rustc_codegen_ssa/back/
link.rs

1mod raw_dylib;
2
3use std::collections::BTreeSet;
4use std::ffi::OsString;
5use std::fs::{File, OpenOptions, read};
6use std::io::{BufReader, BufWriter, Write};
7use std::ops::{ControlFlow, Deref};
8use std::path::{Path, PathBuf};
9use std::process::{Output, Stdio};
10use std::{env, fmt, fs, io, mem, str};
11
12use find_msvc_tools;
13use itertools::Itertools;
14use regex::Regex;
15use rustc_arena::TypedArena;
16use rustc_ast::CRATE_NODE_ID;
17use rustc_attr_parsing::{ShouldEmit, eval_config_entry};
18use rustc_data_structures::fx::FxIndexSet;
19use rustc_data_structures::memmap::Mmap;
20use rustc_data_structures::temp_dir::MaybeTempDir;
21use rustc_errors::{DiagCtxtHandle, LintDiagnostic};
22use rustc_fs_util::{TempDirBuilder, fix_windows_verbatim_for_gcc, try_canonicalize};
23use rustc_hir::attrs::NativeLibKind;
24use rustc_hir::def_id::{CrateNum, LOCAL_CRATE};
25use rustc_macros::LintDiagnostic;
26use rustc_metadata::fs::{METADATA_FILENAME, copy_to_stdout, emit_wrapper_file};
27use rustc_metadata::{
28    EncodedMetadata, NativeLibSearchFallback, find_native_static_library,
29    walk_native_lib_search_dirs,
30};
31use rustc_middle::bug;
32use rustc_middle::lint::lint_level;
33use rustc_middle::middle::debugger_visualizer::DebuggerVisualizerFile;
34use rustc_middle::middle::dependency_format::Linkage;
35use rustc_middle::middle::exported_symbols::SymbolExportKind;
36use rustc_session::config::{
37    self, CFGuard, CrateType, DebugInfo, LinkerFeaturesCli, OutFileName, OutputFilenames,
38    OutputType, PrintKind, SplitDwarfKind, Strip,
39};
40use rustc_session::lint::builtin::LINKER_MESSAGES;
41use rustc_session::output::{check_file_is_writeable, invalid_output_for_target, out_filename};
42use rustc_session::search_paths::PathKind;
43/// For all the linkers we support, and information they might
44/// need out of the shared crate context before we get rid of it.
45use rustc_session::{Session, filesearch};
46use rustc_span::Symbol;
47use rustc_target::spec::crt_objects::CrtObjects;
48use rustc_target::spec::{
49    BinaryFormat, Cc, LinkOutputKind, LinkSelfContainedComponents, LinkSelfContainedDefault,
50    LinkerFeatures, LinkerFlavor, LinkerFlavorCli, Lld, RelocModel, RelroLevel, SanitizerSet,
51    SplitDebuginfo,
52};
53use tracing::{debug, info, warn};
54
55use super::archive::{ArchiveBuilder, ArchiveBuilderBuilder};
56use super::command::Command;
57use super::linker::{self, Linker};
58use super::metadata::{MetadataPosition, create_wrapper_file};
59use super::rpath::{self, RPathConfig};
60use super::{apple, versioned_llvm_target};
61use crate::base::needs_allocator_shim_for_linking;
62use crate::{
63    CodegenResults, CompiledModule, CrateInfo, NativeLib, errors, looks_like_rust_object_file,
64};
65
66pub fn ensure_removed(dcx: DiagCtxtHandle<'_>, path: &Path) {
67    if let Err(e) = fs::remove_file(path) {
68        if e.kind() != io::ErrorKind::NotFound {
69            dcx.err(format!("failed to remove {}: {}", path.display(), e));
70        }
71    }
72}
73
74/// Performs the linkage portion of the compilation phase. This will generate all
75/// of the requested outputs for this compilation session.
76pub fn link_binary(
77    sess: &Session,
78    archive_builder_builder: &dyn ArchiveBuilderBuilder,
79    codegen_results: CodegenResults,
80    metadata: EncodedMetadata,
81    outputs: &OutputFilenames,
82    codegen_backend: &'static str,
83) {
84    let _timer = sess.timer("link_binary");
85    let output_metadata = sess.opts.output_types.contains_key(&OutputType::Metadata);
86    let mut tempfiles_for_stdout_output: Vec<PathBuf> = Vec::new();
87    for &crate_type in &codegen_results.crate_info.crate_types {
88        // Ignore executable crates if we have -Z no-codegen, as they will error.
89        if (sess.opts.unstable_opts.no_codegen || !sess.opts.output_types.should_codegen())
90            && !output_metadata
91            && crate_type == CrateType::Executable
92        {
93            continue;
94        }
95
96        if invalid_output_for_target(sess, crate_type) {
97            bug!("invalid output type `{:?}` for target `{}`", crate_type, sess.opts.target_triple);
98        }
99
100        sess.time("link_binary_check_files_are_writeable", || {
101            for obj in codegen_results.modules.iter().filter_map(|m| m.object.as_ref()) {
102                check_file_is_writeable(obj, sess);
103            }
104        });
105
106        if outputs.outputs.should_link() {
107            let tmpdir = TempDirBuilder::new()
108                .prefix("rustc")
109                .tempdir()
110                .unwrap_or_else(|error| sess.dcx().emit_fatal(errors::CreateTempDir { error }));
111            let path = MaybeTempDir::new(tmpdir, sess.opts.cg.save_temps);
112            let output = out_filename(
113                sess,
114                crate_type,
115                outputs,
116                codegen_results.crate_info.local_crate_name,
117            );
118            let crate_name = format!("{}", codegen_results.crate_info.local_crate_name);
119            let out_filename = output.file_for_writing(
120                outputs,
121                OutputType::Exe,
122                &crate_name,
123                sess.invocation_temp.as_deref(),
124            );
125            match crate_type {
126                CrateType::Rlib => {
127                    let _timer = sess.timer("link_rlib");
128                    info!("preparing rlib to {:?}", out_filename);
129                    link_rlib(
130                        sess,
131                        archive_builder_builder,
132                        &codegen_results,
133                        &metadata,
134                        RlibFlavor::Normal,
135                        &path,
136                    )
137                    .build(&out_filename);
138                }
139                CrateType::Staticlib => {
140                    link_staticlib(
141                        sess,
142                        archive_builder_builder,
143                        &codegen_results,
144                        &metadata,
145                        &out_filename,
146                        &path,
147                    );
148                }
149                _ => {
150                    link_natively(
151                        sess,
152                        archive_builder_builder,
153                        crate_type,
154                        &out_filename,
155                        &codegen_results,
156                        &metadata,
157                        path.as_ref(),
158                        codegen_backend,
159                    );
160                }
161            }
162            if sess.opts.json_artifact_notifications {
163                sess.dcx().emit_artifact_notification(&out_filename, "link");
164            }
165
166            if sess.prof.enabled()
167                && let Some(artifact_name) = out_filename.file_name()
168            {
169                // Record size for self-profiling
170                let file_size = std::fs::metadata(&out_filename).map(|m| m.len()).unwrap_or(0);
171
172                sess.prof.artifact_size(
173                    "linked_artifact",
174                    artifact_name.to_string_lossy(),
175                    file_size,
176                );
177            }
178
179            if sess.target.binary_format == BinaryFormat::Elf {
180                if let Err(err) = warn_if_linked_with_gold(sess, &out_filename) {
181                    info!(?err, "Error while checking if gold was the linker");
182                }
183            }
184
185            if output.is_stdout() {
186                if output.is_tty() {
187                    sess.dcx().emit_err(errors::BinaryOutputToTty {
188                        shorthand: OutputType::Exe.shorthand(),
189                    });
190                } else if let Err(e) = copy_to_stdout(&out_filename) {
191                    sess.dcx().emit_err(errors::CopyPath::new(&out_filename, output.as_path(), e));
192                }
193                tempfiles_for_stdout_output.push(out_filename);
194            }
195        }
196    }
197
198    // Remove the temporary object file and metadata if we aren't saving temps.
199    sess.time("link_binary_remove_temps", || {
200        // If the user requests that temporaries are saved, don't delete any.
201        if sess.opts.cg.save_temps {
202            return;
203        }
204
205        let maybe_remove_temps_from_module =
206            |preserve_objects: bool, preserve_dwarf_objects: bool, module: &CompiledModule| {
207                if !preserve_objects && let Some(ref obj) = module.object {
208                    ensure_removed(sess.dcx(), obj);
209                }
210
211                if !preserve_dwarf_objects && let Some(ref dwo_obj) = module.dwarf_object {
212                    ensure_removed(sess.dcx(), dwo_obj);
213                }
214            };
215
216        let remove_temps_from_module =
217            |module: &CompiledModule| maybe_remove_temps_from_module(false, false, module);
218
219        // Otherwise, always remove the allocator module temporaries.
220        if let Some(ref allocator_module) = codegen_results.allocator_module {
221            remove_temps_from_module(allocator_module);
222        }
223
224        // Remove the temporary files if output goes to stdout
225        for temp in tempfiles_for_stdout_output {
226            ensure_removed(sess.dcx(), &temp);
227        }
228
229        // If no requested outputs require linking, then the object temporaries should
230        // be kept.
231        if !sess.opts.output_types.should_link() {
232            return;
233        }
234
235        // Potentially keep objects for their debuginfo.
236        let (preserve_objects, preserve_dwarf_objects) = preserve_objects_for_their_debuginfo(sess);
237        debug!(?preserve_objects, ?preserve_dwarf_objects);
238
239        for module in &codegen_results.modules {
240            maybe_remove_temps_from_module(preserve_objects, preserve_dwarf_objects, module);
241        }
242    });
243}
244
245// Crate type is not passed when calculating the dylibs to include for LTO. In that case all
246// crate types must use the same dependency formats.
247pub fn each_linked_rlib(
248    info: &CrateInfo,
249    crate_type: Option<CrateType>,
250    f: &mut dyn FnMut(CrateNum, &Path),
251) -> Result<(), errors::LinkRlibError> {
252    let fmts = if let Some(crate_type) = crate_type {
253        let Some(fmts) = info.dependency_formats.get(&crate_type) else {
254            return Err(errors::LinkRlibError::MissingFormat);
255        };
256
257        fmts
258    } else {
259        let mut dep_formats = info.dependency_formats.iter();
260        let (ty1, list1) = dep_formats.next().ok_or(errors::LinkRlibError::MissingFormat)?;
261        if let Some((ty2, list2)) = dep_formats.find(|(_, list2)| list1 != *list2) {
262            return Err(errors::LinkRlibError::IncompatibleDependencyFormats {
263                ty1: format!("{ty1:?}"),
264                ty2: format!("{ty2:?}"),
265                list1: format!("{list1:?}"),
266                list2: format!("{list2:?}"),
267            });
268        }
269        list1
270    };
271
272    let used_dep_crates = info.used_crates.iter();
273    for &cnum in used_dep_crates {
274        match fmts.get(cnum) {
275            Some(&Linkage::NotLinked | &Linkage::Dynamic | &Linkage::IncludedFromDylib) => continue,
276            Some(_) => {}
277            None => return Err(errors::LinkRlibError::MissingFormat),
278        }
279        let crate_name = info.crate_name[&cnum];
280        let used_crate_source = &info.used_crate_source[&cnum];
281        if let Some((path, _)) = &used_crate_source.rlib {
282            f(cnum, path);
283        } else if used_crate_source.rmeta.is_some() {
284            return Err(errors::LinkRlibError::OnlyRmetaFound { crate_name });
285        } else {
286            return Err(errors::LinkRlibError::NotFound { crate_name });
287        }
288    }
289    Ok(())
290}
291
292/// Create an 'rlib'.
293///
294/// An rlib in its current incarnation is essentially a renamed .a file (with "dummy" object files).
295/// The rlib primarily contains the object file of the crate, but it also some of the object files
296/// from native libraries.
297fn link_rlib<'a>(
298    sess: &'a Session,
299    archive_builder_builder: &dyn ArchiveBuilderBuilder,
300    codegen_results: &CodegenResults,
301    metadata: &EncodedMetadata,
302    flavor: RlibFlavor,
303    tmpdir: &MaybeTempDir,
304) -> Box<dyn ArchiveBuilder + 'a> {
305    let mut ab = archive_builder_builder.new_archive_builder(sess);
306
307    let trailing_metadata = match flavor {
308        RlibFlavor::Normal => {
309            let (metadata, metadata_position) =
310                create_wrapper_file(sess, ".rmeta".to_string(), metadata.stub_or_full());
311            let metadata = emit_wrapper_file(sess, &metadata, tmpdir.as_ref(), METADATA_FILENAME);
312            match metadata_position {
313                MetadataPosition::First => {
314                    // Most of the time metadata in rlib files is wrapped in a "dummy" object
315                    // file for the target platform so the rlib can be processed entirely by
316                    // normal linkers for the platform. Sometimes this is not possible however.
317                    // If it is possible however, placing the metadata object first improves
318                    // performance of getting metadata from rlibs.
319                    ab.add_file(&metadata);
320                    None
321                }
322                MetadataPosition::Last => Some(metadata),
323            }
324        }
325
326        RlibFlavor::StaticlibBase => None,
327    };
328
329    for m in &codegen_results.modules {
330        if let Some(obj) = m.object.as_ref() {
331            ab.add_file(obj);
332        }
333
334        if let Some(dwarf_obj) = m.dwarf_object.as_ref() {
335            ab.add_file(dwarf_obj);
336        }
337    }
338
339    match flavor {
340        RlibFlavor::Normal => {}
341        RlibFlavor::StaticlibBase => {
342            let obj = codegen_results.allocator_module.as_ref().and_then(|m| m.object.as_ref());
343            if let Some(obj) = obj {
344                ab.add_file(obj);
345            }
346        }
347    }
348
349    // Used if packed_bundled_libs flag enabled.
350    let mut packed_bundled_libs = Vec::new();
351
352    // Note that in this loop we are ignoring the value of `lib.cfg`. That is,
353    // we may not be configured to actually include a static library if we're
354    // adding it here. That's because later when we consume this rlib we'll
355    // decide whether we actually needed the static library or not.
356    //
357    // To do this "correctly" we'd need to keep track of which libraries added
358    // which object files to the archive. We don't do that here, however. The
359    // #[link(cfg(..))] feature is unstable, though, and only intended to get
360    // liblibc working. In that sense the check below just indicates that if
361    // there are any libraries we want to omit object files for at link time we
362    // just exclude all custom object files.
363    //
364    // Eventually if we want to stabilize or flesh out the #[link(cfg(..))]
365    // feature then we'll need to figure out how to record what objects were
366    // loaded from the libraries found here and then encode that into the
367    // metadata of the rlib we're generating somehow.
368    for lib in codegen_results.crate_info.used_libraries.iter() {
369        let NativeLibKind::Static { bundle: None | Some(true), .. } = lib.kind else {
370            continue;
371        };
372        if flavor == RlibFlavor::Normal
373            && let Some(filename) = lib.filename
374        {
375            let path = find_native_static_library(filename.as_str(), true, sess);
376            let src = read(path)
377                .unwrap_or_else(|e| sess.dcx().emit_fatal(errors::ReadFileError { message: e }));
378            let (data, _) = create_wrapper_file(sess, ".bundled_lib".to_string(), &src);
379            let wrapper_file = emit_wrapper_file(sess, &data, tmpdir.as_ref(), filename.as_str());
380            packed_bundled_libs.push(wrapper_file);
381        } else {
382            let path = find_native_static_library(lib.name.as_str(), lib.verbatim, sess);
383            ab.add_archive(&path, Box::new(|_| false)).unwrap_or_else(|error| {
384                sess.dcx().emit_fatal(errors::AddNativeLibrary { library_path: path, error })
385            });
386        }
387    }
388
389    // On Windows, we add the raw-dylib import libraries to the rlibs already.
390    // But on ELF, this is not possible, as a shared object cannot be a member of a static library.
391    // Instead, we add all raw-dylibs to the final link on ELF.
392    if sess.target.is_like_windows {
393        for output_path in raw_dylib::create_raw_dylib_dll_import_libs(
394            sess,
395            archive_builder_builder,
396            codegen_results.crate_info.used_libraries.iter(),
397            tmpdir.as_ref(),
398            true,
399        ) {
400            ab.add_archive(&output_path, Box::new(|_| false)).unwrap_or_else(|error| {
401                sess.dcx()
402                    .emit_fatal(errors::AddNativeLibrary { library_path: output_path, error });
403            });
404        }
405    }
406
407    if let Some(trailing_metadata) = trailing_metadata {
408        // Note that it is important that we add all of our non-object "magical
409        // files" *after* all of the object files in the archive. The reason for
410        // this is as follows:
411        //
412        // * When performing LTO, this archive will be modified to remove
413        //   objects from above. The reason for this is described below.
414        //
415        // * When the system linker looks at an archive, it will attempt to
416        //   determine the architecture of the archive in order to see whether its
417        //   linkable.
418        //
419        //   The algorithm for this detection is: iterate over the files in the
420        //   archive. Skip magical SYMDEF names. Interpret the first file as an
421        //   object file. Read architecture from the object file.
422        //
423        // * As one can probably see, if "metadata" and "foo.bc" were placed
424        //   before all of the objects, then the architecture of this archive would
425        //   not be correctly inferred once 'foo.o' is removed.
426        //
427        // * Most of the time metadata in rlib files is wrapped in a "dummy" object
428        //   file for the target platform so the rlib can be processed entirely by
429        //   normal linkers for the platform. Sometimes this is not possible however.
430        //
431        // Basically, all this means is that this code should not move above the
432        // code above.
433        ab.add_file(&trailing_metadata);
434    }
435
436    // Add all bundled static native library dependencies.
437    // Archives added to the end of .rlib archive, see comment above for the reason.
438    for lib in packed_bundled_libs {
439        ab.add_file(&lib)
440    }
441
442    ab
443}
444
445/// Create a static archive.
446///
447/// This is essentially the same thing as an rlib, but it also involves adding all of the upstream
448/// crates' objects into the archive. This will slurp in all of the native libraries of upstream
449/// dependencies as well.
450///
451/// Additionally, there's no way for us to link dynamic libraries, so we warn about all dynamic
452/// library dependencies that they're not linked in.
453///
454/// There's no need to include metadata in a static archive, so ensure to not link in the metadata
455/// object file (and also don't prepare the archive with a metadata file).
