SelfLower
{
format!("/* {} */", arg.name)
} else {
"/* value */".to_string()
}
};
let mut errors = errors.into_iter().peekable();
let mut only_extras_so_far = errors
.peek()
.is_some_and(|first| matches!(first, Error::Extra(arg_idx) if arg_idx.index() == 0));
let mut prev_extra_idx = None;
let mut suggestions = vec![];
while let Some(error) = errors.next() {
only_extras_so_far &= matches!(error, Error::Extra(_));
match error {
Error::Invalid(provided_idx, expected_idx, compatibility) => {
let (formal_ty, expected_ty) = formal_and_expected_inputs[expected_idx];
let (provided_ty, provided_span) = provided_arg_tys[provided_idx];
if let Compatibility::Incompatible(error) = compatibility {
let trace = mk_trace(provided_span, (formal_ty, expected_ty), provided_ty);
if let Some(e) = error {
self.err_ctxt().note_type_err(
&mut err,
&trace.cause,
None,
Some(self.param_env.and(trace.values)),
e,
true,
);
}
}
self.emit_coerce_suggestions(
&mut err,
provided_args[provided_idx],
provided_ty,
Expectation::rvalue_hint(self, expected_ty)
.only_has_type(self)
.unwrap_or(formal_ty),
None,
None,
);
detect_dotdot(&mut err, provided_ty, provided_args[provided_idx]);
}
Error::Extra(arg_idx) => {
let (provided_ty, provided_span) = provided_arg_tys[arg_idx];
let provided_ty_name = if !has_error_or_infer([provided_ty]) {
// FIXME: not suggestable, use something else
format!(" of type `{provided_ty}`")
} else {
"".to_string()
};
let idx = if provided_arg_tys.len() == 1 {
"".to_string()
} else {
format!(" #{}", arg_idx.as_usize() + 1)
};
labels.push((
provided_span,
format!("unexpected argument{idx}{provided_ty_name}"),
));
let mut span = provided_span;
if span.can_be_used_for_suggestions()
&& error_span.can_be_used_for_suggestions()
{
if arg_idx.index() > 0
&& let Some((_, prev)) =
provided_arg_tys.get(ProvidedIdx::from_usize(arg_idx.index() - 1))
{
// Include previous comma
span = prev.shrink_to_hi().to(span);
}
// Is last argument for deletion in a row starting from the 0-th argument?
// Then delete the next comma, so we are not left with `f(, ...)`
//
// fn f() {}
// - f(0, 1,)
// + f()
let trim_next_comma = match errors.peek() {
Some(Error::Extra(provided_idx))
if only_extras_so_far
&& provided_idx.index() > arg_idx.index() + 1 =>
// If the next Error::Extra ("next") doesn't next to current ("current"),
// fn foo(_: (), _: u32) {}
// - foo("current", (), 1u32, "next")
// + foo((), 1u32)
// If the previous error is not a `Error::Extra`, then do not trim the next comma
// - foo((), "current", 42u32, "next")
// + foo((), 42u32)
{
prev_extra_idx.map_or(true, |prev_extra_idx| {
prev_extra_idx + 1 == arg_idx.index()
})
}
// If no error left, we need to delete the next comma
None if only_extras_so_far => true,
// Not sure if other error type need to be handled as well
_ => false,
};
if trim_next_comma {
let next = provided_arg_tys
.get(arg_idx + 1)
.map(|&(_, sp)| sp)
.unwrap_or_else(|| {
// Try to move before `)`. Note that `)` here is not necessarily
// the latin right paren, it could be a Unicode-confusable that
// looks like a `)`, so we must not use `- BytePos(1)`
// manipulations here.
self.tcx().sess.source_map().end_point(call_expr.span)
});
// Include next comma
span = span.until(next);
}
suggestions.push((span, String::new()));
suggestion_text = match suggestion_text {
SuggestionText::None => SuggestionText::Remove(false),
SuggestionText::Remove(_) => SuggestionText::Remove(true),
_ => SuggestionText::DidYouMean,
};
prev_extra_idx = Some(arg_idx.index())
}
detect_dotdot(&mut err, provided_ty, provided_args[arg_idx]);
}
Error::Missing(expected_idx) => {
// If there are multiple missing arguments adjacent to each other,
// then we can provide a single error.
let mut missing_idxs = vec![expected_idx];
while let Some(e) = errors.next_if(|e| {
matches!(e, Error::Missing(next_expected_idx)
if *next_expected_idx == *missing_idxs.last().unwrap() + 1)
}) {
match e {
Error::Missing(expected_idx) => missing_idxs.push(expected_idx),
_ => unreachable!(
"control flow ensures that we should always get an `Error::Missing`"
),
}
}
// NOTE: Because we might be re-arranging arguments, might have extra
// arguments, etc. it's hard to *really* know where we should provide
// this error label, so as a heuristic, we point to the provided arg, or
// to the call if the missing inputs pass the provided args.
match &missing_idxs[..] {
&[expected_idx] => {
let (_, input_ty) = formal_and_expected_inputs[expected_idx];
let span = if let Some((_, arg_span)) =
provided_arg_tys.get(expected_idx.to_provided_idx())
{
*arg_span
} else {
args_span
};
let rendered = if !has_error_or_infer([input_ty]) {
format!(" of type `{input_ty}`")
} else {
"".to_string()
};
labels.push((
span,
format!(
"argument #{}{rendered} is missing",
expected_idx.as_usize() + 1
),
));
suggestion_text = match suggestion_text {
SuggestionText::None => SuggestionText::Provide(false),
SuggestionText::Provide(_) => SuggestionText::Provide(true),
_ => SuggestionText::DidYouMean,
};
}
&[first_idx, second_idx] => {
let (_, first_expected_ty) = formal_and_expected_inputs[first_idx];
let (_, second_expected_ty) = formal_and_expected_inputs[second_idx];
let span = if let (Some((_, first_span)), Some((_, second_span))) = (
provided_arg_tys.get(first_idx.to_provided_idx()),
provided_arg_tys.get(second_idx.to_provided_idx()),
) {
first_span.to(*second_span)
} else {
args_span
};
let rendered =
if !has_error_or_infer([first_expected_ty, second_expected_ty]) {
format!(
" of type `{first_expected_ty}` and `{second_expected_ty}`"
)
} else {
"".to_string()
};
labels.push((span, format!("two arguments{rendered} are missing")));
suggestion_text = match suggestion_text {
SuggestionText::None | SuggestionText::Provide(_) => {
SuggestionText::Provide(true)
}
_ => SuggestionText::DidYouMean,
};
}
&[first_idx, second_idx, third_idx] => {
let (_, first_expected_ty) = formal_and_expected_inputs[first_idx];
let (_, second_expected_ty) = formal_and_expected_inputs[second_idx];
let (_, third_expected_ty) = formal_and_expected_inputs[third_idx];
let span = if let (Some((_, first_span)), Some((_, third_span))) = (
provided_arg_tys.get(first_idx.to_provided_idx()),
provided_arg_tys.get(third_idx.to_provided_idx()),
) {
first_span.to(*third_span)
} else {
args_span
};
let rendered = if !has_error_or_infer([
first_expected_ty,
second_expected_ty,
third_expected_ty,
]) {
format!(
" of type `{first_expected_ty}`, `{second_expected_ty}`, and `{third_expected_ty}`"
)
} else {
"".to_string()
};
labels.push((span, format!("three arguments{rendered} are missing")));
suggestion_text = match suggestion_text {
SuggestionText::None | SuggestionText::Provide(_) => {
SuggestionText::Provide(true)
}
_ => SuggestionText::DidYouMean,
};
}
missing_idxs => {
let first_idx = *missing_idxs.first().unwrap();
let last_idx = *missing_idxs.last().unwrap();
// NOTE: Because we might be re-arranging arguments, might have extra arguments, etc.
