1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
use std::assert_matches::assert_matches;
use std::fmt;
use std::path::PathBuf;

use rustc_data_structures::fx::FxHashMap;
use rustc_errors::ErrorGuaranteed;
use rustc_hir as hir;
use rustc_hir::def::Namespace;
use rustc_hir::def_id::{CrateNum, DefId};
use rustc_hir::lang_items::LangItem;
use rustc_index::bit_set::FiniteBitSet;
use rustc_macros::{Decodable, Encodable, HashStable, Lift, TyDecodable, TyEncodable};
use rustc_middle::ty::normalize_erasing_regions::NormalizationError;
use rustc_span::def_id::LOCAL_CRATE;
use rustc_span::{Span, Symbol, DUMMY_SP};
use tracing::{debug, instrument};

use crate::error;
use crate::middle::codegen_fn_attrs::CodegenFnAttrFlags;
use crate::ty::print::{shrunk_instance_name, FmtPrinter, Printer};
use crate::ty::{
    self, EarlyBinder, GenericArgs, GenericArgsRef, Ty, TyCtxt, TypeFoldable, TypeSuperFoldable,
    TypeSuperVisitable, TypeVisitable, TypeVisitableExt, TypeVisitor,
};

/// An `InstanceKind` along with the args that are needed to substitute the instance.
///
/// Monomorphization happens on-the-fly and no monomorphized MIR is ever created. Instead, this type
/// simply couples a potentially generic `InstanceKind` with some args, and codegen and const eval
/// will do all required instantiations as they run.
///
/// Note: the `Lift` impl is currently not used by rustc, but is used by
/// rustc_codegen_cranelift when the `jit` feature is enabled.
#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug, TyEncodable, TyDecodable)]
#[derive(HashStable, Lift, TypeFoldable, TypeVisitable)]
pub struct Instance<'tcx> {
    pub def: InstanceKind<'tcx>,
    pub args: GenericArgsRef<'tcx>,
}

/// Describes why a `ReifyShim` was created. This is needed to distinguish a ReifyShim created to
/// adjust for things like `#[track_caller]` in a vtable from a `ReifyShim` created to produce a
/// function pointer from a vtable entry.
/// Currently, this is only used when KCFI is enabled, as only KCFI needs to treat those two
/// `ReifyShim`s differently.
#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)]
#[derive(TyEncodable, TyDecodable, HashStable)]
pub enum ReifyReason {
    /// The `ReifyShim` was created to produce a function pointer. This happens when:
    /// * A vtable entry is directly converted to a function call (e.g. creating a fn ptr from a
    ///   method on a `dyn` object).
    /// * A function with `#[track_caller]` is converted to a function pointer
    /// * If KCFI is enabled, creating a function pointer from a method on an object-safe trait.
    /// This includes the case of converting `::call`-like methods on closure-likes to function
    /// pointers.
    FnPtr,
    /// This `ReifyShim` was created to populate a vtable. Currently, this happens when a
    /// `#[track_caller]` mismatch occurs between the implementation of a method and the method.
    /// This includes the case of `::call`-like methods in closure-likes' vtables.
    Vtable,
}

#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)]
#[derive(TyEncodable, TyDecodable, HashStable, TypeFoldable, TypeVisitable, Lift)]
pub enum InstanceKind<'tcx> {
    /// A user-defined callable item.
    ///
    /// This includes:
    /// - `fn` items
    /// - closures
    /// - coroutines
    Item(DefId),

    /// An intrinsic `fn` item (with `"rust-intrinsic"` or `"platform-intrinsic"` ABI).
    ///
    /// Alongside `Virtual`, this is the only `InstanceKind` that does not have its own callable MIR.
    /// Instead, codegen and const eval "magically" evaluate calls to intrinsics purely in the
    /// caller.
    Intrinsic(DefId),

    /// `<T as Trait>::method` where `method` receives unsizeable `self: Self` (part of the
    /// `unsized_locals` feature).
    ///
    /// The generated shim will take `Self` via `*mut Self` - conceptually this is `&owned Self` -
    /// and dereference the argument to call the original function.
    VTableShim(DefId),

    /// `fn()` pointer where the function itself cannot be turned into a pointer.
    ///
    /// One example is `<dyn Trait as Trait>::fn`, where the shim contains
    /// a virtual call, which codegen supports only via a direct call to the
    /// `<dyn Trait as Trait>::fn` instance (an `InstanceKind::Virtual`).
    ///
    /// Another example is functions annotated with `#[track_caller]`, which
    /// must have their implicit caller location argument populated for a call.
    /// Because this is a required part of the function's ABI but can't be tracked
    /// as a property of the function pointer, we use a single "caller location"
    /// (the definition of the function itself).
    ///
    /// The second field encodes *why* this shim was created. This allows distinguishing between
    /// a `ReifyShim` that appears in a vtable vs one that appears as a function pointer.
    ///
    /// This field will only be populated if we are compiling in a mode that needs these shims
    /// to be separable, currently only when KCFI is enabled.
    ReifyShim(DefId, Option<ReifyReason>),

    /// `<fn() as FnTrait>::call_*` (generated `FnTrait` implementation for `fn()` pointers).
    ///
    /// `DefId` is `FnTrait::call_*`.
    FnPtrShim(DefId, Ty<'tcx>),

    /// Dynamic dispatch to `<dyn Trait as Trait>::fn`.
    ///
    /// This `InstanceKind` does not have callable MIR. Calls to `Virtual` instances must be
    /// codegen'd as virtual calls through the vtable.
    ///
    /// If this is reified to a `fn` pointer, a `ReifyShim` is used (see `ReifyShim` above for more
    /// details on that).
    Virtual(DefId, usize),

    /// `<[FnMut/Fn closure] as FnOnce>::call_once`.
    ///
    /// The `DefId` is the ID of the `call_once` method in `FnOnce`.
    ///
    /// This generates a body that will just borrow the (owned) self type,
    /// and dispatch to the `FnMut::call_mut` instance for the closure.
    ClosureOnceShim { call_once: DefId, track_caller: bool },

