rustc_mir_transform/coverage/query.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
use rustc_data_structures::captures::Captures;
use rustc_index::bit_set::BitSet;
use rustc_middle::middle::codegen_fn_attrs::CodegenFnAttrFlags;
use rustc_middle::mir::coverage::{
CounterId, CovTerm, CoverageIdsInfo, CoverageKind, Expression, ExpressionId,
FunctionCoverageInfo, MappingKind, Op,
};
use rustc_middle::mir::{Body, Statement, StatementKind};
use rustc_middle::query::TyCtxtAt;
use rustc_middle::ty::{self, TyCtxt};
use rustc_middle::util::Providers;
use rustc_span::def_id::LocalDefId;
use rustc_span::sym;
use tracing::trace;
/// Registers query/hook implementations related to coverage.
pub(crate) fn provide(providers: &mut Providers) {
providers.hooks.is_eligible_for_coverage =
|TyCtxtAt { tcx, .. }, def_id| is_eligible_for_coverage(tcx, def_id);
providers.queries.coverage_attr_on = coverage_attr_on;
providers.queries.coverage_ids_info = coverage_ids_info;
}
/// Hook implementation for [`TyCtxt::is_eligible_for_coverage`].
fn is_eligible_for_coverage(tcx: TyCtxt<'_>, def_id: LocalDefId) -> bool {
// Only instrument functions, methods, and closures (not constants since they are evaluated
// at compile time by Miri).
// FIXME(#73156): Handle source code coverage in const eval, but note, if and when const
// expressions get coverage spans, we will probably have to "carve out" space for const
// expressions from coverage spans in enclosing MIR's, like we do for closures. (That might
// be tricky if const expressions have no corresponding statements in the enclosing MIR.
// Closures are carved out by their initial `Assign` statement.)
if !tcx.def_kind(def_id).is_fn_like() {
trace!("InstrumentCoverage skipped for {def_id:?} (not an fn-like)");
return false;
}
// Don't instrument functions with `#[automatically_derived]` on their
// enclosing impl block, on the assumption that most users won't care about
// coverage for derived impls.
if let Some(impl_of) = tcx.impl_of_method(def_id.to_def_id())
&& tcx.is_automatically_derived(impl_of)
{
trace!("InstrumentCoverage skipped for {def_id:?} (automatically derived)");
return false;
}
if tcx.codegen_fn_attrs(def_id).flags.contains(CodegenFnAttrFlags::NAKED) {
trace!("InstrumentCoverage skipped for {def_id:?} (`#[naked]`)");
return false;
}
if !tcx.coverage_attr_on(def_id) {
trace!("InstrumentCoverage skipped for {def_id:?} (`#[coverage(off)]`)");
return false;
}
true
}
/// Query implementation for `coverage_attr_on`.
fn coverage_attr_on(tcx: TyCtxt<'_>, def_id: LocalDefId) -> bool {
// Check for annotations directly on this def.
if let Some(attr) = tcx.get_attr(def_id, sym::coverage) {
match attr.meta_item_list().as_deref() {
Some([item]) if item.has_name(sym::off) => return false,
Some([item]) if item.has_name(sym::on) => return true,
Some(_) | None => {
// Other possibilities should have been rejected by `rustc_parse::validate_attr`.
// Use `span_delayed_bug` to avoid an ICE in failing builds (#127880).
tcx.dcx().span_delayed_bug(attr.span, "unexpected value of coverage attribute");
}
}
}
match tcx.opt_local_parent(def_id) {
// Check the parent def (and so on recursively) until we find an
// enclosing attribute or reach the crate root.
Some(parent) => tcx.coverage_attr_on(parent),
// We reached the crate root without seeing a coverage attribute, so
// allow coverage instrumentation by default.
None => true,
}
}
/// Query implementation for `coverage_ids_info`.
fn coverage_ids_info<'tcx>(
tcx: TyCtxt<'tcx>,
instance_def: ty::InstanceKind<'tcx>,
) -> CoverageIdsInfo {
let mir_body = tcx.instance_mir(instance_def);
let Some(fn_cov_info) = mir_body.function_coverage_info.as_deref() else {
return CoverageIdsInfo {
counters_seen: BitSet::new_empty(0),
zero_expressions: BitSet::new_empty(0),
};
};
let mut counters_seen = BitSet::new_empty(fn_cov_info.num_counters);
let mut expressions_seen = BitSet::new_filled(fn_cov_info.expressions.len());
// For each expression ID that is directly used by one or more mappings,
// mark it as not-yet-seen. This indicates that we expect to see a
// corresponding `ExpressionUsed` statement during MIR traversal.
for mapping in fn_cov_info.mappings.iter() {
// Currently we only worry about ordinary code mappings.
// For branch and MC/DC mappings, expressions might not correspond
// to any particular point in the control-flow graph.