// It's hard to *really* know where we should provide this error label, so this is a
// decent heuristic
let span = if let (Some((_, first_span)), Some((_, last_span))) = (
provided_arg_tys.get(first_idx.to_provided_idx()),
provided_arg_tys.get(last_idx.to_provided_idx()),
) {
first_span.to(*last_span)
} else {
args_span
};
labels.push((span, "multiple arguments are missing".to_string()));
suggestion_text = match suggestion_text {
SuggestionText::None | SuggestionText::Provide(_) => {
SuggestionText::Provide(true)
}
_ => SuggestionText::DidYouMean,
};
}
}
}
Error::Swap(
first_provided_idx,
second_provided_idx,
first_expected_idx,
second_expected_idx,
) => {
let (first_provided_ty, first_span) = provided_arg_tys[first_provided_idx];
let (_, first_expected_ty) = formal_and_expected_inputs[first_expected_idx];
let first_provided_ty_name = if !has_error_or_infer([first_provided_ty]) {
format!(", found `{first_provided_ty}`")
} else {
String::new()
};
labels.push((
first_span,
format!("expected `{first_expected_ty}`{first_provided_ty_name}"),
));
let (second_provided_ty, second_span) = provided_arg_tys[second_provided_idx];
let (_, second_expected_ty) = formal_and_expected_inputs[second_expected_idx];
let second_provided_ty_name = if !has_error_or_infer([second_provided_ty]) {
format!(", found `{second_provided_ty}`")
} else {
String::new()
};
labels.push((
second_span,
format!("expected `{second_expected_ty}`{second_provided_ty_name}"),
));
suggestion_text = match suggestion_text {
SuggestionText::None => SuggestionText::Swap,
_ => SuggestionText::DidYouMean,
};
}
Error::Permutation(args) => {
for (dst_arg, dest_input) in args {
let (_, expected_ty) = formal_and_expected_inputs[dst_arg];
let (provided_ty, provided_span) = provided_arg_tys[dest_input];
let provided_ty_name = if !has_error_or_infer([provided_ty]) {
format!(", found `{provided_ty}`")
} else {
String::new()
};
labels.push((
provided_span,
format!("expected `{expected_ty}`{provided_ty_name}"),
));
}
suggestion_text = match suggestion_text {
SuggestionText::None => SuggestionText::Reorder,
_ => SuggestionText::DidYouMean,
};
}
}
}
self.label_generic_mismatches(
&mut err,
fn_def_id,
&matched_inputs,
&provided_arg_tys,
&formal_and_expected_inputs,
is_method,
);
// Incorporate the argument changes in the removal suggestion.
// When a type is *missing*, and the rest are additional, we want to suggest these with a
// multipart suggestion, but in order to do so we need to figure out *where* the arg that
// was provided but had the wrong type should go, because when looking at `expected_idx`
// that is the position in the argument list in the definition, while `provided_idx` will
// not be present. So we have to look at what the *last* provided position was, and point
// one after to suggest the replacement. FIXME(estebank): This is hacky, and there's
// probably a better more involved change we can make to make this work.
// For example, if we have
// ```
// fn foo(i32, &'static str) {}
// foo((), (), ());
// ```
// what should be suggested is
// ```
// foo(/* i32 */, /* &str */);
// ```
// which includes the replacement of the first two `()` for the correct type, and the
// removal of the last `()`.
let mut prev = -1;
for (expected_idx, provided_idx) in matched_inputs.iter_enumerated() {
// We want to point not at the *current* argument expression index, but rather at the
// index position where it *should have been*, which is *after* the previous one.
if let Some(provided_idx) = provided_idx {
prev = provided_idx.index() as i64;
continue;
}
let idx = ProvidedIdx::from_usize((prev + 1) as usize);
if let Some((_, arg_span)) = provided_arg_tys.get(idx) {
prev += 1;
// There is a type that was *not* found anywhere, so it isn't a move, but a
// replacement and we look at what type it should have been. This will allow us
// To suggest a multipart suggestion when encountering `foo(1, "")` where the def
// was `fn foo(())`.