    /// `<[FnMut/Fn coroutine-closure] as FnOnce>::call_once`
    ///
    /// The body generated here differs significantly from the `ClosureOnceShim`,
    /// since we need to generate a distinct coroutine type that will move the
    /// closure's upvars *out* of the closure.
    ConstructCoroutineInClosureShim {
        coroutine_closure_def_id: DefId,
        // Whether the generated MIR body takes the coroutine by-ref. This is
        // because the signature of `<{async fn} as FnMut>::call_mut` is:
        // `fn(&mut self, args: A) -> <Self as FnOnce>::Output`, that is to say
        // that it returns the `FnOnce`-flavored coroutine but takes the closure
        // by mut ref (and similarly for `Fn::call`).
        receiver_by_ref: bool,
    },

    /// Compiler-generated accessor for thread locals which returns a reference to the thread local
    /// the `DefId` defines. This is used to export thread locals from dylibs on platforms lacking
    /// native support.
    ThreadLocalShim(DefId),

    /// `core::ptr::drop_in_place::<T>`.
    ///
    /// The `DefId` is for `core::ptr::drop_in_place`.
    /// The `Option<Ty<'tcx>>` is either `Some(T)`, or `None` for empty drop
    /// glue.
    DropGlue(DefId, Option<Ty<'tcx>>),

    /// Compiler-generated `<T as Clone>::clone` implementation.
    ///
    /// For all types that automatically implement `Copy`, a trivial `Clone` impl is provided too.
    /// Additionally, arrays, tuples, and closures get a `Clone` shim even if they aren't `Copy`.
    ///
    /// The `DefId` is for `Clone::clone`, the `Ty` is the type `T` with the builtin `Clone` impl.
    CloneShim(DefId, Ty<'tcx>),

    /// Compiler-generated `<T as FnPtr>::addr` implementation.
    ///
    /// Automatically generated for all potentially higher-ranked `fn(I) -> R` types.
    ///
    /// The `DefId` is for `FnPtr::addr`, the `Ty` is the type `T`.
    FnPtrAddrShim(DefId, Ty<'tcx>),

    /// `core::future::async_drop::async_drop_in_place::<'_, T>`.
    ///
    /// The `DefId` is for `core::future::async_drop::async_drop_in_place`, the `Ty`
    /// is the type `T`.
    AsyncDropGlueCtorShim(DefId, Option<Ty<'tcx>>),
}

impl<'tcx> Instance<'tcx> {
    /// Returns the `Ty` corresponding to this `Instance`, with generic instantiations applied and
    /// lifetimes erased, allowing a `ParamEnv` to be specified for use during normalization.
    pub fn ty(&self, tcx: TyCtxt<'tcx>, param_env: ty::ParamEnv<'tcx>) -> Ty<'tcx> {
        let ty = tcx.type_of(self.def.def_id());
        tcx.instantiate_and_normalize_erasing_regions(self.args, param_env, ty)
    }

    /// Finds a crate that contains a monomorphization of this instance that
    /// can be linked to from the local crate. A return value of `None` means
    /// no upstream crate provides such an exported monomorphization.
    ///
    /// This method already takes into account the global `-Zshare-generics`
    /// setting, always returning `None` if `share-generics` is off.
    pub fn upstream_monomorphization(&self, tcx: TyCtxt<'tcx>) -> Option<CrateNum> {
        // If we are not in share generics mode, we don't link to upstream
        // monomorphizations but always instantiate our own internal versions
        // instead.
        if !tcx.sess.opts.share_generics() {
            return None;
        }

        // If this is an item that is defined in the local crate, no upstream
        // crate can know about it/provide a monomorphization.
        if self.def_id().is_local() {
            return None;
        }

        // If this a non-generic instance, it cannot be a shared monomorphization.
        self.args.non_erasable_generics(tcx, self.def_id()).next()?;

        // compiler_builtins cannot use upstream monomorphizations.
        if tcx.is_compiler_builtins(LOCAL_CRATE) {
            return None;
        }

        match self.def {
            InstanceKind::Item(def) => tcx
                .upstream_monomorphizations_for(def)
                .and_then(|monos| monos.get(&self.args).cloned()),
            InstanceKind::DropGlue(_, Some(_)) => tcx.upstream_drop_glue_for(self.args),
            InstanceKind::AsyncDropGlueCtorShim(_, Some(_)) => {
                tcx.upstream_async_drop_glue_for(self.args)
            }
            _ => None,
        }
    }
}

impl<'tcx> InstanceKind<'tcx> {
    #[inline]
    pub fn def_id(self) -> DefId {
        match self {
            InstanceKind::Item(def_id)
            | InstanceKind::VTableShim(def_id)
            | InstanceKind::ReifyShim(def_id, _)
            | InstanceKind::FnPtrShim(def_id, _)
            | InstanceKind::Virtual(def_id, _)
            | InstanceKind::Intrinsic(def_id)
            | InstanceKind::ThreadLocalShim(def_id)
            | InstanceKind::ClosureOnceShim { call_once: def_id, track_caller: _ }
            | ty::InstanceKind::ConstructCoroutineInClosureShim {
                coroutine_closure_def_id: def_id,
                receiver_by_ref: _,
            }
            | InstanceKind::DropGlue(def_id, _)
            | InstanceKind::CloneShim(def_id, _)
            | InstanceKind::FnPtrAddrShim(def_id, _)
            | InstanceKind::AsyncDropGlueCtorShim(def_id, _) => def_id,
        }
    }

