1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
use std::{iter, mem};

use itertools::Itertools;
use rustc_data_structures::fx::FxIndexSet;
use rustc_errors::codes::*;
use rustc_errors::{
    a_or_an, display_list_with_comma_and, pluralize, Applicability, Diag, ErrorGuaranteed,
    MultiSpan, StashKey,
};
use rustc_hir::def::{CtorOf, DefKind, Res};
use rustc_hir::def_id::DefId;
use rustc_hir::intravisit::Visitor;
use rustc_hir::{ExprKind, HirId, Node, QPath};
use rustc_hir_analysis::check::intrinsicck::InlineAsmCtxt;
use rustc_hir_analysis::check::potentially_plural_count;
use rustc_hir_analysis::hir_ty_lowering::HirTyLowerer;
use rustc_index::IndexVec;
use rustc_infer::infer::{DefineOpaqueTypes, InferOk, TypeTrace};
use rustc_middle::ty::adjustment::AllowTwoPhase;
use rustc_middle::ty::error::TypeError;
use rustc_middle::ty::visit::TypeVisitableExt;
use rustc_middle::ty::{self, IsSuggestable, Ty, TyCtxt};
use rustc_middle::{bug, span_bug};
use rustc_session::Session;
use rustc_span::symbol::{kw, Ident};
use rustc_span::{sym, Span, DUMMY_SP};
use rustc_trait_selection::error_reporting::infer::{FailureCode, ObligationCauseExt};
use rustc_trait_selection::infer::InferCtxtExt;
use rustc_trait_selection::traits::{self, ObligationCauseCode, ObligationCtxt, SelectionContext};
use tracing::debug;
use {rustc_ast as ast, rustc_hir as hir};

use crate::coercion::CoerceMany;
use crate::errors::SuggestPtrNullMut;
use crate::fn_ctxt::arg_matrix::{ArgMatrix, Compatibility, Error, ExpectedIdx, ProvidedIdx};
use crate::fn_ctxt::infer::FnCall;
use crate::gather_locals::Declaration;
use crate::method::probe::IsSuggestion;
use crate::method::probe::Mode::MethodCall;
use crate::method::probe::ProbeScope::TraitsInScope;
use crate::method::MethodCallee;
use crate::Expectation::*;
use crate::TupleArgumentsFlag::*;
use crate::{
    errors, struct_span_code_err, BreakableCtxt, Diverges, Expectation, FnCtxt, LoweredTy, Needs,
    TupleArgumentsFlag,
};

#[derive(Clone, Copy, Default)]
pub(crate) enum DivergingBlockBehavior {
    /// This is the current stable behavior:
    ///
    /// ```rust
    /// {
    ///     return;
    /// } // block has type = !, even though we are supposedly dropping it with `;`
    /// ```
    #[default]
    Never,

    /// Alternative behavior:
    ///
    /// ```ignore (very-unstable-new-attribute)
    /// #![rustc_never_type_options(diverging_block_default = "unit")]
    /// {
    ///     return;
    /// } // block has type = (), since we are dropping `!` from `return` with `;`
    /// ```
    Unit,
}

impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
    pub(in super::super) fn check_casts(&mut self) {
        // don't hold the borrow to deferred_cast_checks while checking to avoid borrow checker errors
        // when writing to `self.param_env`.
        let mut deferred_cast_checks = mem::take(&mut *self.deferred_cast_checks.borrow_mut());

        debug!("FnCtxt::check_casts: {} deferred checks", deferred_cast_checks.len());
        for cast in deferred_cast_checks.drain(..) {
            cast.check(self);
        }

        *self.deferred_cast_checks.borrow_mut() = deferred_cast_checks;
    }

    pub(in super::super) fn check_transmutes(&self) {
        let mut deferred_transmute_checks = self.deferred_transmute_checks.borrow_mut();
        debug!("FnCtxt::check_transmutes: {} deferred checks", deferred_transmute_checks.len());
        for (from, to, hir_id) in deferred_transmute_checks.drain(..) {
            self.check_transmute(from, to, hir_id);
        }
    }

    pub(in super::super) fn check_asms(&self) {
        let mut deferred_asm_checks = self.deferred_asm_checks.borrow_mut();
        debug!("FnCtxt::check_asm: {} deferred checks", deferred_asm_checks.len());
        for (asm, hir_id) in deferred_asm_checks.drain(..) {
            let enclosing_id = self.tcx.hir().enclosing_body_owner(hir_id);
            let get_operand_ty = |expr| {
                let ty = self.typeck_results.borrow().expr_ty_adjusted(expr);
                let ty = self.resolve_vars_if_possible(ty);
                if ty.has_non_region_infer() {
                    Ty::new_misc_error(self.tcx)
                } else {
                    self.tcx.erase_regions(ty)
                }
            };
            InlineAsmCtxt::new_in_fn(self.tcx, self.param_env, get_operand_ty)
                .check_asm(asm, enclosing_id);
        }
    }

    pub(in super::super) fn check_method_argument_types(
        &self,
        sp: Span,
        expr: &'tcx hir::Expr<'tcx>,
        method: Result<MethodCallee<'tcx>, ErrorGuaranteed>,
        args_no_rcvr: &'tcx [hir::Expr<'tcx>],
        tuple_arguments: TupleArgumentsFlag,
        expected: Expectation<'tcx>,
    ) -> Ty<'tcx> {
        let has_error = match method {
            Ok(method) => method.args.error_reported().and(method.sig.error_reported()),
            Err(guar) => Err(guar),
        };
        if let Err(guar) = has_error {
            let err_inputs = self.err_args(args_no_rcvr.len(), guar);
            let err_output = Ty::new_error(self.tcx, guar);

            let err_inputs = match tuple_arguments {
                DontTupleArguments => err_inputs,
                TupleArguments => vec![Ty::new_tup(self.tcx, &err_inputs)],
            };

            self.check_argument_types(
                sp,
                expr,
                &err_inputs,
                err_output,
                NoExpectation,
                args_no_rcvr,
                false,
                tuple_arguments,
                method.ok().map(|method| method.def_id),
            );
            return err_output;
        }

        let method = method.unwrap();
        self.check_argument_types(
            sp,
            expr,
            &method.sig.inputs()[1..],
            method.sig.output(),
            expected,
            args_no_rcvr,
            method.sig.c_variadic,
            tuple_arguments,
            Some(method.def_id),
        );

        method.sig.output()
    }

    /// Generic function that factors out common logic from function calls,
    /// method calls and overloaded operators.
    pub(in super::super) fn check_argument_types(
        &self,
        // Span enclosing the call site
        call_span: Span,
        // Expression of the call site
        call_expr: &'tcx hir::Expr<'tcx>,
        // Types (as defined in the *signature* of the target function)
        formal_input_tys: &[Ty<'tcx>],
        formal_output: Ty<'tcx>,
        // Expected output from the parent expression or statement
        expectation: Expectation<'tcx>,
        // The expressions for each provided argument
        provided_args: &'tcx [hir::Expr<'tcx>],
        // Whether the function is variadic, for example when imported from C
        c_variadic: bool,
        // Whether the arguments have been bundled in a tuple (ex: closures)
        tuple_arguments: TupleArgumentsFlag,
        // The DefId for the function being called, for better error messages
        fn_def_id: Option<DefId>,
    ) {
        let tcx = self.tcx;

        // Conceptually, we've got some number of expected inputs, and some number of provided arguments
        // and we can form a grid of whether each argument could satisfy a given input:
        //      in1 | in2 | in3 | ...
        // arg1  ?  |     |     |
        // arg2     |  ?  |     |
        // arg3     |     |  ?  |
        // ...
        // Initially, we just check the diagonal, because in the case of correct code
        // these are the only checks that matter
        // However, in the unhappy path, we'll fill in this whole grid to attempt to provide
        // better error messages about invalid method calls.

        // All the input types from the fn signature must outlive the call
        // so as to validate implied bounds.
        for (&fn_input_ty, arg_expr) in iter::zip(formal_input_tys, provided_args) {
            self.register_wf_obligation(
                fn_input_ty.into(),
                arg_expr.span,
                ObligationCauseCode::Misc,
            );
        }

        // First, let's unify the formal method signature with the expectation eagerly.
        // We use this to guide coercion inference; it's output is "fudged" which means
        // any remaining type variables are assigned to new, unrelated variables. This
        // is because the inference guidance here is only speculative.
        let formal_output = self.resolve_vars_with_obligations(formal_output);
        let expected_input_tys: Option<Vec<_>> = expectation
            .only_has_type(self)
            .and_then(|expected_output| {
                self.fudge_inference_if_ok(|| {
                    let ocx = ObligationCtxt::new(self);

                    // Attempt to apply a subtyping relationship between the formal
                    // return type (likely containing type variables if the function
                    // is polymorphic) and the expected return type.
                    // No argument expectations are produced if unification fails.
                    let origin = self.misc(call_span);
                    ocx.sup(&origin, self.param_env, expected_output, formal_output)?;
                    if !ocx.select_where_possible().is_empty() {
                        return Err(TypeError::Mismatch);
                    }

                    // Record all the argument types, with the args
                    // produced from the above subtyping unification.
                    Ok(Some(
                        formal_input_tys
                            .iter()
                            .map(|&ty| self.resolve_vars_if_possible(ty))
                            .collect(),
                    ))
                })
                .ok()
            })
            .unwrap_or_default();

        let mut err_code = E0061;

        // If the arguments should be wrapped in a tuple (ex: closures), unwrap them here
        let (formal_input_tys, expected_input_tys) = if tuple_arguments == TupleArguments {
            let tuple_type = self.structurally_resolve_type(call_span, formal_input_tys[0]);
            match tuple_type.kind() {
                // We expected a tuple and got a tuple
                ty::Tuple(arg_types) => {
                    // Argument length differs
                    if arg_types.len() != provided_args.len() {
                        err_code = E0057;
                    }
                    let expected_input_tys = match expected_input_tys {
                        Some(expected_input_tys) => match expected_input_tys.get(0) {
                            Some(ty) => match ty.kind() {
                                ty::Tuple(tys) => Some(tys.iter().collect()),
                                _ => None,
                            },
                            None => None,
                        },
                        None => None,
                    };
                    (arg_types.iter().collect(), expected_input_tys)
                }
                _ => {
                    // Otherwise, there's a mismatch, so clear out what we're expecting, and set
                    // our input types to err_args so we don't blow up the error messages
                    let guar = struct_span_code_err!(
                        self.dcx(),
                        call_span,
                        E0059,
                        "cannot use call notation; the first type parameter \
                         for the function trait is neither a tuple nor unit"
                    )
                    .emit();
                    (self.err_args(provided_args.len(), guar), None)
                }
            }
        } else {
            (formal_input_tys.to_vec(), expected_input_tys)
        };

        // If there are no external expectations at the call site, just use the types from the function defn
        let expected_input_tys = if let Some(expected_input_tys) = expected_input_tys {
            assert_eq!(expected_input_tys.len(), formal_input_tys.len());
            expected_input_tys
        } else {
            formal_input_tys.clone()
        };

        let minimum_input_count = expected_input_tys.len();
        let provided_arg_count = provided_args.len();

        // We introduce a helper function to demand that a given argument satisfy a given input
        // This is more complicated than just checking type equality, as arguments could be coerced
        // This version writes those types back so further type checking uses the narrowed types
        let demand_compatible = |idx| {
            let formal_input_ty: Ty<'tcx> = formal_input_tys[idx];
            let expected_input_ty: Ty<'tcx> = expected_input_tys[idx];
            let provided_arg = &provided_args[idx];

            debug!("checking argument {}: {:?} = {:?}", idx, provided_arg, formal_input_ty);

            // We're on the happy path here, so we'll do a more involved check and write back types
            // To check compatibility, we'll do 3 things:
            // 1. Unify the provided argument with the expected type
            let expectation = Expectation::rvalue_hint(self, expected_input_ty);

            let checked_ty = self.check_expr_with_expectation(provided_arg, expectation);