let (_, expected_ty) = formal_and_expected_inputs[expected_idx];
suggestions.push((*arg_span, ty_to_snippet(expected_ty, expected_idx)));
}
}
// If we have less than 5 things to say, it would be useful to call out exactly what's wrong
if labels.len() <= 5 {
for (span, label) in labels {
err.span_label(span, label);
}
}
// Call out where the function is defined
self.label_fn_like(
&mut err,
fn_def_id,
callee_ty,
call_expr,
None,
None,
&matched_inputs,
&formal_and_expected_inputs,
is_method,
tuple_arguments,
);
// And add a suggestion block for all of the parameters
let suggestion_text = match suggestion_text {
SuggestionText::None => None,
SuggestionText::Provide(plural) => {
Some(format!("provide the argument{}", if plural { "s" } else { "" }))
}
SuggestionText::Remove(plural) => {
err.multipart_suggestion_verbose(
format!("remove the extra argument{}", if plural { "s" } else { "" }),
suggestions,
Applicability::HasPlaceholders,
);
None
}
SuggestionText::Swap => Some("swap these arguments".to_string()),
SuggestionText::Reorder => Some("reorder these arguments".to_string()),
SuggestionText::DidYouMean => Some("did you mean".to_string()),
};
if let Some(suggestion_text) = suggestion_text {
let source_map = self.sess().source_map();
let (mut suggestion, suggestion_span) = if let Some(call_span) =
full_call_span.find_ancestor_inside_same_ctxt(error_span)
{
("(".to_string(), call_span.shrink_to_hi().to(error_span.shrink_to_hi()))
} else {
(
format!(
"{}(",
source_map.span_to_snippet(full_call_span).unwrap_or_else(|_| {
fn_def_id.map_or("".to_string(), |fn_def_id| {
tcx.item_name(fn_def_id).to_string()
})
})
),
error_span,
)
};
let mut needs_comma = false;
for (expected_idx, provided_idx) in matched_inputs.iter_enumerated() {
if needs_comma {
suggestion += ", ";
} else {
needs_comma = true;
}
let suggestion_text = if let Some(provided_idx) = provided_idx
&& let (_, provided_span) = provided_arg_tys[*provided_idx]
&& let Ok(arg_text) = source_map.span_to_snippet(provided_span)
{
arg_text
} else {
// Propose a placeholder of the correct type
let (_, expected_ty) = formal_and_expected_inputs[expected_idx];
ty_to_snippet(expected_ty, expected_idx)
};
suggestion += &suggestion_text;
}
suggestion += ")";
err.span_suggestion_verbose(
suggestion_span,
suggestion_text,
suggestion,
Applicability::HasPlaceholders,
);
}
err.emit()
}
fn suggest_ptr_null_mut(
&self,
expected_ty: Ty<'tcx>,
provided_ty: Ty<'tcx>,
arg: &hir::Expr<'tcx>,
err: &mut Diag<'_>,
) {
if let ty::RawPtr(_, hir::Mutability::Mut) = expected_ty.kind()
&& let ty::RawPtr(_, hir::Mutability::Not) = provided_ty.kind()
&& let hir::ExprKind::Call(callee, _) = arg.kind
&& let hir::ExprKind::Path(hir::QPath::Resolved(_, path)) = callee.kind
&& let Res::Def(_, def_id) = path.res
&& self.tcx.get_diagnostic_item(sym::ptr_null) == Some(def_id)
{
// The user provided `ptr::null()`, but the function expects
// `ptr::null_mut()`.
err.subdiagnostic(SuggestPtrNullMut { span: arg.span });
}
}
// AST fragment checking
pub(in super::super) fn check_expr_lit(
&self,
lit: &hir::Lit,
expected: Expectation<'tcx>,
) -> Ty<'tcx> {
let tcx = self.tcx;
match lit.node {
ast::LitKind::Str(..) => Ty::new_static_str(tcx),
ast::LitKind::ByteStr(ref v, _) => Ty::new_imm_ref(
tcx,
tcx.lifetimes.re_static,
Ty::new_array(tcx, tcx.types.u8, v.len() as u64),
),
ast::LitKind::Byte(_) => tcx.types.u8,
ast::LitKind::Char(_) => tcx.types.char,
ast::LitKind::Int(_, ast::LitIntType::Signed(t)) => Ty::new_int(tcx, ty::int_ty(t)),
ast::LitKind::Int(_, ast::LitIntType::Unsigned(t)) => Ty::new_uint(tcx, ty::uint_ty(t)),
ast::LitKind::Int(_, ast::LitIntType::Unsuffixed) => {
let opt_ty = expected.to_option(self).and_then(|ty| match ty.kind() {
ty::Int(_) | ty::Uint(_) => Some(ty),
ty::Char => Some(tcx.types.u8),
ty::RawPtr(..) => Some(tcx.types.usize),
ty::FnDef(..) | ty::FnPtr(..) => Some(tcx.types.usize),
_ => None,
});
opt_ty.unwrap_or_else(|| self.next_int_var())
}
ast::LitKind::Float(_, ast::LitFloatType::Suffixed(t)) => {
Ty::new_float(tcx, ty::float_ty(t))
}
ast::LitKind::Float(_, ast::LitFloatType::Unsuffixed) => {
let opt_ty = expected.to_option(self).and_then(|ty| match ty.kind() {
ty::Float(_) => Some(ty),
_ => None,
});
opt_ty.unwrap_or_else(|| self.next_float_var())
}
ast::LitKind::Bool(_) => tcx.types.bool,
ast::LitKind::CStr(_, _) => Ty::new_imm_ref(
tcx,
tcx.lifetimes.re_static,
tcx.type_of(tcx.require_lang_item(hir::LangItem::CStr, Some(lit.span)))
.skip_binder(),
),
ast::LitKind::Err(guar) => Ty::new_error(tcx, guar),
}
}
pub(crate) fn check_struct_path(
&self,
qpath: &QPath<'tcx>,
hir_id: HirId,
) -> Result<(&'tcx ty::VariantDef, Ty<'tcx>), ErrorGuaranteed> {
let path_span = qpath.span();
let (def, ty) = self.finish_resolving_struct_path(qpath, path_span, hir_id);
let variant = match def {
Res::Err => {
let guar =
self.dcx().span_delayed_bug(path_span, "`Res::Err` but no error emitted");
self.set_tainted_by_errors(guar);
return Err(guar);
}
Res::Def(DefKind::Variant, _) => match ty.normalized.ty_adt_def() {
Some(adt) => {
Some((adt.variant_of_res(def), adt.did(), Self::user_args_for_adt(ty)))
}
_ => bug!("unexpected type: {:?}", ty.normalized),
},
Res::Def(
DefKind::Struct | DefKind::Union | DefKind::TyAlias { .. } | DefKind::AssocTy,
_,
)
| Res::SelfTyParam { .. }
| Res::SelfTyAlias { .. } => match ty.normalized.ty_adt_def() {
Some(adt) if !adt.is_enum() => {
Some((adt.non_enum_variant(), adt.did(), Self::user_args_for_adt(ty)))
}
_ => None,
},
_ => bug!("unexpected definition: {:?}", def),
};
if let Some((variant, did, ty::UserArgs { args, user_self_ty })) = variant {
debug!("check_struct_path: did={:?} args={:?}", did, args);
// Register type annotation.
self.write_user_type_annotation_from_args(hir_id, did, args, user_self_ty);
// Check bounds on type arguments used in the path.
self.add_required_obligations_for_hir(path_span, did, args, hir_id);
Ok((variant, ty.normalized))
} else {
Err(match *ty.normalized.kind() {
ty::Error(guar) => {
// E0071 might be caused by a spelling error, which will have
// already caused an error message and probably a suggestion
// elsewhere. Refrain from emitting more unhelpful errors here
// (issue #88844).
guar
}
_ => struct_span_code_err!(
self.dcx(),
path_span,
E0071,
"expected struct, variant or union type, found {}",
ty.normalized.sort_string(self.tcx)
)
.with_span_label(path_span, "not a struct")
.emit(),
})
}
}
fn check_decl_initializer(
&self,
hir_id: HirId,
pat: &'tcx hir::Pat<'tcx>,
init: &'tcx hir::Expr<'tcx>,
) -> Ty<'tcx> {
// FIXME(tschottdorf): `contains_explicit_ref_binding()` must be removed
// for #42640 (default match binding modes).