    /// Returns the `DefId` of instances which might not require codegen locally.
    pub fn def_id_if_not_guaranteed_local_codegen(self) -> Option<DefId> {
        match self {
            ty::InstanceKind::Item(def) => Some(def),
            ty::InstanceKind::DropGlue(def_id, Some(_))
            | InstanceKind::AsyncDropGlueCtorShim(def_id, Some(_))
            | InstanceKind::ThreadLocalShim(def_id) => Some(def_id),
            InstanceKind::VTableShim(..)
            | InstanceKind::ReifyShim(..)
            | InstanceKind::FnPtrShim(..)
            | InstanceKind::Virtual(..)
            | InstanceKind::Intrinsic(..)
            | InstanceKind::ClosureOnceShim { .. }
            | ty::InstanceKind::ConstructCoroutineInClosureShim { .. }
            | InstanceKind::DropGlue(..)
            | InstanceKind::AsyncDropGlueCtorShim(..)
            | InstanceKind::CloneShim(..)
            | InstanceKind::FnPtrAddrShim(..) => None,
        }
    }

    #[inline]
    pub fn get_attrs(
        &self,
        tcx: TyCtxt<'tcx>,
        attr: Symbol,
    ) -> impl Iterator<Item = &'tcx rustc_ast::Attribute> {
        tcx.get_attrs(self.def_id(), attr)
    }

    /// Returns `true` if the LLVM version of this instance is unconditionally
    /// marked with `inline`. This implies that a copy of this instance is
    /// generated in every codegen unit.
    /// Note that this is only a hint. See the documentation for
    /// `generates_cgu_internal_copy` for more information.
    pub fn requires_inline(&self, tcx: TyCtxt<'tcx>) -> bool {
        use rustc_hir::definitions::DefPathData;
        let def_id = match *self {
            ty::InstanceKind::Item(def) => def,
            ty::InstanceKind::DropGlue(_, Some(_)) => return false,
            ty::InstanceKind::AsyncDropGlueCtorShim(_, Some(_)) => return false,
            ty::InstanceKind::ThreadLocalShim(_) => return false,
            _ => return true,
        };
        matches!(
            tcx.def_key(def_id).disambiguated_data.data,
            DefPathData::Ctor | DefPathData::Closure
        )
    }

    /// Returns `true` if the machine code for this instance is instantiated in
    /// each codegen unit that references it.
    /// Note that this is only a hint! The compiler can globally decide to *not*
    /// do this in order to speed up compilation. CGU-internal copies are
    /// only exist to enable inlining. If inlining is not performed (e.g. at
    /// `-Copt-level=0`) then the time for generating them is wasted and it's
    /// better to create a single copy with external linkage.
    pub fn generates_cgu_internal_copy(&self, tcx: TyCtxt<'tcx>) -> bool {
        if self.requires_inline(tcx) {
            return true;
        }
        if let ty::InstanceKind::DropGlue(.., Some(ty))
        | ty::InstanceKind::AsyncDropGlueCtorShim(.., Some(ty)) = *self
        {
            // Drop glue generally wants to be instantiated at every codegen
            // unit, but without an #[inline] hint. We should make this
            // available to normal end-users.
            if tcx.sess.opts.incremental.is_none() {
                return true;
            }
            // When compiling with incremental, we can generate a *lot* of
            // codegen units. Including drop glue into all of them has a
            // considerable compile time cost.
            //
            // We include enums without destructors to allow, say, optimizing
            // drops of `Option::None` before LTO. We also respect the intent of
            // `#[inline]` on `Drop::drop` implementations.
            return ty.ty_adt_def().map_or(true, |adt_def| {
                match *self {
                    ty::InstanceKind::DropGlue(..) => adt_def.destructor(tcx).map(|dtor| dtor.did),
                    ty::InstanceKind::AsyncDropGlueCtorShim(..) => {
                        adt_def.async_destructor(tcx).map(|dtor| dtor.ctor)
                    }
                    _ => unreachable!(),
                }
                .map_or_else(|| adt_def.is_enum(), |did| tcx.cross_crate_inlinable(did))
            });
        }
        if let ty::InstanceKind::ThreadLocalShim(..) = *self {
            return false;
        }
        tcx.cross_crate_inlinable(self.def_id())
    }

    pub fn requires_caller_location(&self, tcx: TyCtxt<'_>) -> bool {
        match *self {
            InstanceKind::Item(def_id) | InstanceKind::Virtual(def_id, _) => {
                tcx.body_codegen_attrs(def_id).flags.contains(CodegenFnAttrFlags::TRACK_CALLER)
            }
            InstanceKind::ClosureOnceShim { call_once: _, track_caller } => track_caller,
            _ => false,
        }
    }

    /// Returns `true` when the MIR body associated with this instance should be monomorphized
    /// by its users (e.g. codegen or miri) by instantiating the `args` from `Instance` (see
    /// `Instance::args_for_mir_body`).
    ///
    /// Otherwise, returns `false` only for some kinds of shims where the construction of the MIR
    /// body should perform necessary instantiations.
    pub fn has_polymorphic_mir_body(&self) -> bool {
        match *self {
            InstanceKind::CloneShim(..)
            | InstanceKind::ThreadLocalShim(..)
            | InstanceKind::FnPtrAddrShim(..)
            | InstanceKind::FnPtrShim(..)
            | InstanceKind::DropGlue(_, Some(_))
            | InstanceKind::AsyncDropGlueCtorShim(_, Some(_)) => false,
            InstanceKind::ClosureOnceShim { .. }
            | InstanceKind::ConstructCoroutineInClosureShim { .. }
            | InstanceKind::DropGlue(..)
            | InstanceKind::AsyncDropGlueCtorShim(..)
            | InstanceKind::Item(_)
            | InstanceKind::Intrinsic(..)
            | InstanceKind::ReifyShim(..)
            | InstanceKind::Virtual(..)
            | InstanceKind::VTableShim(..) => true,
        }
    }
}

fn type_length<'tcx>(item: impl TypeVisitable<TyCtxt<'tcx>>) -> usize {
    struct Visitor<'tcx> {
        type_length: usize,
        cache: FxHashMap<Ty<'tcx>, usize>,
    }
    impl<'tcx> TypeVisitor<TyCtxt<'tcx>> for Visitor<'tcx> {
        fn visit_ty(&mut self, t: Ty<'tcx>) {
            if let Some(&value) = self.cache.get(&t) {
                self.type_length += value;
                return;
            }

            let prev = self.type_length;
            self.type_length += 1;
            t.super_visit_with(self);

