1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
//! General management of file descriptors, and support for
//! standard file descriptors (stdin/stdout/stderr).

use std::any::Any;
use std::cell::{Ref, RefCell, RefMut};
use std::collections::BTreeMap;
use std::io::{self, ErrorKind, IsTerminal, Read, SeekFrom, Write};
use std::rc::Rc;

use rustc_target::abi::Size;

use crate::shims::unix::*;
use crate::*;

/// Represents an open file descriptor.
pub trait FileDescription: std::fmt::Debug + Any {
    fn name(&self) -> &'static str;

    /// Reads as much as possible into the given buffer, and returns the number of bytes read.
    fn read<'tcx>(
        &mut self,
        _communicate_allowed: bool,
        _bytes: &mut [u8],
        _ecx: &mut MiriInterpCx<'tcx>,
    ) -> InterpResult<'tcx, io::Result<usize>> {
        throw_unsup_format!("cannot read from {}", self.name());
    }

    /// Writes as much as possible from the given buffer, and returns the number of bytes written.
    fn write<'tcx>(
        &mut self,
        _communicate_allowed: bool,
        _bytes: &[u8],
        _ecx: &mut MiriInterpCx<'tcx>,
    ) -> InterpResult<'tcx, io::Result<usize>> {
        throw_unsup_format!("cannot write to {}", self.name());
    }

    /// Seeks to the given offset (which can be relative to the beginning, end, or current position).
    /// Returns the new position from the start of the stream.
    fn seek<'tcx>(
        &mut self,
        _communicate_allowed: bool,
        _offset: SeekFrom,
    ) -> InterpResult<'tcx, io::Result<u64>> {
        throw_unsup_format!("cannot seek on {}", self.name());
    }

    fn close<'tcx>(
        self: Box<Self>,
        _communicate_allowed: bool,
    ) -> InterpResult<'tcx, io::Result<()>> {
        throw_unsup_format!("cannot close {}", self.name());
    }

    fn is_tty(&self, _communicate_allowed: bool) -> bool {
        // Most FDs are not tty's and the consequence of a wrong `false` are minor,
        // so we use a default impl here.
        false
    }
}

impl dyn FileDescription {
    #[inline(always)]
    pub fn downcast_ref<T: Any>(&self) -> Option<&T> {
        (self as &dyn Any).downcast_ref()
    }

    #[inline(always)]
    pub fn downcast_mut<T: Any>(&mut self) -> Option<&mut T> {
        (self as &mut dyn Any).downcast_mut()
    }
}

impl FileDescription for io::Stdin {
    fn name(&self) -> &'static str {
        "stdin"
    }

    fn read<'tcx>(
        &mut self,
        communicate_allowed: bool,
        bytes: &mut [u8],
        _ecx: &mut MiriInterpCx<'tcx>,
    ) -> InterpResult<'tcx, io::Result<usize>> {
        if !communicate_allowed {
            // We want isolation mode to be deterministic, so we have to disallow all reads, even stdin.
            helpers::isolation_abort_error("`read` from stdin")?;
        }
        Ok(Read::read(self, bytes))
    }

    fn is_tty(&self, communicate_allowed: bool) -> bool {
        communicate_allowed && self.is_terminal()
    }
}

impl FileDescription for io::Stdout {
    fn name(&self) -> &'static str {
        "stdout"
    }

    fn write<'tcx>(
        &mut self,
        _communicate_allowed: bool,
        bytes: &[u8],
        _ecx: &mut MiriInterpCx<'tcx>,
    ) -> InterpResult<'tcx, io::Result<usize>> {
        // We allow writing to stderr even with isolation enabled.
        let result = Write::write(self, bytes);
        // Stdout is buffered, flush to make sure it appears on the
        // screen.  This is the write() syscall of the interpreted
        // program, we want it to correspond to a write() syscall on
        // the host -- there is no good in adding extra buffering
        // here.
        io::stdout().flush().unwrap();

        Ok(result)
    }

    fn is_tty(&self, communicate_allowed: bool) -> bool {
        communicate_allowed && self.is_terminal()
    }
}

impl FileDescription for io::Stderr {
    fn name(&self) -> &'static str {
        "stderr"
    }

    fn write<'tcx>(
        &mut self,
        _communicate_allowed: bool,
        bytes: &[u8],
        _ecx: &mut MiriInterpCx<'tcx>,
    ) -> InterpResult<'tcx, io::Result<usize>> {
        // We allow writing to stderr even with isolation enabled.
        // No need to flush, stderr is not buffered.
        Ok(Write::write(&mut { self }, bytes))
    }

    fn is_tty(&self, communicate_allowed: bool) -> bool {
        communicate_allowed && self.is_terminal()
    }
}