            // 2. Coerce to the most detailed type that could be coerced
            //    to, which is `expected_ty` if `rvalue_hint` returns an
            //    `ExpectHasType(expected_ty)`, or the `formal_ty` otherwise.
            let coerced_ty = expectation.only_has_type(self).unwrap_or(formal_input_ty);

            // Cause selection errors caused by resolving a single argument to point at the
            // argument and not the call. This lets us customize the span pointed to in the
            // fulfillment error to be more accurate.
            let coerced_ty = self.resolve_vars_with_obligations(coerced_ty);

            let coerce_error =
                self.coerce(provided_arg, checked_ty, coerced_ty, AllowTwoPhase::Yes, None).err();
            if coerce_error.is_some() {
                return Compatibility::Incompatible(coerce_error);
            }

            // 3. Check if the formal type is actually equal to the checked one
            //    and register any such obligations for future type checks.
            let formal_ty_error = self.at(&self.misc(provided_arg.span), self.param_env).eq(
                DefineOpaqueTypes::Yes,
                formal_input_ty,
                coerced_ty,
            );

            // If neither check failed, the types are compatible
            match formal_ty_error {
                Ok(InferOk { obligations, value: () }) => {
                    self.register_predicates(obligations);
                    Compatibility::Compatible
                }
                Err(err) => Compatibility::Incompatible(Some(err)),
            }
        };

        // To start, we only care "along the diagonal", where we expect every
        // provided arg to be in the right spot
        let mut compatibility_diagonal =
            vec![Compatibility::Incompatible(None); provided_args.len()];

        // Keep track of whether we *could possibly* be satisfied, i.e. whether we're on the happy path
        // if the wrong number of arguments were supplied, we CAN'T be satisfied,
        // and if we're c_variadic, the supplied arguments must be >= the minimum count from the function
        // otherwise, they need to be identical, because rust doesn't currently support variadic functions
        let mut call_appears_satisfied = if c_variadic {
            provided_arg_count >= minimum_input_count
        } else {
            provided_arg_count == minimum_input_count
        };

        // Check the arguments.
        // We do this in a pretty awful way: first we type-check any arguments
        // that are not closures, then we type-check the closures. This is so
        // that we have more information about the types of arguments when we
        // type-check the functions. This isn't really the right way to do this.
        for check_closures in [false, true] {
            // More awful hacks: before we check argument types, try to do
            // an "opportunistic" trait resolution of any trait bounds on
            // the call. This helps coercions.
            if check_closures {
                self.select_obligations_where_possible(|_| {})
            }

            // Check each argument, to satisfy the input it was provided for
            // Visually, we're traveling down the diagonal of the compatibility matrix
            for (idx, arg) in provided_args.iter().enumerate() {
                // Warn only for the first loop (the "no closures" one).
                // Closure arguments themselves can't be diverging, but
                // a previous argument can, e.g., `foo(panic!(), || {})`.
                if !check_closures {
                    self.warn_if_unreachable(arg.hir_id, arg.span, "expression");
                }

                // For C-variadic functions, we don't have a declared type for all of
                // the arguments hence we only do our usual type checking with
                // the arguments who's types we do know. However, we *can* check
                // for unreachable expressions (see above).
                // FIXME: unreachable warning current isn't emitted
                if idx >= minimum_input_count {
                    continue;
                }

                // For this check, we do *not* want to treat async coroutine closures (async blocks)
                // as proper closures. Doing so would regress type inference when feeding
                // the return value of an argument-position async block to an argument-position
                // closure wrapped in a block.
                // See <https://github.com/rust-lang/rust/issues/112225>.
                let is_closure = if let ExprKind::Closure(closure) = arg.kind {
                    !tcx.coroutine_is_async(closure.def_id.to_def_id())
                } else {
                    false
                };
                if is_closure != check_closures {
                    continue;
                }

                let compatible = demand_compatible(idx);
                let is_compatible = matches!(compatible, Compatibility::Compatible);
                compatibility_diagonal[idx] = compatible;

                if !is_compatible {
                    call_appears_satisfied = false;
                }
            }
        }

        if c_variadic && provided_arg_count < minimum_input_count {
            err_code = E0060;
        }

        for arg in provided_args.iter().skip(minimum_input_count) {
            // Make sure we've checked this expr at least once.
            let arg_ty = self.check_expr(arg);

            // If the function is c-style variadic, we skipped a bunch of arguments
            // so we need to check those, and write out the types
            // Ideally this would be folded into the above, for uniform style
            // but c-variadic is already a corner case
            if c_variadic {
                fn variadic_error<'tcx>(
                    sess: &'tcx Session,
                    span: Span,
                    ty: Ty<'tcx>,
                    cast_ty: &str,
                ) {
                    let (sugg_span, replace, help) =
                        if let Ok(snippet) = sess.source_map().span_to_snippet(span) {
                            (Some(span), format!("{snippet} as {cast_ty}"), false)
                        } else {
                            (None, "".to_string(), true)
                        };

                    sess.dcx().emit_err(errors::PassToVariadicFunction {
                        span,
                        ty,
                        cast_ty,
                        help,
                        replace,
                        sugg_span,
                        teach: sess.teach(E0617),
                    });
                }

                // There are a few types which get autopromoted when passed via varargs
                // in C but we just error out instead and require explicit casts.
                let arg_ty = self.structurally_resolve_type(arg.span, arg_ty);
                match arg_ty.kind() {
                    ty::Float(ty::FloatTy::F32) => {
                        variadic_error(tcx.sess, arg.span, arg_ty, "c_double");
                    }
                    ty::Int(ty::IntTy::I8 | ty::IntTy::I16) | ty::Bool => {
                        variadic_error(tcx.sess, arg.span, arg_ty, "c_int");
                    }
                    ty::Uint(ty::UintTy::U8 | ty::UintTy::U16) => {
                        variadic_error(tcx.sess, arg.span, arg_ty, "c_uint");
                    }
                    ty::FnDef(..) => {
                        let ptr_ty = Ty::new_fn_ptr(self.tcx, arg_ty.fn_sig(self.tcx));
                        let ptr_ty = self.resolve_vars_if_possible(ptr_ty);
                        variadic_error(tcx.sess, arg.span, arg_ty, &ptr_ty.to_string());
                    }
                    _ => {}
                }
            }
        }

        if !call_appears_satisfied {
            let compatibility_diagonal = IndexVec::from_raw(compatibility_diagonal);
            let provided_args = IndexVec::from_iter(provided_args.iter().take(if c_variadic {
                minimum_input_count
            } else {
                provided_arg_count
            }));
            debug_assert_eq!(
                formal_input_tys.len(),
                expected_input_tys.len(),
                "expected formal_input_tys to be the same size as expected_input_tys"
            );
            let formal_and_expected_inputs = IndexVec::from_iter(
                formal_input_tys
                    .iter()
                    .copied()
                    .zip_eq(expected_input_tys.iter().copied())
                    .map(|vars| self.resolve_vars_if_possible(vars)),
            );

            self.report_arg_errors(
                compatibility_diagonal,
                formal_and_expected_inputs,
                provided_args,
                c_variadic,
                err_code,
                fn_def_id,
                call_span,
                call_expr,
            );
        }
    }

    fn report_arg_errors(
        &self,
        compatibility_diagonal: IndexVec<ProvidedIdx, Compatibility<'tcx>>,
        formal_and_expected_inputs: IndexVec<ExpectedIdx, (Ty<'tcx>, Ty<'tcx>)>,
        provided_args: IndexVec<ProvidedIdx, &'tcx hir::Expr<'tcx>>,
        c_variadic: bool,
        err_code: ErrCode,
        fn_def_id: Option<DefId>,
        call_span: Span,
        call_expr: &'tcx hir::Expr<'tcx>,
    ) -> ErrorGuaranteed {
        // Next, let's construct the error
        let (error_span, call_ident, full_call_span, call_name, is_method) = match &call_expr.kind {
            hir::ExprKind::Call(
                hir::Expr { hir_id, span, kind: hir::ExprKind::Path(qpath), .. },
                _,
            ) => {
                if let Res::Def(DefKind::Ctor(of, _), _) =
                    self.typeck_results.borrow().qpath_res(qpath, *hir_id)
                {
                    let name = match of {
                        CtorOf::Struct => "struct",
                        CtorOf::Variant => "enum variant",
                    };
                    (call_span, None, *span, name, false)
                } else {
                    (call_span, None, *span, "function", false)
                }
            }
            hir::ExprKind::Call(hir::Expr { span, .. }, _) => {
                (call_span, None, *span, "function", false)
            }
            hir::ExprKind::MethodCall(path_segment, _, _, span) => {
                let ident_span = path_segment.ident.span;
                let ident_span = if let Some(args) = path_segment.args {
                    ident_span.with_hi(args.span_ext.hi())
                } else {
                    ident_span
                };
                (*span, Some(path_segment.ident), ident_span, "method", true)
            }
            k => span_bug!(call_span, "checking argument types on a non-call: `{:?}`", k),
        };
        let args_span = error_span.trim_start(full_call_span).unwrap_or(error_span);

        // Don't print if it has error types or is just plain `_`
        fn has_error_or_infer<'tcx>(tys: impl IntoIterator<Item = Ty<'tcx>>) -> bool {
            tys.into_iter().any(|ty| ty.references_error() || ty.is_ty_var())
        }

        let tcx = self.tcx;

        // Get the argument span in the context of the call span so that
        // suggestions and labels are (more) correct when an arg is a
        // macro invocation.
        let normalize_span = |span: Span| -> Span {
            let normalized_span = span.find_ancestor_inside_same_ctxt(error_span).unwrap_or(span);
            // Sometimes macros mess up the spans, so do not normalize the
            // arg span to equal the error span, because that's less useful
            // than pointing out the arg expr in the wrong context.
            if normalized_span.source_equal(error_span) { span } else { normalized_span }
        };

        // Precompute the provided types and spans, since that's all we typically need for below
        let provided_arg_tys: IndexVec<ProvidedIdx, (Ty<'tcx>, Span)> = provided_args
            .iter()
            .map(|expr| {
                let ty = self
                    .typeck_results
                    .borrow()
                    .expr_ty_adjusted_opt(*expr)
                    .unwrap_or_else(|| Ty::new_misc_error(tcx));
                (self.resolve_vars_if_possible(ty), normalize_span(expr.span))
            })
            .collect();
        let callee_expr = match &call_expr.peel_blocks().kind {
            hir::ExprKind::Call(callee, _) => Some(*callee),
            hir::ExprKind::MethodCall(_, receiver, ..) => {
                if let Some((DefKind::AssocFn, def_id)) =
                    self.typeck_results.borrow().type_dependent_def(call_expr.hir_id)
                    && let Some(assoc) = tcx.opt_associated_item(def_id)
                    && assoc.fn_has_self_parameter
                {
                    Some(*receiver)
                } else {
                    None
                }
            }
            _ => None,
        };
        let callee_ty = callee_expr
            .and_then(|callee_expr| self.typeck_results.borrow().expr_ty_adjusted_opt(callee_expr));

        // Obtain another method on `Self` that have similar name.
        let similar_assoc = |call_name: Ident| -> Option<(ty::AssocItem, ty::FnSig<'_>)> {
            if let Some(callee_ty) = callee_ty
                && let Ok(Some(assoc)) = self.probe_op(
                    call_name.span,
                    MethodCall,
                    Some(call_name),
                    None,
                    IsSuggestion(true),
                    callee_ty.peel_refs(),
                    callee_expr.unwrap().hir_id,
                    TraitsInScope,
                    |mut ctxt| ctxt.probe_for_similar_candidate(),
                )
                && let ty::AssocKind::Fn = assoc.kind
                && assoc.fn_has_self_parameter
            {
                let args = self.infcx.fresh_args_for_item(call_name.span, assoc.def_id);
                let fn_sig = tcx.fn_sig(assoc.def_id).instantiate(tcx, args);

                self.instantiate_binder_with_fresh_vars(call_name.span, FnCall, fn_sig);
            }
            None
        };

        let suggest_confusable = |err: &mut Diag<'_>| {
            let Some(call_name) = call_ident else {
                return;
            };
            let Some(callee_ty) = callee_ty else {
                return;
            };
            let input_types: Vec<Ty<'_>> = provided_arg_tys.iter().map(|(ty, _)| *ty).collect();
            // Check for other methods in the following order
            //  - methods marked as `rustc_confusables` with the provided arguments
            //  - methods with the same argument type/count and short levenshtein distance
            //  - methods marked as `rustc_confusables` (done)
            //  - methods with short levenshtein distance