            // We don't try to use the cache if the type is fairly small.
            if self.type_length > 16 {
                self.cache.insert(t, self.type_length - prev);
            }
        }

        fn visit_const(&mut self, ct: ty::Const<'tcx>) {
            self.type_length += 1;
            ct.super_visit_with(self);
        }
    }
    let mut visitor = Visitor { type_length: 0, cache: Default::default() };
    item.visit_with(&mut visitor);

    visitor.type_length
}

pub fn fmt_instance(
    f: &mut fmt::Formatter<'_>,
    instance: Instance<'_>,
    type_length: Option<rustc_session::Limit>,
) -> fmt::Result {
    ty::tls::with(|tcx| {
        let args = tcx.lift(instance.args).expect("could not lift for printing");

        let mut cx = if let Some(type_length) = type_length {
            FmtPrinter::new_with_limit(tcx, Namespace::ValueNS, type_length)
        } else {
            FmtPrinter::new(tcx, Namespace::ValueNS)
        };
        cx.print_def_path(instance.def_id(), args)?;
        let s = cx.into_buffer();
        f.write_str(&s)
    })?;

    match instance.def {
        InstanceKind::Item(_) => Ok(()),
        InstanceKind::VTableShim(_) => write!(f, " - shim(vtable)"),
        InstanceKind::ReifyShim(_, None) => write!(f, " - shim(reify)"),
        InstanceKind::ReifyShim(_, Some(ReifyReason::FnPtr)) => write!(f, " - shim(reify-fnptr)"),
        InstanceKind::ReifyShim(_, Some(ReifyReason::Vtable)) => write!(f, " - shim(reify-vtable)"),
        InstanceKind::ThreadLocalShim(_) => write!(f, " - shim(tls)"),
        InstanceKind::Intrinsic(_) => write!(f, " - intrinsic"),
        InstanceKind::Virtual(_, num) => write!(f, " - virtual#{num}"),
        InstanceKind::FnPtrShim(_, ty) => write!(f, " - shim({ty})"),
        InstanceKind::ClosureOnceShim { .. } => write!(f, " - shim"),
        InstanceKind::ConstructCoroutineInClosureShim { .. } => write!(f, " - shim"),
        InstanceKind::DropGlue(_, None) => write!(f, " - shim(None)"),
        InstanceKind::DropGlue(_, Some(ty)) => write!(f, " - shim(Some({ty}))"),
        InstanceKind::CloneShim(_, ty) => write!(f, " - shim({ty})"),
        InstanceKind::FnPtrAddrShim(_, ty) => write!(f, " - shim({ty})"),
        InstanceKind::AsyncDropGlueCtorShim(_, None) => write!(f, " - shim(None)"),
        InstanceKind::AsyncDropGlueCtorShim(_, Some(ty)) => write!(f, " - shim(Some({ty}))"),
    }
}

pub struct ShortInstance<'tcx>(pub Instance<'tcx>, pub usize);

impl<'tcx> fmt::Display for ShortInstance<'tcx> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt_instance(f, self.0, Some(rustc_session::Limit(self.1)))
    }
}

impl<'tcx> fmt::Display for Instance<'tcx> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt_instance(f, *self, None)
    }
}

impl<'tcx> Instance<'tcx> {
    pub fn new(def_id: DefId, args: GenericArgsRef<'tcx>) -> Instance<'tcx> {
        assert!(
            !args.has_escaping_bound_vars(),
            "args of instance {def_id:?} has escaping bound vars: {args:?}"
        );
        Instance { def: InstanceKind::Item(def_id), args }
    }

    pub fn mono(tcx: TyCtxt<'tcx>, def_id: DefId) -> Instance<'tcx> {
        let args = GenericArgs::for_item(tcx, def_id, |param, _| match param.kind {
            ty::GenericParamDefKind::Lifetime => tcx.lifetimes.re_erased.into(),
            ty::GenericParamDefKind::Const { is_host_effect: true, .. } => tcx.consts.true_.into(),
            ty::GenericParamDefKind::Type { .. } => {
                bug!("Instance::mono: {:?} has type parameters", def_id)
            }
            ty::GenericParamDefKind::Const { .. } => {
                bug!("Instance::mono: {:?} has const parameters", def_id)
            }
        });

        Instance::new(def_id, args)
    }

    #[inline]
    pub fn def_id(&self) -> DefId {
        self.def.def_id()
    }

    /// Resolves a `(def_id, args)` pair to an (optional) instance -- most commonly,
    /// this is used to find the precise code that will run for a trait method invocation,
    /// if known.
    ///
    /// Returns `Ok(None)` if we cannot resolve `Instance` to a specific instance.
    /// For example, in a context like this,
    ///
    /// ```ignore (illustrative)
    /// fn foo<T: Debug>(t: T) { ... }
    /// ```
    ///
    /// trying to resolve `Debug::fmt` applied to `T` will yield `Ok(None)`, because we do not
    /// know what code ought to run. (Note that this setting is also affected by the
    /// `RevealMode` in the parameter environment.)
    ///
    /// Presuming that coherence and type-check have succeeded, if this method is invoked
    /// in a monomorphic context (i.e., like during codegen), then it is guaranteed to return
    /// `Ok(Some(instance))`, **except** for when the instance's inputs hit the type size limit,
    /// in which case it may bail out and return `Ok(None)`.
    ///
    /// Returns `Err(ErrorGuaranteed)` when the `Instance` resolution process
    /// couldn't complete due to errors elsewhere - this is distinct
    /// from `Ok(None)` to avoid misleading diagnostics when an error
    /// has already been/will be emitted, for the original cause
    #[instrument(level = "debug", skip(tcx), ret)]
    pub fn try_resolve(
        tcx: TyCtxt<'tcx>,
        param_env: ty::ParamEnv<'tcx>,
        def_id: DefId,
        args: GenericArgsRef<'tcx>,
    ) -> Result<Option<Instance<'tcx>>, ErrorGuaranteed> {
        // Rust code can easily create exponentially-long types using only a
        // polynomial recursion depth. Even with the default recursion
        // depth, you can easily get cases that take >2^60 steps to run,
        // which means that rustc basically hangs.
        //
        // Bail out in these cases to avoid that bad user experience.
        if tcx.sess.opts.unstable_opts.enforce_type_length_limit
            && !tcx.type_length_limit().value_within_limit(type_length(args))
        {
            return Ok(None);
        }

        // All regions in the result of this query are erased, so it's
        // fine to erase all of the input regions.