/// Like /dev/null
#[derive(Debug)]
pub struct NullOutput;

impl FileDescription for NullOutput {
    fn name(&self) -> &'static str {
        "stderr and stdout"
    }

    fn write<'tcx>(
        &mut self,
        _communicate_allowed: bool,
        bytes: &[u8],
        _ecx: &mut MiriInterpCx<'tcx>,
    ) -> InterpResult<'tcx, io::Result<usize>> {
        // We just don't write anything, but report to the user that we did.
        Ok(Ok(bytes.len()))
    }
}

#[derive(Clone, Debug)]
pub struct FileDescriptor(Rc<RefCell<Box<dyn FileDescription>>>);

impl FileDescriptor {
    pub fn new<T: FileDescription>(fd: T) -> Self {
        FileDescriptor(Rc::new(RefCell::new(Box::new(fd))))
    }

    pub fn borrow(&self) -> Ref<'_, dyn FileDescription> {
        Ref::map(self.0.borrow(), |fd| fd.as_ref())
    }

    pub fn borrow_mut(&self) -> RefMut<'_, dyn FileDescription> {
        RefMut::map(self.0.borrow_mut(), |fd| fd.as_mut())
    }

    pub fn close<'ctx>(self, communicate_allowed: bool) -> InterpResult<'ctx, io::Result<()>> {
        // Destroy this `Rc` using `into_inner` so we can call `close` instead of
        // implicitly running the destructor of the file description.
        match Rc::into_inner(self.0) {
            Some(fd) => RefCell::into_inner(fd).close(communicate_allowed),
            None => Ok(Ok(())),
        }
    }
}

/// The file descriptor table
#[derive(Debug)]
pub struct FdTable {
    pub fds: BTreeMap<i32, FileDescriptor>,
}

impl VisitProvenance for FdTable {
    fn visit_provenance(&self, _visit: &mut VisitWith<'_>) {
        // All our FileDescriptor do not have any tags.
    }
}

impl FdTable {
    pub(crate) fn new(mute_stdout_stderr: bool) -> FdTable {
        let mut fds: BTreeMap<_, FileDescriptor> = BTreeMap::new();
        fds.insert(0i32, FileDescriptor::new(io::stdin()));
        if mute_stdout_stderr {
            fds.insert(1i32, FileDescriptor::new(NullOutput));
            fds.insert(2i32, FileDescriptor::new(NullOutput));
        } else {
            fds.insert(1i32, FileDescriptor::new(io::stdout()));
            fds.insert(2i32, FileDescriptor::new(io::stderr()));
        }
        FdTable { fds }
    }

    pub fn insert_fd(&mut self, file_handle: FileDescriptor) -> i32 {
        self.insert_fd_with_min_fd(file_handle, 0)
    }

    /// Insert a new FD that is at least `min_fd`.
    pub fn insert_fd_with_min_fd(&mut self, file_handle: FileDescriptor, min_fd: i32) -> i32 {
        // Find the lowest unused FD, starting from min_fd. If the first such unused FD is in
        // between used FDs, the find_map combinator will return it. If the first such unused FD
        // is after all other used FDs, the find_map combinator will return None, and we will use
        // the FD following the greatest FD thus far.
        let candidate_new_fd =
            self.fds.range(min_fd..).zip(min_fd..).find_map(|((fd, _fh), counter)| {
                if *fd != counter {
                    // There was a gap in the fds stored, return the first unused one
                    // (note that this relies on BTreeMap iterating in key order)
                    Some(counter)
                } else {
                    // This fd is used, keep going
                    None
                }
            });
        let new_fd = candidate_new_fd.unwrap_or_else(|| {
            // find_map ran out of BTreeMap entries before finding a free fd, use one plus the
            // maximum fd in the map
            self.fds.last_key_value().map(|(fd, _)| fd.strict_add(1)).unwrap_or(min_fd)
        });

        self.fds.try_insert(new_fd, file_handle).unwrap();
        new_fd
    }

    pub fn get(&self, fd: i32) -> Option<Ref<'_, dyn FileDescription>> {
        let fd = self.fds.get(&fd)?;
        Some(fd.borrow())
    }