            // Look for commonly confusable method names considering arguments.
            if let Some(_name) = self.confusable_method_name(
                err,
                callee_ty.peel_refs(),
                call_name,
                Some(input_types.clone()),
            ) {
                return;
            }
            // Look for method names with short levenshtein distance, considering arguments.
            if let Some((assoc, fn_sig)) = similar_assoc(call_name)
                && fn_sig.inputs()[1..]
                    .iter()
                    .zip(input_types.iter())
                    .all(|(expected, found)| self.can_coerce(*expected, *found))
                && fn_sig.inputs()[1..].len() == input_types.len()
            {
                err.span_suggestion_verbose(
                    call_name.span,
                    format!("you might have meant to use `{}`", assoc.name),
                    assoc.name,
                    Applicability::MaybeIncorrect,
                );
                return;
            }
            // Look for commonly confusable method names disregarding arguments.
            if let Some(_name) =
                self.confusable_method_name(err, callee_ty.peel_refs(), call_name, None)
            {
                return;
            }
            // Look for similarly named methods with levenshtein distance with the right
            // number of arguments.
            if let Some((assoc, fn_sig)) = similar_assoc(call_name)
                && fn_sig.inputs()[1..].len() == input_types.len()
            {
                err.span_note(
                    tcx.def_span(assoc.def_id),
                    format!(
                        "there's is a method with similar name `{}`, but the arguments don't match",
                        assoc.name,
                    ),
                );
                return;
            }
            // Fallthrough: look for similarly named methods with levenshtein distance.
            if let Some((assoc, _)) = similar_assoc(call_name) {
                err.span_note(
                    tcx.def_span(assoc.def_id),
                    format!(
                        "there's is a method with similar name `{}`, but their argument count \
                         doesn't match",
                        assoc.name,
                    ),
                );
                return;
            }
        };
        // A "softer" version of the `demand_compatible`, which checks types without persisting them,
        // and treats error types differently
        // This will allow us to "probe" for other argument orders that would likely have been correct
        let check_compatible = |provided_idx: ProvidedIdx, expected_idx: ExpectedIdx| {
            if provided_idx.as_usize() == expected_idx.as_usize() {
                return compatibility_diagonal[provided_idx].clone();
            }

            let (formal_input_ty, expected_input_ty) = formal_and_expected_inputs[expected_idx];
            // If either is an error type, we defy the usual convention and consider them to *not* be
            // coercible. This prevents our error message heuristic from trying to pass errors into
            // every argument.
            if (formal_input_ty, expected_input_ty).references_error() {
                return Compatibility::Incompatible(None);
            }

            let (arg_ty, arg_span) = provided_arg_tys[provided_idx];

            let expectation = Expectation::rvalue_hint(self, expected_input_ty);
            let coerced_ty = expectation.only_has_type(self).unwrap_or(formal_input_ty);
            let can_coerce = self.can_coerce(arg_ty, coerced_ty);
            if !can_coerce {
                return Compatibility::Incompatible(Some(ty::error::TypeError::Sorts(
                    ty::error::ExpectedFound::new(true, coerced_ty, arg_ty),
                )));
            }

            // Using probe here, since we don't want this subtyping to affect inference.
            let subtyping_error = self.probe(|_| {
                self.at(&self.misc(arg_span), self.param_env)
                    .sup(DefineOpaqueTypes::Yes, formal_input_ty, coerced_ty)
                    .err()
            });

            // Same as above: if either the coerce type or the checked type is an error type,
            // consider them *not* compatible.
            let references_error = (coerced_ty, arg_ty).references_error();
            match (references_error, subtyping_error) {
                (false, None) => Compatibility::Compatible,
                (_, subtyping_error) => Compatibility::Incompatible(subtyping_error),
            }
        };

        let mk_trace = |span, (formal_ty, expected_ty), provided_ty| {
            let mismatched_ty = if expected_ty == provided_ty {
                // If expected == provided, then we must have failed to sup
                // the formal type. Avoid printing out "expected Ty, found Ty"
                // in that case.
                formal_ty
            } else {
                expected_ty
            };
            TypeTrace::types(&self.misc(span), true, mismatched_ty, provided_ty)
        };

        // The algorithm here is inspired by levenshtein distance and longest common subsequence.
        // We'll try to detect 4 different types of mistakes:
        // - An extra parameter has been provided that doesn't satisfy *any* of the other inputs
        // - An input is missing, which isn't satisfied by *any* of the other arguments
        // - Some number of arguments have been provided in the wrong order
        // - A type is straight up invalid

        // First, let's find the errors
        let (mut errors, matched_inputs) =
            ArgMatrix::new(provided_args.len(), formal_and_expected_inputs.len(), check_compatible)
                .find_errors();

        // First, check if we just need to wrap some arguments in a tuple.
        if let Some((mismatch_idx, terr)) =
            compatibility_diagonal.iter().enumerate().find_map(|(i, c)| {
                if let Compatibility::Incompatible(Some(terr)) = c {
                    Some((i, *terr))
                } else {
                    None
                }
            })
        {
            // Is the first bad expected argument a tuple?
            // Do we have as many extra provided arguments as the tuple's length?
            // If so, we might have just forgotten to wrap some args in a tuple.
            if let Some(ty::Tuple(tys)) =
                formal_and_expected_inputs.get(mismatch_idx.into()).map(|tys| tys.1.kind())
                // If the tuple is unit, we're not actually wrapping any arguments.
                && !tys.is_empty()
                && provided_arg_tys.len() == formal_and_expected_inputs.len() - 1 + tys.len()
            {
                // Wrap up the N provided arguments starting at this position in a tuple.
                let provided_as_tuple = Ty::new_tup_from_iter(
                    tcx,
                    provided_arg_tys.iter().map(|(ty, _)| *ty).skip(mismatch_idx).take(tys.len()),
                );

                let mut satisfied = true;
                // Check if the newly wrapped tuple + rest of the arguments are compatible.
                for ((_, expected_ty), provided_ty) in std::iter::zip(
                    formal_and_expected_inputs.iter().skip(mismatch_idx),
                    [provided_as_tuple].into_iter().chain(
                        provided_arg_tys.iter().map(|(ty, _)| *ty).skip(mismatch_idx + tys.len()),
                    ),
                ) {
                    if !self.can_coerce(provided_ty, *expected_ty) {
                        satisfied = false;
                        break;
                    }
                }

                // If they're compatible, suggest wrapping in an arg, and we're done!
                // Take some care with spans, so we don't suggest wrapping a macro's
                // innards in parenthesis, for example.
                if satisfied
                    && let Some((_, lo)) =
                        provided_arg_tys.get(ProvidedIdx::from_usize(mismatch_idx))
                    && let Some((_, hi)) =
                        provided_arg_tys.get(ProvidedIdx::from_usize(mismatch_idx + tys.len() - 1))
                {
                    let mut err;
                    if tys.len() == 1 {
                        // A tuple wrap suggestion actually occurs within,
                        // so don't do anything special here.
                        err = self.err_ctxt().report_and_explain_type_error(
                            mk_trace(
                                *lo,
                                formal_and_expected_inputs[mismatch_idx.into()],
                                provided_arg_tys[mismatch_idx.into()].0,
                            ),
                            terr,
                        );
                        err.span_label(
                            full_call_span,
                            format!("arguments to this {call_name} are incorrect"),
                        );
                    } else {
                        err = self.dcx().struct_span_err(
                            full_call_span,
                            format!(
                                "{call_name} takes {}{} but {} {} supplied",
                                if c_variadic { "at least " } else { "" },
                                potentially_plural_count(
                                    formal_and_expected_inputs.len(),
                                    "argument"
                                ),
                                potentially_plural_count(provided_args.len(), "argument"),
                                pluralize!("was", provided_args.len())
                            ),
                        );
                        err.code(err_code.to_owned());
                        err.multipart_suggestion_verbose(
                            "wrap these arguments in parentheses to construct a tuple",
                            vec![
                                (lo.shrink_to_lo(), "(".to_string()),
                                (hi.shrink_to_hi(), ")".to_string()),
                            ],
                            Applicability::MachineApplicable,
                        );
                    };
                    self.label_fn_like(
                        &mut err,
                        fn_def_id,
                        callee_ty,
                        call_expr,
                        None,
                        Some(mismatch_idx),
                        &matched_inputs,
                        &formal_and_expected_inputs,
                        is_method,
                    );
                    suggest_confusable(&mut err);
                    return err.emit();
                }
            }
        }

        // Okay, so here's where it gets complicated in regards to what errors
        // we emit and how.
        // There are 3 different "types" of errors we might encounter.
        //   1) Missing/extra/swapped arguments
        //   2) Valid but incorrect arguments
        //   3) Invalid arguments
        //      - Currently I think this only comes up with `CyclicTy`
        //
        // We first need to go through, remove those from (3) and emit those
        // as their own error, particularly since they're error code and
        // message is special. From what I can tell, we *must* emit these
        // here (vs somewhere prior to this function) since the arguments
        // become invalid *because* of how they get used in the function.
        // It is what it is.

        if errors.is_empty() {
            if cfg!(debug_assertions) {
                span_bug!(error_span, "expected errors from argument matrix");
            } else {
                let mut err =
                    self.dcx().create_err(errors::ArgMismatchIndeterminate { span: error_span });
                suggest_confusable(&mut err);
                return err.emit();
            }
        }

        let mut reported = None;
        errors.retain(|error| {
            let Error::Invalid(provided_idx, expected_idx, Compatibility::Incompatible(Some(e))) =
                error
            else {
                return true;
            };
            let (provided_ty, provided_span) = provided_arg_tys[*provided_idx];
            let trace =
                mk_trace(provided_span, formal_and_expected_inputs[*expected_idx], provided_ty);
            if !matches!(trace.cause.as_failure_code(*e), FailureCode::Error0308) {
                let mut err = self.err_ctxt().report_and_explain_type_error(trace, *e);
                suggest_confusable(&mut err);
                reported = Some(err.emit());
                return false;
            }
            true
        });

        // We're done if we found errors, but we already emitted them.
        if let Some(reported) = reported
            && errors.is_empty()
        {
            return reported;
        }
        assert!(!errors.is_empty());

        // Okay, now that we've emitted the special errors separately, we
        // are only left missing/extra/swapped and mismatched arguments, both
        // can be collated pretty easily if needed.