456fn link_staticlib(
457    sess: &Session,
458    archive_builder_builder: &dyn ArchiveBuilderBuilder,
459    codegen_results: &CodegenResults,
460    metadata: &EncodedMetadata,
461    out_filename: &Path,
462    tempdir: &MaybeTempDir,
463) {
464    info!("preparing staticlib to {:?}", out_filename);
465    let mut ab = link_rlib(
466        sess,
467        archive_builder_builder,
468        codegen_results,
469        metadata,
470        RlibFlavor::StaticlibBase,
471        tempdir,
472    );
473    let mut all_native_libs = vec![];
474
475    let res = each_linked_rlib(
476        &codegen_results.crate_info,
477        Some(CrateType::Staticlib),
478        &mut |cnum, path| {
479            let lto = are_upstream_rust_objects_already_included(sess)
480                && !ignored_for_lto(sess, &codegen_results.crate_info, cnum);
481
482            let native_libs = codegen_results.crate_info.native_libraries[&cnum].iter();
483            let relevant = native_libs.clone().filter(|lib| relevant_lib(sess, lib));
484            let relevant_libs: FxIndexSet<_> = relevant.filter_map(|lib| lib.filename).collect();
485
486            let bundled_libs: FxIndexSet<_> = native_libs.filter_map(|lib| lib.filename).collect();
487            ab.add_archive(
488                path,
489                Box::new(move |fname: &str| {
490                    // Ignore metadata files, no matter the name.
491                    if fname == METADATA_FILENAME {
492                        return true;
493                    }
494
495                    // Don't include Rust objects if LTO is enabled
496                    if lto && looks_like_rust_object_file(fname) {
497                        return true;
498                    }
499
500                    // Skip objects for bundled libs.
501                    if bundled_libs.contains(&Symbol::intern(fname)) {
502                        return true;
503                    }
504
505                    false
506                }),
507            )
508            .unwrap();
509
510            archive_builder_builder
511                .extract_bundled_libs(path, tempdir.as_ref(), &relevant_libs)
512                .unwrap_or_else(|e| sess.dcx().emit_fatal(e));
513
514            for filename in relevant_libs.iter() {
515                let joined = tempdir.as_ref().join(filename.as_str());
516                let path = joined.as_path();
517                ab.add_archive(path, Box::new(|_| false)).unwrap();
518            }
519
520            all_native_libs
521                .extend(codegen_results.crate_info.native_libraries[&cnum].iter().cloned());
522        },
523    );
524    if let Err(e) = res {
525        sess.dcx().emit_fatal(e);
526    }
527
528    ab.build(out_filename);
529
530    let crates = codegen_results.crate_info.used_crates.iter();
531
532    let fmts = codegen_results
533        .crate_info
534        .dependency_formats
535        .get(&CrateType::Staticlib)
536        .expect("no dependency formats for staticlib");
537
538    let mut all_rust_dylibs = vec![];
539    for &cnum in crates {
540        let Some(Linkage::Dynamic) = fmts.get(cnum) else {
541            continue;
542        };
543        let crate_name = codegen_results.crate_info.crate_name[&cnum];
544        let used_crate_source = &codegen_results.crate_info.used_crate_source[&cnum];
545        if let Some((path, _)) = &used_crate_source.dylib {
546            all_rust_dylibs.push(&**path);
547        } else if used_crate_source.rmeta.is_some() {
548            sess.dcx().emit_fatal(errors::LinkRlibError::OnlyRmetaFound { crate_name });
549        } else {
550            sess.dcx().emit_fatal(errors::LinkRlibError::NotFound { crate_name });
551        }
552    }
553
554    all_native_libs.extend_from_slice(&codegen_results.crate_info.used_libraries);
555
556    for print in &sess.opts.prints {
557        if print.kind == PrintKind::NativeStaticLibs {
558            print_native_static_libs(sess, &print.out, &all_native_libs, &all_rust_dylibs);
559        }
560    }
561}
562
563/// Use `thorin` (rust implementation of a dwarf packaging utility) to link DWARF objects into a
564/// DWARF package.
565fn link_dwarf_object(sess: &Session, cg_results: &CodegenResults, executable_out_filename: &Path) {
566    let mut dwp_out_filename = executable_out_filename.to_path_buf().into_os_string();
567    dwp_out_filename.push(".dwp");
568    debug!(?dwp_out_filename, ?executable_out_filename);
569
570    #[derive(Default)]
571    struct ThorinSession<Relocations> {
572        arena_data: TypedArena<Vec<u8>>,
573        arena_mmap: TypedArena<Mmap>,
574        arena_relocations: TypedArena<Relocations>,
575    }
576
577    impl<Relocations> ThorinSession<Relocations> {
578        fn alloc_mmap(&self, data: Mmap) -> &Mmap {
579            &*self.arena_mmap.alloc(data)
580        }
581    }
582
583    impl<Relocations> thorin::Session<Relocations> for ThorinSession<Relocations> {
584        fn alloc_data(&self, data: Vec<u8>) -> &[u8] {
585            &*self.arena_data.alloc(data)
586        }
587
588        fn alloc_relocation(&self, data: Relocations) -> &Relocations {
589            &*self.arena_relocations.alloc(data)
590        }
591
592        fn read_input(&self, path: &Path) -> std::io::Result<&[u8]> {
593            let file = File::open(&path)?;
594            let mmap = (unsafe { Mmap::map(file) })?;
595            Ok(self.alloc_mmap(mmap))
596        }
597    }
598
599    match sess.time("run_thorin", || -> Result<(), thorin::Error> {
600        let thorin_sess = ThorinSession::default();
601        let mut package = thorin::DwarfPackage::new(&thorin_sess);
602
603        // Input objs contain .o/.dwo files from the current crate.
604        match sess.opts.unstable_opts.split_dwarf_kind {
605            SplitDwarfKind::Single => {
606                for input_obj in cg_results.modules.iter().filter_map(|m| m.object.as_ref()) {
607                    package.add_input_object(input_obj)?;
608                }
609            }
610            SplitDwarfKind::Split => {
611                for input_obj in cg_results.modules.iter().filter_map(|m| m.dwarf_object.as_ref()) {
612                    package.add_input_object(input_obj)?;
613                }
614            }
615        }
616
617        // Input rlibs contain .o/.dwo files from dependencies.
618        let input_rlibs = cg_results
619            .crate_info
620            .used_crate_source
621            .items()
622            .filter_map(|(_, csource)| csource.rlib.as_ref())
623            .map(|(path, _)| path)
624            .into_sorted_stable_ord();
625
626        for input_rlib in input_rlibs {
627            debug!(?input_rlib);
628            package.add_input_object(input_rlib)?;
629        }
630
631        // Failing to read the referenced objects is expected for dependencies where the path in the
632        // executable will have been cleaned by Cargo, but the referenced objects will be contained
633        // within rlibs provided as inputs.
634        //
635        // If paths have been remapped, then .o/.dwo files from the current crate also won't be
636        // found, but are provided explicitly above.
637        //
638        // Adding an executable is primarily done to make `thorin` check that all the referenced
639        // dwarf objects are found in the end.
640        package.add_executable(
641            executable_out_filename,
642            thorin::MissingReferencedObjectBehaviour::Skip,
643        )?;
644
645        let output_stream = BufWriter::new(
646            OpenOptions::new()
647                .read(true)
648                .write(true)
649                .create(true)
650                .truncate(true)
651                .open(dwp_out_filename)?,
652        );
653        let mut output_stream = thorin::object::write::StreamingBuffer::new(output_stream);
654        package.finish()?.emit(&mut output_stream)?;
655        output_stream.result()?;
656        output_stream.into_inner().flush()?;
657
658        Ok(())
659    }) {
660        Ok(()) => {}
661        Err(e) => sess.dcx().emit_fatal(errors::ThorinErrorWrapper(e)),
662    }
663}
664
665#[derive(LintDiagnostic)]
666#[diag(codegen_ssa_linker_output)]
667/// Translating this is kind of useless. We don't pass translation flags to the linker, so we'd just
668/// end up with inconsistent languages within the same diagnostic.
669struct LinkerOutput {
670    inner: String,
671}
672
673/// Create a dynamic library or executable.
674///
675/// This will invoke the system linker/cc to create the resulting file. This links to all upstream
676/// files as well.
677fn link_natively(
678    sess: &Session,
679    archive_builder_builder: &dyn ArchiveBuilderBuilder,
680    crate_type: CrateType,
681    out_filename: &Path,
682    codegen_results: &CodegenResults,
683    metadata: &EncodedMetadata,
684    tmpdir: &Path,
685    codegen_backend: &'static str,
686) {
687    info!("preparing {:?} to {:?}", crate_type, out_filename);
688    let (linker_path, flavor) = linker_and_flavor(sess);
689    let self_contained_components = self_contained_components(sess, crate_type, &linker_path);
690
691    // On AIX, we ship all libraries as .a big_af archive
692    // the expected format is lib<name>.a(libname.so) for the actual
693    // dynamic library. So we link to a temporary .so file to be archived
694    // at the final out_filename location
695    let should_archive = crate_type != CrateType::Executable && sess.target.is_like_aix;
696    let archive_member =
697        should_archive.then(|| tmpdir.join(out_filename.file_name().unwrap()).with_extension("so"));
698    let temp_filename = archive_member.as_deref().unwrap_or(out_filename);
699
700    let mut cmd = linker_with_args(
701        &linker_path,
702        flavor,
703        sess,
704        archive_builder_builder,
705        crate_type,
706        tmpdir,
707        temp_filename,
708        codegen_results,
709        metadata,
710        self_contained_components,
711        codegen_backend,
712    );
713
714    linker::disable_localization(&mut cmd);
715
716    for (k, v) in sess.target.link_env.as_ref() {
717        cmd.env(k.as_ref(), v.as_ref());
718    }
719    for k in sess.target.link_env_remove.as_ref() {
720        cmd.env_remove(k.as_ref());
721    }
722
723    for print in &sess.opts.prints {
724        if print.kind == PrintKind::LinkArgs {
725            let content = format!("{cmd:?}\n");
726            print.out.overwrite(&content, sess);
727        }
728    }
729
730    // May have not found libraries in the right formats.
731    sess.dcx().abort_if_errors();
732
733    // Invoke the system linker
734    info!("{cmd:?}");
735    let unknown_arg_regex =
736        Regex::new(r"(unknown|unrecognized) (command line )?(option|argument)").unwrap();
737    let mut prog;
738    loop {
739        prog = sess.time("run_linker", || exec_linker(sess, &cmd, out_filename, flavor, tmpdir));
740        let Ok(ref output) = prog else {
741            break;
742        };
743        if output.status.success() {
744            break;
745        }
746        let mut out = output.stderr.clone();
747        out.extend(&output.stdout);
748        let out = String::from_utf8_lossy(&out);
749
750        // Check to see if the link failed with an error message that indicates it
751        // doesn't recognize the -no-pie option. If so, re-perform the link step
752        // without it. This is safe because if the linker doesn't support -no-pie
753        // then it should not default to linking executables as pie. Different
754        // versions of gcc seem to use different quotes in the error message so
755        // don't check for them.
756        if matches!(flavor, LinkerFlavor::Gnu(Cc::Yes, _))
757            && unknown_arg_regex.is_match(&out)
758            && out.contains("-no-pie")
759            && cmd.get_args().iter().any(|e| e == "-no-pie")
760        {
761            info!("linker output: {:?}", out);
762            warn!("Linker does not support -no-pie command line option. Retrying without.");
763            for arg in cmd.take_args() {
764                if arg != "-no-pie" {
765                    cmd.arg(arg);
766                }
767            }
768            info!("{cmd:?}");
769            continue;
770        }
771
772        // Check if linking failed with an error message that indicates the driver didn't recognize
773        // the `-fuse-ld=lld` option. If so, re-perform the link step without it. This avoids having
774        // to spawn multiple instances on the happy path to do version checking, and ensures things
775        // keep working on the tier 1 baseline of GLIBC 2.17+. That is generally understood as GCCs
776        // circa RHEL/CentOS 7, 4.5 or so, whereas lld support was added in GCC 9.
777        if matches!(flavor, LinkerFlavor::Gnu(Cc::Yes, Lld::Yes))
778            && unknown_arg_regex.is_match(&out)
779            && out.contains("-fuse-ld=lld")
780            && cmd.get_args().iter().any(|e| e.to_string_lossy() == "-fuse-ld=lld")
781        {
782            info!("linker output: {:?}", out);
783            info!("The linker driver does not support `-fuse-ld=lld`. Retrying without it.");
784            for arg in cmd.take_args() {
785                if arg.to_string_lossy() != "-fuse-ld=lld" {
786                    cmd.arg(arg);
787                }
788            }
789            info!("{cmd:?}");
790            continue;
791        }
792
793        // Detect '-static-pie' used with an older version of gcc or clang not supporting it.
794        // Fallback from '-static-pie' to '-static' in that case.
795        if matches!(flavor, LinkerFlavor::Gnu(Cc::Yes, _))
796            && unknown_arg_regex.is_match(&out)
797            && (out.contains("-static-pie") || out.contains("--no-dynamic-linker"))
798            && cmd.get_args().iter().any(|e| e == "-static-pie")
799        {
800            info!("linker output: {:?}", out);
801            warn!(
802                "Linker does not support -static-pie command line option. Retrying with -static instead."
803            );
804            // Mirror `add_(pre,post)_link_objects` to replace CRT objects.
805            let self_contained_crt_objects = self_contained_components.is_crt_objects_enabled();
806            let opts = &sess.target;
807            let pre_objects = if self_contained_crt_objects {
808                &opts.pre_link_objects_self_contained
809            } else {
810                &opts.pre_link_objects
811            };
812            let post_objects = if self_contained_crt_objects {
813                &opts.post_link_objects_self_contained
814            } else {
815                &opts.post_link_objects
816            };
817            let get_objects = |objects: &CrtObjects, kind| {
818                objects
819                    .get(&kind)
820                    .iter()
821                    .copied()
822                    .flatten()
823                    .map(|obj| {
824                        get_object_file_path(sess, obj, self_contained_crt_objects).into_os_string()
825                    })
826                    .collect::<Vec<_>>()
827            };
828            let pre_objects_static_pie = get_objects(pre_objects, LinkOutputKind::StaticPicExe);
829            let post_objects_static_pie = get_objects(post_objects, LinkOutputKind::StaticPicExe);
830            let mut pre_objects_static = get_objects(pre_objects, LinkOutputKind::StaticNoPicExe);
831            let mut post_objects_static = get_objects(post_objects, LinkOutputKind::StaticNoPicExe);
832            // Assume that we know insertion positions for the replacement arguments from replaced
833            // arguments, which is true for all supported targets.
834            assert!(pre_objects_static.is_empty() || !pre_objects_static_pie.is_empty());
835            assert!(post_objects_static.is_empty() || !post_objects_static_pie.is_empty());
836            for arg in cmd.take_args() {
837                if arg == "-static-pie" {
838                    // Replace the output kind.
839                    cmd.arg("-static");
840                } else if pre_objects_static_pie.contains(&arg) {
841                    // Replace the pre-link objects (replace the first and remove the rest).
842                    cmd.args(mem::take(&mut pre_objects_static));
843                } else if post_objects_static_pie.contains(&arg) {
844                    // Replace the post-link objects (replace the first and remove the rest).
845                    cmd.args(mem::take(&mut post_objects_static));
846                } else {
847                    cmd.arg(arg);
848                }
849            }
850            info!("{cmd:?}");
851            continue;
852        }
853
854        break;
855    }
856
857    match prog {
858        Ok(prog) => {
859            let is_msvc_link_exe = sess.target.is_like_msvc
860                && flavor == LinkerFlavor::Msvc(Lld::No)
861                // Match exactly "link.exe"
862                && linker_path.to_str() == Some("link.exe");
863
864            if !prog.status.success() {
865                let mut output = prog.stderr.clone();
866                output.extend_from_slice(&prog.stdout);
867                let escaped_output = escape_linker_output(&output, flavor);
868                let err = errors::LinkingFailed {
869                    linker_path: &linker_path,
870                    exit_status: prog.status,
871                    command: cmd,
872                    escaped_output,
873                    verbose: sess.opts.verbose,
874                    sysroot_dir: sess.opts.sysroot.path().to_owned(),
875                };
876                sess.dcx().emit_err(err);
877                // If MSVC's `link.exe` was expected but the return code
878                // is not a Microsoft LNK error then suggest a way to fix or
879                // install the Visual Studio build tools.
880                if let Some(code) = prog.status.code() {
881                    // All Microsoft `link.exe` linking ror codes are
882                    // four digit numbers in the range 1000 to 9999 inclusive
883                    if is_msvc_link_exe && (code < 1000 || code > 9999) {
884                        let is_vs_installed = find_msvc_tools::find_vs_version().is_ok();
885                        let has_linker =
886                            find_msvc_tools::find_tool(&sess.target.arch, "link.exe").is_some();
887
888                        sess.dcx().emit_note(errors::LinkExeUnexpectedError);
889
890                        // STATUS_STACK_BUFFER_OVERRUN is also used for fast abnormal program termination, e.g. abort().
891                        // Emit a special diagnostic to let people know that this most likely doesn't indicate a stack buffer overrun.
892                        const STATUS_STACK_BUFFER_OVERRUN: i32 = 0xc0000409u32 as _;
893                        if code == STATUS_STACK_BUFFER_OVERRUN {
894                            sess.dcx().emit_note(errors::LinkExeStatusStackBufferOverrun);
895                        }
896
897                        if is_vs_installed && has_linker {
898                            // the linker is broken
899                            sess.dcx().emit_note(errors::RepairVSBuildTools);
900                            sess.dcx().emit_note(errors::MissingCppBuildToolComponent);
901                        } else if is_vs_installed {
902                            // the linker is not installed
903                            sess.dcx().emit_note(errors::SelectCppBuildToolWorkload);
904                        } else {
905                            // visual studio is not installed
906                            sess.dcx().emit_note(errors::VisualStudioNotInstalled);
907                        }
908                    }
909                }
910
911                sess.dcx().abort_if_errors();
912            }
913
914            let stderr = escape_string(&prog.stderr);
915            let mut stdout = escape_string(&prog.stdout);
916            info!("linker stderr:\n{}", &stderr);
917            info!("linker stdout:\n{}", &stdout);
918
919            // Hide some progress messages from link.exe that we don't care about.