        // HACK(eddyb) erase regions in `args` first, so that `param_env.and(...)`
        // below is more likely to ignore the bounds in scope (e.g. if the only
        // generic parameters mentioned by `args` were lifetime ones).
        let args = tcx.erase_regions(args);
        tcx.resolve_instance_raw(tcx.erase_regions(param_env.and((def_id, args))))
    }

    pub fn expect_resolve(
        tcx: TyCtxt<'tcx>,
        param_env: ty::ParamEnv<'tcx>,
        def_id: DefId,
        args: GenericArgsRef<'tcx>,
        span: Span,
    ) -> Instance<'tcx> {
        // We compute the span lazily, to avoid unnecessary query calls.
        // If `span` is a DUMMY_SP, and the def id is local, then use the
        // def span of the def id.
        let span_or_local_def_span =
            || if span.is_dummy() && def_id.is_local() { tcx.def_span(def_id) } else { span };

        match ty::Instance::try_resolve(tcx, param_env, def_id, args) {
            Ok(Some(instance)) => instance,
            Ok(None) => {
                let type_length = type_length(args);
                if !tcx.type_length_limit().value_within_limit(type_length) {
                    let (shrunk, written_to_path) =
                        shrunk_instance_name(tcx, Instance::new(def_id, args));
                    let mut path = PathBuf::new();
                    let was_written = if let Some(path2) = written_to_path {
                        path = path2;
                        true
                    } else {
                        false
                    };
                    tcx.dcx().emit_fatal(error::TypeLengthLimit {
                        // We don't use `def_span(def_id)` so that diagnostics point
                        // to the crate root during mono instead of to foreign items.
                        // This is arguably better.
                        span: span_or_local_def_span(),
                        shrunk,
                        was_written,
                        path,
                        type_length,
                    });
                } else {
                    span_bug!(
                        span_or_local_def_span(),
                        "failed to resolve instance for {}",
                        tcx.def_path_str_with_args(def_id, args)
                    )
                }
            }
            instance => span_bug!(
                span_or_local_def_span(),
                "failed to resolve instance for {}: {instance:#?}",
                tcx.def_path_str_with_args(def_id, args)
            ),
        }
    }

    pub fn resolve_for_fn_ptr(
        tcx: TyCtxt<'tcx>,
        param_env: ty::ParamEnv<'tcx>,
        def_id: DefId,
        args: GenericArgsRef<'tcx>,
    ) -> Option<Instance<'tcx>> {
        debug!("resolve(def_id={:?}, args={:?})", def_id, args);
        // Use either `resolve_closure` or `resolve_for_vtable`
        assert!(!tcx.is_closure_like(def_id), "Called `resolve_for_fn_ptr` on closure: {def_id:?}");
        let reason = tcx.sess.is_sanitizer_kcfi_enabled().then_some(ReifyReason::FnPtr);
        Instance::try_resolve(tcx, param_env, def_id, args).ok().flatten().map(|mut resolved| {
            match resolved.def {
                InstanceKind::Item(def) if resolved.def.requires_caller_location(tcx) => {
                    debug!(" => fn pointer created for function with #[track_caller]");
                    resolved.def = InstanceKind::ReifyShim(def, reason);
                }
                InstanceKind::Virtual(def_id, _) => {
                    debug!(" => fn pointer created for virtual call");
                    resolved.def = InstanceKind::ReifyShim(def_id, reason);
                }
                // Reify `Trait::method` implementations if KCFI is enabled
                // FIXME(maurer) only reify it if it is a vtable-safe function
                _ if tcx.sess.is_sanitizer_kcfi_enabled()
                    && tcx
                        .opt_associated_item(def_id)
                        .and_then(|assoc| assoc.trait_item_def_id)
                        .is_some() =>
                {
                    // If this function could also go in a vtable, we need to `ReifyShim` it with
                    // KCFI because it can only attach one type per function.
                    resolved.def = InstanceKind::ReifyShim(resolved.def_id(), reason)
                }
                // Reify `::call`-like method implementations if KCFI is enabled
                _ if tcx.sess.is_sanitizer_kcfi_enabled()
                    && tcx.is_closure_like(resolved.def_id()) =>
                {
                    // Reroute through a reify via the *unresolved* instance. The resolved one can't
                    // be directly reified because it's closure-like. The reify can handle the
                    // unresolved instance.
                    resolved = Instance { def: InstanceKind::ReifyShim(def_id, reason), args }
                }
                _ => {}
            }

            resolved
        })
    }

    pub fn expect_resolve_for_vtable(
        tcx: TyCtxt<'tcx>,
        param_env: ty::ParamEnv<'tcx>,
        def_id: DefId,
        args: GenericArgsRef<'tcx>,
        span: Span,
    ) -> Instance<'tcx> {
        debug!("resolve_for_vtable(def_id={:?}, args={:?})", def_id, args);
        let fn_sig = tcx.fn_sig(def_id).instantiate_identity();
        let is_vtable_shim = !fn_sig.inputs().skip_binder().is_empty()
            && fn_sig.input(0).skip_binder().is_param(0)
            && tcx.generics_of(def_id).has_self;

        if is_vtable_shim {
            debug!(" => associated item with unsizeable self: Self");
            return Instance { def: InstanceKind::VTableShim(def_id), args };
        }