        // Next special case: if there is only one "Incompatible" error, just emit that
        if let [
            Error::Invalid(provided_idx, expected_idx, Compatibility::Incompatible(Some(err))),
        ] = &errors[..]
        {
            let (formal_ty, expected_ty) = formal_and_expected_inputs[*expected_idx];
            let (provided_ty, provided_arg_span) = provided_arg_tys[*provided_idx];
            let trace = mk_trace(provided_arg_span, (formal_ty, expected_ty), provided_ty);
            let mut err = self.err_ctxt().report_and_explain_type_error(trace, *err);
            self.emit_coerce_suggestions(
                &mut err,
                provided_args[*provided_idx],
                provided_ty,
                Expectation::rvalue_hint(self, expected_ty)
                    .only_has_type(self)
                    .unwrap_or(formal_ty),
                None,
                None,
            );
            err.span_label(full_call_span, format!("arguments to this {call_name} are incorrect"));

            self.label_generic_mismatches(
                &mut err,
                fn_def_id,
                &matched_inputs,
                &provided_arg_tys,
                &formal_and_expected_inputs,
                is_method,
            );

            if let hir::ExprKind::MethodCall(_, rcvr, _, _) = call_expr.kind
                && provided_idx.as_usize() == expected_idx.as_usize()
            {
                self.note_source_of_type_mismatch_constraint(
                    &mut err,
                    rcvr,
                    crate::demand::TypeMismatchSource::Arg {
                        call_expr,
                        incompatible_arg: provided_idx.as_usize(),
                    },
                );
            }

            self.suggest_ptr_null_mut(
                expected_ty,
                provided_ty,
                provided_args[*provided_idx],
                &mut err,
            );

            self.suggest_deref_unwrap_or(
                &mut err,
                error_span,
                callee_ty,
                call_ident,
                expected_ty,
                provided_ty,
                provided_args[*provided_idx],
                is_method,
            );

            // Call out where the function is defined
            self.label_fn_like(
                &mut err,
                fn_def_id,
                callee_ty,
                call_expr,
                Some(expected_ty),
                Some(expected_idx.as_usize()),
                &matched_inputs,
                &formal_and_expected_inputs,
                is_method,
            );
            suggest_confusable(&mut err);
            return err.emit();
        }

        // Special case, we found an extra argument is provided, which is very common in practice.
        // but there is a obviously better removing suggestion compared to the current one,
        // try to find the argument with Error type, if we removed it all the types will become good,
        // then we will replace the current suggestion.
        if let [Error::Extra(provided_idx)] = &errors[..] {
            let remove_idx_is_perfect = |idx: usize| -> bool {
                let removed_arg_tys = provided_arg_tys
                    .iter()
                    .enumerate()
                    .filter_map(|(j, arg)| if idx == j { None } else { Some(arg) })
                    .collect::<IndexVec<ProvidedIdx, _>>();
                std::iter::zip(formal_and_expected_inputs.iter(), removed_arg_tys.iter()).all(
                    |((expected_ty, _), (provided_ty, _))| {
                        !provided_ty.references_error()
                            && self.can_coerce(*provided_ty, *expected_ty)
                    },
                )
            };

            if !remove_idx_is_perfect(provided_idx.as_usize()) {
                if let Some(i) = (0..provided_args.len()).find(|&i| remove_idx_is_perfect(i)) {
                    errors = vec![Error::Extra(ProvidedIdx::from_usize(i))];
                }
            }
        }

        let mut err = if formal_and_expected_inputs.len() == provided_args.len() {
            struct_span_code_err!(
                self.dcx(),
                full_call_span,
                E0308,
                "arguments to this {} are incorrect",
                call_name,
            )
        } else {
            self.dcx()
                .struct_span_err(
                    full_call_span,
                    format!(
                        "this {} takes {}{} but {} {} supplied",
                        call_name,
                        if c_variadic { "at least " } else { "" },
                        potentially_plural_count(formal_and_expected_inputs.len(), "argument"),
                        potentially_plural_count(provided_args.len(), "argument"),
                        pluralize!("was", provided_args.len())
                    ),
                )
                .with_code(err_code.to_owned())
        };

        suggest_confusable(&mut err);
        // As we encounter issues, keep track of what we want to provide for the suggestion
        let mut labels = vec![];
        // If there is a single error, we give a specific suggestion; otherwise, we change to
        // "did you mean" with the suggested function call
        enum SuggestionText {
            None,
            Provide(bool),
            Remove(bool),
            Swap,
            Reorder,
            DidYouMean,
        }
        let mut suggestion_text = SuggestionText::None;

        let ty_to_snippet = |ty: Ty<'tcx>, expected_idx: ExpectedIdx| {
            if ty.is_unit() {
                "()".to_string()
            } else if ty.is_suggestable(tcx, false) {
                format!("/* {ty} */")
            } else if let Some(fn_def_id) = fn_def_id
                && self.tcx.def_kind(fn_def_id).is_fn_like()
                && let self_implicit =
                    matches!(call_expr.kind, hir::ExprKind::MethodCall(..)) as usize
                && let Some(arg) =
                    self.tcx.fn_arg_names(fn_def_id).get(expected_idx.as_usize() + self_implicit)
                && arg.name != kw::SelfLower
            {
                format!("/* {} */", arg.name)
            } else {
                "/* value */".to_string()
            }
        };

        let mut errors = errors.into_iter().peekable();
        let mut only_extras_so_far = errors
            .peek()
            .is_some_and(|first| matches!(first, Error::Extra(arg_idx) if arg_idx.index() == 0));
        let mut suggestions = vec![];
        while let Some(error) = errors.next() {
            only_extras_so_far &= matches!(error, Error::Extra(_));

            match error {
                Error::Invalid(provided_idx, expected_idx, compatibility) => {
                    let (formal_ty, expected_ty) = formal_and_expected_inputs[expected_idx];
                    let (provided_ty, provided_span) = provided_arg_tys[provided_idx];
                    if let Compatibility::Incompatible(error) = compatibility {
                        let trace = mk_trace(provided_span, (formal_ty, expected_ty), provided_ty);
                        if let Some(e) = error {
                            self.err_ctxt().note_type_err(
                                &mut err,
                                &trace.cause,
                                None,
                                Some(trace.values),
                                e,
                                false,
                                true,
                            );
                        }
                    }

                    self.emit_coerce_suggestions(
                        &mut err,
                        provided_args[provided_idx],
                        provided_ty,
                        Expectation::rvalue_hint(self, expected_ty)
                            .only_has_type(self)
                            .unwrap_or(formal_ty),
                        None,
                        None,
                    );
                }
                Error::Extra(arg_idx) => {
                    let (provided_ty, provided_span) = provided_arg_tys[arg_idx];
                    let provided_ty_name = if !has_error_or_infer([provided_ty]) {
                        // FIXME: not suggestable, use something else
                        format!(" of type `{provided_ty}`")
                    } else {
                        "".to_string()
                    };
                    let idx = if provided_arg_tys.len() == 1 {
                        "".to_string()
                    } else {
                        format!(" #{}", arg_idx.as_usize() + 1)
                    };
                    labels.push((
                        provided_span,
                        format!("unexpected argument{idx}{provided_ty_name}"),
                    ));
                    let mut span = provided_span;
                    if span.can_be_used_for_suggestions()
                        && error_span.can_be_used_for_suggestions()
                    {
                        if arg_idx.index() > 0
                            && let Some((_, prev)) =
                                provided_arg_tys.get(ProvidedIdx::from_usize(arg_idx.index() - 1))
                        {
                            // Include previous comma
                            span = prev.shrink_to_hi().to(span);
                        }

                        // Is last argument for deletion in a row starting from the 0-th argument?
                        // Then delete the next comma, so we are not left with `f(, ...)`
                        //
                        //     fn f() {}
                        //   - f(0, 1,)
                        //   + f()
                        if only_extras_so_far
                            && !errors
                                .peek()
                                .is_some_and(|next_error| matches!(next_error, Error::Extra(_)))
                        {
                            let next = provided_arg_tys
                                .get(arg_idx + 1)
                                .map(|&(_, sp)| sp)
                                .unwrap_or_else(|| {
                                    // Try to move before `)`. Note that `)` here is not necessarily
                                    // the latin right paren, it could be a Unicode-confusable that
                                    // looks like a `)`, so we must not use `- BytePos(1)`
                                    // manipulations here.
                                    self.tcx().sess.source_map().end_point(call_expr.span)
                                });

                            // Include next comma
                            span = span.until(next);
                        }

                        suggestions.push((span, String::new()));

                        suggestion_text = match suggestion_text {
                            SuggestionText::None => SuggestionText::Remove(false),
                            SuggestionText::Remove(_) => SuggestionText::Remove(true),
                            _ => SuggestionText::DidYouMean,
                        };
                    }
                }
                Error::Missing(expected_idx) => {
                    // If there are multiple missing arguments adjacent to each other,
                    // then we can provide a single error.

                    let mut missing_idxs = vec![expected_idx];
                    while let Some(e) = errors.next_if(|e| {
                        matches!(e, Error::Missing(next_expected_idx)
                            if *next_expected_idx == *missing_idxs.last().unwrap() + 1)
                    }) {
                        match e {
                            Error::Missing(expected_idx) => missing_idxs.push(expected_idx),
                            _ => unreachable!(
                                "control flow ensures that we should always get an `Error::Missing`"
                            ),
                        }
                    }

                    // NOTE: Because we might be re-arranging arguments, might have extra
                    // arguments, etc. it's hard to *really* know where we should provide
                    // this error label, so as a heuristic, we point to the provided arg, or
                    // to the call if the missing inputs pass the provided args.
                    match &missing_idxs[..] {
                        &[expected_idx] => {
                            let (_, input_ty) = formal_and_expected_inputs[expected_idx];
                            let span = if let Some((_, arg_span)) =
                                provided_arg_tys.get(expected_idx.to_provided_idx())
                            {
                                *arg_span
                            } else {
                                args_span
                            };
                            let rendered = if !has_error_or_infer([input_ty]) {
                                format!(" of type `{input_ty}`")
                            } else {
                                "".to_string()
                            };
                            labels.push((
                                span,
                                format!(
                                    "argument #{}{rendered} is missing",
                                    expected_idx.as_usize() + 1
                                ),
                            ));

                            suggestion_text = match suggestion_text {
                                SuggestionText::None => SuggestionText::Provide(false),
                                SuggestionText::Provide(_) => SuggestionText::Provide(true),
                                _ => SuggestionText::DidYouMean,
                            };
                        }
                        &[first_idx, second_idx] => {
                            let (_, first_expected_ty) = formal_and_expected_inputs[first_idx];
                            let (_, second_expected_ty) = formal_and_expected_inputs[second_idx];
                            let span = if let (Some((_, first_span)), Some((_, second_span))) = (
                                provided_arg_tys.get(first_idx.to_provided_idx()),
                                provided_arg_tys.get(second_idx.to_provided_idx()),
                            ) {
                                first_span.to(*second_span)
                            } else {
                                args_span
                            };
                            let rendered =
                                if !has_error_or_infer([first_expected_ty, second_expected_ty]) {
                                    format!(
                                        " of type `{first_expected_ty}` and `{second_expected_ty}`"
                                    )
                                } else {
                                    "".to_string()
                                };
                            labels.push((span, format!("two arguments{rendered} are missing")));
                            suggestion_text = match suggestion_text {
                                SuggestionText::None | SuggestionText::Provide(_) => {
                                    SuggestionText::Provide(true)
                                }
                                _ => SuggestionText::DidYouMean,
                            };
                        }
                        &[first_idx, second_idx, third_idx] => {
                            let (_, first_expected_ty) = formal_and_expected_inputs[first_idx];
                            let (_, second_expected_ty) = formal_and_expected_inputs[second_idx];
                            let (_, third_expected_ty) = formal_and_expected_inputs[third_idx];
                            let span = if let (Some((_, first_span)), Some((_, third_span))) = (
                                provided_arg_tys.get(first_idx.to_provided_idx()),
                                provided_arg_tys.get(third_idx.to_provided_idx()),
                            ) {
                                first_span.to(*third_span)
                            } else {
                                args_span
                            };
                            let rendered = if !has_error_or_infer([
                                first_expected_ty,
                                second_expected_ty,
                                third_expected_ty,
                            ]) {
                                format!(
                                    " of type `{first_expected_ty}`, `{second_expected_ty}`, and `{third_expected_ty}`"
                                )
                            } else {
                                "".to_string()
                            };
                            labels.push((span, format!("three arguments{rendered} are missing")));
                            suggestion_text = match suggestion_text {
                                SuggestionText::None | SuggestionText::Provide(_) => {
                                    SuggestionText::Provide(true)
                                }
                                _ => SuggestionText::DidYouMean,
                            };
                        }
                        missing_idxs => {
                            let first_idx = *missing_idxs.first().unwrap();
                            let last_idx = *missing_idxs.last().unwrap();
                            // NOTE: Because we might be re-arranging arguments, might have extra arguments, etc.
                            // It's hard to *really* know where we should provide this error label, so this is a
                            // decent heuristic
                            let span = if let (Some((_, first_span)), Some((_, last_span))) = (
                                provided_arg_tys.get(first_idx.to_provided_idx()),
                                provided_arg_tys.get(last_idx.to_provided_idx()),
                            ) {
                                first_span.to(*last_span)
                            } else {
                                args_span
                            };
                            labels.push((span, "multiple arguments are missing".to_string()));
                            suggestion_text = match suggestion_text {
                                SuggestionText::None | SuggestionText::Provide(_) => {
                                    SuggestionText::Provide(true)
                                }
                                _ => SuggestionText::DidYouMean,
                            };
                        }
                    }
                }
                Error::Swap(
                    first_provided_idx,
                    second_provided_idx,
                    first_expected_idx,
                    second_expected_idx,
                ) => {
                    let (first_provided_ty, first_span) = provided_arg_tys[first_provided_idx];
                    let (_, first_expected_ty) = formal_and_expected_inputs[first_expected_idx];
                    let first_provided_ty_name = if !has_error_or_infer([first_provided_ty]) {
                        format!(", found `{first_provided_ty}`")
                    } else {
                        String::new()
                    };
                    labels.push((
                        first_span,
                        format!("expected `{first_expected_ty}`{first_provided_ty_name}"),
                    ));

