rustc_trait_selection/traits/select/mod.rs
1//! Candidate selection. See the [rustc dev guide] for more information on how this works.
2//!
3//! [rustc dev guide]: https://rustc-dev-guide.rust-lang.org/traits/resolution.html#selection
4
5use std::assert_matches::assert_matches;
6use std::cell::{Cell, RefCell};
7use std::fmt::{self, Display};
8use std::ops::ControlFlow;
9use std::{cmp, iter};
10
11use hir::def::DefKind;
12use rustc_data_structures::fx::{FxIndexMap, FxIndexSet};
13use rustc_data_structures::stack::ensure_sufficient_stack;
14use rustc_errors::{Diag, EmissionGuarantee};
15use rustc_hir as hir;
16use rustc_hir::LangItem;
17use rustc_hir::def_id::DefId;
18use rustc_infer::infer::BoundRegionConversionTime::{self, HigherRankedType};
19use rustc_infer::infer::DefineOpaqueTypes;
20use rustc_infer::infer::at::ToTrace;
21use rustc_infer::infer::relate::TypeRelation;
22use rustc_infer::traits::{PredicateObligations, TraitObligation};
23use rustc_middle::bug;
24use rustc_middle::dep_graph::{DepNodeIndex, dep_kinds};
25pub use rustc_middle::traits::select::*;
26use rustc_middle::ty::abstract_const::NotConstEvaluatable;
27use rustc_middle::ty::error::TypeErrorToStringExt;
28use rustc_middle::ty::print::{PrintTraitRefExt as _, with_no_trimmed_paths};
29use rustc_middle::ty::{
30 self, GenericArgsRef, PolyProjectionPredicate, Ty, TyCtxt, TypeFoldable, TypeVisitableExt,
31 TypingMode, Upcast,
32};
33use rustc_span::{Symbol, sym};
34use rustc_type_ir::elaborate;
35use tracing::{debug, instrument, trace};
36
37use self::EvaluationResult::*;
38use self::SelectionCandidate::*;
39use super::coherence::{self, Conflict};
40use super::project::ProjectionTermObligation;
41use super::util::closure_trait_ref_and_return_type;
42use super::{
43 ImplDerivedCause, Normalized, Obligation, ObligationCause, ObligationCauseCode, Overflow,
44 PolyTraitObligation, PredicateObligation, Selection, SelectionError, SelectionResult,
45 TraitQueryMode, const_evaluatable, project, util, wf,
46};
47use crate::error_reporting::InferCtxtErrorExt;
48use crate::infer::{InferCtxt, InferOk, TypeFreshener};
49use crate::solve::InferCtxtSelectExt as _;
50use crate::traits::normalize::{normalize_with_depth, normalize_with_depth_to};
51use crate::traits::project::{ProjectAndUnifyResult, ProjectionCacheKeyExt};
52use crate::traits::{
53 EvaluateConstErr, ProjectionCacheKey, Unimplemented, effects, sizedness_fast_path,
54};
55
56mod _match;
57mod candidate_assembly;
58mod confirmation;
59
60#[derive(Clone, Debug, Eq, PartialEq, Hash)]
61pub enum IntercrateAmbiguityCause<'tcx> {
62 DownstreamCrate { trait_ref: ty::TraitRef<'tcx>, self_ty: Option<Ty<'tcx>> },
63 UpstreamCrateUpdate { trait_ref: ty::TraitRef<'tcx>, self_ty: Option<Ty<'tcx>> },
64 ReservationImpl { message: Symbol },
65}
66
67impl<'tcx> IntercrateAmbiguityCause<'tcx> {
68 /// Emits notes when the overlap is caused by complex intercrate ambiguities.
69 /// See #23980 for details.
70 pub fn add_intercrate_ambiguity_hint<G: EmissionGuarantee>(&self, err: &mut Diag<'_, G>) {
71 err.note(self.intercrate_ambiguity_hint());
72 }
73
74 pub fn intercrate_ambiguity_hint(&self) -> String {
75 with_no_trimmed_paths!(match self {
76 IntercrateAmbiguityCause::DownstreamCrate { trait_ref, self_ty } => {
77 format!(
78 "downstream crates may implement trait `{trait_desc}`{self_desc}",
79 trait_desc = trait_ref.print_trait_sugared(),
80 self_desc = if let Some(self_ty) = self_ty {
81 format!(" for type `{self_ty}`")
82 } else {
83 String::new()
84 }
85 )
86 }
87 IntercrateAmbiguityCause::UpstreamCrateUpdate { trait_ref, self_ty } => {
88 format!(
89 "upstream crates may add a new impl of trait `{trait_desc}`{self_desc} \
90 in future versions",
91 trait_desc = trait_ref.print_trait_sugared(),
92 self_desc = if let Some(self_ty) = self_ty {
93 format!(" for type `{self_ty}`")
94 } else {
95 String::new()
96 }
97 )
98 }
99 IntercrateAmbiguityCause::ReservationImpl { message } => message.to_string(),
100 })
101 }
102}
103
104pub struct SelectionContext<'cx, 'tcx> {
105 pub infcx: &'cx InferCtxt<'tcx>,
106
107 /// Freshener used specifically for entries on the obligation
108 /// stack. This ensures that all entries on the stack at one time
109 /// will have the same set of placeholder entries, which is
110 /// important for checking for trait bounds that recursively
111 /// require themselves.