//
// See #44848.
let ref_bindings = pat.contains_explicit_ref_binding();
let local_ty = self.local_ty(init.span, hir_id);
if let Some(m) = ref_bindings {
// Somewhat subtle: if we have a `ref` binding in the pattern,
// we want to avoid introducing coercions for the RHS. This is
// both because it helps preserve sanity and, in the case of
// ref mut, for soundness (issue #23116). In particular, in
// the latter case, we need to be clear that the type of the
// referent for the reference that results is *equal to* the
// type of the place it is referencing, and not some
// supertype thereof.
let init_ty = self.check_expr_with_needs(init, Needs::maybe_mut_place(m));
if let Err(mut diag) = self.demand_eqtype_diag(init.span, local_ty, init_ty) {
self.emit_type_mismatch_suggestions(
&mut diag,
init.peel_drop_temps(),
init_ty,
local_ty,
None,
None,
);
diag.emit();
}
init_ty
} else {
self.check_expr_coercible_to_type(init, local_ty, None)
}
}
pub(in super::super) fn check_decl(&self, decl: Declaration<'tcx>) {
// Determine and write the type which we'll check the pattern against.
let decl_ty = self.local_ty(decl.span, decl.hir_id);
self.write_ty(decl.hir_id, decl_ty);
// Type check the initializer.
if let Some(ref init) = decl.init {
let init_ty = self.check_decl_initializer(decl.hir_id, decl.pat, init);
self.overwrite_local_ty_if_err(decl.hir_id, decl.pat, init_ty);
}
// Does the expected pattern type originate from an expression and what is the span?
let (origin_expr, ty_span) = match (decl.ty, decl.init) {
(Some(ty), _) => (None, Some(ty.span)), // Bias towards the explicit user type.
(_, Some(init)) => {
(Some(init), Some(init.span.find_ancestor_inside(decl.span).unwrap_or(init.span)))
} // No explicit type; so use the scrutinee.
_ => (None, None), // We have `let $pat;`, so the expected type is unconstrained.
};
// Type check the pattern. Override if necessary to avoid knock-on errors.
self.check_pat_top(decl.pat, decl_ty, ty_span, origin_expr, Some(decl.origin));
let pat_ty = self.node_ty(decl.pat.hir_id);
self.overwrite_local_ty_if_err(decl.hir_id, decl.pat, pat_ty);
if let Some(blk) = decl.origin.try_get_else() {
let previous_diverges = self.diverges.get();
let else_ty = self.check_expr_block(blk, NoExpectation);
let cause = self.cause(blk.span, ObligationCauseCode::LetElse);
if let Err(err) = self.demand_eqtype_with_origin(&cause, self.tcx.types.never, else_ty)
{
err.emit();
}
self.diverges.set(previous_diverges);
}
}
/// Type check a `let` statement.
fn check_decl_local(&self, local: &'tcx hir::LetStmt<'tcx>) {
self.check_decl(local.into());
if local.pat.is_never_pattern() {
self.diverges.set(Diverges::Always {
span: local.pat.span,
custom_note: Some("any code following a never pattern is unreachable"),
});
}
}
fn check_stmt(&self, stmt: &'tcx hir::Stmt<'tcx>) {
// Don't do all the complex logic below for `DeclItem`.
match stmt.kind {
hir::StmtKind::Item(..) => return,
hir::StmtKind::Let(..) | hir::StmtKind::Expr(..) | hir::StmtKind::Semi(..) => {}
}
self.warn_if_unreachable(stmt.hir_id, stmt.span, "statement");
// Hide the outer diverging flags.
let old_diverges = self.diverges.replace(Diverges::Maybe);
match stmt.kind {
hir::StmtKind::Let(l) => {
self.check_decl_local(l);
}
// Ignore for now.
hir::StmtKind::Item(_) => {}
hir::StmtKind::Expr(ref expr) => {
// Check with expected type of `()`.
self.check_expr_has_type_or_error(expr, self.tcx.types.unit, |err| {
if expr.can_have_side_effects() {
self.suggest_semicolon_at_end(expr.span, err);
}
});
}
hir::StmtKind::Semi(expr) => {
self.check_expr(expr);
}
}
// Combine the diverging and `has_error` flags.
self.diverges.set(self.diverges.get() | old_diverges);
}
pub(crate) fn check_block_no_value(&self, blk: &'tcx hir::Block<'tcx>) {
let unit = self.tcx.types.unit;
let ty = self.check_expr_block(blk, ExpectHasType(unit));
// if the block produces a `!` value, that can always be
// (effectively) coerced to unit.
if !ty.is_never() {
self.demand_suptype(blk.span, unit, ty);
}
}
pub(in super::super) fn check_expr_block(
&self,
blk: &'tcx hir::Block<'tcx>,
expected: Expectation<'tcx>,
) -> Ty<'tcx> {
// In some cases, blocks have just one exit, but other blocks
// can be targeted by multiple breaks. This can happen both
// with labeled blocks as well as when we desugar
// a `try { ... }` expression.
//
// Example 1:
//
// 'a: { if true { break 'a Err(()); } Ok(()) }
//
// Here we would wind up with two coercions, one from
// `Err(())` and the other from the tail expression
// `Ok(())`. If the tail expression is omitted, that's a
// "forced unit" -- unless the block diverges, in which
// case we can ignore the tail expression (e.g., `'a: {
// break 'a 22; }` would not force the type of the block
// to be `()`).
let coerce_to_ty = expected.coercion_target_type(self, blk.span);
let coerce = if blk.targeted_by_break {
CoerceMany::new(coerce_to_ty)
} else {
CoerceMany::with_coercion_sites(coerce_to_ty, blk.expr.as_slice())
};
let prev_diverges = self.diverges.get();
let ctxt = BreakableCtxt { coerce: Some(coerce), may_break: false };
let (ctxt, ()) = self.with_breakable_ctxt(blk.hir_id, ctxt, || {
for s in blk.stmts {
self.check_stmt(s);
}
// check the tail expression **without** holding the
// `enclosing_breakables` lock below.
let tail_expr_ty =
blk.expr.map(|expr| (expr, self.check_expr_with_expectation(expr, expected)));
let mut enclosing_breakables = self.enclosing_breakables.borrow_mut();
let ctxt = enclosing_breakables.find_breakable(blk.hir_id);
let coerce = ctxt.coerce.as_mut().unwrap();
if let Some((tail_expr, tail_expr_ty)) = tail_expr_ty {
let span = self.get_expr_coercion_span(tail_expr);
let cause = self.cause(
span,
ObligationCauseCode::BlockTailExpression(blk.hir_id, hir::MatchSource::Normal),
);
let ty_for_diagnostic = coerce.merged_ty();
// We use coerce_inner here because we want to augment the error
// suggesting to wrap the block in square brackets if it might've
// been mistaken array syntax
coerce.coerce_inner(
self,
&cause,
Some(tail_expr),
tail_expr_ty,
|diag| {
self.suggest_block_to_brackets(diag, blk, tail_expr_ty, ty_for_diagnostic);
},
false,
);
} else {
// Subtle: if there is no explicit tail expression,
// that is typically equivalent to a tail expression
// of `()` -- except if the block diverges. In that
// case, there is no value supplied from the tail
// expression (assuming there are no other breaks,
// this implies that the type of the block will be
// `!`).