                    let (second_provided_ty, second_span) = provided_arg_tys[second_provided_idx];
                    let (_, second_expected_ty) = formal_and_expected_inputs[second_expected_idx];
                    let second_provided_ty_name = if !has_error_or_infer([second_provided_ty]) {
                        format!(", found `{second_provided_ty}`")
                    } else {
                        String::new()
                    };
                    labels.push((
                        second_span,
                        format!("expected `{second_expected_ty}`{second_provided_ty_name}"),
                    ));

                    suggestion_text = match suggestion_text {
                        SuggestionText::None => SuggestionText::Swap,
                        _ => SuggestionText::DidYouMean,
                    };
                }
                Error::Permutation(args) => {
                    for (dst_arg, dest_input) in args {
                        let (_, expected_ty) = formal_and_expected_inputs[dst_arg];
                        let (provided_ty, provided_span) = provided_arg_tys[dest_input];
                        let provided_ty_name = if !has_error_or_infer([provided_ty]) {
                            format!(", found `{provided_ty}`")
                        } else {
                            String::new()
                        };
                        labels.push((
                            provided_span,
                            format!("expected `{expected_ty}`{provided_ty_name}"),
                        ));
                    }

                    suggestion_text = match suggestion_text {
                        SuggestionText::None => SuggestionText::Reorder,
                        _ => SuggestionText::DidYouMean,
                    };
                }
            }
        }

        self.label_generic_mismatches(
            &mut err,
            fn_def_id,
            &matched_inputs,
            &provided_arg_tys,
            &formal_and_expected_inputs,
            is_method,
        );

        // Incorporate the argument changes in the removal suggestion.
        // When a type is *missing*, and the rest are additional, we want to suggest these with a
        // multipart suggestion, but in order to do so we need to figure out *where* the arg that
        // was provided but had the wrong type should go, because when looking at `expected_idx`
        // that is the position in the argument list in the definition, while `provided_idx` will
        // not be present. So we have to look at what the *last* provided position was, and point
        // one after to suggest the replacement. FIXME(estebank): This is hacky, and there's
        // probably a better more involved change we can make to make this work.
        // For example, if we have
        // ```
        // fn foo(i32, &'static str) {}
        // foo((), (), ());
        // ```
        // what should be suggested is
        // ```
        // foo(/* i32 */, /* &str */);
        // ```
        // which includes the replacement of the first two `()` for the correct type, and the
        // removal of the last `()`.
        let mut prev = -1;
        for (expected_idx, provided_idx) in matched_inputs.iter_enumerated() {
            // We want to point not at the *current* argument expression index, but rather at the
            // index position where it *should have been*, which is *after* the previous one.
            if let Some(provided_idx) = provided_idx {
                prev = provided_idx.index() as i64;
                continue;
            }
            let idx = ProvidedIdx::from_usize((prev + 1) as usize);
            if let Some((_, arg_span)) = provided_arg_tys.get(idx) {
                prev += 1;
                // There is a type that was *not* found anywhere, so it isn't a move, but a
                // replacement and we look at what type it should have been. This will allow us
                // To suggest a multipart suggestion when encountering `foo(1, "")` where the def
                // was `fn foo(())`.
                let (_, expected_ty) = formal_and_expected_inputs[expected_idx];
                suggestions.push((*arg_span, ty_to_snippet(expected_ty, expected_idx)));
            }
        }

        // If we have less than 5 things to say, it would be useful to call out exactly what's wrong
        if labels.len() <= 5 {
            for (span, label) in labels {
                err.span_label(span, label);
            }
        }

        // Call out where the function is defined
        self.label_fn_like(
            &mut err,
            fn_def_id,
            callee_ty,
            call_expr,
            None,
            None,
            &matched_inputs,
            &formal_and_expected_inputs,
            is_method,
        );

        // And add a suggestion block for all of the parameters
        let suggestion_text = match suggestion_text {
            SuggestionText::None => None,
            SuggestionText::Provide(plural) => {
                Some(format!("provide the argument{}", if plural { "s" } else { "" }))
            }
            SuggestionText::Remove(plural) => {
                err.multipart_suggestion_verbose(
                    format!("remove the extra argument{}", if plural { "s" } else { "" }),
                    suggestions,
                    Applicability::HasPlaceholders,
                );
                None
            }
            SuggestionText::Swap => Some("swap these arguments".to_string()),
            SuggestionText::Reorder => Some("reorder these arguments".to_string()),
            SuggestionText::DidYouMean => Some("did you mean".to_string()),
        };
        if let Some(suggestion_text) = suggestion_text {
            let source_map = self.sess().source_map();
            let (mut suggestion, suggestion_span) = if let Some(call_span) =
                full_call_span.find_ancestor_inside_same_ctxt(error_span)
            {
                ("(".to_string(), call_span.shrink_to_hi().to(error_span.shrink_to_hi()))
            } else {
                (
                    format!(
                        "{}(",
                        source_map.span_to_snippet(full_call_span).unwrap_or_else(|_| {
                            fn_def_id.map_or("".to_string(), |fn_def_id| {
                                tcx.item_name(fn_def_id).to_string()
                            })
                        })
                    ),
                    error_span,
                )
            };
            let mut needs_comma = false;
            for (expected_idx, provided_idx) in matched_inputs.iter_enumerated() {
                if needs_comma {
                    suggestion += ", ";
                } else {
                    needs_comma = true;
                }
                let suggestion_text = if let Some(provided_idx) = provided_idx
                    && let (_, provided_span) = provided_arg_tys[*provided_idx]
                    && let Ok(arg_text) = source_map.span_to_snippet(provided_span)
                {
                    arg_text
                } else {
                    // Propose a placeholder of the correct type
                    let (_, expected_ty) = formal_and_expected_inputs[expected_idx];
                    ty_to_snippet(expected_ty, expected_idx)
                };
                suggestion += &suggestion_text;
            }
            suggestion += ")";
            err.span_suggestion_verbose(
                suggestion_span,
                suggestion_text,
                suggestion,
                Applicability::HasPlaceholders,
            );
        }

        err.emit()
    }

    fn suggest_ptr_null_mut(
        &self,
        expected_ty: Ty<'tcx>,
        provided_ty: Ty<'tcx>,
        arg: &hir::Expr<'tcx>,
        err: &mut Diag<'_>,
    ) {
        if let ty::RawPtr(_, hir::Mutability::Mut) = expected_ty.kind()
            && let ty::RawPtr(_, hir::Mutability::Not) = provided_ty.kind()
            && let hir::ExprKind::Call(callee, _) = arg.kind
            && let hir::ExprKind::Path(hir::QPath::Resolved(_, path)) = callee.kind
            && let Res::Def(_, def_id) = path.res
            && self.tcx.get_diagnostic_item(sym::ptr_null) == Some(def_id)
        {
            // The user provided `ptr::null()`, but the function expects
            // `ptr::null_mut()`.
            err.subdiagnostic(SuggestPtrNullMut { span: arg.span });
        }
    }

    // AST fragment checking
    pub(in super::super) fn check_lit(
        &self,
        lit: &hir::Lit,
        expected: Expectation<'tcx>,
    ) -> Ty<'tcx> {
        let tcx = self.tcx;

        match lit.node {
            ast::LitKind::Str(..) => Ty::new_static_str(tcx),
            ast::LitKind::ByteStr(ref v, _) => Ty::new_imm_ref(
                tcx,
                tcx.lifetimes.re_static,
                Ty::new_array(tcx, tcx.types.u8, v.len() as u64),
            ),
            ast::LitKind::Byte(_) => tcx.types.u8,
            ast::LitKind::Char(_) => tcx.types.char,
            ast::LitKind::Int(_, ast::LitIntType::Signed(t)) => Ty::new_int(tcx, ty::int_ty(t)),
            ast::LitKind::Int(_, ast::LitIntType::Unsigned(t)) => Ty::new_uint(tcx, ty::uint_ty(t)),
            ast::LitKind::Int(_, ast::LitIntType::Unsuffixed) => {
                let opt_ty = expected.to_option(self).and_then(|ty| match ty.kind() {
                    ty::Int(_) | ty::Uint(_) => Some(ty),
                    ty::Char => Some(tcx.types.u8),
                    ty::RawPtr(..) => Some(tcx.types.usize),
                    ty::FnDef(..) | ty::FnPtr(..) => Some(tcx.types.usize),
                    _ => None,
                });
                opt_ty.unwrap_or_else(|| self.next_int_var())
            }
            ast::LitKind::Float(_, ast::LitFloatType::Suffixed(t)) => {
                Ty::new_float(tcx, ty::float_ty(t))
            }
            ast::LitKind::Float(_, ast::LitFloatType::Unsuffixed) => {
                let opt_ty = expected.to_option(self).and_then(|ty| match ty.kind() {
                    ty::Float(_) => Some(ty),
                    _ => None,
                });
                opt_ty.unwrap_or_else(|| self.next_float_var())
            }
            ast::LitKind::Bool(_) => tcx.types.bool,
            ast::LitKind::CStr(_, _) => Ty::new_imm_ref(
                tcx,
                tcx.lifetimes.re_static,
                tcx.type_of(tcx.require_lang_item(hir::LangItem::CStr, Some(lit.span)))
                    .skip_binder(),
            ),
            ast::LitKind::Err(guar) => Ty::new_error(tcx, guar),
        }
    }

    pub(crate) fn check_struct_path(
        &self,
        qpath: &QPath<'tcx>,
        hir_id: HirId,
    ) -> Result<(&'tcx ty::VariantDef, Ty<'tcx>), ErrorGuaranteed> {
        let path_span = qpath.span();
        let (def, ty) = self.finish_resolving_struct_path(qpath, path_span, hir_id);
        let variant = match def {
            Res::Err => {
                let guar =
                    self.dcx().span_delayed_bug(path_span, "`Res::Err` but no error emitted");
                self.set_tainted_by_errors(guar);
                return Err(guar);
            }
            Res::Def(DefKind::Variant, _) => match ty.normalized.ty_adt_def() {
                Some(adt) => {
                    Some((adt.variant_of_res(def), adt.did(), Self::user_args_for_adt(ty)))
                }
                _ => bug!("unexpected type: {:?}", ty.normalized),
            },
            Res::Def(
                DefKind::Struct | DefKind::Union | DefKind::TyAlias { .. } | DefKind::AssocTy,
                _,
            )
            | Res::SelfTyParam { .. }
            | Res::SelfTyAlias { .. } => match ty.normalized.ty_adt_def() {
                Some(adt) if !adt.is_enum() => {
                    Some((adt.non_enum_variant(), adt.did(), Self::user_args_for_adt(ty)))
                }
                _ => None,
            },
            _ => bug!("unexpected definition: {:?}", def),
        };

        if let Some((variant, did, ty::UserArgs { args, user_self_ty })) = variant {
            debug!("check_struct_path: did={:?} args={:?}", did, args);

            // Register type annotation.
            self.write_user_type_annotation_from_args(hir_id, did, args, user_self_ty);

            // Check bounds on type arguments used in the path.
            self.add_required_obligations_for_hir(path_span, did, args, hir_id);