920            // See https://github.com/chromium/chromium/blob/bfa41e41145ffc85f041384280caf2949bb7bd72/build/toolchain/win/tool_wrapper.py#L144-L146
921            if is_msvc_link_exe {
922                if let Ok(str) = str::from_utf8(&prog.stdout) {
923                    let mut output = String::with_capacity(str.len());
924                    for line in stdout.lines() {
925                        if line.starts_with("   Creating library")
926                            || line.starts_with("Generating code")
927                            || line.starts_with("Finished generating code")
928                        {
929                            continue;
930                        }
931                        output += line;
932                        output += "\r\n"
933                    }
934                    stdout = escape_string(output.trim().as_bytes())
935                }
936            }
937
938            let level = codegen_results.crate_info.lint_levels.linker_messages;
939            let lint = |msg| {
940                lint_level(sess, LINKER_MESSAGES, level, None, |diag| {
941                    LinkerOutput { inner: msg }.decorate_lint(diag)
942                })
943            };
944
945            if !prog.stderr.is_empty() {
946                // We already print `warning:` at the start of the diagnostic. Remove it from the linker output if present.
947                let stderr = stderr
948                    .strip_prefix("warning: ")
949                    .unwrap_or(&stderr)
950                    .replace(": warning: ", ": ");
951                lint(format!("linker stderr: {stderr}"));
952            }
953            if !stdout.is_empty() {
954                lint(format!("linker stdout: {}", stdout))
955            }
956        }
957        Err(e) => {
958            let linker_not_found = e.kind() == io::ErrorKind::NotFound;
959
960            let err = if linker_not_found {
961                sess.dcx().emit_err(errors::LinkerNotFound { linker_path, error: e })
962            } else {
963                sess.dcx().emit_err(errors::UnableToExeLinker {
964                    linker_path,
965                    error: e,
966                    command_formatted: format!("{cmd:?}"),
967                })
968            };
969
970            if sess.target.is_like_msvc && linker_not_found {
971                sess.dcx().emit_note(errors::MsvcMissingLinker);
972                sess.dcx().emit_note(errors::CheckInstalledVisualStudio);
973                sess.dcx().emit_note(errors::InsufficientVSCodeProduct);
974            }
975            err.raise_fatal();
976        }
977    }
978
979    match sess.split_debuginfo() {
980        // If split debug information is disabled or located in individual files
981        // there's nothing to do here.
982        SplitDebuginfo::Off | SplitDebuginfo::Unpacked => {}
983
984        // If packed split-debuginfo is requested, but the final compilation
985        // doesn't actually have any debug information, then we skip this step.
986        SplitDebuginfo::Packed if sess.opts.debuginfo == DebugInfo::None => {}
987
988        // On macOS the external `dsymutil` tool is used to create the packed
989        // debug information. Note that this will read debug information from
990        // the objects on the filesystem which we'll clean up later.
991        SplitDebuginfo::Packed if sess.target.is_like_darwin => {
992            let prog = Command::new("dsymutil").arg(out_filename).output();
993            match prog {
994                Ok(prog) => {
995                    if !prog.status.success() {
996                        let mut output = prog.stderr.clone();
997                        output.extend_from_slice(&prog.stdout);
998                        sess.dcx().emit_warn(errors::ProcessingDymutilFailed {
999                            status: prog.status,
1000                            output: escape_string(&output),
1001                        });
1002                    }
1003                }
1004                Err(error) => sess.dcx().emit_fatal(errors::UnableToRunDsymutil { error }),
1005            }
1006        }
1007
1008        // On MSVC packed debug information is produced by the linker itself so
1009        // there's no need to do anything else here.
1010        SplitDebuginfo::Packed if sess.target.is_like_windows => {}
1011
1012        // ... and otherwise we're processing a `*.dwp` packed dwarf file.
1013        //
1014        // We cannot rely on the .o paths in the executable because they may have been
1015        // remapped by --remap-path-prefix and therefore invalid, so we need to provide
1016        // the .o/.dwo paths explicitly.
1017        SplitDebuginfo::Packed => link_dwarf_object(sess, codegen_results, out_filename),
1018    }
1019
1020    let strip = sess.opts.cg.strip;
1021
1022    if sess.target.is_like_darwin {
1023        let stripcmd = "rust-objcopy";
1024        match (strip, crate_type) {
1025            (Strip::Debuginfo, _) => {
1026                strip_with_external_utility(sess, stripcmd, out_filename, &["--strip-debug"])
1027            }
1028
1029            // Per the manpage, --discard-all is the maximum safe strip level for dynamic libraries. (#93988)
1030            (
1031                Strip::Symbols,
1032                CrateType::Dylib | CrateType::Cdylib | CrateType::ProcMacro | CrateType::Sdylib,
1033            ) => strip_with_external_utility(sess, stripcmd, out_filename, &["--discard-all"]),
1034            (Strip::Symbols, _) => {
1035                strip_with_external_utility(sess, stripcmd, out_filename, &["--strip-all"])
1036            }
1037            (Strip::None, _) => {}
1038        }
1039    }
1040
1041    if sess.target.is_like_solaris {
1042        // Many illumos systems will have both the native 'strip' utility and
1043        // the GNU one. Use the native version explicitly and do not rely on
1044        // what's in the path.
1045        //
1046        // If cross-compiling and there is not a native version, then use
1047        // `llvm-strip` and hope.
1048        let stripcmd = if !sess.host.is_like_solaris { "rust-objcopy" } else { "/usr/bin/strip" };
1049        match strip {
1050            // Always preserve the symbol table (-x).
1051            Strip::Debuginfo => strip_with_external_utility(sess, stripcmd, out_filename, &["-x"]),
1052            // Strip::Symbols is handled via the --strip-all linker option.
1053            Strip::Symbols => {}
1054            Strip::None => {}
1055        }
1056    }
1057
1058    if sess.target.is_like_aix {
1059        // `llvm-strip` doesn't work for AIX - their strip must be used.
1060        if !sess.host.is_like_aix {
1061            sess.dcx().emit_warn(errors::AixStripNotUsed);
1062        }
1063        let stripcmd = "/usr/bin/strip";
1064        match strip {
1065            Strip::Debuginfo => {
1066                // FIXME: AIX's strip utility only offers option to strip line number information.
1067                strip_with_external_utility(sess, stripcmd, temp_filename, &["-X32_64", "-l"])
1068            }
1069            Strip::Symbols => {
1070                // Must be noted this option might remove symbol __aix_rust_metadata and thus removes .info section which contains metadata.
1071                strip_with_external_utility(sess, stripcmd, temp_filename, &["-X32_64", "-r"])
1072            }
1073            Strip::None => {}
1074        }
1075    }
1076
1077    if should_archive {
1078        let mut ab = archive_builder_builder.new_archive_builder(sess);
1079        ab.add_file(temp_filename);
1080        ab.build(out_filename);
1081    }
1082}
1083
1084fn strip_with_external_utility(sess: &Session, util: &str, out_filename: &Path, options: &[&str]) {
1085    let mut cmd = Command::new(util);
1086    cmd.args(options);
1087
1088    let mut new_path = sess.get_tools_search_paths(false);
1089    if let Some(path) = env::var_os("PATH") {
1090        new_path.extend(env::split_paths(&path));
1091    }
1092    cmd.env("PATH", env::join_paths(new_path).unwrap());
1093
1094    let prog = cmd.arg(out_filename).output();
1095    match prog {
1096        Ok(prog) => {
1097            if !prog.status.success() {
1098                let mut output = prog.stderr.clone();
1099                output.extend_from_slice(&prog.stdout);
1100                sess.dcx().emit_warn(errors::StrippingDebugInfoFailed {
1101                    util,
1102                    status: prog.status,
1103                    output: escape_string(&output),
1104                });
1105            }
1106        }
1107        Err(error) => sess.dcx().emit_fatal(errors::UnableToRun { util, error }),
1108    }
1109}
1110
1111fn escape_string(s: &[u8]) -> String {
1112    match str::from_utf8(s) {
1113        Ok(s) => s.to_owned(),
1114        Err(_) => format!("Non-UTF-8 output: {}", s.escape_ascii()),
1115    }
1116}
1117
1118#[cfg(not(windows))]
1119fn escape_linker_output(s: &[u8], _flavour: LinkerFlavor) -> String {
1120    escape_string(s)
1121}
1122
1123/// If the output of the msvc linker is not UTF-8 and the host is Windows,
1124/// then try to convert the string from the OEM encoding.
1125#[cfg(windows)]
1126fn escape_linker_output(s: &[u8], flavour: LinkerFlavor) -> String {
1127    // This only applies to the actual MSVC linker.
1128    if flavour != LinkerFlavor::Msvc(Lld::No) {
1129        return escape_string(s);
1130    }
1131    match str::from_utf8(s) {
1132        Ok(s) => return s.to_owned(),
1133        Err(_) => match win::locale_byte_str_to_string(s, win::oem_code_page()) {
1134            Some(s) => s,
1135            // The string is not UTF-8 and isn't valid for the OEM code page
1136            None => format!("Non-UTF-8 output: {}", s.escape_ascii()),
1137        },
1138    }
1139}
1140
1141/// Wrappers around the Windows API.
1142#[cfg(windows)]
1143mod win {
1144    use windows::Win32::Globalization::{
1145        CP_OEMCP, GetLocaleInfoEx, LOCALE_IUSEUTF8LEGACYOEMCP, LOCALE_NAME_SYSTEM_DEFAULT,
1146        LOCALE_RETURN_NUMBER, MB_ERR_INVALID_CHARS, MultiByteToWideChar,
1147    };
1148
1149    /// Get the Windows system OEM code page. This is most notably the code page
1150    /// used for link.exe's output.
1151    pub(super) fn oem_code_page() -> u32 {
1152        unsafe {
1153            let mut cp: u32 = 0;
1154            // We're using the `LOCALE_RETURN_NUMBER` flag to return a u32.
1155            // But the API requires us to pass the data as though it's a [u16] string.
1156            let len = size_of::<u32>() / size_of::<u16>();
1157            let data = std::slice::from_raw_parts_mut(&mut cp as *mut u32 as *mut u16, len);
1158            let len_written = GetLocaleInfoEx(
1159                LOCALE_NAME_SYSTEM_DEFAULT,
1160                LOCALE_IUSEUTF8LEGACYOEMCP | LOCALE_RETURN_NUMBER,
1161                Some(data),
1162            );
1163            if len_written as usize == len { cp } else { CP_OEMCP }
1164        }
1165    }
1166    /// Try to convert a multi-byte string to a UTF-8 string using the given code page
1167    /// The string does not need to be null terminated.
1168    ///
1169    /// This is implemented as a wrapper around `MultiByteToWideChar`.
1170    /// See <https://learn.microsoft.com/en-us/windows/win32/api/stringapiset/nf-stringapiset-multibytetowidechar>
1171    ///
1172    /// It will fail if the multi-byte string is longer than `i32::MAX` or if it contains
1173    /// any invalid bytes for the expected encoding.
1174    pub(super) fn locale_byte_str_to_string(s: &[u8], code_page: u32) -> Option<String> {
1175        // `MultiByteToWideChar` requires a length to be a "positive integer".
1176        if s.len() > isize::MAX as usize {
1177            return None;
1178        }
1179        // Error if the string is not valid for the expected code page.
1180        let flags = MB_ERR_INVALID_CHARS;
1181        // Call MultiByteToWideChar twice.
1182        // First to calculate the length then to convert the string.
1183        let mut len = unsafe { MultiByteToWideChar(code_page, flags, s, None) };
1184        if len > 0 {
1185            let mut utf16 = vec![0; len as usize];
1186            len = unsafe { MultiByteToWideChar(code_page, flags, s, Some(&mut utf16)) };
1187            if len > 0 {
1188                return utf16.get(..len as usize).map(String::from_utf16_lossy);
1189            }
1190        }
1191        None
1192    }
1193}
1194
1195fn add_sanitizer_libraries(
1196    sess: &Session,
1197    flavor: LinkerFlavor,
1198    crate_type: CrateType,
1199    linker: &mut dyn Linker,
1200) {
1201    if sess.target.is_like_android {
1202        // Sanitizer runtime libraries are provided dynamically on Android
1203        // targets.
1204        return;
1205    }
1206
1207    if sess.opts.unstable_opts.external_clangrt {
1208        // Linking against in-tree sanitizer runtimes is disabled via
1209        // `-Z external-clangrt`
1210        return;
1211    }
1212
1213    if matches!(crate_type, CrateType::Rlib | CrateType::Staticlib) {
1214        return;
1215    }
1216
1217    // On macOS and Windows using MSVC the runtimes are distributed as dylibs
1218    // which should be linked to both executables and dynamic libraries.
1219    // Everywhere else the runtimes are currently distributed as static
1220    // libraries which should be linked to executables only.
1221    if matches!(
1222        crate_type,
1223        CrateType::Dylib | CrateType::Cdylib | CrateType::ProcMacro | CrateType::Sdylib
1224    ) && !(sess.target.is_like_darwin || sess.target.is_like_msvc)
1225    {
1226        return;
1227    }
1228
1229    let sanitizer = sess.opts.unstable_opts.sanitizer;
1230    if sanitizer.contains(SanitizerSet::ADDRESS) {
1231        link_sanitizer_runtime(sess, flavor, linker, "asan");
1232    }
1233    if sanitizer.contains(SanitizerSet::DATAFLOW) {
1234        link_sanitizer_runtime(sess, flavor, linker, "dfsan");
1235    }
1236    if sanitizer.contains(SanitizerSet::LEAK)
1237        && !sanitizer.contains(SanitizerSet::ADDRESS)
1238        && !sanitizer.contains(SanitizerSet::HWADDRESS)
1239    {
1240        link_sanitizer_runtime(sess, flavor, linker, "lsan");
1241    }
1242    if sanitizer.contains(SanitizerSet::MEMORY) {
1243        link_sanitizer_runtime(sess, flavor, linker, "msan");
1244    }
1245    if sanitizer.contains(SanitizerSet::THREAD) {
1246        link_sanitizer_runtime(sess, flavor, linker, "tsan");
1247    }
1248    if sanitizer.contains(SanitizerSet::HWADDRESS) {
1249        link_sanitizer_runtime(sess, flavor, linker, "hwasan");
1250    }
1251    if sanitizer.contains(SanitizerSet::SAFESTACK) {
1252        link_sanitizer_runtime(sess, flavor, linker, "safestack");
1253    }
1254}
1255
1256fn link_sanitizer_runtime(
1257    sess: &Session,
1258    flavor: LinkerFlavor,
1259    linker: &mut dyn Linker,
1260    name: &str,
1261) {
1262    fn find_sanitizer_runtime(sess: &Session, filename: &str) -> PathBuf {
1263        let path = sess.target_tlib_path.dir.join(filename);
1264        if path.exists() {
1265            sess.target_tlib_path.dir.clone()
1266        } else {
1267            filesearch::make_target_lib_path(
1268                &sess.opts.sysroot.default,
1269                sess.opts.target_triple.tuple(),
1270            )
1271        }
1272    }
1273
1274    let channel =
1275        option_env!("CFG_RELEASE_CHANNEL").map(|channel| format!("-{channel}")).unwrap_or_default();
1276
1277    if sess.target.is_like_darwin {
1278        // On Apple platforms, the sanitizer is always built as a dylib, and
1279        // LLVM will link to `@rpath/*.dylib`, so we need to specify an
1280        // rpath to the library as well (the rpath should be absolute, see
1281        // PR #41352 for details).
1282        let filename = format!("rustc{channel}_rt.{name}");
1283        let path = find_sanitizer_runtime(sess, &filename);
1284        let rpath = path.to_str().expect("non-utf8 component in path");
1285        linker.link_args(&["-rpath", rpath]);
1286        linker.link_dylib_by_name(&filename, false, true);
1287    } else if sess.target.is_like_msvc && flavor == LinkerFlavor::Msvc(Lld::No) && name == "asan" {
1288        // MSVC provides the `/INFERASANLIBS` argument to automatically find the
1289        // compatible ASAN library.
1290        linker.link_arg("/INFERASANLIBS");
1291    } else {
1292        let filename = format!("librustc{channel}_rt.{name}.a");
1293        let path = find_sanitizer_runtime(sess, &filename).join(&filename);
1294        linker.link_staticlib_by_path(&path, true);
1295    }
1296}
1297
1298/// Returns a boolean indicating whether the specified crate should be ignored
1299/// during LTO.
1300///
1301/// Crates ignored during LTO are not lumped together in the "massive object
1302/// file" that we create and are linked in their normal rlib states. See
1303/// comments below for what crates do not participate in LTO.
1304///
1305/// It's unusual for a crate to not participate in LTO. Typically only
1306/// compiler-specific and unstable crates have a reason to not participate in
1307/// LTO.
1308pub fn ignored_for_lto(sess: &Session, info: &CrateInfo, cnum: CrateNum) -> bool {
1309    // If our target enables builtin function lowering in LLVM then the
1310    // crates providing these functions don't participate in LTO (e.g.
1311    // no_builtins or compiler builtins crates).
1312    !sess.target.no_builtins
1313        && (info.compiler_builtins == Some(cnum) || info.is_no_builtins.contains(&cnum))
1314}
1315
1316/// This functions tries to determine the appropriate linker (and corresponding LinkerFlavor) to use
1317pub fn linker_and_flavor(sess: &Session) -> (PathBuf, LinkerFlavor) {
1318    fn infer_from(
1319        sess: &Session,
1320        linker: Option<PathBuf>,
1321        flavor: Option<LinkerFlavor>,
1322        features: LinkerFeaturesCli,
1323    ) -> Option<(PathBuf, LinkerFlavor)> {
1324        let flavor = flavor.map(|flavor| adjust_flavor_to_features(flavor, features));
1325        match (linker, flavor) {
1326            (Some(linker), Some(flavor)) => Some((linker, flavor)),
1327            // only the linker flavor is known; use the default linker for the selected flavor
1328            (None, Some(flavor)) => Some((
1329                PathBuf::from(match flavor {
1330                    LinkerFlavor::Gnu(Cc::Yes, _)
1331                    | LinkerFlavor::Darwin(Cc::Yes, _)
1332                    | LinkerFlavor::WasmLld(Cc::Yes)
1333                    | LinkerFlavor::Unix(Cc::Yes) => {
1334                        if cfg!(any(target_os = "solaris", target_os = "illumos")) {
1335                            // On historical Solaris systems, "cc" may have
1336                            // been Sun Studio, which is not flag-compatible
1337                            // with "gcc". This history casts a long shadow,
1338                            // and many modern illumos distributions today
1339                            // ship GCC as "gcc" without also making it
1340                            // available as "cc".
