rustc_mir_transform/coverage/
query.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
use rustc_data_structures::captures::Captures;
use rustc_index::bit_set::BitSet;
use rustc_middle::middle::codegen_fn_attrs::CodegenFnAttrFlags;
use rustc_middle::mir::coverage::{
    CounterId, CovTerm, CoverageIdsInfo, CoverageKind, Expression, ExpressionId,
    FunctionCoverageInfo, MappingKind, Op,
};
use rustc_middle::mir::{Body, Statement, StatementKind};
use rustc_middle::query::TyCtxtAt;
use rustc_middle::ty::{self, TyCtxt};
use rustc_middle::util::Providers;
use rustc_span::def_id::LocalDefId;
use rustc_span::sym;
use tracing::trace;

/// Registers query/hook implementations related to coverage.
pub(crate) fn provide(providers: &mut Providers) {
    providers.hooks.is_eligible_for_coverage =
        |TyCtxtAt { tcx, .. }, def_id| is_eligible_for_coverage(tcx, def_id);
    providers.queries.coverage_attr_on = coverage_attr_on;
    providers.queries.coverage_ids_info = coverage_ids_info;
}

/// Hook implementation for [`TyCtxt::is_eligible_for_coverage`].
fn is_eligible_for_coverage(tcx: TyCtxt<'_>, def_id: LocalDefId) -> bool {
    // Only instrument functions, methods, and closures (not constants since they are evaluated
    // at compile time by Miri).
    // FIXME(#73156): Handle source code coverage in const eval, but note, if and when const
    // expressions get coverage spans, we will probably have to "carve out" space for const
    // expressions from coverage spans in enclosing MIR's, like we do for closures. (That might
    // be tricky if const expressions have no corresponding statements in the enclosing MIR.
    // Closures are carved out by their initial `Assign` statement.)
    if !tcx.def_kind(def_id).is_fn_like() {
        trace!("InstrumentCoverage skipped for {def_id:?} (not an fn-like)");
        return false;
    }

    // Don't instrument functions with `#[automatically_derived]` on their
    // enclosing impl block, on the assumption that most users won't care about
    // coverage for derived impls.
    if let Some(impl_of) = tcx.impl_of_method(def_id.to_def_id())
        && tcx.is_automatically_derived(impl_of)
    {
        trace!("InstrumentCoverage skipped for {def_id:?} (automatically derived)");
        return false;
    }

    if tcx.codegen_fn_attrs(def_id).flags.contains(CodegenFnAttrFlags::NAKED) {
        trace!("InstrumentCoverage skipped for {def_id:?} (`#[naked]`)");
        return false;
    }

    if !tcx.coverage_attr_on(def_id) {
        trace!("InstrumentCoverage skipped for {def_id:?} (`#[coverage(off)]`)");
        return false;
    }

    true
}

/// Query implementation for `coverage_attr_on`.
fn coverage_attr_on(tcx: TyCtxt<'_>, def_id: LocalDefId) -> bool {
    // Check for annotations directly on this def.
    if let Some(attr) = tcx.get_attr(def_id, sym::coverage) {
        match attr.meta_item_list().as_deref() {
            Some([item]) if item.has_name(sym::off) => return false,
            Some([item]) if item.has_name(sym::on) => return true,
            Some(_) | None => {
                // Other possibilities should have been rejected by `rustc_parse::validate_attr`.
                // Use `span_delayed_bug` to avoid an ICE in failing builds (#127880).
                tcx.dcx().span_delayed_bug(attr.span, "unexpected value of coverage attribute");
            }
        }
    }

    match tcx.opt_local_parent(def_id) {
        // Check the parent def (and so on recursively) until we find an
        // enclosing attribute or reach the crate root.
        Some(parent) => tcx.coverage_attr_on(parent),
        // We reached the crate root without seeing a coverage attribute, so
        // allow coverage instrumentation by default.
        None => true,
    }
}

/// Query implementation for `coverage_ids_info`.
fn coverage_ids_info<'tcx>(
    tcx: TyCtxt<'tcx>,
    instance_def: ty::InstanceKind<'tcx>,
) -> CoverageIdsInfo {
    let mir_body = tcx.instance_mir(instance_def);

    let Some(fn_cov_info) = mir_body.function_coverage_info.as_deref() else {
        return CoverageIdsInfo {
            counters_seen: BitSet::new_empty(0),
            zero_expressions: BitSet::new_empty(0),
        };
    };

    let mut counters_seen = BitSet::new_empty(fn_cov_info.num_counters);
    let mut expressions_seen = BitSet::new_filled(fn_cov_info.expressions.len());