    pub fn get_mut(&self, fd: i32) -> Option<RefMut<'_, dyn FileDescription>> {
        let fd = self.fds.get(&fd)?;
        Some(fd.borrow_mut())
    }

    pub fn dup(&self, fd: i32) -> Option<FileDescriptor> {
        let fd = self.fds.get(&fd)?;
        Some(fd.clone())
    }

    pub fn remove(&mut self, fd: i32) -> Option<FileDescriptor> {
        self.fds.remove(&fd)
    }

    pub fn is_fd(&self, fd: i32) -> bool {
        self.fds.contains_key(&fd)
    }
}

impl<'tcx> EvalContextExt<'tcx> for crate::MiriInterpCx<'tcx> {}
pub trait EvalContextExt<'tcx>: crate::MiriInterpCxExt<'tcx> {
    fn dup(&mut self, old_fd: i32) -> InterpResult<'tcx, i32> {
        let this = self.eval_context_mut();

        let Some(dup_fd) = this.machine.fds.dup(old_fd) else {
            return this.fd_not_found();
        };
        Ok(this.machine.fds.insert_fd_with_min_fd(dup_fd, 0))
    }

    fn dup2(&mut self, old_fd: i32, new_fd: i32) -> InterpResult<'tcx, i32> {
        let this = self.eval_context_mut();

        let Some(dup_fd) = this.machine.fds.dup(old_fd) else {
            return this.fd_not_found();
        };
        if new_fd != old_fd {
            // Close new_fd if it is previously opened.
            // If old_fd and new_fd point to the same description, then `dup_fd` ensures we keep the underlying file description alive.
            if let Some(file_descriptor) = this.machine.fds.fds.insert(new_fd, dup_fd) {
                // Ignore close error (not interpreter's) according to dup2() doc.
                file_descriptor.close(this.machine.communicate())?.ok();
            }
        }
        Ok(new_fd)
    }

    fn fcntl(&mut self, args: &[OpTy<'tcx>]) -> InterpResult<'tcx, i32> {
        let this = self.eval_context_mut();

        if args.len() < 2 {
            throw_ub_format!(
                "incorrect number of arguments for fcntl: got {}, expected at least 2",
                args.len()
            );
        }
        let fd = this.read_scalar(&args[0])?.to_i32()?;
        let cmd = this.read_scalar(&args[1])?.to_i32()?;

        // We only support getting the flags for a descriptor.
        if cmd == this.eval_libc_i32("F_GETFD") {
            // Currently this is the only flag that `F_GETFD` returns. It is OK to just return the
            // `FD_CLOEXEC` value without checking if the flag is set for the file because `std`
            // always sets this flag when opening a file. However we still need to check that the
            // file itself is open.
            if this.machine.fds.is_fd(fd) {
                Ok(this.eval_libc_i32("FD_CLOEXEC"))
            } else {
                this.fd_not_found()
            }
        } else if cmd == this.eval_libc_i32("F_DUPFD")
            || cmd == this.eval_libc_i32("F_DUPFD_CLOEXEC")
        {
            // Note that we always assume the FD_CLOEXEC flag is set for every open file, in part
            // because exec() isn't supported. The F_DUPFD and F_DUPFD_CLOEXEC commands only
            // differ in whether the FD_CLOEXEC flag is pre-set on the new file descriptor,
            // thus they can share the same implementation here.
            if args.len() < 3 {
                throw_ub_format!(
                    "incorrect number of arguments for fcntl with cmd=`F_DUPFD`/`F_DUPFD_CLOEXEC`: got {}, expected at least 3",
                    args.len()
                );
            }
            let start = this.read_scalar(&args[2])?.to_i32()?;

            match this.machine.fds.dup(fd) {
                Some(dup_fd) => Ok(this.machine.fds.insert_fd_with_min_fd(dup_fd, start)),
                None => this.fd_not_found(),
            }
        } else if this.tcx.sess.target.os == "macos" && cmd == this.eval_libc_i32("F_FULLFSYNC") {
            // Reject if isolation is enabled.
            if let IsolatedOp::Reject(reject_with) = this.machine.isolated_op {
                this.reject_in_isolation("`fcntl`", reject_with)?;
                this.set_last_error_from_io_error(ErrorKind::PermissionDenied.into())?;
                return Ok(-1);
            }

            this.ffullsync_fd(fd)
        } else {
            throw_unsup_format!("the {:#x} command is not supported for `fcntl`)", cmd);
        }
    }

    fn close(&mut self, fd_op: &OpTy<'tcx>) -> InterpResult<'tcx, Scalar> {
        let this = self.eval_context_mut();

        let fd = this.read_scalar(fd_op)?.to_i32()?;

        let Some(file_descriptor) = this.machine.fds.remove(fd) else {
            return Ok(Scalar::from_i32(this.fd_not_found()?));
        };
        let result = file_descriptor.close(this.machine.communicate())?;
        // return `0` if close is successful
        let result = result.map(|()| 0i32);
        Ok(Scalar::from_i32(this.try_unwrap_io_result(result)?))
    }