1341                            "gcc"
1342                        } else {
1343                            "cc"
1344                        }
1345                    }
1346                    LinkerFlavor::Gnu(_, Lld::Yes)
1347                    | LinkerFlavor::Darwin(_, Lld::Yes)
1348                    | LinkerFlavor::WasmLld(..)
1349                    | LinkerFlavor::Msvc(Lld::Yes) => "lld",
1350                    LinkerFlavor::Gnu(..) | LinkerFlavor::Darwin(..) | LinkerFlavor::Unix(..) => {
1351                        "ld"
1352                    }
1353                    LinkerFlavor::Msvc(..) => "link.exe",
1354                    LinkerFlavor::EmCc => {
1355                        if cfg!(windows) {
1356                            "emcc.bat"
1357                        } else {
1358                            "emcc"
1359                        }
1360                    }
1361                    LinkerFlavor::Bpf => "bpf-linker",
1362                    LinkerFlavor::Llbc => "llvm-bitcode-linker",
1363                    LinkerFlavor::Ptx => "rust-ptx-linker",
1364                }),
1365                flavor,
1366            )),
1367            (Some(linker), None) => {
1368                let stem = linker.file_stem().and_then(|stem| stem.to_str()).unwrap_or_else(|| {
1369                    sess.dcx().emit_fatal(errors::LinkerFileStem);
1370                });
1371                let flavor = sess.target.linker_flavor.with_linker_hints(stem);
1372                let flavor = adjust_flavor_to_features(flavor, features);
1373                Some((linker, flavor))
1374            }
1375            (None, None) => None,
1376        }
1377    }
1378
1379    // While linker flavors and linker features are isomorphic (and thus targets don't need to
1380    // define features separately), we use the flavor as the root piece of data and have the
1381    // linker-features CLI flag influence *that*, so that downstream code does not have to check for
1382    // both yet.
1383    fn adjust_flavor_to_features(
1384        flavor: LinkerFlavor,
1385        features: LinkerFeaturesCli,
1386    ) -> LinkerFlavor {
1387        // Note: a linker feature cannot be both enabled and disabled on the CLI.
1388        if features.enabled.contains(LinkerFeatures::LLD) {
1389            flavor.with_lld_enabled()
1390        } else if features.disabled.contains(LinkerFeatures::LLD) {
1391            flavor.with_lld_disabled()
1392        } else {
1393            flavor
1394        }
1395    }
1396
1397    let features = sess.opts.cg.linker_features;
1398
1399    // linker and linker flavor specified via command line have precedence over what the target
1400    // specification specifies
1401    let linker_flavor = match sess.opts.cg.linker_flavor {
1402        // The linker flavors that are non-target specific can be directly translated to LinkerFlavor
1403        Some(LinkerFlavorCli::Llbc) => Some(LinkerFlavor::Llbc),
1404        Some(LinkerFlavorCli::Ptx) => Some(LinkerFlavor::Ptx),
1405        // The linker flavors that corresponds to targets needs logic that keeps the base LinkerFlavor
1406        _ => sess
1407            .opts
1408            .cg
1409            .linker_flavor
1410            .map(|flavor| sess.target.linker_flavor.with_cli_hints(flavor)),
1411    };
1412    if let Some(ret) = infer_from(sess, sess.opts.cg.linker.clone(), linker_flavor, features) {
1413        return ret;
1414    }
1415
1416    if let Some(ret) = infer_from(
1417        sess,
1418        sess.target.linker.as_deref().map(PathBuf::from),
1419        Some(sess.target.linker_flavor),
1420        features,
1421    ) {
1422        return ret;
1423    }
1424
1425    bug!("Not enough information provided to determine how to invoke the linker");
1426}
1427
1428/// Returns a pair of boolean indicating whether we should preserve the object and
1429/// dwarf object files on the filesystem for their debug information. This is often
1430/// useful with split-dwarf like schemes.
1431fn preserve_objects_for_their_debuginfo(sess: &Session) -> (bool, bool) {
1432    // If the objects don't have debuginfo there's nothing to preserve.
1433    if sess.opts.debuginfo == config::DebugInfo::None {
1434        return (false, false);
1435    }
1436
1437    match (sess.split_debuginfo(), sess.opts.unstable_opts.split_dwarf_kind) {
1438        // If there is no split debuginfo then do not preserve objects.
1439        (SplitDebuginfo::Off, _) => (false, false),
1440        // If there is packed split debuginfo, then the debuginfo in the objects
1441        // has been packaged and the objects can be deleted.
1442        (SplitDebuginfo::Packed, _) => (false, false),
1443        // If there is unpacked split debuginfo and the current target can not use
1444        // split dwarf, then keep objects.
1445        (SplitDebuginfo::Unpacked, _) if !sess.target_can_use_split_dwarf() => (true, false),
1446        // If there is unpacked split debuginfo and the target can use split dwarf, then
1447        // keep the object containing that debuginfo (whether that is an object file or
1448        // dwarf object file depends on the split dwarf kind).
1449        (SplitDebuginfo::Unpacked, SplitDwarfKind::Single) => (true, false),
1450        (SplitDebuginfo::Unpacked, SplitDwarfKind::Split) => (false, true),
1451    }
1452}
1453
1454#[derive(PartialEq)]
1455enum RlibFlavor {
1456    Normal,
1457    StaticlibBase,
1458}
1459
1460fn print_native_static_libs(
1461    sess: &Session,
1462    out: &OutFileName,
1463    all_native_libs: &[NativeLib],
1464    all_rust_dylibs: &[&Path],
1465) {
1466    let mut lib_args: Vec<_> = all_native_libs
1467        .iter()
1468        .filter(|l| relevant_lib(sess, l))
1469        .filter_map(|lib| {
1470            let name = lib.name;
1471            match lib.kind {
1472                NativeLibKind::Static { bundle: Some(false), .. }
1473                | NativeLibKind::Dylib { .. }
1474                | NativeLibKind::Unspecified => {
1475                    let verbatim = lib.verbatim;
1476                    if sess.target.is_like_msvc {
1477                        let (prefix, suffix) = sess.staticlib_components(verbatim);
1478                        Some(format!("{prefix}{name}{suffix}"))
1479                    } else if sess.target.linker_flavor.is_gnu() {
1480                        Some(format!("-l{}{}", if verbatim { ":" } else { "" }, name))
1481                    } else {
1482                        Some(format!("-l{name}"))
1483                    }
1484                }
1485                NativeLibKind::Framework { .. } => {
1486                    // ld-only syntax, since there are no frameworks in MSVC
1487                    Some(format!("-framework {name}"))
1488                }
1489                // These are included, no need to print them
1490                NativeLibKind::Static { bundle: None | Some(true), .. }
1491                | NativeLibKind::LinkArg
1492                | NativeLibKind::WasmImportModule
1493                | NativeLibKind::RawDylib { .. } => None,
1494            }
1495        })
1496        // deduplication of consecutive repeated libraries, see rust-lang/rust#113209
1497        .dedup()
1498        .collect();
1499    for path in all_rust_dylibs {
1500        // FIXME deduplicate with add_dynamic_crate
1501
1502        // Just need to tell the linker about where the library lives and
1503        // what its name is
1504        let parent = path.parent();
1505        if let Some(dir) = parent {
1506            let dir = fix_windows_verbatim_for_gcc(dir);
1507            if sess.target.is_like_msvc {
1508                let mut arg = String::from("/LIBPATH:");
1509                arg.push_str(&dir.display().to_string());
1510                lib_args.push(arg);
1511            } else {
1512                lib_args.push("-L".to_owned());
1513                lib_args.push(dir.display().to_string());
1514            }
1515        }
1516        let stem = path.file_stem().unwrap().to_str().unwrap();
1517        // Convert library file-stem into a cc -l argument.
1518        let lib = if let Some(lib) = stem.strip_prefix("lib")
1519            && !sess.target.is_like_windows
1520        {
1521            lib
1522        } else {
1523            stem
1524        };
1525        let path = parent.unwrap_or_else(|| Path::new(""));
1526        if sess.target.is_like_msvc {
1527            // When producing a dll, the MSVC linker may not actually emit a
1528            // `foo.lib` file if the dll doesn't actually export any symbols, so we
1529            // check to see if the file is there and just omit linking to it if it's
1530            // not present.
1531            let name = format!("{lib}.dll.lib");
1532            if path.join(&name).exists() {
1533                lib_args.push(name);
1534            }
1535        } else {
1536            lib_args.push(format!("-l{lib}"));
1537        }
1538    }
1539
1540    match out {
1541        OutFileName::Real(path) => {
1542            out.overwrite(&lib_args.join(" "), sess);
1543            sess.dcx().emit_note(errors::StaticLibraryNativeArtifactsToFile { path });
1544        }
1545        OutFileName::Stdout => {
1546            sess.dcx().emit_note(errors::StaticLibraryNativeArtifacts);
1547            // Prefix for greppability
1548            // Note: This must not be translated as tools are allowed to depend on this exact string.
1549            sess.dcx().note(format!("native-static-libs: {}", lib_args.join(" ")));
1550        }
1551    }
1552}
1553
1554fn get_object_file_path(sess: &Session, name: &str, self_contained: bool) -> PathBuf {
1555    let file_path = sess.target_tlib_path.dir.join(name);
1556    if file_path.exists() {
1557        return file_path;
1558    }
1559    // Special directory with objects used only in self-contained linkage mode
1560    if self_contained {
1561        let file_path = sess.target_tlib_path.dir.join("self-contained").join(name);
1562        if file_path.exists() {
1563            return file_path;
1564        }
1565    }
1566    for search_path in sess.target_filesearch().search_paths(PathKind::Native) {
1567        let file_path = search_path.dir.join(name);
1568        if file_path.exists() {
1569            return file_path;
1570        }
1571    }
1572    PathBuf::from(name)
1573}
1574
1575fn exec_linker(
1576    sess: &Session,
1577    cmd: &Command,
1578    out_filename: &Path,
1579    flavor: LinkerFlavor,
1580    tmpdir: &Path,
1581) -> io::Result<Output> {
1582    // When attempting to spawn the linker we run a risk of blowing out the
1583    // size limits for spawning a new process with respect to the arguments
1584    // we pass on the command line.
1585    //
1586    // Here we attempt to handle errors from the OS saying "your list of
1587    // arguments is too big" by reinvoking the linker again with an `@`-file
1588    // that contains all the arguments (aka 'response' files).
1589    // The theory is that this is then accepted on all linkers and the linker
1590    // will read all its options out of there instead of looking at the command line.
1591    if !cmd.very_likely_to_exceed_some_spawn_limit() {
1592        match cmd.command().stdout(Stdio::piped()).stderr(Stdio::piped()).spawn() {
1593            Ok(child) => {
1594                let output = child.wait_with_output();
1595                flush_linked_file(&output, out_filename)?;
1596                return output;
1597            }
1598            Err(ref e) if command_line_too_big(e) => {
1599                info!("command line to linker was too big: {}", e);
1600            }
1601            Err(e) => return Err(e),
1602        }
1603    }
1604
1605    info!("falling back to passing arguments to linker via an @-file");
1606    let mut cmd2 = cmd.clone();
1607    let mut args = String::new();
1608    for arg in cmd2.take_args() {
1609        args.push_str(
1610            &Escape {
1611                arg: arg.to_str().unwrap(),
1612                // Windows-style escaping for @-files is used by
1613                // - all linkers targeting MSVC-like targets, including LLD
1614                // - all LLD flavors running on Windows hosts
1615                // С/С++ compilers use Posix-style escaping (except clang-cl, which we do not use).
1616                is_like_msvc: sess.target.is_like_msvc
1617                    || (cfg!(windows) && flavor.uses_lld() && !flavor.uses_cc()),
1618            }
1619            .to_string(),
1620        );
1621        args.push('\n');
1622    }
1623    let file = tmpdir.join("linker-arguments");
1624    let bytes = if sess.target.is_like_msvc {
1625        let mut out = Vec::with_capacity((1 + args.len()) * 2);
1626        // start the stream with a UTF-16 BOM
1627        for c in std::iter::once(0xFEFF).chain(args.encode_utf16()) {
1628            // encode in little endian
1629            out.push(c as u8);
1630            out.push((c >> 8) as u8);
1631        }
1632        out
1633    } else {
1634        args.into_bytes()
1635    };
1636    fs::write(&file, &bytes)?;
1637    cmd2.arg(format!("@{}", file.display()));
1638    info!("invoking linker {:?}", cmd2);
1639    let output = cmd2.output();
1640    flush_linked_file(&output, out_filename)?;
1641    return output;
1642
1643    #[cfg(not(windows))]
1644    fn flush_linked_file(_: &io::Result<Output>, _: &Path) -> io::Result<()> {
1645        Ok(())
1646    }
1647
1648    #[cfg(windows)]
1649    fn flush_linked_file(
1650        command_output: &io::Result<Output>,
1651        out_filename: &Path,
1652    ) -> io::Result<()> {
1653        // On Windows, under high I/O load, output buffers are sometimes not flushed,
1654        // even long after process exit, causing nasty, non-reproducible output bugs.
1655        //
1656        // File::sync_all() calls FlushFileBuffers() down the line, which solves the problem.
1657        //
1658        // А full writeup of the original Chrome bug can be found at
1659        // randomascii.wordpress.com/2018/02/25/compiler-bug-linker-bug-windows-kernel-bug/amp
1660
1661        if let &Ok(ref out) = command_output {
1662            if out.status.success() {
1663                if let Ok(of) = fs::OpenOptions::new().write(true).open(out_filename) {
1664                    of.sync_all()?;
1665                }
1666            }
1667        }
1668
1669        Ok(())
1670    }
1671
1672    #[cfg(unix)]
1673    fn command_line_too_big(err: &io::Error) -> bool {
1674        err.raw_os_error() == Some(::libc::E2BIG)
1675    }
1676
1677    #[cfg(windows)]
1678    fn command_line_too_big(err: &io::Error) -> bool {
1679        const ERROR_FILENAME_EXCED_RANGE: i32 = 206;
1680        err.raw_os_error() == Some(ERROR_FILENAME_EXCED_RANGE)
1681    }
1682
1683    #[cfg(not(any(unix, windows)))]
1684    fn command_line_too_big(_: &io::Error) -> bool {
1685        false
1686    }
1687
1688    struct Escape<'a> {
1689        arg: &'a str,
1690        is_like_msvc: bool,
1691    }
1692
1693    impl<'a> fmt::Display for Escape<'a> {
1694        fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1695            if self.is_like_msvc {
1696                // This is "documented" at
1697                // https://docs.microsoft.com/en-us/cpp/build/reference/at-specify-a-linker-response-file
1698                //
1699                // Unfortunately there's not a great specification of the
1700                // syntax I could find online (at least) but some local
1701                // testing showed that this seemed sufficient-ish to catch
1702                // at least a few edge cases.
1703                write!(f, "\"")?;
1704                for c in self.arg.chars() {
1705                    match c {
1706                        '"' => write!(f, "\\{c}")?,
1707                        c => write!(f, "{c}")?,
1708                    }
1709                }
1710                write!(f, "\"")?;
1711            } else {
1712                // This is documented at https://linux.die.net/man/1/ld, namely:
1713                //
1714                // > Options in file are separated by whitespace. A whitespace
1715                // > character may be included in an option by surrounding the
1716                // > entire option in either single or double quotes. Any
1717                // > character (including a backslash) may be included by
1718                // > prefixing the character to be included with a backslash.
1719                //
1720                // We put an argument on each line, so all we need to do is
1721                // ensure the line is interpreted as one whole argument.
1722                for c in self.arg.chars() {
1723                    match c {
1724                        '\\' | ' ' => write!(f, "\\{c}")?,
1725                        c => write!(f, "{c}")?,
1726                    }
1727                }
1728            }
1729            Ok(())
1730        }
1731    }
1732}
1733
1734fn link_output_kind(sess: &Session, crate_type: CrateType) -> LinkOutputKind {
1735    let kind = match (crate_type, sess.crt_static(Some(crate_type)), sess.relocation_model()) {
1736        (CrateType::Executable, _, _) if sess.is_wasi_reactor() => LinkOutputKind::WasiReactorExe,
1737        (CrateType::Executable, false, RelocModel::Pic | RelocModel::Pie) => {
1738            LinkOutputKind::DynamicPicExe
1739        }
1740        (CrateType::Executable, false, _) => LinkOutputKind::DynamicNoPicExe,
1741        (CrateType::Executable, true, RelocModel::Pic | RelocModel::Pie) => {
1742            LinkOutputKind::StaticPicExe
1743        }
1744        (CrateType::Executable, true, _) => LinkOutputKind::StaticNoPicExe,
1745        (_, true, _) => LinkOutputKind::StaticDylib,
1746        (_, false, _) => LinkOutputKind::DynamicDylib,
1747    };
1748
1749    // Adjust the output kind to target capabilities.
1750    let opts = &sess.target;
1751    let pic_exe_supported = opts.position_independent_executables;
1752    let static_pic_exe_supported = opts.static_position_independent_executables;
1753    let static_dylib_supported = opts.crt_static_allows_dylibs;
1754    match kind {
1755        LinkOutputKind::DynamicPicExe if !pic_exe_supported => LinkOutputKind::DynamicNoPicExe,
1756        LinkOutputKind::StaticPicExe if !static_pic_exe_supported => LinkOutputKind::StaticNoPicExe,
1757        LinkOutputKind::StaticDylib if !static_dylib_supported => LinkOutputKind::DynamicDylib,
1758        _ => kind,
1759    }
1760}
1761
1762// Returns true if linker is located within sysroot
1763fn detect_self_contained_mingw(sess: &Session, linker: &Path) -> bool {
1764    // Assume `-C linker=rust-lld` as self-contained mode
1765    if linker == Path::new("rust-lld") {
1766        return true;
1767    }
1768    let linker_with_extension = if cfg!(windows) && linker.extension().is_none() {
1769        linker.with_extension("exe")
1770    } else {
1771        linker.to_path_buf()
1772    };
1773    for dir in env::split_paths(&env::var_os("PATH").unwrap_or_default()) {
1774        let full_path = dir.join(&linker_with_extension);
1775        // If linker comes from sysroot assume self-contained mode
1776        if full_path.is_file() && !full_path.starts_with(sess.opts.sysroot.path()) {
1777            return false;
1778        }
1779    }
1780    true
1781}
1782
1783/// Various toolchain components used during linking are used from rustc distribution
1784/// instead of being found somewhere on the host system.