//
// #41425 -- label the implicit `()` as being the
// "found type" here, rather than the "expected type".
if !self.diverges.get().is_always()
|| matches!(self.diverging_block_behavior, DivergingBlockBehavior::Unit)
{
// #50009 -- Do not point at the entire fn block span, point at the return type
// span, as it is the cause of the requirement, and
// `consider_hint_about_removing_semicolon` will point at the last expression
// if it were a relevant part of the error. This improves usability in editors
// that highlight errors inline.
let mut sp = blk.span;
let mut fn_span = None;
if let Some((fn_def_id, decl)) = self.get_fn_decl(blk.hir_id) {
let ret_sp = decl.output.span();
if let Some(block_sp) = self.parent_item_span(blk.hir_id) {
// HACK: on some cases (`ui/liveness/liveness-issue-2163.rs`) the
// output would otherwise be incorrect and even misleading. Make sure
// the span we're aiming at correspond to a `fn` body.
if block_sp == blk.span {
sp = ret_sp;
fn_span = self.tcx.def_ident_span(fn_def_id);
}
}
}
coerce.coerce_forced_unit(
self,
&self.misc(sp),
|err| {
if let Some(expected_ty) = expected.only_has_type(self) {
if blk.stmts.is_empty() && blk.expr.is_none() {
self.suggest_boxing_when_appropriate(
err,
blk.span,
blk.hir_id,
expected_ty,
self.tcx.types.unit,
);
}
if !self.err_ctxt().consider_removing_semicolon(
blk,
expected_ty,
err,
) {
self.err_ctxt().consider_returning_binding(
blk,
expected_ty,
err,
);
}
if expected_ty == self.tcx.types.bool {
// If this is caused by a missing `let` in a `while let`,
// silence this redundant error, as we already emit E0070.
// Our block must be a `assign desugar local; assignment`
if let hir::Block {
stmts:
[
hir::Stmt {
kind:
hir::StmtKind::Let(hir::LetStmt {
source:
hir::LocalSource::AssignDesugar(_),
..
}),
..
},
hir::Stmt {
kind:
hir::StmtKind::Expr(hir::Expr {
kind: hir::ExprKind::Assign(lhs, ..),
..
}),
..
},
],
..
} = blk
{
self.comes_from_while_condition(blk.hir_id, |_| {
// We cannot suppress the error if the LHS of assignment
// is a syntactic place expression because E0070 would
// not be emitted by `check_lhs_assignable`.
let res = self.typeck_results.borrow().expr_ty_opt(lhs);
if !lhs.is_syntactic_place_expr()
|| res.references_error()
{
err.downgrade_to_delayed_bug();
}
})
}
}
}
if let Some(fn_span) = fn_span {
err.span_label(
fn_span,
"implicitly returns `()` as its body has no tail or `return` \
expression",
);
}
},
false,
);
}
}
});
if ctxt.may_break {
// If we can break from the block, then the block's exit is always reachable
// (... as long as the entry is reachable) - regardless of the tail of the block.
self.diverges.set(prev_diverges);
}
let ty = ctxt.coerce.unwrap().complete(self);
self.write_ty(blk.hir_id, ty);
ty
}
fn parent_item_span(&self, id: HirId) -> Option<Span> {
let node = self.tcx.hir_node_by_def_id(self.tcx.hir().get_parent_item(id).def_id);
match node {
Node::Item(&hir::Item { kind: hir::ItemKind::Fn(_, _, body_id), .. })
| Node::ImplItem(&hir::ImplItem { kind: hir::ImplItemKind::Fn(_, body_id), .. }) => {
let body = self.tcx.hir().body(body_id);
if let ExprKind::Block(block, _) = &body.value.kind {
return Some(block.span);
}
}
_ => {}
}
None
}
/// If `expr` is a `match` expression that has only one non-`!` arm, use that arm's tail
/// expression's `Span`, otherwise return `expr.span`. This is done to give better errors
/// when given code like the following:
/// ```text
/// if false { return 0i32; } else { 1u32 }
/// // ^^^^ point at this instead of the whole `if` expression
/// ```
fn get_expr_coercion_span(&self, expr: &hir::Expr<'_>) -> rustc_span::Span {
let check_in_progress = |elem: &hir::Expr<'_>| {
self.typeck_results.borrow().node_type_opt(elem.hir_id).filter(|ty| !ty.is_never()).map(
|_| match elem.kind {
// Point at the tail expression when possible.
hir::ExprKind::Block(block, _) => block.expr.map_or(block.span, |e| e.span),
_ => elem.span,
},
)
};
if let hir::ExprKind::If(_, _, Some(el)) = expr.kind {
if let Some(rslt) = check_in_progress(el) {
return rslt;
}
}
if let hir::ExprKind::Match(_, arms, _) = expr.kind {
let mut iter = arms.iter().filter_map(|arm| check_in_progress(arm.body));
if let Some(span) = iter.next() {
if iter.next().is_none() {
return span;
}
}
}
expr.span
}
fn overwrite_local_ty_if_err(&self, hir_id: HirId, pat: &'tcx hir::Pat<'tcx>, ty: Ty<'tcx>) {
if let Err(guar) = ty.error_reported() {
struct OverwritePatternsWithError {
pat_hir_ids: Vec<hir::HirId>,
}
impl<'tcx> Visitor<'tcx> for OverwritePatternsWithError {
fn visit_pat(&mut self, p: &'tcx hir::Pat<'tcx>) {
self.pat_hir_ids.push(p.hir_id);
hir::intravisit::walk_pat(self, p);
}
}
// Override the types everywhere with `err()` to avoid knock on errors.
let err = Ty::new_error(self.tcx, guar);
self.write_ty(hir_id, err);
self.write_ty(pat.hir_id, err);
let mut visitor = OverwritePatternsWithError { pat_hir_ids: vec![] };
hir::intravisit::walk_pat(&mut visitor, pat);
// Mark all the subpatterns as `{type error}` as well. This allows errors for specific
// subpatterns to be silenced.
for hir_id in visitor.pat_hir_ids {
self.write_ty(hir_id, err);
}
self.locals.borrow_mut().insert(hir_id, err);
self.locals.borrow_mut().insert(pat.hir_id, err);
}
}
// Finish resolving a path in a struct expression or pattern `S::A { .. }` if necessary.