        let mut resolved = Instance::expect_resolve(tcx, param_env, def_id, args, span);

        let reason = tcx.sess.is_sanitizer_kcfi_enabled().then_some(ReifyReason::Vtable);
        match resolved.def {
            InstanceKind::Item(def) => {
                // We need to generate a shim when we cannot guarantee that
                // the caller of a trait object method will be aware of
                // `#[track_caller]` - this ensures that the caller
                // and callee ABI will always match.
                //
                // The shim is generated when all of these conditions are met:
                //
                // 1) The underlying method expects a caller location parameter
                // in the ABI
                if resolved.def.requires_caller_location(tcx)
                        // 2) The caller location parameter comes from having `#[track_caller]`
                        // on the implementation, and *not* on the trait method.
                        && !tcx.should_inherit_track_caller(def)
                        // If the method implementation comes from the trait definition itself
                        // (e.g. `trait Foo { #[track_caller] my_fn() { /* impl */ } }`),
                        // then we don't need to generate a shim. This check is needed because
                        // `should_inherit_track_caller` returns `false` if our method
                        // implementation comes from the trait block, and not an impl block
                        && !matches!(
                            tcx.opt_associated_item(def),
                            Some(ty::AssocItem {
                                container: ty::AssocItemContainer::TraitContainer,
                                ..
                            })
                        )
                {
                    if tcx.is_closure_like(def) {
                        debug!(
                            " => vtable fn pointer created for closure with #[track_caller]: {:?} for method {:?} {:?}",
                            def, def_id, args
                        );

                        // Create a shim for the `FnOnce/FnMut/Fn` method we are calling
                        // - unlike functions, invoking a closure always goes through a
                        // trait.
                        resolved = Instance { def: InstanceKind::ReifyShim(def_id, reason), args };
                    } else {
                        debug!(
                            " => vtable fn pointer created for function with #[track_caller]: {:?}",
                            def
                        );
                        resolved.def = InstanceKind::ReifyShim(def, reason);
                    }
                }
            }
            InstanceKind::Virtual(def_id, _) => {
                debug!(" => vtable fn pointer created for virtual call");
                resolved.def = InstanceKind::ReifyShim(def_id, reason)
            }
            _ => {}
        }

        resolved
    }

    pub fn resolve_closure(
        tcx: TyCtxt<'tcx>,
        def_id: DefId,
        args: ty::GenericArgsRef<'tcx>,
        requested_kind: ty::ClosureKind,
    ) -> Instance<'tcx> {
        let actual_kind = args.as_closure().kind();

        match needs_fn_once_adapter_shim(actual_kind, requested_kind) {
            Ok(true) => Instance::fn_once_adapter_instance(tcx, def_id, args),
            _ => Instance::new(def_id, args),
        }
    }

    pub fn resolve_drop_in_place(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> ty::Instance<'tcx> {
        let def_id = tcx.require_lang_item(LangItem::DropInPlace, None);
        let args = tcx.mk_args(&[ty.into()]);
        Instance::expect_resolve(
            tcx,
            ty::ParamEnv::reveal_all(),
            def_id,
            args,
            ty.ty_adt_def().and_then(|adt| tcx.hir().span_if_local(adt.did())).unwrap_or(DUMMY_SP),
        )
    }

    pub fn resolve_async_drop_in_place(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> ty::Instance<'tcx> {
        let def_id = tcx.require_lang_item(LangItem::AsyncDropInPlace, None);
        let args = tcx.mk_args(&[ty.into()]);
        Instance::expect_resolve(
            tcx,
            ty::ParamEnv::reveal_all(),
            def_id,
            args,
            ty.ty_adt_def().and_then(|adt| tcx.hir().span_if_local(adt.did())).unwrap_or(DUMMY_SP),
        )
    }

    #[instrument(level = "debug", skip(tcx), ret)]
    pub fn fn_once_adapter_instance(
        tcx: TyCtxt<'tcx>,
        closure_did: DefId,
        args: ty::GenericArgsRef<'tcx>,
    ) -> Instance<'tcx> {
        let fn_once = tcx.require_lang_item(LangItem::FnOnce, None);
        let call_once = tcx
            .associated_items(fn_once)
            .in_definition_order()
            .find(|it| it.kind == ty::AssocKind::Fn)
            .unwrap()
            .def_id;
        let track_caller =
            tcx.codegen_fn_attrs(closure_did).flags.contains(CodegenFnAttrFlags::TRACK_CALLER);
        let def = ty::InstanceKind::ClosureOnceShim { call_once, track_caller };

        let self_ty = Ty::new_closure(tcx, closure_did, args);

        let tupled_inputs_ty = args.as_closure().sig().map_bound(|sig| sig.inputs()[0]);
        let tupled_inputs_ty = tcx.instantiate_bound_regions_with_erased(tupled_inputs_ty);
        let args = tcx.mk_args_trait(self_ty, [tupled_inputs_ty.into()]);

        debug!(?self_ty, args=?tupled_inputs_ty.tuple_fields());
        Instance { def, args }
    }

    pub fn try_resolve_item_for_coroutine(
        tcx: TyCtxt<'tcx>,
        trait_item_id: DefId,
        trait_id: DefId,
        rcvr_args: ty::GenericArgsRef<'tcx>,
    ) -> Option<Instance<'tcx>> {
        let ty::Coroutine(coroutine_def_id, args) = *rcvr_args.type_at(0).kind() else {
            return None;
        };
        let coroutine_kind = tcx.coroutine_kind(coroutine_def_id).unwrap();

        let coroutine_callable_item = if tcx.is_lang_item(trait_id, LangItem::Future) {
            assert_matches!(
                coroutine_kind,
                hir::CoroutineKind::Desugared(hir::CoroutineDesugaring::Async, _)
            );
            hir::LangItem::FuturePoll
        } else if tcx.is_lang_item(trait_id, LangItem::Iterator) {
            assert_matches!(
                coroutine_kind,
                hir::CoroutineKind::Desugared(hir::CoroutineDesugaring::Gen, _)
            );
            hir::LangItem::IteratorNext
        } else if tcx.is_lang_item(trait_id, LangItem::AsyncIterator) {
            assert_matches!(
                coroutine_kind,
                hir::CoroutineKind::Desugared(hir::CoroutineDesugaring::AsyncGen, _)
            );
            hir::LangItem::AsyncIteratorPollNext
        } else if tcx.is_lang_item(trait_id, LangItem::Coroutine) {
            assert_matches!(coroutine_kind, hir::CoroutineKind::Coroutine(_));
            hir::LangItem::CoroutineResume
        } else {
            return None;
        };

        if tcx.is_lang_item(trait_item_id, coroutine_callable_item) {
            let ty::Coroutine(_, id_args) = *tcx.type_of(coroutine_def_id).skip_binder().kind()
            else {
                bug!()
            };