            Ok((variant, ty.normalized))
        } else {
            Err(match *ty.normalized.kind() {
                ty::Error(guar) => {
                    // E0071 might be caused by a spelling error, which will have
                    // already caused an error message and probably a suggestion
                    // elsewhere. Refrain from emitting more unhelpful errors here
                    // (issue #88844).
                    guar
                }
                _ => struct_span_code_err!(
                    self.dcx(),
                    path_span,
                    E0071,
                    "expected struct, variant or union type, found {}",
                    ty.normalized.sort_string(self.tcx)
                )
                .with_span_label(path_span, "not a struct")
                .emit(),
            })
        }
    }

    fn check_decl_initializer(
        &self,
        hir_id: HirId,
        pat: &'tcx hir::Pat<'tcx>,
        init: &'tcx hir::Expr<'tcx>,
    ) -> Ty<'tcx> {
        // FIXME(tschottdorf): `contains_explicit_ref_binding()` must be removed
        // for #42640 (default match binding modes).
        //
        // See #44848.
        let ref_bindings = pat.contains_explicit_ref_binding();

        let local_ty = self.local_ty(init.span, hir_id);
        if let Some(m) = ref_bindings {
            // Somewhat subtle: if we have a `ref` binding in the pattern,
            // we want to avoid introducing coercions for the RHS. This is
            // both because it helps preserve sanity and, in the case of
            // ref mut, for soundness (issue #23116). In particular, in
            // the latter case, we need to be clear that the type of the
            // referent for the reference that results is *equal to* the
            // type of the place it is referencing, and not some
            // supertype thereof.
            let init_ty = self.check_expr_with_needs(init, Needs::maybe_mut_place(m));
            if let Err(mut diag) = self.demand_eqtype_diag(init.span, local_ty, init_ty) {
                self.emit_type_mismatch_suggestions(
                    &mut diag,
                    init.peel_drop_temps(),
                    init_ty,
                    local_ty,
                    None,
                    None,
                );
                diag.emit();
            }
            init_ty
        } else {
            self.check_expr_coercible_to_type(init, local_ty, None)
        }
    }

    pub(in super::super) fn check_decl(&self, decl: Declaration<'tcx>) {
        // Determine and write the type which we'll check the pattern against.
        let decl_ty = self.local_ty(decl.span, decl.hir_id);
        self.write_ty(decl.hir_id, decl_ty);

        // Type check the initializer.
        if let Some(ref init) = decl.init {
            let init_ty = self.check_decl_initializer(decl.hir_id, decl.pat, init);
            self.overwrite_local_ty_if_err(decl.hir_id, decl.pat, init_ty);
        }

        // Does the expected pattern type originate from an expression and what is the span?
        let (origin_expr, ty_span) = match (decl.ty, decl.init) {
            (Some(ty), _) => (None, Some(ty.span)), // Bias towards the explicit user type.
            (_, Some(init)) => {
                (Some(init), Some(init.span.find_ancestor_inside(decl.span).unwrap_or(init.span)))
            } // No explicit type; so use the scrutinee.
            _ => (None, None), // We have `let $pat;`, so the expected type is unconstrained.
        };

        // Type check the pattern. Override if necessary to avoid knock-on errors.
        self.check_pat_top(decl.pat, decl_ty, ty_span, origin_expr, Some(decl.origin));
        let pat_ty = self.node_ty(decl.pat.hir_id);
        self.overwrite_local_ty_if_err(decl.hir_id, decl.pat, pat_ty);

        if let Some(blk) = decl.origin.try_get_else() {
            let previous_diverges = self.diverges.get();
            let else_ty = self.check_block_with_expected(blk, NoExpectation);
            let cause = self.cause(blk.span, ObligationCauseCode::LetElse);
            if let Err(err) = self.demand_eqtype_with_origin(&cause, self.tcx.types.never, else_ty)
            {
                err.emit();
            }
            self.diverges.set(previous_diverges);
        }
    }

    /// Type check a `let` statement.
    fn check_decl_local(&self, local: &'tcx hir::LetStmt<'tcx>) {
        self.check_decl(local.into());
        if local.pat.is_never_pattern() {
            self.diverges.set(Diverges::Always {
                span: local.pat.span,
                custom_note: Some("any code following a never pattern is unreachable"),
            });
        }
    }

    fn check_stmt(&self, stmt: &'tcx hir::Stmt<'tcx>) {
        // Don't do all the complex logic below for `DeclItem`.
        match stmt.kind {
            hir::StmtKind::Item(..) => return,
            hir::StmtKind::Let(..) | hir::StmtKind::Expr(..) | hir::StmtKind::Semi(..) => {}
        }

        self.warn_if_unreachable(stmt.hir_id, stmt.span, "statement");

        // Hide the outer diverging flags.
        let old_diverges = self.diverges.replace(Diverges::Maybe);

        match stmt.kind {
            hir::StmtKind::Let(l) => {
                self.check_decl_local(l);
            }
            // Ignore for now.
            hir::StmtKind::Item(_) => {}
            hir::StmtKind::Expr(ref expr) => {
                // Check with expected type of `()`.
                self.check_expr_has_type_or_error(expr, self.tcx.types.unit, |err| {
                    if expr.can_have_side_effects() {
                        self.suggest_semicolon_at_end(expr.span, err);
                    }
                });
            }
            hir::StmtKind::Semi(expr) => {
                self.check_expr(expr);
            }
        }

        // Combine the diverging and `has_error` flags.
        self.diverges.set(self.diverges.get() | old_diverges);
    }

    pub(crate) fn check_block_no_value(&self, blk: &'tcx hir::Block<'tcx>) {
        let unit = self.tcx.types.unit;
        let ty = self.check_block_with_expected(blk, ExpectHasType(unit));

        // if the block produces a `!` value, that can always be
        // (effectively) coerced to unit.
        if !ty.is_never() {
            self.demand_suptype(blk.span, unit, ty);
        }
    }

    pub(in super::super) fn check_block_with_expected(
        &self,
        blk: &'tcx hir::Block<'tcx>,
        expected: Expectation<'tcx>,
    ) -> Ty<'tcx> {
        // In some cases, blocks have just one exit, but other blocks
        // can be targeted by multiple breaks. This can happen both
        // with labeled blocks as well as when we desugar
        // a `try { ... }` expression.
        //
        // Example 1:
        //
        //    'a: { if true { break 'a Err(()); } Ok(()) }
        //
        // Here we would wind up with two coercions, one from
        // `Err(())` and the other from the tail expression
        // `Ok(())`. If the tail expression is omitted, that's a
        // "forced unit" -- unless the block diverges, in which
        // case we can ignore the tail expression (e.g., `'a: {
        // break 'a 22; }` would not force the type of the block
        // to be `()`).
        let coerce_to_ty = expected.coercion_target_type(self, blk.span);
        let coerce = if blk.targeted_by_break {
            CoerceMany::new(coerce_to_ty)
        } else {
            CoerceMany::with_coercion_sites(coerce_to_ty, blk.expr.as_slice())
        };

        let prev_diverges = self.diverges.get();
        let ctxt = BreakableCtxt { coerce: Some(coerce), may_break: false };

        let (ctxt, ()) = self.with_breakable_ctxt(blk.hir_id, ctxt, || {
            for s in blk.stmts {
                self.check_stmt(s);
            }

            // check the tail expression **without** holding the
            // `enclosing_breakables` lock below.
            let tail_expr_ty =
                blk.expr.map(|expr| (expr, self.check_expr_with_expectation(expr, expected)));

            let mut enclosing_breakables = self.enclosing_breakables.borrow_mut();
            let ctxt = enclosing_breakables.find_breakable(blk.hir_id);
            let coerce = ctxt.coerce.as_mut().unwrap();
            if let Some((tail_expr, tail_expr_ty)) = tail_expr_ty {
                let span = self.get_expr_coercion_span(tail_expr);
                let cause = self.cause(
                    span,
                    ObligationCauseCode::BlockTailExpression(blk.hir_id, hir::MatchSource::Normal),
                );
                let ty_for_diagnostic = coerce.merged_ty();
                // We use coerce_inner here because we want to augment the error
                // suggesting to wrap the block in square brackets if it might've
                // been mistaken array syntax
                coerce.coerce_inner(
                    self,
                    &cause,
                    Some(tail_expr),
                    tail_expr_ty,
                    |diag| {
                        self.suggest_block_to_brackets(diag, blk, tail_expr_ty, ty_for_diagnostic);
                    },
                    false,
                );
            } else {
                // Subtle: if there is no explicit tail expression,
                // that is typically equivalent to a tail expression
                // of `()` -- except if the block diverges. In that
                // case, there is no value supplied from the tail
                // expression (assuming there are no other breaks,
                // this implies that the type of the block will be
                // `!`).
                //
                // #41425 -- label the implicit `()` as being the
                // "found type" here, rather than the "expected type".
                if !self.diverges.get().is_always()
                    || matches!(self.diverging_block_behavior, DivergingBlockBehavior::Unit)
                {
                    // #50009 -- Do not point at the entire fn block span, point at the return type
                    // span, as it is the cause of the requirement, and
                    // `consider_hint_about_removing_semicolon` will point at the last expression
                    // if it were a relevant part of the error. This improves usability in editors
                    // that highlight errors inline.
                    let mut sp = blk.span;
                    let mut fn_span = None;
                    if let Some((fn_def_id, decl, _)) = self.get_fn_decl(blk.hir_id) {
                        let ret_sp = decl.output.span();
                        if let Some(block_sp) = self.parent_item_span(blk.hir_id) {
                            // HACK: on some cases (`ui/liveness/liveness-issue-2163.rs`) the
                            // output would otherwise be incorrect and even misleading. Make sure
                            // the span we're aiming at correspond to a `fn` body.
                            if block_sp == blk.span {
                                sp = ret_sp;
                                fn_span = self.tcx.def_ident_span(fn_def_id);
                            }
                        }
                    }
                    coerce.coerce_forced_unit(
                        self,
                        &self.misc(sp),
                        |err| {
                            if let Some(expected_ty) = expected.only_has_type(self) {
                                if blk.stmts.is_empty() && blk.expr.is_none() {
                                    self.suggest_boxing_when_appropriate(
                                        err,
                                        blk.span,
                                        blk.hir_id,
                                        expected_ty,
                                        self.tcx.types.unit,
                                    );
                                }
                                if !self.err_ctxt().consider_removing_semicolon(
                                    blk,
                                    expected_ty,
                                    err,
                                ) {
                                    self.err_ctxt().consider_returning_binding(
                                        blk,
                                        expected_ty,
                                        err,
                                    );
                                }
                                if expected_ty == self.tcx.types.bool {
                                    // If this is caused by a missing `let` in a `while let`,
                                    // silence this redundant error, as we already emit E0070.