// The newly resolved definition is written into `type_dependent_defs`.
fn finish_resolving_struct_path(
&self,
qpath: &QPath<'tcx>,
path_span: Span,
hir_id: HirId,
) -> (Res, LoweredTy<'tcx>) {
match *qpath {
QPath::Resolved(ref maybe_qself, path) => {
let self_ty = maybe_qself.as_ref().map(|qself| self.lower_ty(qself).raw);
let ty = self.lowerer().lower_path(self_ty, path, hir_id, true);
(path.res, LoweredTy::from_raw(self, path_span, ty))
}
QPath::TypeRelative(qself, segment) => {
let ty = self.lower_ty(qself);
let result = self
.lowerer()
.lower_assoc_path(hir_id, path_span, ty.raw, qself, segment, true);
let ty = result
.map(|(ty, _, _)| ty)
.unwrap_or_else(|guar| Ty::new_error(self.tcx(), guar));
let ty = LoweredTy::from_raw(self, path_span, ty);
let result = result.map(|(_, kind, def_id)| (kind, def_id));
// Write back the new resolution.
self.write_resolution(hir_id, result);
(result.map_or(Res::Err, |(kind, def_id)| Res::Def(kind, def_id)), ty)
}
QPath::LangItem(lang_item, span) => {
let (res, ty) = self.resolve_lang_item_path(lang_item, span, hir_id);
(res, LoweredTy::from_raw(self, path_span, ty))
}
}
}
pub(super) fn collect_unused_stmts_for_coerce_return_ty(
&self,
errors_causecode: Vec<(Span, ObligationCauseCode<'tcx>)>,
) {
for (span, code) in errors_causecode {
self.dcx().try_steal_modify_and_emit_err(span, StashKey::MaybeForgetReturn, |err| {
if let Some(fn_sig) = self.body_fn_sig()
&& let ObligationCauseCode::WhereClauseInExpr(_, _, binding_hir_id, ..) = code
&& !fn_sig.output().is_unit()
{
let mut block_num = 0;
let mut found_semi = false;
for (hir_id, node) in self.tcx.hir().parent_iter(binding_hir_id) {
// Don't proceed into parent bodies
if hir_id.owner != binding_hir_id.owner {
break;
}
match node {
hir::Node::Stmt(stmt) => {
if let hir::StmtKind::Semi(expr) = stmt.kind {
let expr_ty = self.typeck_results.borrow().expr_ty(expr);
let return_ty = fn_sig.output();
if !matches!(expr.kind, hir::ExprKind::Ret(..))
&& self.may_coerce(expr_ty, return_ty)
{
found_semi = true;
}
}
}
hir::Node::Block(_block) => {
if found_semi {
block_num += 1;
}
}
hir::Node::Item(item) => {
if let hir::ItemKind::Fn(..) = item.kind {
break;
}
}
_ => {}
}
}
if block_num > 1 && found_semi {
err.span_suggestion_verbose(
// use the span of the *whole* expr
self.tcx.hir().span(binding_hir_id).shrink_to_lo(),
"you might have meant to return this to infer its type parameters",
"return ",
Applicability::MaybeIncorrect,
);
}
}
});
}
}
/// Given a vector of fulfillment errors, try to adjust the spans of the
/// errors to more accurately point at the cause of the failure.
///
/// This applies to calls, methods, and struct expressions. This will also
/// try to deduplicate errors that are due to the same cause but might
/// have been created with different [`ObligationCause`][traits::ObligationCause]s.
pub(super) fn adjust_fulfillment_errors_for_expr_obligation(
&self,
errors: &mut Vec<traits::FulfillmentError<'tcx>>,
) {
// Store a mapping from `(Span, Predicate) -> ObligationCause`, so that
// other errors that have the same span and predicate can also get fixed,
// even if their `ObligationCauseCode` isn't an `Expr*Obligation` kind.
// This is important since if we adjust one span but not the other, then
// we will have "duplicated" the error on the UI side.
let mut remap_cause = FxIndexSet::default();
let mut not_adjusted = vec![];
for error in errors {
let before_span = error.obligation.cause.span;
if self.adjust_fulfillment_error_for_expr_obligation(error)
|| before_span != error.obligation.cause.span
{
remap_cause.insert((
before_span,
error.obligation.predicate,
error.obligation.cause.clone(),
));
} else {
// If it failed to be adjusted once around, it may be adjusted
// via the "remap cause" mapping the second time...
not_adjusted.push(error);
}
}
// Adjust any other errors that come from other cause codes, when these
// errors are of the same predicate as one we successfully adjusted, and
// when their spans overlap (suggesting they're due to the same root cause).
//
// This is because due to normalization, we often register duplicate
// obligations with misc obligations that are basically impossible to
// line back up with a useful WhereClauseInExpr.
for error in not_adjusted {
for (span, predicate, cause) in &remap_cause {
if *predicate == error.obligation.predicate
&& span.contains(error.obligation.cause.span)
{
error.obligation.cause = cause.clone();
continue;
}
}
}
}
fn label_fn_like(
&self,
err: &mut Diag<'_>,
callable_def_id: Option<DefId>,
callee_ty: Option<Ty<'tcx>>,
call_expr: &'tcx hir::Expr<'tcx>,
expected_ty: Option<Ty<'tcx>>,
// A specific argument should be labeled, instead of all of them
expected_idx: Option<usize>,
matched_inputs: &IndexVec<ExpectedIdx, Option<ProvidedIdx>>,
formal_and_expected_inputs: &IndexVec<ExpectedIdx, (Ty<'tcx>, Ty<'tcx>)>,
is_method: bool,
tuple_arguments: TupleArgumentsFlag,
) {
let Some(mut def_id) = callable_def_id else {
return;
};
// If we're calling a method of a Fn/FnMut/FnOnce trait object implicitly
// (eg invoking a closure) we want to point at the underlying callable,
// not the method implicitly invoked (eg call_once).
if let Some(assoc_item) = self.tcx.opt_associated_item(def_id)
// Since this is an associated item, it might point at either an impl or a trait item.
// We want it to always point to the trait item.
// If we're pointing at an inherent function, we don't need to do anything,
// so we fetch the parent and verify if it's a trait item.