            // If the closure's kind ty disagrees with the identity closure's kind ty,
            // then this must be a coroutine generated by one of the `ConstructCoroutineInClosureShim`s.
            if args.as_coroutine().kind_ty() == id_args.as_coroutine().kind_ty() {
                Some(Instance { def: ty::InstanceKind::Item(coroutine_def_id), args })
            } else {
                Some(Instance {
                    def: ty::InstanceKind::Item(
                        tcx.coroutine_by_move_body_def_id(coroutine_def_id),
                    ),
                    args,
                })
            }
        } else {
            // All other methods should be defaulted methods of the built-in trait.
            // This is important for `Iterator`'s combinators, but also useful for
            // adding future default methods to `Future`, for instance.
            debug_assert!(tcx.defaultness(trait_item_id).has_value());
            Some(Instance::new(trait_item_id, rcvr_args))
        }
    }

    /// Depending on the kind of `InstanceKind`, the MIR body associated with an
    /// instance is expressed in terms of the generic parameters of `self.def_id()`, and in other
    /// cases the MIR body is expressed in terms of the types found in the generic parameter array.
    /// In the former case, we want to instantiate those generic types and replace them with the
    /// values from the args when monomorphizing the function body. But in the latter case, we
    /// don't want to do that instantiation, since it has already been done effectively.
    ///
    /// This function returns `Some(args)` in the former case and `None` otherwise -- i.e., if
    /// this function returns `None`, then the MIR body does not require instantiation during
    /// codegen.
    fn args_for_mir_body(&self) -> Option<GenericArgsRef<'tcx>> {
        self.def.has_polymorphic_mir_body().then_some(self.args)
    }

    pub fn instantiate_mir<T>(&self, tcx: TyCtxt<'tcx>, v: EarlyBinder<'tcx, &T>) -> T
    where
        T: TypeFoldable<TyCtxt<'tcx>> + Copy,
    {
        let v = v.map_bound(|v| *v);
        if let Some(args) = self.args_for_mir_body() {
            v.instantiate(tcx, args)
        } else {
            v.instantiate_identity()
        }
    }

    #[inline(always)]
    // Keep me in sync with try_instantiate_mir_and_normalize_erasing_regions
    pub fn instantiate_mir_and_normalize_erasing_regions<T>(
        &self,
        tcx: TyCtxt<'tcx>,
        param_env: ty::ParamEnv<'tcx>,
        v: EarlyBinder<'tcx, T>,
    ) -> T
    where
        T: TypeFoldable<TyCtxt<'tcx>>,
    {
        if let Some(args) = self.args_for_mir_body() {
            tcx.instantiate_and_normalize_erasing_regions(args, param_env, v)
        } else {
            tcx.normalize_erasing_regions(param_env, v.instantiate_identity())
        }
    }

    #[inline(always)]
    // Keep me in sync with instantiate_mir_and_normalize_erasing_regions
    pub fn try_instantiate_mir_and_normalize_erasing_regions<T>(
        &self,
        tcx: TyCtxt<'tcx>,
        param_env: ty::ParamEnv<'tcx>,
        v: EarlyBinder<'tcx, T>,
    ) -> Result<T, NormalizationError<'tcx>>
    where
        T: TypeFoldable<TyCtxt<'tcx>>,
    {
        if let Some(args) = self.args_for_mir_body() {
            tcx.try_instantiate_and_normalize_erasing_regions(args, param_env, v)
        } else {
            // We're using `instantiate_identity` as e.g.
            // `FnPtrShim` is separately generated for every
            // instantiation of the `FnDef`, so the MIR body
            // is already instantiated. Any generic parameters it
            // contains are generic parameters from the caller.
            tcx.try_normalize_erasing_regions(param_env, v.instantiate_identity())
        }
    }

    /// Returns a new `Instance` where generic parameters in `instance.args` are replaced by
    /// identity parameters if they are determined to be unused in `instance.def`.
    pub fn polymorphize(self, tcx: TyCtxt<'tcx>) -> Self {
        debug!("polymorphize: running polymorphization analysis");
        if !tcx.sess.opts.unstable_opts.polymorphize {
            return self;
        }

        let polymorphized_args = polymorphize(tcx, self.def, self.args);
        debug!("polymorphize: self={:?} polymorphized_args={:?}", self, polymorphized_args);
        Self { def: self.def, args: polymorphized_args }
    }
}

fn polymorphize<'tcx>(
    tcx: TyCtxt<'tcx>,
    instance: ty::InstanceKind<'tcx>,
    args: GenericArgsRef<'tcx>,
) -> GenericArgsRef<'tcx> {
    debug!("polymorphize({:?}, {:?})", instance, args);
    let unused = tcx.unused_generic_params(instance);
    debug!("polymorphize: unused={:?}", unused);