                                    // Our block must be a `assign desugar local; assignment`
                                    if let hir::Block {
                                        stmts:
                                            [
                                                hir::Stmt {
                                                    kind:
                                                        hir::StmtKind::Let(hir::LetStmt {
                                                            source:
                                                                hir::LocalSource::AssignDesugar(_),
                                                            ..
                                                        }),
                                                    ..
                                                },
                                                hir::Stmt {
                                                    kind:
                                                        hir::StmtKind::Expr(hir::Expr {
                                                            kind: hir::ExprKind::Assign(lhs, ..),
                                                            ..
                                                        }),
                                                    ..
                                                },
                                            ],
                                        ..
                                    } = blk
                                    {
                                        self.comes_from_while_condition(blk.hir_id, |_| {
                                            // We cannot suppress the error if the LHS of assignment
                                            // is a syntactic place expression because E0070 would
                                            // not be emitted by `check_lhs_assignable`.
                                            let res = self.typeck_results.borrow().expr_ty_opt(lhs);

                                            if !lhs.is_syntactic_place_expr()
                                                || res.references_error()
                                            {
                                                err.downgrade_to_delayed_bug();
                                            }
                                        })
                                    }
                                }
                            }
                            if let Some(fn_span) = fn_span {
                                err.span_label(
                                    fn_span,
                                    "implicitly returns `()` as its body has no tail or `return` \
                                     expression",
                                );
                            }
                        },
                        false,
                    );
                }
            }
        });

        if ctxt.may_break {
            // If we can break from the block, then the block's exit is always reachable
            // (... as long as the entry is reachable) - regardless of the tail of the block.
            self.diverges.set(prev_diverges);
        }

        let ty = ctxt.coerce.unwrap().complete(self);

        self.write_ty(blk.hir_id, ty);

        ty
    }

    fn parent_item_span(&self, id: HirId) -> Option<Span> {
        let node = self.tcx.hir_node_by_def_id(self.tcx.hir().get_parent_item(id).def_id);
        match node {
            Node::Item(&hir::Item { kind: hir::ItemKind::Fn(_, _, body_id), .. })
            | Node::ImplItem(&hir::ImplItem { kind: hir::ImplItemKind::Fn(_, body_id), .. }) => {
                let body = self.tcx.hir().body(body_id);
                if let ExprKind::Block(block, _) = &body.value.kind {
                    return Some(block.span);
                }
            }
            _ => {}
        }
        None
    }

    /// If `expr` is a `match` expression that has only one non-`!` arm, use that arm's tail
    /// expression's `Span`, otherwise return `expr.span`. This is done to give better errors
    /// when given code like the following:
    /// ```text
    /// if false { return 0i32; } else { 1u32 }
    /// //                               ^^^^ point at this instead of the whole `if` expression
    /// ```
    fn get_expr_coercion_span(&self, expr: &hir::Expr<'_>) -> rustc_span::Span {
        let check_in_progress = |elem: &hir::Expr<'_>| {
            self.typeck_results.borrow().node_type_opt(elem.hir_id).filter(|ty| !ty.is_never()).map(
                |_| match elem.kind {
                    // Point at the tail expression when possible.
                    hir::ExprKind::Block(block, _) => block.expr.map_or(block.span, |e| e.span),
                    _ => elem.span,
                },
            )
        };

        if let hir::ExprKind::If(_, _, Some(el)) = expr.kind {
            if let Some(rslt) = check_in_progress(el) {
                return rslt;
            }
        }

        if let hir::ExprKind::Match(_, arms, _) = expr.kind {
            let mut iter = arms.iter().filter_map(|arm| check_in_progress(arm.body));
            if let Some(span) = iter.next() {
                if iter.next().is_none() {
                    return span;
                }
            }
        }

        expr.span
    }

    fn overwrite_local_ty_if_err(&self, hir_id: HirId, pat: &'tcx hir::Pat<'tcx>, ty: Ty<'tcx>) {
        if let Err(guar) = ty.error_reported() {
            struct OverwritePatternsWithError {
                pat_hir_ids: Vec<hir::HirId>,
            }
            impl<'tcx> Visitor<'tcx> for OverwritePatternsWithError {
                fn visit_pat(&mut self, p: &'tcx hir::Pat<'tcx>) {
                    self.pat_hir_ids.push(p.hir_id);
                    hir::intravisit::walk_pat(self, p);
                }
            }
            // Override the types everywhere with `err()` to avoid knock on errors.
            let err = Ty::new_error(self.tcx, guar);
            self.write_ty(hir_id, err);
            self.write_ty(pat.hir_id, err);
            let mut visitor = OverwritePatternsWithError { pat_hir_ids: vec![] };
            hir::intravisit::walk_pat(&mut visitor, pat);
            // Mark all the subpatterns as `{type error}` as well. This allows errors for specific
            // subpatterns to be silenced.
            for hir_id in visitor.pat_hir_ids {
                self.write_ty(hir_id, err);
            }
            self.locals.borrow_mut().insert(hir_id, err);
            self.locals.borrow_mut().insert(pat.hir_id, err);
        }
    }

    // Finish resolving a path in a struct expression or pattern `S::A { .. }` if necessary.
    // The newly resolved definition is written into `type_dependent_defs`.
    fn finish_resolving_struct_path(
        &self,
        qpath: &QPath<'tcx>,
        path_span: Span,
        hir_id: HirId,
    ) -> (Res, LoweredTy<'tcx>) {
        match *qpath {
            QPath::Resolved(ref maybe_qself, path) => {
                let self_ty = maybe_qself.as_ref().map(|qself| self.lower_ty(qself).raw);
                let ty = self.lowerer().lower_path(self_ty, path, hir_id, true);
                (path.res, LoweredTy::from_raw(self, path_span, ty))
            }
            QPath::TypeRelative(qself, segment) => {
                let ty = self.lower_ty(qself);

                let result = self
                    .lowerer()
                    .lower_assoc_path(hir_id, path_span, ty.raw, qself, segment, true);
                let ty = result
                    .map(|(ty, _, _)| ty)
                    .unwrap_or_else(|guar| Ty::new_error(self.tcx(), guar));
                let ty = LoweredTy::from_raw(self, path_span, ty);
                let result = result.map(|(_, kind, def_id)| (kind, def_id));

                // Write back the new resolution.
                self.write_resolution(hir_id, result);

                (result.map_or(Res::Err, |(kind, def_id)| Res::Def(kind, def_id)), ty)
            }
            QPath::LangItem(lang_item, span) => {
                let (res, ty) = self.resolve_lang_item_path(lang_item, span, hir_id);
                (res, LoweredTy::from_raw(self, path_span, ty))
            }
        }
    }

    pub(super) fn collect_unused_stmts_for_coerce_return_ty(
        &self,
        errors_causecode: Vec<(Span, ObligationCauseCode<'tcx>)>,
    ) {
        for (span, code) in errors_causecode {
            self.dcx().try_steal_modify_and_emit_err(span, StashKey::MaybeForgetReturn, |err| {
                if let Some(fn_sig) = self.body_fn_sig()
                    && let ObligationCauseCode::WhereClauseInExpr(_, _, binding_hir_id, ..) = code
                    && !fn_sig.output().is_unit()
                {
                    let mut block_num = 0;
                    let mut found_semi = false;
                    for (hir_id, node) in self.tcx.hir().parent_iter(binding_hir_id) {
                        // Don't proceed into parent bodies
                        if hir_id.owner != binding_hir_id.owner {
                            break;
                        }
                        match node {
                            hir::Node::Stmt(stmt) => {
                                if let hir::StmtKind::Semi(expr) = stmt.kind {
                                    let expr_ty = self.typeck_results.borrow().expr_ty(expr);
                                    let return_ty = fn_sig.output();
                                    if !matches!(expr.kind, hir::ExprKind::Ret(..))
                                        && self.can_coerce(expr_ty, return_ty)
                                    {
                                        found_semi = true;
                                    }
                                }
                            }
                            hir::Node::Block(_block) => {
                                if found_semi {
                                    block_num += 1;
                                }
                            }
                            hir::Node::Item(item) => {
                                if let hir::ItemKind::Fn(..) = item.kind {
                                    break;
                                }
                            }
                            _ => {}
                        }
                    }
                    if block_num > 1 && found_semi {
                        err.span_suggestion_verbose(
                            // use the span of the *whole* expr
                            self.tcx.hir().span(binding_hir_id).shrink_to_lo(),
                            "you might have meant to return this to infer its type parameters",
                            "return ",
                            Applicability::MaybeIncorrect,
                        );
                    }
                }
            });
        }
    }

    /// Given a vector of fulfillment errors, try to adjust the spans of the
    /// errors to more accurately point at the cause of the failure.
    ///
    /// This applies to calls, methods, and struct expressions. This will also
    /// try to deduplicate errors that are due to the same cause but might
    /// have been created with different [`ObligationCause`][traits::ObligationCause]s.
    pub(super) fn adjust_fulfillment_errors_for_expr_obligation(
        &self,
        errors: &mut Vec<traits::FulfillmentError<'tcx>>,
    ) {
        // Store a mapping from `(Span, Predicate) -> ObligationCause`, so that
        // other errors that have the same span and predicate can also get fixed,
        // even if their `ObligationCauseCode` isn't an `Expr*Obligation` kind.
        // This is important since if we adjust one span but not the other, then
        // we will have "duplicated" the error on the UI side.
        let mut remap_cause = FxIndexSet::default();
        let mut not_adjusted = vec![];

        for error in errors {
            let before_span = error.obligation.cause.span;
            if self.adjust_fulfillment_error_for_expr_obligation(error)
                || before_span != error.obligation.cause.span
            {
                remap_cause.insert((
                    before_span,
                    error.obligation.predicate,
                    error.obligation.cause.clone(),
                ));
            } else {
                // If it failed to be adjusted once around, it may be adjusted
                // via the "remap cause" mapping the second time...
                not_adjusted.push(error);
            }
        }

        // Adjust any other errors that come from other cause codes, when these
        // errors are of the same predicate as one we successfully adjusted, and
        // when their spans overlap (suggesting they're due to the same root cause).
        //
        // This is because due to normalization, we often register duplicate
        // obligations with misc obligations that are basically impossible to
        // line back up with a useful WhereClauseInExpr.
        for error in not_adjusted {
            for (span, predicate, cause) in &remap_cause {
                if *predicate == error.obligation.predicate
                    && span.contains(error.obligation.cause.span)
                {
                    error.obligation.cause = cause.clone();
                    continue;
                }
            }
        }
    }

    fn label_fn_like(
        &self,
        err: &mut Diag<'_>,
        callable_def_id: Option<DefId>,
        callee_ty: Option<Ty<'tcx>>,
        call_expr: &'tcx hir::Expr<'tcx>,
        expected_ty: Option<Ty<'tcx>>,
        // A specific argument should be labeled, instead of all of them
        expected_idx: Option<usize>,
        matched_inputs: &IndexVec<ExpectedIdx, Option<ProvidedIdx>>,
        formal_and_expected_inputs: &IndexVec<ExpectedIdx, (Ty<'tcx>, Ty<'tcx>)>,
        is_method: bool,
    ) {
        let Some(mut def_id) = callable_def_id else {
            return;
        };

        if let Some(assoc_item) = self.tcx.opt_associated_item(def_id)
            // Possibly points at either impl or trait item, so try to get it
            // to point to trait item, then get the parent.
            // This parent might be an impl in the case of an inherent function,
            // but the next check will fail.
            && let maybe_trait_item_def_id = assoc_item.trait_item_def_id.unwrap_or(def_id)
            && let maybe_trait_def_id = self.tcx.parent(maybe_trait_item_def_id)
            // Just an easy way to check "trait_def_id == Fn/FnMut/FnOnce"
            && let Some(call_kind) = self.tcx.fn_trait_kind_from_def_id(maybe_trait_def_id)
            && let Some(callee_ty) = callee_ty
        {
            let callee_ty = callee_ty.peel_refs();
            match *callee_ty.kind() {
                ty::Param(param) => {
                    let param = self.tcx.generics_of(self.body_id).type_param(param, self.tcx);
                    if param.kind.is_synthetic() {
                        // if it's `impl Fn() -> ..` then just fall down to the def-id based logic
                        def_id = param.def_id;
                    } else {
                        // Otherwise, find the predicate that makes this generic callable,
                        // and point at that.
                        let instantiated = self
                            .tcx
                            .explicit_predicates_of(self.body_id)
                            .instantiate_identity(self.tcx);
                        // FIXME(compiler-errors): This could be problematic if something has two
                        // fn-like predicates with different args, but callable types really never
                        // do that, so it's OK.
                        for (predicate, span) in instantiated {
                            if let ty::ClauseKind::Trait(pred) = predicate.kind().skip_binder()
                                && pred.self_ty().peel_refs() == callee_ty
                                && self.tcx.is_fn_trait(pred.def_id())
                            {
                                err.span_note(span, "callable defined here");
                                return;
                            }
                        }
                    }
                }
                ty::Alias(ty::Opaque, ty::AliasTy { def_id: new_def_id, .. })
                | ty::Closure(new_def_id, _)
                | ty::FnDef(new_def_id, _) => {
                    def_id = new_def_id;
                }
                _ => {
                    // Look for a user-provided impl of a `Fn` trait, and point to it.
                    let new_def_id = self.probe(|_| {
                        let trait_ref = ty::TraitRef::new(
                            self.tcx,
                            self.tcx.fn_trait_kind_to_def_id(call_kind)?,
                            [callee_ty, self.next_ty_var(DUMMY_SP)],
                        );
                        let obligation = traits::Obligation::new(
                            self.tcx,
                            traits::ObligationCause::dummy(),
                            self.param_env,
                            trait_ref,
                        );
                        match SelectionContext::new(self).select(&obligation) {
                            Ok(Some(traits::ImplSource::UserDefined(impl_source))) => {
                                Some(impl_source.impl_def_id)
                            }
                            _ => None,
                        }
                    });
                    if let Some(new_def_id) = new_def_id {
                        def_id = new_def_id;
                    } else {
                        return;
                    }
                }
            }
        }

        if let Some(def_span) = self.tcx.def_ident_span(def_id)
            && !def_span.is_dummy()
        {
            let mut spans: MultiSpan = def_span.into();

            let params_with_generics = self.get_hir_params_with_generics(def_id, is_method);
            let mut generics_with_unmatched_params = Vec::new();

            let check_for_matched_generics = || {
                if matched_inputs.iter().any(|x| x.is_some())
                    && params_with_generics.iter().any(|x| x.0.is_some())
                {
                    for (idx, (generic, _)) in params_with_generics.iter().enumerate() {
                        // Param has to have a generic and be matched to be relevant
                        if matched_inputs[idx.into()].is_none() {
                            continue;
                        }