1785/// We only provide such support for a very limited number of targets.
1786fn self_contained_components(
1787    sess: &Session,
1788    crate_type: CrateType,
1789    linker: &Path,
1790) -> LinkSelfContainedComponents {
1791    // Turn the backwards compatible bool values for `self_contained` into fully inferred
1792    // `LinkSelfContainedComponents`.
1793    let self_contained =
1794        if let Some(self_contained) = sess.opts.cg.link_self_contained.explicitly_set {
1795            // Emit an error if the user requested self-contained mode on the CLI but the target
1796            // explicitly refuses it.
1797            if sess.target.link_self_contained.is_disabled() {
1798                sess.dcx().emit_err(errors::UnsupportedLinkSelfContained);
1799            }
1800            self_contained
1801        } else {
1802            match sess.target.link_self_contained {
1803                LinkSelfContainedDefault::False => false,
1804                LinkSelfContainedDefault::True => true,
1805
1806                LinkSelfContainedDefault::WithComponents(components) => {
1807                    // For target specs with explicitly enabled components, we can return them
1808                    // directly.
1809                    return components;
1810                }
1811
1812                // FIXME: Find a better heuristic for "native musl toolchain is available",
1813                // based on host and linker path, for example.
1814                // (https://github.com/rust-lang/rust/pull/71769#issuecomment-626330237).
1815                LinkSelfContainedDefault::InferredForMusl => sess.crt_static(Some(crate_type)),
1816                LinkSelfContainedDefault::InferredForMingw => {
1817                    sess.host == sess.target
1818                        && sess.target.vendor != "uwp"
1819                        && detect_self_contained_mingw(sess, linker)
1820                }
1821            }
1822        };
1823    if self_contained {
1824        LinkSelfContainedComponents::all()
1825    } else {
1826        LinkSelfContainedComponents::empty()
1827    }
1828}
1829
1830/// Add pre-link object files defined by the target spec.
1831fn add_pre_link_objects(
1832    cmd: &mut dyn Linker,
1833    sess: &Session,
1834    flavor: LinkerFlavor,
1835    link_output_kind: LinkOutputKind,
1836    self_contained: bool,
1837) {
1838    // FIXME: we are currently missing some infra here (per-linker-flavor CRT objects),
1839    // so Fuchsia has to be special-cased.
1840    let opts = &sess.target;
1841    let empty = Default::default();
1842    let objects = if self_contained {
1843        &opts.pre_link_objects_self_contained
1844    } else if !(sess.target.os == "fuchsia" && matches!(flavor, LinkerFlavor::Gnu(Cc::Yes, _))) {
1845        &opts.pre_link_objects
1846    } else {
1847        &empty
1848    };
1849    for obj in objects.get(&link_output_kind).iter().copied().flatten() {
1850        cmd.add_object(&get_object_file_path(sess, obj, self_contained));
1851    }
1852}
1853
1854/// Add post-link object files defined by the target spec.
1855fn add_post_link_objects(
1856    cmd: &mut dyn Linker,
1857    sess: &Session,
1858    link_output_kind: LinkOutputKind,
1859    self_contained: bool,
1860) {
1861    let objects = if self_contained {
1862        &sess.target.post_link_objects_self_contained
1863    } else {
1864        &sess.target.post_link_objects
1865    };
1866    for obj in objects.get(&link_output_kind).iter().copied().flatten() {
1867        cmd.add_object(&get_object_file_path(sess, obj, self_contained));
1868    }
1869}
1870
1871/// Add arbitrary "pre-link" args defined by the target spec or from command line.
1872/// FIXME: Determine where exactly these args need to be inserted.
1873fn add_pre_link_args(cmd: &mut dyn Linker, sess: &Session, flavor: LinkerFlavor) {
1874    if let Some(args) = sess.target.pre_link_args.get(&flavor) {
1875        cmd.verbatim_args(args.iter().map(Deref::deref));
1876    }
1877
1878    cmd.verbatim_args(&sess.opts.unstable_opts.pre_link_args);
1879}
1880
1881/// Add a link script embedded in the target, if applicable.
1882fn add_link_script(cmd: &mut dyn Linker, sess: &Session, tmpdir: &Path, crate_type: CrateType) {
1883    match (crate_type, &sess.target.link_script) {
1884        (CrateType::Cdylib | CrateType::Executable, Some(script)) => {
1885            if !sess.target.linker_flavor.is_gnu() {
1886                sess.dcx().emit_fatal(errors::LinkScriptUnavailable);
1887            }
1888
1889            let file_name = ["rustc", &sess.target.llvm_target, "linkfile.ld"].join("-");
1890
1891            let path = tmpdir.join(file_name);
1892            if let Err(error) = fs::write(&path, script.as_ref()) {
1893                sess.dcx().emit_fatal(errors::LinkScriptWriteFailure { path, error });
1894            }
1895
1896            cmd.link_arg("--script").link_arg(path);
1897        }
1898        _ => {}
1899    }
1900}
1901
1902/// Add arbitrary "user defined" args defined from command line.
1903/// FIXME: Determine where exactly these args need to be inserted.
1904fn add_user_defined_link_args(cmd: &mut dyn Linker, sess: &Session) {
1905    cmd.verbatim_args(&sess.opts.cg.link_args);
1906}
1907
1908/// Add arbitrary "late link" args defined by the target spec.
1909/// FIXME: Determine where exactly these args need to be inserted.
1910fn add_late_link_args(
1911    cmd: &mut dyn Linker,
1912    sess: &Session,
1913    flavor: LinkerFlavor,
1914    crate_type: CrateType,
1915    codegen_results: &CodegenResults,
1916) {
1917    let any_dynamic_crate = crate_type == CrateType::Dylib
1918        || crate_type == CrateType::Sdylib
1919        || codegen_results.crate_info.dependency_formats.iter().any(|(ty, list)| {
1920            *ty == crate_type && list.iter().any(|&linkage| linkage == Linkage::Dynamic)
1921        });
1922    if any_dynamic_crate {
1923        if let Some(args) = sess.target.late_link_args_dynamic.get(&flavor) {
1924            cmd.verbatim_args(args.iter().map(Deref::deref));
1925        }
1926    } else if let Some(args) = sess.target.late_link_args_static.get(&flavor) {
1927        cmd.verbatim_args(args.iter().map(Deref::deref));
1928    }
1929    if let Some(args) = sess.target.late_link_args.get(&flavor) {
1930        cmd.verbatim_args(args.iter().map(Deref::deref));
1931    }
1932}
1933
1934/// Add arbitrary "post-link" args defined by the target spec.
1935/// FIXME: Determine where exactly these args need to be inserted.
1936fn add_post_link_args(cmd: &mut dyn Linker, sess: &Session, flavor: LinkerFlavor) {
1937    if let Some(args) = sess.target.post_link_args.get(&flavor) {
1938        cmd.verbatim_args(args.iter().map(Deref::deref));
1939    }
1940}
1941
1942/// Add a synthetic object file that contains reference to all symbols that we want to expose to
1943/// the linker.
1944///
1945/// Background: we implement rlibs as static library (archives). Linkers treat archives
1946/// differently from object files: all object files participate in linking, while archives will
1947/// only participate in linking if they can satisfy at least one undefined reference (version
1948/// scripts doesn't count). This causes `#[no_mangle]` or `#[used]` items to be ignored by the
1949/// linker, and since they never participate in the linking, using `KEEP` in the linker scripts
1950/// can't keep them either. This causes #47384.
1951///
1952/// To keep them around, we could use `--whole-archive`, `-force_load` and equivalents to force rlib
1953/// to participate in linking like object files, but this proves to be expensive (#93791). Therefore
1954/// we instead just introduce an undefined reference to them. This could be done by `-u` command
1955/// line option to the linker or `EXTERN(...)` in linker scripts, however they does not only
1956/// introduce an undefined reference, but also make them the GC roots, preventing `--gc-sections`
1957/// from removing them, and this is especially problematic for embedded programming where every
1958/// byte counts.
1959///
1960/// This method creates a synthetic object file, which contains undefined references to all symbols
1961/// that are necessary for the linking. They are only present in symbol table but not actually
1962/// used in any sections, so the linker will therefore pick relevant rlibs for linking, but
1963/// unused `#[no_mangle]` or `#[used(compiler)]` can still be discard by GC sections.
1964///
1965/// There's a few internal crates in the standard library (aka libcore and
1966/// libstd) which actually have a circular dependence upon one another. This
1967/// currently arises through "weak lang items" where libcore requires things
1968/// like `rust_begin_unwind` but libstd ends up defining it. To get this
1969/// circular dependence to work correctly we declare some of these things
1970/// in this synthetic object.
1971fn add_linked_symbol_object(
1972    cmd: &mut dyn Linker,
1973    sess: &Session,
1974    tmpdir: &Path,
1975    symbols: &[(String, SymbolExportKind)],
1976) {
1977    if symbols.is_empty() {
1978        return;
1979    }
1980
1981    let Some(mut file) = super::metadata::create_object_file(sess) else {
1982        return;
1983    };
1984
1985    if file.format() == object::BinaryFormat::Coff {
1986        // NOTE(nbdd0121): MSVC will hang if the input object file contains no sections,
1987        // so add an empty section.
1988        file.add_section(Vec::new(), ".text".into(), object::SectionKind::Text);
1989
1990        // We handle the name decoration of COFF targets in `symbol_export.rs`, so disable the
1991        // default mangler in `object` crate.
1992        file.set_mangling(object::write::Mangling::None);
1993    }
1994
1995    if file.format() == object::BinaryFormat::MachO {
1996        // Divide up the sections into sub-sections via symbols for dead code stripping.
1997        // Without this flag, unused `#[no_mangle]` or `#[used(compiler)]` cannot be
1998        // discard on MachO targets.
1999        file.set_subsections_via_symbols();
2000    }
2001
2002    // ld64 requires a relocation to load undefined symbols, see below.
2003    // Not strictly needed if linking with lld, but might as well do it there too.
2004    let ld64_section_helper = if file.format() == object::BinaryFormat::MachO {
2005        Some(file.add_section(
2006            file.segment_name(object::write::StandardSegment::Data).to_vec(),
2007            "__data".into(),
2008            object::SectionKind::Data,
2009        ))
2010    } else {
2011        None
2012    };
2013
2014    for (sym, kind) in symbols.iter() {
2015        let symbol = file.add_symbol(object::write::Symbol {
2016            name: sym.clone().into(),
2017            value: 0,
2018            size: 0,
2019            kind: match kind {
2020                SymbolExportKind::Text => object::SymbolKind::Text,
2021                SymbolExportKind::Data => object::SymbolKind::Data,
2022                SymbolExportKind::Tls => object::SymbolKind::Tls,
2023            },
2024            scope: object::SymbolScope::Unknown,
2025            weak: false,
2026            section: object::write::SymbolSection::Undefined,
2027            flags: object::SymbolFlags::None,
2028        });
2029
2030        // The linker shipped with Apple's Xcode, ld64, works a bit differently from other linkers.
2031        //
2032        // Code-wise, the relevant parts of ld64 are roughly:
2033        // 1. Find the `ArchiveLoadMode` based on commandline options, default to `parseObjects`.
2034        //    https://github.com/apple-oss-distributions/ld64/blob/ld64-954.16/src/ld/Options.cpp#L924-L932
2035        //    https://github.com/apple-oss-distributions/ld64/blob/ld64-954.16/src/ld/Options.h#L55
2036        //
2037        // 2. Read the archive table of contents (__.SYMDEF file).
2038        //    https://github.com/apple-oss-distributions/ld64/blob/ld64-954.16/src/ld/parsers/archive_file.cpp#L294-L325
2039        //
2040        // 3. Begin linking by loading "atoms" from input files.
2041        //    https://github.com/apple-oss-distributions/ld64/blob/ld64-954.16/doc/design/linker.html
2042        //    https://github.com/apple-oss-distributions/ld64/blob/ld64-954.16/src/ld/InputFiles.cpp#L1349
2043        //
2044        //   a. Directly specified object files (`.o`) are parsed immediately.
2045        //      https://github.com/apple-oss-distributions/ld64/blob/ld64-954.16/src/ld/parsers/macho_relocatable_file.cpp#L4611-L4627
2046        //
2047        //     - Undefined symbols are not atoms (`n_value > 0` denotes a common symbol).
2048        //       https://github.com/apple-oss-distributions/ld64/blob/ld64-954.16/src/ld/parsers/macho_relocatable_file.cpp#L2455-L2468
2049        //       https://maskray.me/blog/2022-02-06-all-about-common-symbols
2050        //
2051        //     - Relocations/fixups are atoms.
2052        //       https://github.com/apple-oss-distributions/ld64/blob/ce6341ae966b3451aa54eeb049f2be865afbd578/src/ld/parsers/macho_relocatable_file.cpp#L2088-L2114
2053        //
2054        //   b. Archives are not parsed yet.
2055        //      https://github.com/apple-oss-distributions/ld64/blob/ld64-954.16/src/ld/parsers/archive_file.cpp#L467-L577
2056        //
2057        // 4. When a symbol is needed by an atom, parse the object file that contains the symbol.
2058        //    https://github.com/apple-oss-distributions/ld64/blob/ld64-954.16/src/ld/InputFiles.cpp#L1417-L1491
2059        //    https://github.com/apple-oss-distributions/ld64/blob/ld64-954.16/src/ld/parsers/archive_file.cpp#L579-L597
2060        //
2061        // All of the steps above are fairly similar to other linkers, except that **it completely
2062        // ignores undefined symbols**.
2063        //
2064        // So to make this trick work on ld64, we need to do something else to load the relevant
2065        // object files. We do this by inserting a relocation (fixup) for each symbol.
2066        if let Some(section) = ld64_section_helper {
2067            apple::add_data_and_relocation(&mut file, section, symbol, &sess.target, *kind)
2068                .expect("failed adding relocation");
2069        }
2070    }
2071
2072    let path = tmpdir.join("symbols.o");
2073    let result = std::fs::write(&path, file.write().unwrap());
2074    if let Err(error) = result {
2075        sess.dcx().emit_fatal(errors::FailedToWrite { path, error });
2076    }
2077    cmd.add_object(&path);
2078}
2079
2080/// Add object files containing code from the current crate.
2081fn add_local_crate_regular_objects(cmd: &mut dyn Linker, codegen_results: &CodegenResults) {
2082    for obj in codegen_results.modules.iter().filter_map(|m| m.object.as_ref()) {
2083        cmd.add_object(obj);
2084    }
2085}
2086
2087/// Add object files for allocator code linked once for the whole crate tree.
2088fn add_local_crate_allocator_objects(
2089    cmd: &mut dyn Linker,
2090    codegen_results: &CodegenResults,
2091    crate_type: CrateType,
2092) {
2093    if needs_allocator_shim_for_linking(&codegen_results.crate_info.dependency_formats, crate_type)
2094    {
2095        if let Some(obj) = codegen_results.allocator_module.as_ref().and_then(|m| m.object.as_ref())
2096        {
2097            cmd.add_object(obj);
2098        }
2099    }
2100}
2101
2102/// Add object files containing metadata for the current crate.
2103fn add_local_crate_metadata_objects(
2104    cmd: &mut dyn Linker,
2105    sess: &Session,
2106    archive_builder_builder: &dyn ArchiveBuilderBuilder,
2107    crate_type: CrateType,
2108    tmpdir: &Path,
2109    codegen_results: &CodegenResults,
2110    metadata: &EncodedMetadata,
2111) {
2112    // When linking a dynamic library, we put the metadata into a section of the
2113    // executable. This metadata is in a separate object file from the main
2114    // object file, so we create and link it in here.
2115    if matches!(crate_type, CrateType::Dylib | CrateType::ProcMacro) {
2116        let data = archive_builder_builder.create_dylib_metadata_wrapper(
2117            sess,
2118            &metadata,
2119            &codegen_results.crate_info.metadata_symbol,
2120        );
2121        let obj = emit_wrapper_file(sess, &data, tmpdir, "rmeta.o");
2122
2123        cmd.add_object(&obj);
2124    }
2125}
2126
2127/// Add sysroot and other globally set directories to the directory search list.
2128fn add_library_search_dirs(
2129    cmd: &mut dyn Linker,
2130    sess: &Session,
2131    self_contained_components: LinkSelfContainedComponents,
2132    apple_sdk_root: Option<&Path>,
2133) {
2134    if !sess.opts.unstable_opts.link_native_libraries {
2135        return;
2136    }
2137
2138    let fallback = Some(NativeLibSearchFallback { self_contained_components, apple_sdk_root });
2139    let _ = walk_native_lib_search_dirs(sess, fallback, |dir, is_framework| {
2140        if is_framework {
2141            cmd.framework_path(dir);
2142        } else {
2143            cmd.include_path(&fix_windows_verbatim_for_gcc(dir));
2144        }
2145        ControlFlow::<()>::Continue(())
2146    });
2147}
2148
2149/// Add options making relocation sections in the produced ELF files read-only
2150/// and suppressing lazy binding.
2151fn add_relro_args(cmd: &mut dyn Linker, sess: &Session) {
2152    match sess.opts.cg.relro_level.unwrap_or(sess.target.relro_level) {
2153        RelroLevel::Full => cmd.full_relro(),
2154        RelroLevel::Partial => cmd.partial_relro(),
2155        RelroLevel::Off => cmd.no_relro(),
2156        RelroLevel::None => {}
2157    }
2158}
2159
2160/// Add library search paths used at runtime by dynamic linkers.
2161fn add_rpath_args(
2162    cmd: &mut dyn Linker,
2163    sess: &Session,
2164    codegen_results: &CodegenResults,
2165    out_filename: &Path,
2166) {
2167    if !sess.target.has_rpath {
2168        return;
2169    }
2170
2171    // FIXME (#2397): At some point we want to rpath our guesses as to
2172    // where extern libraries might live, based on the
2173    // add_lib_search_paths
2174    if sess.opts.cg.rpath {
2175        let libs = codegen_results
2176            .crate_info
2177            .used_crates
2178            .iter()
2179            .filter_map(|cnum| {
2180                codegen_results.crate_info.used_crate_source[cnum]
2181                    .dylib
2182                    .as_ref()
2183                    .map(|(path, _)| &**path)
2184            })
2185            .collect::<Vec<_>>();
2186        let rpath_config = RPathConfig {
2187            libs: &*libs,
2188            out_filename: out_filename.to_path_buf(),
2189            is_like_darwin: sess.target.is_like_darwin,
2190            linker_is_gnu: sess.target.linker_flavor.is_gnu(),
2191        };
2192        cmd.link_args(&rpath::get_rpath_linker_args(&rpath_config));
2193    }
2194}
2195
2196/// Produce the linker command line containing linker path and arguments.