    /// Function used when a file descriptor does not exist. It returns `Ok(-1)`and sets
    /// the last OS error to `libc::EBADF` (invalid file descriptor). This function uses
    /// `T: From<i32>` instead of `i32` directly because some fs functions return different integer
    /// types (like `read`, that returns an `i64`).
    fn fd_not_found<T: From<i32>>(&mut self) -> InterpResult<'tcx, T> {
        let this = self.eval_context_mut();
        let ebadf = this.eval_libc("EBADF");
        this.set_last_error(ebadf)?;
        Ok((-1).into())
    }

    fn read(&mut self, fd: i32, buf: Pointer, count: u64) -> InterpResult<'tcx, i64> {
        let this = self.eval_context_mut();

        // Isolation check is done via `FileDescriptor` trait.

        trace!("Reading from FD {}, size {}", fd, count);

        // Check that the *entire* buffer is actually valid memory.
        this.check_ptr_access(buf, Size::from_bytes(count), CheckInAllocMsg::MemoryAccessTest)?;

        // We cap the number of read bytes to the largest value that we are able to fit in both the
        // host's and target's `isize`. This saves us from having to handle overflows later.
        let count = count
            .min(u64::try_from(this.target_isize_max()).unwrap())
            .min(u64::try_from(isize::MAX).unwrap());
        let communicate = this.machine.communicate();

        // We temporarily dup the FD to be able to retain mutable access to `this`.
        let Some(file_descriptor) = this.machine.fds.dup(fd) else {
            trace!("read: FD not found");
            return this.fd_not_found();
        };

        trace!("read: FD mapped to {:?}", file_descriptor);
        // We want to read at most `count` bytes. We are sure that `count` is not negative
        // because it was a target's `usize`. Also we are sure that its smaller than
        // `usize::MAX` because it is bounded by the host's `isize`.
        let mut bytes = vec![0; usize::try_from(count).unwrap()];
        // `File::read` never returns a value larger than `count`,
        // so this cannot fail.
        let result = file_descriptor
            .borrow_mut()
            .read(communicate, &mut bytes, this)?
            .map(|c| i64::try_from(c).unwrap());
        drop(file_descriptor);

        match result {
            Ok(read_bytes) => {
                // If reading to `bytes` did not fail, we write those bytes to the buffer.
                // Crucially, if fewer than `bytes.len()` bytes were read, only write
                // that much into the output buffer!
                this.write_bytes_ptr(
                    buf,
                    bytes[..usize::try_from(read_bytes).unwrap()].iter().copied(),
                )?;
                Ok(read_bytes)
            }
            Err(e) => {
                this.set_last_error_from_io_error(e)?;
                Ok(-1)
            }
        }
    }

    fn write(&mut self, fd: i32, buf: Pointer, count: u64) -> InterpResult<'tcx, i64> {
        let this = self.eval_context_mut();

        // Isolation check is done via `FileDescriptor` trait.

        // Check that the *entire* buffer is actually valid memory.
        this.check_ptr_access(buf, Size::from_bytes(count), CheckInAllocMsg::MemoryAccessTest)?;

        // We cap the number of written bytes to the largest value that we are able to fit in both the
        // host's and target's `isize`. This saves us from having to handle overflows later.
        let count = count
            .min(u64::try_from(this.target_isize_max()).unwrap())
            .min(u64::try_from(isize::MAX).unwrap());
        let communicate = this.machine.communicate();

        let bytes = this.read_bytes_ptr_strip_provenance(buf, Size::from_bytes(count))?.to_owned();
        // We temporarily dup the FD to be able to retain mutable access to `this`.
        let Some(file_descriptor) = this.machine.fds.dup(fd) else {
            return this.fd_not_found();
        };

        let result = file_descriptor
            .borrow_mut()
            .write(communicate, &bytes, this)?
            .map(|c| i64::try_from(c).unwrap());
        drop(file_descriptor);

        this.try_unwrap_io_result(result)
    }
}