112 freshener: TypeFreshener<'cx, 'tcx>,
113
114 /// If `intercrate` is set, we remember predicates which were
115 /// considered ambiguous because of impls potentially added in other crates.
116 /// This is used in coherence to give improved diagnostics.
117 /// We don't do his until we detect a coherence error because it can
118 /// lead to false overflow results (#47139) and because always
119 /// computing it may negatively impact performance.
120 intercrate_ambiguity_causes: Option<FxIndexSet<IntercrateAmbiguityCause<'tcx>>>,
121
122 /// The mode that trait queries run in, which informs our error handling
123 /// policy. In essence, canonicalized queries need their errors propagated
124 /// rather than immediately reported because we do not have accurate spans.
125 query_mode: TraitQueryMode,
126}
127
128// A stack that walks back up the stack frame.
129struct TraitObligationStack<'prev, 'tcx> {
130 obligation: &'prev PolyTraitObligation<'tcx>,
131
132 /// The trait predicate from `obligation` but "freshened" with the
133 /// selection-context's freshener. Used to check for recursion.
134 fresh_trait_pred: ty::PolyTraitPredicate<'tcx>,
135
136 /// Starts out equal to `depth` -- if, during evaluation, we
137 /// encounter a cycle, then we will set this flag to the minimum
138 /// depth of that cycle for all participants in the cycle. These
139 /// participants will then forego caching their results. This is
140 /// not the most efficient solution, but it addresses #60010. The
141 /// problem we are trying to prevent:
142 ///
143 /// - If you have `A: AutoTrait` requires `B: AutoTrait` and `C: NonAutoTrait`
144 /// - `B: AutoTrait` requires `A: AutoTrait` (coinductive cycle, ok)
145 /// - `C: NonAutoTrait` requires `A: AutoTrait` (non-coinductive cycle, not ok)
146 ///
147 /// you don't want to cache that `B: AutoTrait` or `A: AutoTrait`
148 /// is `EvaluatedToOk`; this is because they were only considered
149 /// ok on the premise that if `A: AutoTrait` held, but we indeed
150 /// encountered a problem (later on) with `A: AutoTrait`. So we
151 /// currently set a flag on the stack node for `B: AutoTrait` (as
152 /// well as the second instance of `A: AutoTrait`) to suppress
153 /// caching.
154 ///
155 /// This is a simple, targeted fix. A more-performant fix requires
156 /// deeper changes, but would permit more caching: we could
157 /// basically defer caching until we have fully evaluated the
158 /// tree, and then cache the entire tree at once. In any case, the
159 /// performance impact here shouldn't be so horrible: every time
160 /// this is hit, we do cache at least one trait, so we only
161 /// evaluate each member of a cycle up to N times, where N is the
162 /// length of the cycle. This means the performance impact is
163 /// bounded and we shouldn't have any terrible worst-cases.
164 reached_depth: Cell<usize>,
165
166 previous: TraitObligationStackList<'prev, 'tcx>,
167
168 /// The number of parent frames plus one (thus, the topmost frame has depth 1).
169 depth: usize,
170
171 /// The depth-first number of this node in the search graph -- a
172 /// pre-order index. Basically, a freshly incremented counter.
173 dfn: usize,
174}
175
176struct SelectionCandidateSet<'tcx> {
177 /// A list of candidates that definitely apply to the current
178 /// obligation (meaning: types unify).
179 vec: Vec<SelectionCandidate<'tcx>>,
180
181 /// If `true`, then there were candidates that might or might
182 /// not have applied, but we couldn't tell. This occurs when some
183 /// of the input types are type variables, in which case there are
184 /// various "builtin" rules that might or might not trigger.
185 ambiguous: bool,
186}
187
188#[derive(PartialEq, Eq, Debug, Clone)]
189struct EvaluatedCandidate<'tcx> {
190 candidate: SelectionCandidate<'tcx>,
191 evaluation: EvaluationResult,
192}
193
194/// When does the builtin impl for `T: Trait` apply?