2197///
2198/// When comments in the function say "order-(in)dependent" they mean order-dependence between
2199/// options and libraries/object files. For example `--whole-archive` (order-dependent) applies
2200/// to specific libraries passed after it, and `-o` (output file, order-independent) applies
2201/// to the linking process as a whole.
2202/// Order-independent options may still override each other in order-dependent fashion,
2203/// e.g `--foo=yes --foo=no` may be equivalent to `--foo=no`.
2204fn linker_with_args(
2205    path: &Path,
2206    flavor: LinkerFlavor,
2207    sess: &Session,
2208    archive_builder_builder: &dyn ArchiveBuilderBuilder,
2209    crate_type: CrateType,
2210    tmpdir: &Path,
2211    out_filename: &Path,
2212    codegen_results: &CodegenResults,
2213    metadata: &EncodedMetadata,
2214    self_contained_components: LinkSelfContainedComponents,
2215    codegen_backend: &'static str,
2216) -> Command {
2217    let self_contained_crt_objects = self_contained_components.is_crt_objects_enabled();
2218    let cmd = &mut *super::linker::get_linker(
2219        sess,
2220        path,
2221        flavor,
2222        self_contained_components.are_any_components_enabled(),
2223        &codegen_results.crate_info.target_cpu,
2224        codegen_backend,
2225    );
2226    let link_output_kind = link_output_kind(sess, crate_type);
2227
2228    // ------------ Early order-dependent options ------------
2229
2230    // If we're building something like a dynamic library then some platforms
2231    // need to make sure that all symbols are exported correctly from the
2232    // dynamic library.
2233    // Must be passed before any libraries to prevent the symbols to export from being thrown away,
2234    // at least on some platforms (e.g. windows-gnu).
2235    cmd.export_symbols(
2236        tmpdir,
2237        crate_type,
2238        &codegen_results.crate_info.exported_symbols[&crate_type],
2239    );
2240
2241    // Can be used for adding custom CRT objects or overriding order-dependent options above.
2242    // FIXME: In practice built-in target specs use this for arbitrary order-independent options,
2243    // introduce a target spec option for order-independent linker options and migrate built-in
2244    // specs to it.
2245    add_pre_link_args(cmd, sess, flavor);
2246
2247    // ------------ Object code and libraries, order-dependent ------------
2248
2249    // Pre-link CRT objects.
2250    add_pre_link_objects(cmd, sess, flavor, link_output_kind, self_contained_crt_objects);
2251
2252    add_linked_symbol_object(
2253        cmd,
2254        sess,
2255        tmpdir,
2256        &codegen_results.crate_info.linked_symbols[&crate_type],
2257    );
2258
2259    // Sanitizer libraries.
2260    add_sanitizer_libraries(sess, flavor, crate_type, cmd);
2261
2262    // Object code from the current crate.
2263    // Take careful note of the ordering of the arguments we pass to the linker
2264    // here. Linkers will assume that things on the left depend on things to the
2265    // right. Things on the right cannot depend on things on the left. This is
2266    // all formally implemented in terms of resolving symbols (libs on the right
2267    // resolve unknown symbols of libs on the left, but not vice versa).
2268    //
2269    // For this reason, we have organized the arguments we pass to the linker as
2270    // such:
2271    //
2272    // 1. The local object that LLVM just generated
2273    // 2. Local native libraries
2274    // 3. Upstream rust libraries
2275    // 4. Upstream native libraries
2276    //
2277    // The rationale behind this ordering is that those items lower down in the
2278    // list can't depend on items higher up in the list. For example nothing can
2279    // depend on what we just generated (e.g., that'd be a circular dependency).
2280    // Upstream rust libraries are not supposed to depend on our local native
2281    // libraries as that would violate the structure of the DAG, in that
2282    // scenario they are required to link to them as well in a shared fashion.
2283    //
2284    // Note that upstream rust libraries may contain native dependencies as
2285    // well, but they also can't depend on what we just started to add to the
2286    // link line. And finally upstream native libraries can't depend on anything
2287    // in this DAG so far because they can only depend on other native libraries
2288    // and such dependencies are also required to be specified.
2289    add_local_crate_regular_objects(cmd, codegen_results);
2290    add_local_crate_metadata_objects(
2291        cmd,
2292        sess,
2293        archive_builder_builder,
2294        crate_type,
2295        tmpdir,
2296        codegen_results,
2297        metadata,
2298    );
2299    add_local_crate_allocator_objects(cmd, codegen_results, crate_type);
2300
2301    // Avoid linking to dynamic libraries unless they satisfy some undefined symbols
2302    // at the point at which they are specified on the command line.
2303    // Must be passed before any (dynamic) libraries to have effect on them.
2304    // On Solaris-like systems, `-z ignore` acts as both `--as-needed` and `--gc-sections`
2305    // so it will ignore unreferenced ELF sections from relocatable objects.
2306    // For that reason, we put this flag after metadata objects as they would otherwise be removed.
2307    // FIXME: Support more fine-grained dead code removal on Solaris/illumos
2308    // and move this option back to the top.
2309    cmd.add_as_needed();
2310
2311    // Local native libraries of all kinds.
2312    add_local_native_libraries(
2313        cmd,
2314        sess,
2315        archive_builder_builder,
2316        codegen_results,
2317        tmpdir,
2318        link_output_kind,
2319    );
2320
2321    // Upstream rust crates and their non-dynamic native libraries.
2322    add_upstream_rust_crates(
2323        cmd,
2324        sess,
2325        archive_builder_builder,
2326        codegen_results,
2327        crate_type,
2328        tmpdir,
2329        link_output_kind,
2330    );
2331
2332    // Dynamic native libraries from upstream crates.
2333    add_upstream_native_libraries(
2334        cmd,
2335        sess,
2336        archive_builder_builder,
2337        codegen_results,
2338        tmpdir,
2339        link_output_kind,
2340    );
2341
2342    // Raw-dylibs from all crates.
2343    let raw_dylib_dir = tmpdir.join("raw-dylibs");
2344    if sess.target.binary_format == BinaryFormat::Elf {
2345        // On ELF we can't pass the raw-dylibs stubs to the linker as a path,
2346        // instead we need to pass them via -l. To find the stub, we need to add
2347        // the directory of the stub to the linker search path.
2348        // We make an extra directory for this to avoid polluting the search path.
2349        if let Err(error) = fs::create_dir(&raw_dylib_dir) {
2350            sess.dcx().emit_fatal(errors::CreateTempDir { error })
2351        }
2352        cmd.include_path(&raw_dylib_dir);
2353    }
2354
2355    // Link with the import library generated for any raw-dylib functions.
2356    if sess.target.is_like_windows {
2357        for output_path in raw_dylib::create_raw_dylib_dll_import_libs(
2358            sess,
2359            archive_builder_builder,
2360            codegen_results.crate_info.used_libraries.iter(),
2361            tmpdir,
2362            true,
2363        ) {
2364            cmd.add_object(&output_path);
2365        }
2366    } else {
2367        for (link_path, as_needed) in raw_dylib::create_raw_dylib_elf_stub_shared_objects(
2368            sess,
2369            codegen_results.crate_info.used_libraries.iter(),
2370            &raw_dylib_dir,
2371        ) {
2372            // Always use verbatim linkage, see comments in create_raw_dylib_elf_stub_shared_objects.
2373            cmd.link_dylib_by_name(&link_path, true, as_needed);
2374        }
2375    }
2376    // As with add_upstream_native_libraries, we need to add the upstream raw-dylib symbols in case
2377    // they are used within inlined functions or instantiated generic functions. We do this *after*
2378    // handling the raw-dylib symbols in the current crate to make sure that those are chosen first
2379    // by the linker.
2380    let dependency_linkage = codegen_results
2381        .crate_info
2382        .dependency_formats
2383        .get(&crate_type)
2384        .expect("failed to find crate type in dependency format list");
2385
2386    // We sort the libraries below
2387    #[allow(rustc::potential_query_instability)]
2388    let mut native_libraries_from_nonstatics = codegen_results
2389        .crate_info
2390        .native_libraries
2391        .iter()
2392        .filter_map(|(&cnum, libraries)| {
2393            if sess.target.is_like_windows {
2394                (dependency_linkage[cnum] != Linkage::Static).then_some(libraries)
2395            } else {
2396                Some(libraries)
2397            }
2398        })
2399        .flatten()
2400        .collect::<Vec<_>>();
2401    native_libraries_from_nonstatics.sort_unstable_by(|a, b| a.name.as_str().cmp(b.name.as_str()));
2402
2403    if sess.target.is_like_windows {
2404        for output_path in raw_dylib::create_raw_dylib_dll_import_libs(
2405            sess,
2406            archive_builder_builder,
2407            native_libraries_from_nonstatics,
2408            tmpdir,
2409            false,
2410        ) {
2411            cmd.add_object(&output_path);
2412        }
2413    } else {
2414        for (link_path, as_needed) in raw_dylib::create_raw_dylib_elf_stub_shared_objects(
2415            sess,
2416            native_libraries_from_nonstatics,
2417            &raw_dylib_dir,
2418        ) {
2419            // Always use verbatim linkage, see comments in create_raw_dylib_elf_stub_shared_objects.
2420            cmd.link_dylib_by_name(&link_path, true, as_needed);
2421        }
2422    }
2423
2424    // Library linking above uses some global state for things like `-Bstatic`/`-Bdynamic` to make
2425    // command line shorter, reset it to default here before adding more libraries.
2426    cmd.reset_per_library_state();
2427
2428    // FIXME: Built-in target specs occasionally use this for linking system libraries,
2429    // eliminate all such uses by migrating them to `#[link]` attributes in `lib(std,c,unwind)`
2430    // and remove the option.
2431    add_late_link_args(cmd, sess, flavor, crate_type, codegen_results);
2432
2433    // ------------ Arbitrary order-independent options ------------
2434
2435    // Add order-independent options determined by rustc from its compiler options,
2436    // target properties and source code.
2437    add_order_independent_options(
2438        cmd,
2439        sess,
2440        link_output_kind,
2441        self_contained_components,
2442        flavor,
2443        crate_type,
2444        codegen_results,
2445        out_filename,
2446        tmpdir,
2447    );
2448
2449    // Can be used for arbitrary order-independent options.
2450    // In practice may also be occasionally used for linking native libraries.
2451    // Passed after compiler-generated options to support manual overriding when necessary.
2452    add_user_defined_link_args(cmd, sess);
2453
2454    // ------------ Builtin configurable linker scripts ------------
2455    // The user's link args should be able to overwrite symbols in the compiler's
2456    // linker script that were weakly defined (i.e. defined with `PROVIDE()`). For this
2457    // to work correctly, the user needs to be able to specify linker arguments like
2458    // `--defsym` and `--script` *before* any builtin linker scripts are evaluated.
2459    add_link_script(cmd, sess, tmpdir, crate_type);
2460
2461    // ------------ Object code and libraries, order-dependent ------------
2462
2463    // Post-link CRT objects.
2464    add_post_link_objects(cmd, sess, link_output_kind, self_contained_crt_objects);
2465
2466    // ------------ Late order-dependent options ------------
2467
2468    // Doesn't really make sense.
2469    // FIXME: In practice built-in target specs use this for arbitrary order-independent options.
2470    // Introduce a target spec option for order-independent linker options, migrate built-in specs
2471    // to it and remove the option. Currently the last holdout is wasm32-unknown-emscripten.
2472    add_post_link_args(cmd, sess, flavor);
2473
2474    cmd.take_cmd()
2475}
2476
2477fn add_order_independent_options(
2478    cmd: &mut dyn Linker,
2479    sess: &Session,
2480    link_output_kind: LinkOutputKind,
2481    self_contained_components: LinkSelfContainedComponents,
2482    flavor: LinkerFlavor,
2483    crate_type: CrateType,
2484    codegen_results: &CodegenResults,
2485    out_filename: &Path,
2486    tmpdir: &Path,
2487) {
2488    // Take care of the flavors and CLI options requesting the `lld` linker.
2489    add_lld_args(cmd, sess, flavor, self_contained_components);
2490
2491    add_apple_link_args(cmd, sess, flavor);
2492
2493    let apple_sdk_root = add_apple_sdk(cmd, sess, flavor);
2494
2495    if sess.target.os == "fuchsia"
2496        && crate_type == CrateType::Executable
2497        && !matches!(flavor, LinkerFlavor::Gnu(Cc::Yes, _))
2498    {
2499        let prefix = if sess.opts.unstable_opts.sanitizer.contains(SanitizerSet::ADDRESS) {
2500            "asan/"
2501        } else {
2502            ""
2503        };
2504        cmd.link_arg(format!("--dynamic-linker={prefix}ld.so.1"));
2505    }
2506
2507    if sess.target.eh_frame_header {
2508        cmd.add_eh_frame_header();
2509    }
2510
2511    // Make the binary compatible with data execution prevention schemes.
2512    cmd.add_no_exec();
2513
2514    if self_contained_components.is_crt_objects_enabled() {
2515        cmd.no_crt_objects();
2516    }
2517
2518    if sess.target.os == "emscripten" {
2519        cmd.cc_arg(if sess.opts.unstable_opts.emscripten_wasm_eh {
2520            "-fwasm-exceptions"
2521        } else if sess.panic_strategy().unwinds() {
2522            "-sDISABLE_EXCEPTION_CATCHING=0"
2523        } else {
2524            "-sDISABLE_EXCEPTION_CATCHING=1"
2525        });
2526    }
2527
2528    if flavor == LinkerFlavor::Llbc {
2529        cmd.link_args(&[
2530            "--target",
2531            &versioned_llvm_target(sess),
2532            "--target-cpu",
2533            &codegen_results.crate_info.target_cpu,
2534        ]);
2535        if codegen_results.crate_info.target_features.len() > 0 {
2536            cmd.link_arg(&format!(
2537                "--target-feature={}",
2538                &codegen_results.crate_info.target_features.join(",")
2539            ));
2540        }
2541    } else if flavor == LinkerFlavor::Ptx {
2542        cmd.link_args(&["--fallback-arch", &codegen_results.crate_info.target_cpu]);
2543    } else if flavor == LinkerFlavor::Bpf {
2544        cmd.link_args(&["--cpu", &codegen_results.crate_info.target_cpu]);
2545        if let Some(feat) = [sess.opts.cg.target_feature.as_str(), &sess.target.options.features]
2546            .into_iter()
2547            .find(|feat| !feat.is_empty())
2548        {
2549            cmd.link_args(&["--cpu-features", feat]);
2550        }
2551    }
2552
2553    cmd.linker_plugin_lto();
2554
2555    add_library_search_dirs(cmd, sess, self_contained_components, apple_sdk_root.as_deref());
2556
2557    cmd.output_filename(out_filename);
2558
2559    if crate_type == CrateType::Executable
2560        && sess.target.is_like_windows
2561        && let Some(s) = &codegen_results.crate_info.windows_subsystem
2562    {
2563        cmd.subsystem(s);
2564    }
2565
2566    // Try to strip as much out of the generated object by removing unused
2567    // sections if possible. See more comments in linker.rs
2568    if !sess.link_dead_code() {
2569        // If PGO is enabled sometimes gc_sections will remove the profile data section
2570        // as it appears to be unused. This can then cause the PGO profile file to lose
2571        // some functions. If we are generating a profile we shouldn't strip those metadata
2572        // sections to ensure we have all the data for PGO.
2573        let keep_metadata =
2574            crate_type == CrateType::Dylib || sess.opts.cg.profile_generate.enabled();
2575        cmd.gc_sections(keep_metadata);
2576    }
2577
2578    cmd.set_output_kind(link_output_kind, crate_type, out_filename);
2579
2580    add_relro_args(cmd, sess);
2581
2582    // Pass optimization flags down to the linker.
2583    cmd.optimize();
2584
2585    // Gather the set of NatVis files, if any, and write them out to a temp directory.
2586    let natvis_visualizers = collect_natvis_visualizers(
2587        tmpdir,
2588        sess,
2589        &codegen_results.crate_info.local_crate_name,
2590        &codegen_results.crate_info.natvis_debugger_visualizers,
2591    );
2592
2593    // Pass debuginfo, NatVis debugger visualizers and strip flags down to the linker.
2594    cmd.debuginfo(sess.opts.cg.strip, &natvis_visualizers);
2595
2596    // We want to prevent the compiler from accidentally leaking in any system libraries,
2597    // so by default we tell linkers not to link to any default libraries.
2598    if !sess.opts.cg.default_linker_libraries && sess.target.no_default_libraries {
2599        cmd.no_default_libraries();
2600    }
2601
2602    if sess.opts.cg.profile_generate.enabled() || sess.instrument_coverage() {
2603        cmd.pgo_gen();
2604    }
2605
2606    if sess.opts.cg.control_flow_guard != CFGuard::Disabled {
2607        cmd.control_flow_guard();
2608    }
2609
2610    // OBJECT-FILES-NO, AUDIT-ORDER
2611    if sess.opts.unstable_opts.ehcont_guard {
2612        cmd.ehcont_guard();
2613    }
2614
2615    add_rpath_args(cmd, sess, codegen_results, out_filename);
2616}
2617
2618// Write the NatVis debugger visualizer files for each crate to the temp directory and gather the file paths.
2619fn collect_natvis_visualizers(
2620    tmpdir: &Path,
2621    sess: &Session,
2622    crate_name: &Symbol,
2623    natvis_debugger_visualizers: &BTreeSet<DebuggerVisualizerFile>,
2624) -> Vec<PathBuf> {
2625    let mut visualizer_paths = Vec::with_capacity(natvis_debugger_visualizers.len());
2626
2627    for (index, visualizer) in natvis_debugger_visualizers.iter().enumerate() {
2628        let visualizer_out_file = tmpdir.join(format!("{}-{}.natvis", crate_name.as_str(), index));
2629
2630        match fs::write(&visualizer_out_file, &visualizer.src) {
2631            Ok(()) => {
2632                visualizer_paths.push(visualizer_out_file);
2633            }
2634            Err(error) => {
2635                sess.dcx().emit_warn(errors::UnableToWriteDebuggerVisualizer {
2636                    path: visualizer_out_file,
2637                    error,
2638                });
2639            }
2640        };
2641    }
2642    visualizer_paths
2643}
2644
2645fn add_native_libs_from_crate(
2646    cmd: &mut dyn Linker,
2647    sess: &Session,
2648    archive_builder_builder: &dyn ArchiveBuilderBuilder,
2649    codegen_results: &CodegenResults,
2650    tmpdir: &Path,
2651    bundled_libs: &FxIndexSet<Symbol>,
2652    cnum: CrateNum,
2653    link_static: bool,
2654    link_dynamic: bool,
2655    link_output_kind: LinkOutputKind,
2656) {
2657    if !sess.opts.unstable_opts.link_native_libraries {
2658        // If `-Zlink-native-libraries=false` is set, then the assumption is that an
2659        // external build system already has the native dependencies defined, and it
2660        // will provide them to the linker itself.