&& let maybe_trait_item_def_id = assoc_item.trait_item_def_id.unwrap_or(def_id)
&& let maybe_trait_def_id = self.tcx.parent(maybe_trait_item_def_id)
// Just an easy way to check "trait_def_id == Fn/FnMut/FnOnce"
&& let Some(call_kind) = self.tcx.fn_trait_kind_from_def_id(maybe_trait_def_id)
&& let Some(callee_ty) = callee_ty
// TupleArguments is set only when this is an implicit call (my_closure(...)) rather than explicit (my_closure.call(...))
&& tuple_arguments == TupleArguments
{
let callee_ty = callee_ty.peel_refs();
match *callee_ty.kind() {
ty::Param(param) => {
let param = self.tcx.generics_of(self.body_id).type_param(param, self.tcx);
if param.kind.is_synthetic() {
// if it's `impl Fn() -> ..` then just fall down to the def-id based logic
def_id = param.def_id;
} else {
// Otherwise, find the predicate that makes this generic callable,
// and point at that.
let instantiated = self
.tcx
.explicit_predicates_of(self.body_id)
.instantiate_identity(self.tcx);
// FIXME(compiler-errors): This could be problematic if something has two
// fn-like predicates with different args, but callable types really never
// do that, so it's OK.
for (predicate, span) in instantiated {
if let ty::ClauseKind::Trait(pred) = predicate.kind().skip_binder()
&& pred.self_ty().peel_refs() == callee_ty
&& self.tcx.is_fn_trait(pred.def_id())
{
err.span_note(span, "callable defined here");
return;
}
}
}
}
ty::Alias(ty::Opaque, ty::AliasTy { def_id: new_def_id, .. })
| ty::Closure(new_def_id, _)
| ty::FnDef(new_def_id, _) => {
def_id = new_def_id;
}
_ => {
// Look for a user-provided impl of a `Fn` trait, and point to it.
let new_def_id = self.probe(|_| {
let trait_ref = ty::TraitRef::new(
self.tcx,
self.tcx.fn_trait_kind_to_def_id(call_kind)?,
[callee_ty, self.next_ty_var(DUMMY_SP)],
);
let obligation = traits::Obligation::new(
self.tcx,
traits::ObligationCause::dummy(),
self.param_env,
trait_ref,
);
match SelectionContext::new(self).select(&obligation) {
Ok(Some(traits::ImplSource::UserDefined(impl_source))) => {
Some(impl_source.impl_def_id)
}
_ => None,
}
});
if let Some(new_def_id) = new_def_id {
def_id = new_def_id;
} else {
return;
}
}
}
}
if let Some(def_span) = self.tcx.def_ident_span(def_id)
&& !def_span.is_dummy()
{
let mut spans: MultiSpan = def_span.into();
if let Some(params_with_generics) = self.get_hir_params_with_generics(def_id, is_method)
{
debug_assert_eq!(params_with_generics.len(), matched_inputs.len());
let mut generics_with_unmatched_params = Vec::new();
let check_for_matched_generics = || {
if matched_inputs.iter().any(|x| x.is_some())
&& params_with_generics.iter().any(|x| x.1.is_some())
{
for &(idx, generic, _) in ¶ms_with_generics {
// Param has to have a generic and be matched to be relevant
if matched_inputs[idx.into()].is_none() {
continue;
}
let Some(generic) = generic else {
continue;
};
for unmatching_idx in idx + 1..params_with_generics.len() {
if matched_inputs[unmatching_idx.into()].is_none()
&& let Some(unmatched_idx_param_generic) =
params_with_generics[unmatching_idx].1
&& unmatched_idx_param_generic.name.ident()
== generic.name.ident()
{
// We found a parameter that didn't match that needed to
return true;
}
}
}
}
false
};
let check_for_matched_generics = check_for_matched_generics();
for &(idx, generic_param, param) in
params_with_generics.iter().filter(|&(idx, _, _)| {
check_for_matched_generics
|| expected_idx.is_none_or(|expected_idx| expected_idx == *idx)
})
{
let Some(generic_param) = generic_param else {
spans.push_span_label(param.span, "");
continue;
};
let other_params_matched: Vec<(usize, &hir::Param<'_>)> = params_with_generics
.iter()
.filter(|(other_idx, other_generic_param, _)| {
if *other_idx == idx {
return false;
}
let Some(other_generic_param) = other_generic_param else {
return false;
};
if matched_inputs[idx.into()].is_none()
&& matched_inputs[(*other_idx).into()].is_none()
{
return false;
}
if matched_inputs[idx.into()].is_some()
&& matched_inputs[(*other_idx).into()].is_some()
{
return false;
}
other_generic_param.name.ident() == generic_param.name.ident()
})
.map(|&(other_idx, _, other_param)| (other_idx, other_param))
.collect();
if !other_params_matched.is_empty() {
let other_param_matched_names: Vec<String> = other_params_matched
.iter()
.map(|(idx, other_param)| {
if let hir::PatKind::Binding(_, _, ident, _) = other_param.pat.kind
{
format!("`{ident}`")
} else {
format!("parameter #{}", idx + 1)
}
})
.collect();
let matched_ty = self
.resolve_vars_if_possible(formal_and_expected_inputs[idx.into()].1)
.sort_string(self.tcx);
if matched_inputs[idx.into()].is_some() {
spans.push_span_label(
param.span,
format!(
"{} {} to match the {} type of this parameter",
display_list_with_comma_and(&other_param_matched_names),
format!(
"need{}",
pluralize!(if other_param_matched_names.len() == 1 {
0
} else {
1
})
),
matched_ty,
),
);
} else {
spans.push_span_label(
param.span,
format!(
"this parameter needs to match the {} type of {}",
matched_ty,
display_list_with_comma_and(&other_param_matched_names),
),
);
}
generics_with_unmatched_params.push(generic_param);
} else {
spans.push_span_label(param.span, "");
}
}
for generic_param in self
.tcx
.hir()
.get_if_local(def_id)
.and_then(|node| node.generics())
.into_iter()
.flat_map(|x| x.params)
.filter(|x| {
generics_with_unmatched_params
.iter()
.any(|y| x.name.ident() == y.name.ident())
})
{
let param_idents_matching: Vec<String> = params_with_generics
.iter()
.filter(|(_, generic, _)| {
if let Some(generic) = generic {
generic.name.ident() == generic_param.name.ident()
} else {
false
}
})
.map(|(idx, _, param)| {
if let hir::PatKind::Binding(_, _, ident, _) = param.pat.kind {
format!("`{ident}`")
} else {
format!("parameter #{}", idx + 1)
}
})
.collect();
if !param_idents_matching.is_empty() {
spans.push_span_label(
generic_param.span,
format!(
"{} {} reference this parameter `{}`",
display_list_with_comma_and(¶m_idents_matching),
if param_idents_matching.len() == 2 { "both" } else { "all" },
generic_param.name.ident().name,
),
);
}
}
}
err.span_note(spans, format!("{} defined here", self.tcx.def_descr(def_id)));
} else if let Some(hir::Node::Expr(e)) = self.tcx.hir().get_if_local(def_id)
&& let hir::ExprKind::Closure(hir::Closure { body, .. }) = &e.kind
{
let param = expected_idx
.and_then(|expected_idx| self.tcx.hir().body(*body).params.get(expected_idx));
let (kind, span) = if let Some(param) = param {
// Try to find earlier invocations of this closure to find if the type mismatch
// is because of inference. If we find one, point at them.