                        let Some(generic) = generic else {
                            continue;
                        };

                        for unmatching_idx in idx + 1..params_with_generics.len() {
                            if matched_inputs[unmatching_idx.into()].is_none()
                                && let Some(unmatched_idx_param_generic) =
                                    params_with_generics[unmatching_idx].0
                                && unmatched_idx_param_generic.name.ident() == generic.name.ident()
                            {
                                // We found a parameter that didn't match that needed to
                                return true;
                            }
                        }
                    }
                }
                false
            };

            let check_for_matched_generics = check_for_matched_generics();

            for (idx, (generic_param, param)) in
                params_with_generics.iter().enumerate().filter(|(idx, _)| {
                    check_for_matched_generics
                        || expected_idx.is_none_or(|expected_idx| expected_idx == *idx)
                })
            {
                let Some(generic_param) = generic_param else {
                    spans.push_span_label(param.span, "");
                    continue;
                };

                let other_params_matched: Vec<(usize, &hir::Param<'_>)> = params_with_generics
                    .iter()
                    .enumerate()
                    .filter(|(other_idx, (other_generic_param, _))| {
                        if *other_idx == idx {
                            return false;
                        }
                        let Some(other_generic_param) = other_generic_param else {
                            return false;
                        };
                        if matched_inputs[idx.into()].is_none()
                            && matched_inputs[(*other_idx).into()].is_none()
                        {
                            return false;
                        }
                        if matched_inputs[idx.into()].is_some()
                            && matched_inputs[(*other_idx).into()].is_some()
                        {
                            return false;
                        }
                        other_generic_param.name.ident() == generic_param.name.ident()
                    })
                    .map(|(other_idx, (_, other_param))| (other_idx, *other_param))
                    .collect();

                if !other_params_matched.is_empty() {
                    let other_param_matched_names: Vec<String> = other_params_matched
                        .iter()
                        .map(|(_, other_param)| {
                            if let hir::PatKind::Binding(_, _, ident, _) = other_param.pat.kind {
                                format!("`{ident}`")
                            } else {
                                "{unknown}".to_string()
                            }
                        })
                        .collect();

                    let matched_ty = self
                        .resolve_vars_if_possible(formal_and_expected_inputs[idx.into()].1)
                        .sort_string(self.tcx);

                    if matched_inputs[idx.into()].is_some() {
                        spans.push_span_label(
                            param.span,
                            format!(
                                "{} {} to match the {} type of this parameter",
                                display_list_with_comma_and(&other_param_matched_names),
                                format!(
                                    "need{}",
                                    pluralize!(if other_param_matched_names.len() == 1 {
                                        0
                                    } else {
                                        1
                                    })
                                ),
                                matched_ty,
                            ),
                        );
                    } else {
                        spans.push_span_label(
                            param.span,
                            format!(
                                "this parameter needs to match the {} type of {}",
                                matched_ty,
                                display_list_with_comma_and(&other_param_matched_names),
                            ),
                        );
                    }
                    generics_with_unmatched_params.push(generic_param);
                } else {
                    spans.push_span_label(param.span, "");
                }
            }

            for generic_param in self
                .tcx
                .hir()
                .get_if_local(def_id)
                .and_then(|node| node.generics())
                .into_iter()
                .flat_map(|x| x.params)
                .filter(|x| {
                    generics_with_unmatched_params.iter().any(|y| x.name.ident() == y.name.ident())
                })
            {
                let param_idents_matching: Vec<String> = params_with_generics
                    .iter()
                    .filter(|(generic, _)| {
                        if let Some(generic) = generic {
                            generic.name.ident() == generic_param.name.ident()
                        } else {
                            false
                        }
                    })
                    .map(|(_, param)| {
                        if let hir::PatKind::Binding(_, _, ident, _) = param.pat.kind {
                            format!("`{ident}`")
                        } else {
                            "{unknown}".to_string()
                        }
                    })
                    .collect();

                if !param_idents_matching.is_empty() {
                    spans.push_span_label(
                        generic_param.span,
                        format!(
                            "{} all reference this parameter {}",
                            display_list_with_comma_and(&param_idents_matching),
                            generic_param.name.ident().name,
                        ),
                    );
                }
            }

            err.span_note(spans, format!("{} defined here", self.tcx.def_descr(def_id)));
        } else if let Some(hir::Node::Expr(e)) = self.tcx.hir().get_if_local(def_id)
            && let hir::ExprKind::Closure(hir::Closure { body, .. }) = &e.kind
        {
            let param = expected_idx
                .and_then(|expected_idx| self.tcx.hir().body(*body).params.get(expected_idx));
            let (kind, span) = if let Some(param) = param {
                // Try to find earlier invocations of this closure to find if the type mismatch
                // is because of inference. If we find one, point at them.
                let mut call_finder = FindClosureArg { tcx: self.tcx, calls: vec![] };
                let parent_def_id = self.tcx.hir().get_parent_item(call_expr.hir_id).def_id;
                match self.tcx.hir_node_by_def_id(parent_def_id) {
                    hir::Node::Item(item) => call_finder.visit_item(item),
                    hir::Node::TraitItem(item) => call_finder.visit_trait_item(item),
                    hir::Node::ImplItem(item) => call_finder.visit_impl_item(item),
                    _ => {}
                }
                let typeck = self.typeck_results.borrow();
                for (rcvr, args) in call_finder.calls {
                    if rcvr.hir_id.owner == typeck.hir_owner
                        && let Some(rcvr_ty) = typeck.node_type_opt(rcvr.hir_id)
                        && let ty::Closure(call_def_id, _) = rcvr_ty.kind()
                        && def_id == *call_def_id
                        && let Some(idx) = expected_idx
                        && let Some(arg) = args.get(idx)
                        && let Some(arg_ty) = typeck.node_type_opt(arg.hir_id)
                        && let Some(expected_ty) = expected_ty
                        && self.can_eq(self.param_env, arg_ty, expected_ty)
                    {
                        let mut sp: MultiSpan = vec![arg.span].into();
                        sp.push_span_label(
                            arg.span,
                            format!("expected because this argument is of type `{arg_ty}`"),
                        );
                        sp.push_span_label(rcvr.span, "in this closure call");
                        err.span_note(
                            sp,
                            format!(
                                "expected because the closure was earlier called with an \
                                argument of type `{arg_ty}`",
                            ),
                        );
                        break;
                    }
                }

                ("closure parameter", param.span)
            } else {
                ("closure", self.tcx.def_span(def_id))
            };
            err.span_note(span, format!("{kind} defined here"));
        } else {
            err.span_note(
                self.tcx.def_span(def_id),
                format!("{} defined here", self.tcx.def_descr(def_id)),
            );
        }
    }

    fn label_generic_mismatches(
        &self,
        err: &mut Diag<'_>,
        callable_def_id: Option<DefId>,
        matched_inputs: &IndexVec<ExpectedIdx, Option<ProvidedIdx>>,
        provided_arg_tys: &IndexVec<ProvidedIdx, (Ty<'tcx>, Span)>,
        formal_and_expected_inputs: &IndexVec<ExpectedIdx, (Ty<'tcx>, Ty<'tcx>)>,
        is_method: bool,
    ) {
        let Some(def_id) = callable_def_id else {
            return;
        };

        let params_with_generics = self.get_hir_params_with_generics(def_id, is_method);

        for (idx, (generic_param, _)) in params_with_generics.iter().enumerate() {
            if matched_inputs[idx.into()].is_none() {
                continue;
            }

            let Some((_, matched_arg_span)) = provided_arg_tys.get(idx.into()) else {
                continue;
            };

            let Some(generic_param) = generic_param else {
                continue;
            };

            let mut idxs_matched: Vec<usize> = vec![];
            for (other_idx, (_, _)) in params_with_generics.iter().enumerate().filter(
                |(other_idx, (other_generic_param, _))| {
                    if *other_idx == idx {
                        return false;
                    }
                    let Some(other_generic_param) = other_generic_param else {
                        return false;
                    };
                    if matched_inputs[(*other_idx).into()].is_some() {
                        return false;
                    }
                    other_generic_param.name.ident() == generic_param.name.ident()
                },
            ) {
                idxs_matched.push(other_idx.into());
            }

            if idxs_matched.is_empty() {
                continue;
            }

            let expected_display_type = self
                .resolve_vars_if_possible(formal_and_expected_inputs[idx.into()].1)
                .sort_string(self.tcx);
            let label = if idxs_matched.len() == params_with_generics.len() - 1 {
                format!(
                    "expected all arguments to be this {} type because they need to match the type of this parameter",
                    expected_display_type
                )
            } else {
                format!(
                    "expected some other arguments to be {} {} type to match the type of this parameter",
                    a_or_an(&expected_display_type),
                    expected_display_type,
                )
            };

            err.span_label(*matched_arg_span, label);
        }
    }

    fn get_hir_params_with_generics(
        &self,
        def_id: DefId,
        is_method: bool,
    ) -> Vec<(Option<&hir::GenericParam<'_>>, &hir::Param<'_>)> {
        let fn_node = self.tcx.hir().get_if_local(def_id);

        let generic_params: Vec<Option<&hir::GenericParam<'_>>> = fn_node
            .and_then(|node| node.fn_decl())
            .into_iter()
            .flat_map(|decl| decl.inputs)
            .skip(if is_method { 1 } else { 0 })
            .map(|param| {
                if let hir::TyKind::Path(QPath::Resolved(
                    _,
                    hir::Path { res: Res::Def(_, res_def_id), .. },
                )) = param.kind
                {
                    fn_node
                        .and_then(|node| node.generics())
                        .into_iter()
                        .flat_map(|generics| generics.params)
                        .find(|param| &param.def_id.to_def_id() == res_def_id)
                } else {
                    None
                }
            })
            .collect();

        let params: Vec<&hir::Param<'_>> = fn_node
            .and_then(|node| node.body_id())
            .into_iter()
            .flat_map(|id| self.tcx.hir().body(id).params)
            .skip(if is_method { 1 } else { 0 })
            .collect();

        generic_params.into_iter().zip(params).collect()
    }
}

struct FindClosureArg<'tcx> {
    tcx: TyCtxt<'tcx>,
    calls: Vec<(&'tcx hir::Expr<'tcx>, &'tcx [hir::Expr<'tcx>])>,
}

impl<'tcx> Visitor<'tcx> for FindClosureArg<'tcx> {
    type NestedFilter = rustc_middle::hir::nested_filter::All;

    fn nested_visit_map(&mut self) -> Self::Map {
        self.tcx.hir()
    }

    fn visit_expr(&mut self, ex: &'tcx hir::Expr<'tcx>) {
        if let hir::ExprKind::Call(rcvr, args) = ex.kind {
            self.calls.push((rcvr, args));
        }
        hir::intravisit::walk_expr(self, ex);
    }
}