    // For each expression ID that is directly used by one or more mappings,
    // mark it as not-yet-seen. This indicates that we expect to see a
    // corresponding `ExpressionUsed` statement during MIR traversal.
    for mapping in fn_cov_info.mappings.iter() {
        // Currently we only worry about ordinary code mappings.
        // For branch and MC/DC mappings, expressions might not correspond
        // to any particular point in the control-flow graph.
        // (Keep this in sync with the injection of `ExpressionUsed`
        // statements in the `InstrumentCoverage` MIR pass.)
        if let MappingKind::Code(CovTerm::Expression(id)) = mapping.kind {
            expressions_seen.remove(id);
        }
    }

    for kind in all_coverage_in_mir_body(mir_body) {
        match *kind {
            CoverageKind::CounterIncrement { id } => {
                counters_seen.insert(id);
            }
            CoverageKind::ExpressionUsed { id } => {
                expressions_seen.insert(id);
            }
            _ => {}
        }
    }

    let zero_expressions =
        identify_zero_expressions(fn_cov_info, &counters_seen, &expressions_seen);

    CoverageIdsInfo { counters_seen, zero_expressions }
}

fn all_coverage_in_mir_body<'a, 'tcx>(
    body: &'a Body<'tcx>,
) -> impl Iterator<Item = &'a CoverageKind> + Captures<'tcx> {
    body.basic_blocks.iter().flat_map(|bb_data| &bb_data.statements).filter_map(|statement| {
        match statement.kind {
            StatementKind::Coverage(ref kind) if !is_inlined(body, statement) => Some(kind),
            _ => None,
        }
    })
}

fn is_inlined(body: &Body<'_>, statement: &Statement<'_>) -> bool {
    let scope_data = &body.source_scopes[statement.source_info.scope];
    scope_data.inlined.is_some() || scope_data.inlined_parent_scope.is_some()
}

/// Identify expressions that will always have a value of zero, and note
/// their IDs in a `BitSet`. Mappings that refer to a zero expression
/// can instead become mappings to a constant zero value.
///
/// This function mainly exists to preserve the simplifications that were
/// already being performed by the Rust-side expression renumbering, so that
/// the resulting coverage mappings don't get worse.
fn identify_zero_expressions(
    fn_cov_info: &FunctionCoverageInfo,
    counters_seen: &BitSet<CounterId>,
    expressions_seen: &BitSet<ExpressionId>,
) -> BitSet<ExpressionId> {
    // The set of expressions that either were optimized out entirely, or
    // have zero as both of their operands, and will therefore always have
    // a value of zero. Other expressions that refer to these as operands
    // can have those operands replaced with `CovTerm::Zero`.
    let mut zero_expressions = BitSet::new_empty(fn_cov_info.expressions.len());

    // Simplify a copy of each expression based on lower-numbered expressions,
    // and then update the set of always-zero expressions if necessary.
    // (By construction, expressions can only refer to other expressions
    // that have lower IDs, so one pass is sufficient.)
    for (id, expression) in fn_cov_info.expressions.iter_enumerated() {
        if !expressions_seen.contains(id) {
            // If an expression was not seen, it must have been optimized away,
            // so any operand that refers to it can be replaced with zero.
            zero_expressions.insert(id);
            continue;
        }

        // We don't need to simplify the actual expression data in the
        // expressions list; we can just simplify a temporary copy and then
        // use that to update the set of always-zero expressions.
        let Expression { mut lhs, op, mut rhs } = *expression;

        // If an expression has an operand that is also an expression, the
        // operand's ID must be strictly lower. This is what lets us find
        // all zero expressions in one pass.
        let assert_operand_expression_is_lower = |operand_id: ExpressionId| {
            assert!(
                operand_id < id,
                "Operand {operand_id:?} should be less than {id:?} in {expression:?}",
            )
        };

        // If an operand refers to a counter or expression that is always
        // zero, then that operand can be replaced with `CovTerm::Zero`.
        let maybe_set_operand_to_zero = |operand: &mut CovTerm| {
            if let CovTerm::Expression(id) = *operand {
                assert_operand_expression_is_lower(id);
            }

            if is_zero_term(&counters_seen, &zero_expressions, *operand) {
                *operand = CovTerm::Zero;
            }
        };
        maybe_set_operand_to_zero(&mut lhs);
        maybe_set_operand_to_zero(&mut rhs);

        // Coverage counter values cannot be negative, so if an expression
        // involves subtraction from zero, assume that its RHS must also be zero.
        // (Do this after simplifications that could set the LHS to zero.)
        if lhs == CovTerm::Zero && op == Op::Subtract {
            rhs = CovTerm::Zero;
        }

        // After the above simplifications, if both operands are zero, then
        // we know that this expression is always zero too.
        if lhs == CovTerm::Zero && rhs == CovTerm::Zero {
            zero_expressions.insert(id);
        }
    }

    zero_expressions
}

/// Returns `true` if the given term is known to have a value of zero, taking
/// into account knowledge of which counters are unused and which expressions
/// are always zero.
fn is_zero_term(
    counters_seen: &BitSet<CounterId>,
    zero_expressions: &BitSet<ExpressionId>,
    term: CovTerm,
) -> bool {
    match term {
        CovTerm::Zero => true,
        CovTerm::Counter(id) => !counters_seen.contains(id),
        CovTerm::Expression(id) => zero_expressions.contains(id),
    }
}