let mut call_finder = FindClosureArg { tcx: self.tcx, calls: vec![] };
let parent_def_id = self.tcx.hir().get_parent_item(call_expr.hir_id).def_id;
match self.tcx.hir_node_by_def_id(parent_def_id) {
hir::Node::Item(item) => call_finder.visit_item(item),
hir::Node::TraitItem(item) => call_finder.visit_trait_item(item),
hir::Node::ImplItem(item) => call_finder.visit_impl_item(item),
_ => {}
}
let typeck = self.typeck_results.borrow();
for (rcvr, args) in call_finder.calls {
if rcvr.hir_id.owner == typeck.hir_owner
&& let Some(rcvr_ty) = typeck.node_type_opt(rcvr.hir_id)
&& let ty::Closure(call_def_id, _) = rcvr_ty.kind()
&& def_id == *call_def_id
&& let Some(idx) = expected_idx
&& let Some(arg) = args.get(idx)
&& let Some(arg_ty) = typeck.node_type_opt(arg.hir_id)
&& let Some(expected_ty) = expected_ty
&& self.can_eq(self.param_env, arg_ty, expected_ty)
{
let mut sp: MultiSpan = vec![arg.span].into();
sp.push_span_label(
arg.span,
format!("expected because this argument is of type `{arg_ty}`"),
);
sp.push_span_label(rcvr.span, "in this closure call");
err.span_note(
sp,
format!(
"expected because the closure was earlier called with an \
argument of type `{arg_ty}`",
),
);
break;
}
}
("closure parameter", param.span)
} else {
("closure", self.tcx.def_span(def_id))
};
err.span_note(span, format!("{kind} defined here"));
} else {
err.span_note(
self.tcx.def_span(def_id),
format!("{} defined here", self.tcx.def_descr(def_id)),
);
}
}
fn label_generic_mismatches(
&self,
err: &mut Diag<'_>,
callable_def_id: Option<DefId>,
matched_inputs: &IndexVec<ExpectedIdx, Option<ProvidedIdx>>,
provided_arg_tys: &IndexVec<ProvidedIdx, (Ty<'tcx>, Span)>,
formal_and_expected_inputs: &IndexVec<ExpectedIdx, (Ty<'tcx>, Ty<'tcx>)>,
is_method: bool,
) {
let Some(def_id) = callable_def_id else {
return;
};
if let Some(params_with_generics) = self.get_hir_params_with_generics(def_id, is_method) {
debug_assert_eq!(params_with_generics.len(), matched_inputs.len());
for &(idx, generic_param, _) in ¶ms_with_generics {
if matched_inputs[idx.into()].is_none() {
continue;
}
let Some((_, matched_arg_span)) = provided_arg_tys.get(idx.into()) else {
continue;
};
let Some(generic_param) = generic_param else {
continue;
};
let mut idxs_matched: Vec<usize> = vec![];
for &(other_idx, _, _) in
params_with_generics.iter().filter(|&&(other_idx, other_generic_param, _)| {
if other_idx == idx {
return false;
}
let Some(other_generic_param) = other_generic_param else {
return false;
};
if matched_inputs[other_idx.into()].is_some() {
return false;
}
other_generic_param.name.ident() == generic_param.name.ident()
})
{
idxs_matched.push(other_idx);
}
if idxs_matched.is_empty() {
continue;
}
let expected_display_type = self
.resolve_vars_if_possible(formal_and_expected_inputs[idx.into()].1)
.sort_string(self.tcx);
let label = if idxs_matched.len() == params_with_generics.len() - 1 {
format!(
"expected all arguments to be this {} type because they need to match the type of this parameter",
expected_display_type
)
} else {
format!(
"expected some other arguments to be {} {} type to match the type of this parameter",
a_or_an(&expected_display_type),
expected_display_type,
)
};
err.span_label(*matched_arg_span, label);
}
}
}
/// Returns the parameters of a function, with their generic parameters if those are the full
/// type of that parameter. Returns `None` if the function body is unavailable (eg is an instrinsic).
fn get_hir_params_with_generics(
&self,
def_id: DefId,
is_method: bool,
) -> Option<Vec<(usize, Option<&hir::GenericParam<'_>>, &hir::Param<'_>)>> {
let fn_node = self.tcx.hir().get_if_local(def_id)?;
let fn_decl = fn_node.fn_decl()?;
let generic_params: Vec<Option<&hir::GenericParam<'_>>> = fn_decl
.inputs
.into_iter()
.skip(if is_method { 1 } else { 0 })
.map(|param| {
if let hir::TyKind::Path(QPath::Resolved(
_,
hir::Path { res: Res::Def(_, res_def_id), .. },
)) = param.kind
{
fn_node
.generics()
.into_iter()
.flat_map(|generics| generics.params)
.find(|param| ¶m.def_id.to_def_id() == res_def_id)
} else {
None
}
})
.collect();
let mut params: Vec<&hir::Param<'_>> = self
.tcx
.hir()
.body(fn_node.body_id()?)
.params
.into_iter()
.skip(if is_method { 1 } else { 0 })
.collect();
// The surrounding code expects variadic functions to not have a parameter representing
// the "..." parameter. This is already true of the FnDecl but not of the body params, so
// we drop it if it exists.
if fn_decl.c_variadic {
params.pop();
}
debug_assert_eq!(params.len(), generic_params.len());
Some(
generic_params
.into_iter()
.zip(params)
.enumerate()
.map(|(a, (b, c))| (a, b, c))
.collect(),
)
}
}
struct FindClosureArg<'tcx> {
tcx: TyCtxt<'tcx>,
calls: Vec<(&'tcx hir::Expr<'tcx>, &'tcx [hir::Expr<'tcx>])>,
}
impl<'tcx> Visitor<'tcx> for FindClosureArg<'tcx> {
type NestedFilter = rustc_middle::hir::nested_filter::All;
fn nested_visit_map(&mut self) -> Self::Map {
self.tcx.hir()
}
fn visit_expr(&mut self, ex: &'tcx hir::Expr<'tcx>) {
if let hir::ExprKind::Call(rcvr, args) = ex.kind {
self.calls.push((rcvr, args));
}
hir::intravisit::walk_expr(self, ex);
}
}