    // If this is a closure or coroutine then we need to handle the case where another closure
    // from the function is captured as an upvar and hasn't been polymorphized. In this case,
    // the unpolymorphized upvar closure would result in a polymorphized closure producing
    // multiple mono items (and eventually symbol clashes).
    let def_id = instance.def_id();
    let upvars_ty = match tcx.type_of(def_id).skip_binder().kind() {
        ty::Closure(..) => Some(args.as_closure().tupled_upvars_ty()),
        ty::Coroutine(..) => {
            assert_eq!(
                args.as_coroutine().kind_ty(),
                tcx.types.unit,
                "polymorphization does not support coroutines from async closures"
            );
            Some(args.as_coroutine().tupled_upvars_ty())
        }
        _ => None,
    };
    let has_upvars = upvars_ty.is_some_and(|ty| !ty.tuple_fields().is_empty());
    debug!("polymorphize: upvars_ty={:?} has_upvars={:?}", upvars_ty, has_upvars);

    struct PolymorphizationFolder<'tcx> {
        tcx: TyCtxt<'tcx>,
    }

    impl<'tcx> ty::TypeFolder<TyCtxt<'tcx>> for PolymorphizationFolder<'tcx> {
        fn cx(&self) -> TyCtxt<'tcx> {
            self.tcx
        }

        fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
            debug!("fold_ty: ty={:?}", ty);
            match *ty.kind() {
                ty::Closure(def_id, args) => {
                    let polymorphized_args =
                        polymorphize(self.tcx, ty::InstanceKind::Item(def_id), args);
                    if args == polymorphized_args {
                        ty
                    } else {
                        Ty::new_closure(self.tcx, def_id, polymorphized_args)
                    }
                }
                ty::Coroutine(def_id, args) => {
                    let polymorphized_args =
                        polymorphize(self.tcx, ty::InstanceKind::Item(def_id), args);
                    if args == polymorphized_args {
                        ty
                    } else {
                        Ty::new_coroutine(self.tcx, def_id, polymorphized_args)
                    }
                }
                _ => ty.super_fold_with(self),
            }
        }
    }

    GenericArgs::for_item(tcx, def_id, |param, _| {
        let is_unused = unused.is_unused(param.index);
        debug!("polymorphize: param={:?} is_unused={:?}", param, is_unused);
        match param.kind {
            // Upvar case: If parameter is a type parameter..
            ty::GenericParamDefKind::Type { .. } if
                // ..and has upvars..
                has_upvars &&
                // ..and this param has the same type as the tupled upvars..
                upvars_ty == Some(args[param.index as usize].expect_ty()) => {
                    // ..then double-check that polymorphization marked it used..
                    debug_assert!(!is_unused);
                    // ..and polymorphize any closures/coroutines captured as upvars.
                    let upvars_ty = upvars_ty.unwrap();
                    let polymorphized_upvars_ty = upvars_ty.fold_with(
                        &mut PolymorphizationFolder { tcx });
                    debug!("polymorphize: polymorphized_upvars_ty={:?}", polymorphized_upvars_ty);
                    ty::GenericArg::from(polymorphized_upvars_ty)
                },

            // Simple case: If parameter is a const or type parameter..
            ty::GenericParamDefKind::Const { .. } | ty::GenericParamDefKind::Type { .. } if
                // ..and is within range and unused..
                unused.is_unused(param.index) =>
                    // ..then use the identity for this parameter.
                    tcx.mk_param_from_def(param),

            // Otherwise, use the parameter as before.
            _ => args[param.index as usize],
        }
    })
}

fn needs_fn_once_adapter_shim(
    actual_closure_kind: ty::ClosureKind,
    trait_closure_kind: ty::ClosureKind,
) -> Result<bool, ()> {
    match (actual_closure_kind, trait_closure_kind) {
        (ty::ClosureKind::Fn, ty::ClosureKind::Fn)
        | (ty::ClosureKind::FnMut, ty::ClosureKind::FnMut)
        | (ty::ClosureKind::FnOnce, ty::ClosureKind::FnOnce) => {
            // No adapter needed.
            Ok(false)
        }
        (ty::ClosureKind::Fn, ty::ClosureKind::FnMut) => {
            // The closure fn `llfn` is a `fn(&self, ...)`. We want a
            // `fn(&mut self, ...)`. In fact, at codegen time, these are
            // basically the same thing, so we can just return llfn.
            Ok(false)
        }
        (ty::ClosureKind::Fn | ty::ClosureKind::FnMut, ty::ClosureKind::FnOnce) => {
            // The closure fn `llfn` is a `fn(&self, ...)` or `fn(&mut
            // self, ...)`. We want a `fn(self, ...)`. We can produce
            // this by doing something like:
            //
            //     fn call_once(self, ...) { call_mut(&self, ...) }
            //     fn call_once(mut self, ...) { call_mut(&mut self, ...) }
            //
            // These are both the same at codegen time.
            Ok(true)
        }
        (ty::ClosureKind::FnMut | ty::ClosureKind::FnOnce, _) => Err(()),
    }
}

// Set bits represent unused generic parameters.
// An empty set indicates that all parameters are used.
#[derive(Debug, Copy, Clone, Eq, PartialEq, Decodable, Encodable, HashStable)]
pub struct UnusedGenericParams(FiniteBitSet<u32>);

impl Default for UnusedGenericParams {
    fn default() -> Self {
        UnusedGenericParams::new_all_used()
    }
}

impl UnusedGenericParams {
    pub fn new_all_unused(amount: u32) -> Self {
        let mut bitset = FiniteBitSet::new_empty();
        bitset.set_range(0..amount);
        Self(bitset)
    }

    pub fn new_all_used() -> Self {
        Self(FiniteBitSet::new_empty())
    }

    pub fn mark_used(&mut self, idx: u32) {
        self.0.clear(idx);
    }

    pub fn is_unused(&self, idx: u32) -> bool {
        self.0.contains(idx).unwrap_or(false)
    }

    pub fn is_used(&self, idx: u32) -> bool {
        !self.is_unused(idx)
    }

    pub fn all_used(&self) -> bool {
        self.0.is_empty()
    }

    pub fn bits(&self) -> u32 {
        self.0.0
    }

    pub fn from_bits(bits: u32) -> UnusedGenericParams {
        UnusedGenericParams(FiniteBitSet(bits))
    }
}