2661        return;
2662    }
2663
2664    if link_static && cnum != LOCAL_CRATE && !bundled_libs.is_empty() {
2665        // If rlib contains native libs as archives, unpack them to tmpdir.
2666        let rlib = &codegen_results.crate_info.used_crate_source[&cnum].rlib.as_ref().unwrap().0;
2667        archive_builder_builder
2668            .extract_bundled_libs(rlib, tmpdir, bundled_libs)
2669            .unwrap_or_else(|e| sess.dcx().emit_fatal(e));
2670    }
2671
2672    let native_libs = match cnum {
2673        LOCAL_CRATE => &codegen_results.crate_info.used_libraries,
2674        _ => &codegen_results.crate_info.native_libraries[&cnum],
2675    };
2676
2677    let mut last = (None, NativeLibKind::Unspecified, false);
2678    for lib in native_libs {
2679        if !relevant_lib(sess, lib) {
2680            continue;
2681        }
2682
2683        // Skip if this library is the same as the last.
2684        last = if (Some(lib.name), lib.kind, lib.verbatim) == last {
2685            continue;
2686        } else {
2687            (Some(lib.name), lib.kind, lib.verbatim)
2688        };
2689
2690        let name = lib.name.as_str();
2691        let verbatim = lib.verbatim;
2692        match lib.kind {
2693            NativeLibKind::Static { bundle, whole_archive } => {
2694                if link_static {
2695                    let bundle = bundle.unwrap_or(true);
2696                    let whole_archive = whole_archive == Some(true);
2697                    if bundle && cnum != LOCAL_CRATE {
2698                        if let Some(filename) = lib.filename {
2699                            // If rlib contains native libs as archives, they are unpacked to tmpdir.
2700                            let path = tmpdir.join(filename.as_str());
2701                            cmd.link_staticlib_by_path(&path, whole_archive);
2702                        }
2703                    } else {
2704                        cmd.link_staticlib_by_name(name, verbatim, whole_archive);
2705                    }
2706                }
2707            }
2708            NativeLibKind::Dylib { as_needed } => {
2709                if link_dynamic {
2710                    cmd.link_dylib_by_name(name, verbatim, as_needed.unwrap_or(true))
2711                }
2712            }
2713            NativeLibKind::Unspecified => {
2714                // If we are generating a static binary, prefer static library when the
2715                // link kind is unspecified.
2716                if !link_output_kind.can_link_dylib() && !sess.target.crt_static_allows_dylibs {
2717                    if link_static {
2718                        cmd.link_staticlib_by_name(name, verbatim, false);
2719                    }
2720                } else if link_dynamic {
2721                    cmd.link_dylib_by_name(name, verbatim, true);
2722                }
2723            }
2724            NativeLibKind::Framework { as_needed } => {
2725                if link_dynamic {
2726                    cmd.link_framework_by_name(name, verbatim, as_needed.unwrap_or(true))
2727                }
2728            }
2729            NativeLibKind::RawDylib { as_needed: _ } => {
2730                // Handled separately in `linker_with_args`.
2731            }
2732            NativeLibKind::WasmImportModule => {}
2733            NativeLibKind::LinkArg => {
2734                if link_static {
2735                    if verbatim {
2736                        cmd.verbatim_arg(name);
2737                    } else {
2738                        cmd.link_arg(name);
2739                    }
2740                }
2741            }
2742        }
2743    }
2744}
2745
2746fn add_local_native_libraries(
2747    cmd: &mut dyn Linker,
2748    sess: &Session,
2749    archive_builder_builder: &dyn ArchiveBuilderBuilder,
2750    codegen_results: &CodegenResults,
2751    tmpdir: &Path,
2752    link_output_kind: LinkOutputKind,
2753) {
2754    // All static and dynamic native library dependencies are linked to the local crate.
2755    let link_static = true;
2756    let link_dynamic = true;
2757    add_native_libs_from_crate(
2758        cmd,
2759        sess,
2760        archive_builder_builder,
2761        codegen_results,
2762        tmpdir,
2763        &Default::default(),
2764        LOCAL_CRATE,
2765        link_static,
2766        link_dynamic,
2767        link_output_kind,
2768    );
2769}
2770
2771fn add_upstream_rust_crates(
2772    cmd: &mut dyn Linker,
2773    sess: &Session,
2774    archive_builder_builder: &dyn ArchiveBuilderBuilder,
2775    codegen_results: &CodegenResults,
2776    crate_type: CrateType,
2777    tmpdir: &Path,
2778    link_output_kind: LinkOutputKind,
2779) {
2780    // All of the heavy lifting has previously been accomplished by the
2781    // dependency_format module of the compiler. This is just crawling the
2782    // output of that module, adding crates as necessary.
2783    //
2784    // Linking to a rlib involves just passing it to the linker (the linker
2785    // will slurp up the object files inside), and linking to a dynamic library
2786    // involves just passing the right -l flag.
2787    let data = codegen_results
2788        .crate_info
2789        .dependency_formats
2790        .get(&crate_type)
2791        .expect("failed to find crate type in dependency format list");
2792
2793    if sess.target.is_like_aix {
2794        // Unlike ELF linkers, AIX doesn't feature `DT_SONAME` to override
2795        // the dependency name when outputting a shared library. Thus, `ld` will
2796        // use the full path to shared libraries as the dependency if passed it
2797        // by default unless `noipath` is passed.
2798        // https://www.ibm.com/docs/en/aix/7.3?topic=l-ld-command.
2799        cmd.link_or_cc_arg("-bnoipath");
2800    }
2801
2802    for &cnum in &codegen_results.crate_info.used_crates {
2803        // We may not pass all crates through to the linker. Some crates may appear statically in
2804        // an existing dylib, meaning we'll pick up all the symbols from the dylib.
2805        // We must always link crates `compiler_builtins` and `profiler_builtins` statically.
2806        // Even if they were already included into a dylib
2807        // (e.g. `libstd` when `-C prefer-dynamic` is used).
2808        // FIXME: `dependency_formats` can report `profiler_builtins` as `NotLinked` for some
2809        // reason, it shouldn't do that because `profiler_builtins` should indeed be linked.
2810        let linkage = data[cnum];
2811        let link_static_crate = linkage == Linkage::Static
2812            || (linkage == Linkage::IncludedFromDylib || linkage == Linkage::NotLinked)
2813                && (codegen_results.crate_info.compiler_builtins == Some(cnum)
2814                    || codegen_results.crate_info.profiler_runtime == Some(cnum));
2815
2816        let mut bundled_libs = Default::default();
2817        match linkage {
2818            Linkage::Static | Linkage::IncludedFromDylib | Linkage::NotLinked => {
2819                if link_static_crate {
2820                    bundled_libs = codegen_results.crate_info.native_libraries[&cnum]
2821                        .iter()
2822                        .filter_map(|lib| lib.filename)
2823                        .collect();
2824                    add_static_crate(
2825                        cmd,
2826                        sess,
2827                        archive_builder_builder,
2828                        codegen_results,
2829                        tmpdir,
2830                        cnum,
2831                        &bundled_libs,
2832                    );
2833                }
2834            }
2835            Linkage::Dynamic => {
2836                let src = &codegen_results.crate_info.used_crate_source[&cnum];
2837                add_dynamic_crate(cmd, sess, &src.dylib.as_ref().unwrap().0);
2838            }
2839        }
2840
2841        // Static libraries are linked for a subset of linked upstream crates.
2842        // 1. If the upstream crate is a directly linked rlib then we must link the native library
2843        // because the rlib is just an archive.
2844        // 2. If the upstream crate is a dylib or a rlib linked through dylib, then we do not link
2845        // the native library because it is already linked into the dylib, and even if
2846        // inline/const/generic functions from the dylib can refer to symbols from the native
2847        // library, those symbols should be exported and available from the dylib anyway.
2848        // 3. Libraries bundled into `(compiler,profiler)_builtins` are special, see above.
2849        let link_static = link_static_crate;
2850        // Dynamic libraries are not linked here, see the FIXME in `add_upstream_native_libraries`.
2851        let link_dynamic = false;
2852        add_native_libs_from_crate(
2853            cmd,
2854            sess,
2855            archive_builder_builder,
2856            codegen_results,
2857            tmpdir,
2858            &bundled_libs,
2859            cnum,
2860            link_static,
2861            link_dynamic,
2862            link_output_kind,
2863        );
2864    }
2865}
2866
2867fn add_upstream_native_libraries(
2868    cmd: &mut dyn Linker,
2869    sess: &Session,
2870    archive_builder_builder: &dyn ArchiveBuilderBuilder,
2871    codegen_results: &CodegenResults,
2872    tmpdir: &Path,
2873    link_output_kind: LinkOutputKind,
2874) {
2875    for &cnum in &codegen_results.crate_info.used_crates {
2876        // Static libraries are not linked here, they are linked in `add_upstream_rust_crates`.
2877        // FIXME: Merge this function to `add_upstream_rust_crates` so that all native libraries
2878        // are linked together with their respective upstream crates, and in their originally
2879        // specified order. This is slightly breaking due to our use of `--as-needed` (see crater
2880        // results in https://github.com/rust-lang/rust/pull/102832#issuecomment-1279772306).
2881        let link_static = false;
2882        // Dynamic libraries are linked for all linked upstream crates.
2883        // 1. If the upstream crate is a directly linked rlib then we must link the native library
2884        // because the rlib is just an archive.
2885        // 2. If the upstream crate is a dylib or a rlib linked through dylib, then we have to link
2886        // the native library too because inline/const/generic functions from the dylib can refer
2887        // to symbols from the native library, so the native library providing those symbols should
2888        // be available when linking our final binary.
2889        let link_dynamic = true;
2890        add_native_libs_from_crate(
2891            cmd,
2892            sess,
2893            archive_builder_builder,
2894            codegen_results,
2895            tmpdir,
2896            &Default::default(),
2897            cnum,
2898            link_static,
2899            link_dynamic,
2900            link_output_kind,
2901        );
2902    }
2903}
2904
2905// Rehome lib paths (which exclude the library file name) that point into the sysroot lib directory
2906// to be relative to the sysroot directory, which may be a relative path specified by the user.
2907//
2908// If the sysroot is a relative path, and the sysroot libs are specified as an absolute path, the
2909// linker command line can be non-deterministic due to the paths including the current working
2910// directory. The linker command line needs to be deterministic since it appears inside the PDB
2911// file generated by the MSVC linker. See https://github.com/rust-lang/rust/issues/112586.
2912//
2913// The returned path will always have `fix_windows_verbatim_for_gcc()` applied to it.
2914fn rehome_sysroot_lib_dir(sess: &Session, lib_dir: &Path) -> PathBuf {
2915    let sysroot_lib_path = &sess.target_tlib_path.dir;
2916    let canonical_sysroot_lib_path =
2917        { try_canonicalize(sysroot_lib_path).unwrap_or_else(|_| sysroot_lib_path.clone()) };
2918
2919    let canonical_lib_dir = try_canonicalize(lib_dir).unwrap_or_else(|_| lib_dir.to_path_buf());
2920    if canonical_lib_dir == canonical_sysroot_lib_path {
2921        // This path already had `fix_windows_verbatim_for_gcc()` applied if needed.
2922        sysroot_lib_path.clone()
2923    } else {
2924        fix_windows_verbatim_for_gcc(lib_dir)
2925    }
2926}
2927
2928fn rehome_lib_path(sess: &Session, path: &Path) -> PathBuf {
2929    if let Some(dir) = path.parent() {
2930        let file_name = path.file_name().expect("library path has no file name component");
2931        rehome_sysroot_lib_dir(sess, dir).join(file_name)
2932    } else {
2933        fix_windows_verbatim_for_gcc(path)
2934    }
2935}
2936
2937// Adds the static "rlib" versions of all crates to the command line.
2938// There's a bit of magic which happens here specifically related to LTO,
2939// namely that we remove upstream object files.
2940//
2941// When performing LTO, almost(*) all of the bytecode from the upstream
2942// libraries has already been included in our object file output. As a
2943// result we need to remove the object files in the upstream libraries so
2944// the linker doesn't try to include them twice (or whine about duplicate
2945// symbols). We must continue to include the rest of the rlib, however, as
2946// it may contain static native libraries which must be linked in.
2947//
2948// (*) Crates marked with `#![no_builtins]` don't participate in LTO and
2949// their bytecode wasn't included. The object files in those libraries must
2950// still be passed to the linker.
2951//
2952// Note, however, that if we're not doing LTO we can just pass the rlib
2953// blindly to the linker (fast) because it's fine if it's not actually
2954// included as we're at the end of the dependency chain.
2955fn add_static_crate(
2956    cmd: &mut dyn Linker,
2957    sess: &Session,
2958    archive_builder_builder: &dyn ArchiveBuilderBuilder,
2959    codegen_results: &CodegenResults,
2960    tmpdir: &Path,
2961    cnum: CrateNum,
2962    bundled_lib_file_names: &FxIndexSet<Symbol>,
2963) {
2964    let src = &codegen_results.crate_info.used_crate_source[&cnum];
2965    let cratepath = &src.rlib.as_ref().unwrap().0;
2966
2967    let mut link_upstream =
2968        |path: &Path| cmd.link_staticlib_by_path(&rehome_lib_path(sess, path), false);
2969
2970    if !are_upstream_rust_objects_already_included(sess)
2971        || ignored_for_lto(sess, &codegen_results.crate_info, cnum)
2972    {
2973        link_upstream(cratepath);
2974        return;
2975    }
2976
2977    let dst = tmpdir.join(cratepath.file_name().unwrap());
2978    let name = cratepath.file_name().unwrap().to_str().unwrap();
2979    let name = &name[3..name.len() - 5]; // chop off lib/.rlib
2980    let bundled_lib_file_names = bundled_lib_file_names.clone();
2981
2982    sess.prof.generic_activity_with_arg("link_altering_rlib", name).run(|| {
2983        let canonical_name = name.replace('-', "_");
2984        let upstream_rust_objects_already_included =
2985            are_upstream_rust_objects_already_included(sess);
2986        let is_builtins =
2987            sess.target.no_builtins || !codegen_results.crate_info.is_no_builtins.contains(&cnum);
2988
2989        let mut archive = archive_builder_builder.new_archive_builder(sess);
2990        if let Err(error) = archive.add_archive(
2991            cratepath,
2992            Box::new(move |f| {
2993                if f == METADATA_FILENAME {
2994                    return true;
2995                }
2996
2997                let canonical = f.replace('-', "_");
2998
2999                let is_rust_object =
3000                    canonical.starts_with(&canonical_name) && looks_like_rust_object_file(f);
3001
3002                // If we're performing LTO and this is a rust-generated object
3003                // file, then we don't need the object file as it's part of the
3004                // LTO module. Note that `#![no_builtins]` is excluded from LTO,
3005                // though, so we let that object file slide.
3006                if upstream_rust_objects_already_included && is_rust_object && is_builtins {
3007                    return true;
3008                }
3009
3010                // We skip native libraries because:
3011                // 1. This native libraries won't be used from the generated rlib,
3012                //    so we can throw them away to avoid the copying work.
3013                // 2. We can't allow it to be a single remaining entry in archive
3014                //    as some linkers may complain on that.
3015                if bundled_lib_file_names.contains(&Symbol::intern(f)) {
3016                    return true;
3017                }
3018
3019                false
3020            }),
3021        ) {
3022            sess.dcx()
3023                .emit_fatal(errors::RlibArchiveBuildFailure { path: cratepath.clone(), error });
3024        }
3025        if archive.build(&dst) {
3026            link_upstream(&dst);
3027        }
3028    });
3029}
3030
3031// Same thing as above, but for dynamic crates instead of static crates.
3032fn add_dynamic_crate(cmd: &mut dyn Linker, sess: &Session, cratepath: &Path) {
3033    cmd.link_dylib_by_path(&rehome_lib_path(sess, cratepath), true);
3034}
3035
3036fn relevant_lib(sess: &Session, lib: &NativeLib) -> bool {
3037    match lib.cfg {
3038        Some(ref cfg) => {
3039            eval_config_entry(sess, cfg, CRATE_NODE_ID, None, ShouldEmit::ErrorsAndLints).as_bool()
3040        }
3041        None => true,
3042    }
3043}
3044
3045pub(crate) fn are_upstream_rust_objects_already_included(sess: &Session) -> bool {
3046    match sess.lto() {
3047        config::Lto::Fat => true,
3048        config::Lto::Thin => {
3049            // If we defer LTO to the linker, we haven't run LTO ourselves, so
3050            // any upstream object files have not been copied yet.
3051            !sess.opts.cg.linker_plugin_lto.enabled()
3052        }
3053        config::Lto::No | config::Lto::ThinLocal => false,
3054    }
3055}
3056
3057/// We need to communicate five things to the linker on Apple/Darwin targets:
3058/// - The architecture.
3059/// - The operating system (and that it's an Apple platform).
3060/// - The environment.
3061/// - The deployment target.
3062/// - The SDK version.
3063fn add_apple_link_args(cmd: &mut dyn Linker, sess: &Session, flavor: LinkerFlavor) {
3064    if !sess.target.is_like_darwin {
3065        return;
3066    }
3067    let LinkerFlavor::Darwin(cc, _) = flavor else {
3068        return;
3069    };
3070
3071    // `sess.target.arch` (`target_arch`) is not detailed enough.
3072    let llvm_arch = sess.target.llvm_target.split_once('-').expect("LLVM target must have arch").0;
3073    let target_os = &*sess.target.os;
3074    let target_env = &*sess.target.env;
3075
3076    // The architecture name to forward to the linker.
3077    //
3078    // Supported architecture names can be found in the source:
3079    // https://github.com/apple-oss-distributions/ld64/blob/ld64-951.9/src/abstraction/MachOFileAbstraction.hpp#L578-L648
3080    //
3081    // Intentionally verbose to ensure that the list always matches correctly
3082    // with the list in the source above.