// (Keep this in sync with the injection of `ExpressionUsed`
// statements in the `InstrumentCoverage` MIR pass.)
if let MappingKind::Code(CovTerm::Expression(id)) = mapping.kind {
expressions_seen.remove(id);
}
}
for kind in all_coverage_in_mir_body(mir_body) {
match *kind {
CoverageKind::CounterIncrement { id } => {
counters_seen.insert(id);
}
CoverageKind::ExpressionUsed { id } => {
expressions_seen.insert(id);
}
_ => {}
}
}
let zero_expressions =
identify_zero_expressions(fn_cov_info, &counters_seen, &expressions_seen);
CoverageIdsInfo { counters_seen, zero_expressions }
}
fn all_coverage_in_mir_body<'a, 'tcx>(
body: &'a Body<'tcx>,
) -> impl Iterator<Item = &'a CoverageKind> + Captures<'tcx> {
body.basic_blocks.iter().flat_map(|bb_data| &bb_data.statements).filter_map(|statement| {
match statement.kind {
StatementKind::Coverage(ref kind) if !is_inlined(body, statement) => Some(kind),
_ => None,
}
})
}
fn is_inlined(body: &Body<'_>, statement: &Statement<'_>) -> bool {
let scope_data = &body.source_scopes[statement.source_info.scope];
scope_data.inlined.is_some() || scope_data.inlined_parent_scope.is_some()
}
/// Identify expressions that will always have a value of zero, and note
/// their IDs in a `BitSet`. Mappings that refer to a zero expression
/// can instead become mappings to a constant zero value.
///
/// This function mainly exists to preserve the simplifications that were
/// already being performed by the Rust-side expression renumbering, so that
/// the resulting coverage mappings don't get worse.
fn identify_zero_expressions(
fn_cov_info: &FunctionCoverageInfo,
counters_seen: &BitSet<CounterId>,
expressions_seen: &BitSet<ExpressionId>,
) -> BitSet<ExpressionId> {
// The set of expressions that either were optimized out entirely, or
// have zero as both of their operands, and will therefore always have
// a value of zero. Other expressions that refer to these as operands
// can have those operands replaced with `CovTerm::Zero`.
let mut zero_expressions = BitSet::new_empty(fn_cov_info.expressions.len());
// Simplify a copy of each expression based on lower-numbered expressions,
// and then update the set of always-zero expressions if necessary.
// (By construction, expressions can only refer to other expressions
// that have lower IDs, so one pass is sufficient.)
for (id, expression) in fn_cov_info.expressions.iter_enumerated() {
if !expressions_seen.contains(id) {
// If an expression was not seen, it must have been optimized away,
// so any operand that refers to it can be replaced with zero.
zero_expressions.insert(id);
continue;
}
// We don't need to simplify the actual expression data in the
// expressions list; we can just simplify a temporary copy and then
// use that to update the set of always-zero expressions.
let Expression { mut lhs, op, mut rhs } = *expression;
// If an expression has an operand that is also an expression, the
// operand's ID must be strictly lower. This is what lets us find
// all zero expressions in one pass.
let assert_operand_expression_is_lower = |operand_id: ExpressionId| {
assert!(
operand_id < id,
"Operand {operand_id:?} should be less than {id:?} in {expression:?}",
)
};
// If an operand refers to a counter or expression that is always
// zero, then that operand can be replaced with `CovTerm::Zero`.
let maybe_set_operand_to_zero = |operand: &mut CovTerm| {
if let CovTerm::Expression(id) = *operand {
assert_operand_expression_is_lower(id);
}
if is_zero_term(&counters_seen, &zero_expressions, *operand) {
*operand = CovTerm::Zero;
}
};
maybe_set_operand_to_zero(&mut lhs);
maybe_set_operand_to_zero(&mut rhs);
// Coverage counter values cannot be negative, so if an expression
// involves subtraction from zero, assume that its RHS must also be zero.
// (Do this after simplifications that could set the LHS to zero.)
if lhs == CovTerm::Zero && op == Op::Subtract {
rhs = CovTerm::Zero;
}
// After the above simplifications, if both operands are zero, then
// we know that this expression is always zero too.
if lhs == CovTerm::Zero && rhs == CovTerm::Zero {
zero_expressions.insert(id);
}
}
zero_expressions
}
/// Returns `true` if the given term is known to have a value of zero, taking
/// into account knowledge of which counters are unused and which expressions
/// are always zero.
fn is_zero_term(
counters_seen: &BitSet<CounterId>,
zero_expressions: &BitSet<ExpressionId>,
term: CovTerm,
) -> bool {
match term {
CovTerm::Zero => true,
CovTerm::Counter(id) => !counters_seen.contains(id),
CovTerm::Expression(id) => zero_expressions.contains(id),
}
}