3083    let ld64_arch = match llvm_arch {
3084        "armv7k" => "armv7k",
3085        "armv7s" => "armv7s",
3086        "arm64" => "arm64",
3087        "arm64e" => "arm64e",
3088        "arm64_32" => "arm64_32",
3089        // ld64 doesn't understand i686, so fall back to i386 instead.
3090        //
3091        // Same story when linking with cc, since that ends up invoking ld64.
3092        "i386" | "i686" => "i386",
3093        "x86_64" => "x86_64",
3094        "x86_64h" => "x86_64h",
3095        _ => bug!("unsupported architecture in Apple target: {}", sess.target.llvm_target),
3096    };
3097
3098    if cc == Cc::No {
3099        // From the man page for ld64 (`man ld`):
3100        // > The linker accepts universal (multiple-architecture) input files,
3101        // > but always creates a "thin" (single-architecture), standard
3102        // > Mach-O output file. The architecture for the output file is
3103        // > specified using the -arch option.
3104        //
3105        // The linker has heuristics to determine the desired architecture,
3106        // but to be safe, and to avoid a warning, we set the architecture
3107        // explicitly.
3108        cmd.link_args(&["-arch", ld64_arch]);
3109
3110        // Man page says that ld64 supports the following platform names:
3111        // > - macos
3112        // > - ios
3113        // > - tvos
3114        // > - watchos
3115        // > - bridgeos
3116        // > - visionos
3117        // > - xros
3118        // > - mac-catalyst
3119        // > - ios-simulator
3120        // > - tvos-simulator
3121        // > - watchos-simulator
3122        // > - visionos-simulator
3123        // > - xros-simulator
3124        // > - driverkit
3125        let platform_name = match (target_os, target_env) {
3126            (os, "") => os,
3127            ("ios", "macabi") => "mac-catalyst",
3128            ("ios", "sim") => "ios-simulator",
3129            ("tvos", "sim") => "tvos-simulator",
3130            ("watchos", "sim") => "watchos-simulator",
3131            ("visionos", "sim") => "visionos-simulator",
3132            _ => bug!("invalid OS/env combination for Apple target: {target_os}, {target_env}"),
3133        };
3134
3135        let min_version = sess.apple_deployment_target().fmt_full().to_string();
3136
3137        // The SDK version is used at runtime when compiling with a newer SDK / version of Xcode:
3138        // - By dyld to give extra warnings and errors, see e.g.:
3139        //   <https://github.com/apple-oss-distributions/dyld/blob/dyld-1165.3/common/MachOFile.cpp#L3029>
3140        //   <https://github.com/apple-oss-distributions/dyld/blob/dyld-1165.3/common/MachOFile.cpp#L3738-L3857>
3141        // - By system frameworks to change certain behaviour. For example, the default value of
3142        //   `-[NSView wantsBestResolutionOpenGLSurface]` is `YES` when the SDK version is >= 10.15.
3143        //   <https://developer.apple.com/documentation/appkit/nsview/1414938-wantsbestresolutionopenglsurface?language=objc>
3144        //
3145        // We do not currently know the actual SDK version though, so we have a few options:
3146        // 1. Use the minimum version supported by rustc.
3147        // 2. Use the same as the deployment target.
3148        // 3. Use an arbitrary recent version.
3149        // 4. Omit the version.
3150        //
3151        // The first option is too low / too conservative, and means that users will not get the
3152        // same behaviour from a binary compiled with rustc as with one compiled by clang.
3153        //
3154        // The second option is similarly conservative, and also wrong since if the user specified a
3155        // higher deployment target than the SDK they're compiling/linking with, the runtime might
3156        // make invalid assumptions about the capabilities of the binary.
3157        //
3158        // The third option requires that `rustc` is periodically kept up to date with Apple's SDK
3159        // version, and is also wrong for similar reasons as above.
3160        //
3161        // The fourth option is bad because while `ld`, `otool`, `vtool` and such understand it to
3162        // mean "absent" or `n/a`, dyld doesn't actually understand it, and will end up interpreting
3163        // it as 0.0, which is again too low/conservative.
3164        //
3165        // Currently, we lie about the SDK version, and choose the second option.
3166        //
3167        // FIXME(madsmtm): Parse the SDK version from the SDK root instead.
3168        // <https://github.com/rust-lang/rust/issues/129432>
3169        let sdk_version = &*min_version;
3170
3171        // From the man page for ld64 (`man ld`):
3172        // > This is set to indicate the platform, oldest supported version of
3173        // > that platform that output is to be used on, and the SDK that the
3174        // > output was built against.
3175        //
3176        // Like with `-arch`, the linker can figure out the platform versions
3177        // itself from the binaries being linked, but to be safe, we specify
3178        // the desired versions here explicitly.
3179        cmd.link_args(&["-platform_version", platform_name, &*min_version, sdk_version]);
3180    } else {
3181        // cc == Cc::Yes
3182        //
3183        // We'd _like_ to use `-target` everywhere, since that can uniquely
3184        // communicate all the required details except for the SDK version
3185        // (which is read by Clang itself from the SDKROOT), but that doesn't
3186        // work on GCC, and since we don't know whether the `cc` compiler is
3187        // Clang, GCC, or something else, we fall back to other options that
3188        // also work on GCC when compiling for macOS.
3189        //
3190        // Targets other than macOS are ill-supported by GCC (it doesn't even
3191        // support e.g. `-miphoneos-version-min`), so in those cases we can
3192        // fairly safely use `-target`. See also the following, where it is
3193        // made explicit that the recommendation by LLVM developers is to use
3194        // `-target`: <https://github.com/llvm/llvm-project/issues/88271>
3195        if target_os == "macos" {
3196            // `-arch` communicates the architecture.
3197            //
3198            // CC forwards the `-arch` to the linker, so we use the same value
3199            // here intentionally.
3200            cmd.cc_args(&["-arch", ld64_arch]);
3201
3202            // The presence of `-mmacosx-version-min` makes CC default to
3203            // macOS, and it sets the deployment target.
3204            let version = sess.apple_deployment_target().fmt_full();
3205            // Intentionally pass this as a single argument, Clang doesn't
3206            // seem to like it otherwise.
3207            cmd.cc_arg(&format!("-mmacosx-version-min={version}"));
3208
3209            // macOS has no environment, so with these two, we've told CC the
3210            // four desired parameters.
3211            //
3212            // We avoid `-m32`/`-m64`, as this is already encoded by `-arch`.
3213        } else {
3214            cmd.cc_args(&["-target", &versioned_llvm_target(sess)]);
3215        }
3216    }
3217}
3218
3219fn add_apple_sdk(cmd: &mut dyn Linker, sess: &Session, flavor: LinkerFlavor) -> Option<PathBuf> {
3220    if !sess.target.is_like_darwin {
3221        return None;
3222    }
3223    let LinkerFlavor::Darwin(cc, _) = flavor else {
3224        return None;
3225    };
3226
3227    // The default compiler driver on macOS is at `/usr/bin/cc`. This is a trampoline binary that
3228    // effectively invokes `xcrun cc` internally to look up both the compiler binary and the SDK
3229    // root from the current Xcode installation. When cross-compiling, when `rustc` is invoked
3230    // inside Xcode, or when invoking the linker directly, this default logic is unsuitable, so
3231    // instead we invoke `xcrun` manually.
3232    //
3233    // (Note that this doesn't mean we get a duplicate lookup here - passing `SDKROOT` below will
3234    // cause the trampoline binary to skip looking up the SDK itself).
3235    let sdkroot = sess.time("get_apple_sdk_root", || get_apple_sdk_root(sess))?;
3236
3237    if cc == Cc::Yes {
3238        // There are a few options to pass the SDK root when linking with a C/C++ compiler:
3239        // - The `--sysroot` flag.
3240        // - The `-isysroot` flag.
3241        // - The `SDKROOT` environment variable.
3242        //
3243        // `--sysroot` isn't actually enough to get Clang to treat it as a platform SDK, you need
3244        // to specify `-isysroot`. This is admittedly a bit strange, as on most targets `-isysroot`
3245        // only applies to include header files, but on Apple targets it also applies to libraries
3246        // and frameworks.
3247        //
3248        // This leaves the choice between `-isysroot` and `SDKROOT`. Both are supported by Clang and
3249        // GCC, though they may not be supported by all compiler drivers. We choose `SDKROOT`,
3250        // primarily because that is the same interface that is used when invoking the tool under
3251        // `xcrun -sdk macosx $tool`.
3252        //
3253        // In that sense, if a given compiler driver does not support `SDKROOT`, the blame is fairly
3254        // clearly in the tool in question, since they also don't support being run under `xcrun`.
3255        //
3256        // Additionally, `SDKROOT` is an environment variable and thus optional. It also has lower
3257        // precedence than `-isysroot`, so a custom compiler driver that does not support it and
3258        // instead figures out the SDK on their own can easily do so by using `-isysroot`.
3259        //
3260        // (This in particular affects Clang built with the `DEFAULT_SYSROOT` CMake flag, such as
3261        // the one provided by some versions of Homebrew's `llvm` package. Those will end up
3262        // ignoring the value we set here, and instead use their built-in sysroot).
3263        cmd.cmd().env("SDKROOT", &sdkroot);
3264    } else {
3265        // When invoking the linker directly, we use the `-syslibroot` parameter. `SDKROOT` is not
3266        // read by the linker, so it's really the only option.
3267        //
3268        // This is also what Clang does.
3269        cmd.link_arg("-syslibroot");
3270        cmd.link_arg(&sdkroot);
3271    }
3272
3273    Some(sdkroot)
3274}
3275
3276fn get_apple_sdk_root(sess: &Session) -> Option<PathBuf> {
3277    if let Ok(sdkroot) = env::var("SDKROOT") {
3278        let p = PathBuf::from(&sdkroot);
3279
3280        // Ignore invalid SDKs, similar to what clang does:
3281        // https://github.com/llvm/llvm-project/blob/llvmorg-19.1.6/clang/lib/Driver/ToolChains/Darwin.cpp#L2212-L2229
3282        //
3283        // NOTE: Things are complicated here by the fact that `rustc` can be run by Cargo to compile
3284        // build scripts and proc-macros for the host, and thus we need to ignore SDKROOT if it's
3285        // clearly set for the wrong platform.
3286        //
3287        // FIXME(madsmtm): Make this more robust (maybe read `SDKSettings.json` like Clang does?).
3288        match &*apple::sdk_name(&sess.target).to_lowercase() {
3289            "appletvos"
3290                if sdkroot.contains("TVSimulator.platform")
3291                    || sdkroot.contains("MacOSX.platform") => {}
3292            "appletvsimulator"
3293                if sdkroot.contains("TVOS.platform") || sdkroot.contains("MacOSX.platform") => {}
3294            "iphoneos"
3295                if sdkroot.contains("iPhoneSimulator.platform")
3296                    || sdkroot.contains("MacOSX.platform") => {}
3297            "iphonesimulator"
3298                if sdkroot.contains("iPhoneOS.platform") || sdkroot.contains("MacOSX.platform") => {
3299            }
3300            "macosx"
3301                if sdkroot.contains("iPhoneOS.platform")
3302                    || sdkroot.contains("iPhoneSimulator.platform")
3303                    || sdkroot.contains("AppleTVOS.platform")
3304                    || sdkroot.contains("AppleTVSimulator.platform")
3305                    || sdkroot.contains("WatchOS.platform")
3306                    || sdkroot.contains("WatchSimulator.platform")
3307                    || sdkroot.contains("XROS.platform")
3308                    || sdkroot.contains("XRSimulator.platform") => {}
3309            "watchos"
3310                if sdkroot.contains("WatchSimulator.platform")
3311                    || sdkroot.contains("MacOSX.platform") => {}
3312            "watchsimulator"
3313                if sdkroot.contains("WatchOS.platform") || sdkroot.contains("MacOSX.platform") => {}
3314            "xros"
3315                if sdkroot.contains("XRSimulator.platform")
3316                    || sdkroot.contains("MacOSX.platform") => {}
3317            "xrsimulator"
3318                if sdkroot.contains("XROS.platform") || sdkroot.contains("MacOSX.platform") => {}
3319            // Ignore `SDKROOT` if it's not a valid path.
3320            _ if !p.is_absolute() || p == Path::new("/") || !p.exists() => {}
3321            _ => return Some(p),
3322        }
3323    }
3324
3325    apple::get_sdk_root(sess)
3326}
3327
3328/// When using the linker flavors opting in to `lld`, add the necessary paths and arguments to
3329/// invoke it:
3330/// - when the self-contained linker flag is active: the build of `lld` distributed with rustc,
3331/// - or any `lld` available to `cc`.
3332fn add_lld_args(
3333    cmd: &mut dyn Linker,
3334    sess: &Session,
3335    flavor: LinkerFlavor,
3336    self_contained_components: LinkSelfContainedComponents,
3337) {
3338    debug!(
3339        "add_lld_args requested, flavor: '{:?}', target self-contained components: {:?}",
3340        flavor, self_contained_components,
3341    );
3342
3343    // If the flavor doesn't use a C/C++ compiler to invoke the linker, or doesn't opt in to `lld`,
3344    // we don't need to do anything.
3345    if !(flavor.uses_cc() && flavor.uses_lld()) {
3346        return;
3347    }
3348
3349    // 1. Implement the "self-contained" part of this feature by adding rustc distribution
3350    // directories to the tool's search path, depending on a mix between what users can specify on
3351    // the CLI, and what the target spec enables (as it can't disable components):
3352    // - if the self-contained linker is enabled on the CLI or by the target spec,
3353    // - and if the self-contained linker is not disabled on the CLI.
3354    let self_contained_cli = sess.opts.cg.link_self_contained.is_linker_enabled();
3355    let self_contained_target = self_contained_components.is_linker_enabled();
3356
3357    let self_contained_linker = self_contained_cli || self_contained_target;
3358    if self_contained_linker && !sess.opts.cg.link_self_contained.is_linker_disabled() {
3359        let mut linker_path_exists = false;
3360        for path in sess.get_tools_search_paths(false) {
3361            let linker_path = path.join("gcc-ld");
3362            linker_path_exists |= linker_path.exists();
3363            cmd.cc_arg({
3364                let mut arg = OsString::from("-B");
3365                arg.push(linker_path);
3366                arg
3367            });
3368        }
3369        if !linker_path_exists {
3370            // As a sanity check, we emit an error if none of these paths exist: we want
3371            // self-contained linking and have no linker.
3372            sess.dcx().emit_fatal(errors::SelfContainedLinkerMissing);
3373        }
3374    }
3375
3376    // 2. Implement the "linker flavor" part of this feature by asking `cc` to use some kind of
3377    // `lld` as the linker.
3378    //
3379    // Note that wasm targets skip this step since the only option there anyway
3380    // is to use LLD but the `wasm32-wasip2` target relies on a wrapper around
3381    // this, `wasm-component-ld`, which is overridden if this option is passed.
3382    if !sess.target.is_like_wasm {
3383        cmd.cc_arg("-fuse-ld=lld");
3384    }
3385
3386    if !flavor.is_gnu() {
3387        // Tell clang to use a non-default LLD flavor.
3388        // Gcc doesn't understand the target option, but we currently assume
3389        // that gcc is not used for Apple and Wasm targets (#97402).
3390        //
3391        // Note that we don't want to do that by default on macOS: e.g. passing a
3392        // 10.7 target to LLVM works, but not to recent versions of clang/macOS, as
3393        // shown in issue #101653 and the discussion in PR #101792.
3394        //
3395        // It could be required in some cases of cross-compiling with
3396        // LLD, but this is generally unspecified, and we don't know
3397        // which specific versions of clang, macOS SDK, host and target OS
3398        // combinations impact us here.
3399        //
3400        // So we do a simple first-approximation until we know more of what the
3401        // Apple targets require (and which would be handled prior to hitting this
3402        // LLD codepath anyway), but the expectation is that until then
3403        // this should be manually passed if needed. We specify the target when
3404        // targeting a different linker flavor on macOS, and that's also always
3405        // the case when targeting WASM.
3406        if sess.target.linker_flavor != sess.host.linker_flavor {
3407            cmd.cc_arg(format!("--target={}", versioned_llvm_target(sess)));
3408        }
3409    }
3410}
3411
3412// gold has been deprecated with binutils 2.44
3413// and is known to behave incorrectly around Rust programs.
3414// There have been reports of being unable to bootstrap with gold:
3415// https://github.com/rust-lang/rust/issues/139425
3416// Additionally, gold miscompiles SHF_GNU_RETAIN sections, which are
3417// emitted with `#[used(linker)]`.
3418fn warn_if_linked_with_gold(sess: &Session, path: &Path) -> Result<(), Box<dyn std::error::Error>> {
3419    use object::read::elf::{FileHeader, SectionHeader};
3420    use object::read::{ReadCache, ReadRef, Result};
3421    use object::{Endianness, elf};
3422
3423    fn elf_has_gold_version_note<'a>(
3424        elf: &impl FileHeader,
3425        data: impl ReadRef<'a>,
3426    ) -> Result<bool> {
3427        let endian = elf.endian()?;
3428
3429        let section =
3430            elf.sections(endian, data)?.section_by_name(endian, b".note.gnu.gold-version");
3431        if let Some((_, section)) = section
3432            && let Some(mut notes) = section.notes(endian, data)?
3433        {
3434            return Ok(notes.any(|note| {
3435                note.is_ok_and(|note| note.n_type(endian) == elf::NT_GNU_GOLD_VERSION)
3436            }));
3437        }
3438
3439        Ok(false)
3440    }
3441
3442    let data = ReadCache::new(BufReader::new(File::open(path)?));
3443
3444    let was_linked_with_gold = if sess.target.pointer_width == 64 {
3445        let elf = elf::FileHeader64::<Endianness>::parse(&data)?;
3446        elf_has_gold_version_note(elf, &data)?
3447    } else if sess.target.pointer_width == 32 {
3448        let elf = elf::FileHeader32::<Endianness>::parse(&data)?;
3449        elf_has_gold_version_note(elf, &data)?
3450    } else {
3451        return Ok(());
3452    };
3453
3454    if was_linked_with_gold {
3455        let mut warn =
3456            sess.dcx().struct_warn("the gold linker is deprecated and has known bugs with Rust");
3457        warn.help("consider using LLD or ld from GNU binutils instead");
3458        warn.emit();
3459    }
3460    Ok(())
3461}