195#[derive(Debug)]
196enum BuiltinImplConditions<'tcx> {
197 /// The impl is conditional on `T1, T2, ...: Trait`.
198 Where(ty::Binder<'tcx, Vec<Ty<'tcx>>>),
199 /// There is no built-in impl. There may be some other
200 /// candidate (a where-clause or user-defined impl).
201 None,
202 /// It is unknown whether there is an impl.
203 Ambiguous,
204}
205
206impl<'cx, 'tcx> SelectionContext<'cx, 'tcx> {
207 pub fn new(infcx: &'cx InferCtxt<'tcx>) -> SelectionContext<'cx, 'tcx> {
208 SelectionContext {
209 infcx,
210 freshener: infcx.freshener(),
211 intercrate_ambiguity_causes: None,
212 query_mode: TraitQueryMode::Standard,
213 }
214 }
215
216 pub fn with_query_mode(
217 infcx: &'cx InferCtxt<'tcx>,
218 query_mode: TraitQueryMode,
219 ) -> SelectionContext<'cx, 'tcx> {
220 debug!(?query_mode, "with_query_mode");
221 SelectionContext { query_mode, ..SelectionContext::new(infcx) }
222 }
223
224 /// Enables tracking of intercrate ambiguity causes. See
225 /// the documentation of [`Self::intercrate_ambiguity_causes`] for more.
226 pub fn enable_tracking_intercrate_ambiguity_causes(&mut self) {
227 assert_matches!(self.infcx.typing_mode(), TypingMode::Coherence);
228 assert!(self.intercrate_ambiguity_causes.is_none());
229 self.intercrate_ambiguity_causes = Some(FxIndexSet::default());
230 debug!("selcx: enable_tracking_intercrate_ambiguity_causes");
231 }
232
233 /// Gets the intercrate ambiguity causes collected since tracking
234 /// was enabled and disables tracking at the same time. If
235 /// tracking is not enabled, just returns an empty vector.
236 pub fn take_intercrate_ambiguity_causes(
237 &mut self,
238 ) -> FxIndexSet<IntercrateAmbiguityCause<'tcx>> {
239 assert_matches!(self.infcx.typing_mode(), TypingMode::Coherence);
240 self.intercrate_ambiguity_causes.take().unwrap_or_default()
241 }
242
243 pub fn tcx(&self) -> TyCtxt<'tcx> {
244 self.infcx.tcx
245 }
246
247 ///////////////////////////////////////////////////////////////////////////
248 // Selection
249 //
250 // The selection phase tries to identify *how* an obligation will
251 // be resolved. For example, it will identify which impl or
252 // parameter bound is to be used. The process can be inconclusive
253 // if the self type in the obligation is not fully inferred. Selection
254 // can result in an error in one of two ways:
255 //
256 // 1. If no applicable impl or parameter bound can be found.
257 // 2. If the output type parameters in the obligation do not match
258 // those specified by the impl/bound. For example, if the obligation
259 // is `Vec<Foo>: Iterable<Bar>`, but the impl specifies
260 // `impl<T> Iterable<T> for Vec<T>`, than an error would result.
261
262 /// Attempts to satisfy the obligation. If successful, this will affect the surrounding
263 /// type environment by performing unification.
264 #[instrument(level = "debug", skip(self), ret)]
265 pub fn poly_select(
266 &mut self,
267 obligation: &PolyTraitObligation<'tcx>,
268 ) -> SelectionResult<'tcx, Selection<'tcx>> {
269 if self.infcx.next_trait_solver() {
270 return self.infcx.select_in_new_trait_solver(obligation);
271 }
272
273 let candidate = match self.select_from_obligation(obligation) {
274 Err(SelectionError::Overflow(OverflowError::Canonical)) => {
275 // In standard mode, overflow must have been caught and reported
276 // earlier.
277 assert!(self.query_mode == TraitQueryMode::Canonical);
278 return Err(SelectionError::Overflow(OverflowError::Canonical));
279 }
280 Err(e) => {
281 return Err(e);
282 }
283 Ok(None) => {
284 return Ok(None);
285 }
286 Ok(Some(candidate)) => candidate,
287 };
288
289 match self.confirm_candidate(obligation, candidate) {
290 Err(SelectionError::Overflow(OverflowError::Canonical)) => {
291 assert!(self.query_mode == TraitQueryMode::Canonical);
292 Err(SelectionError::Overflow(OverflowError::Canonical))
293 }
294 Err(e) => Err(e),
295 Ok(candidate) => Ok(Some(candidate)),
296 }
297 }
298
299 pub fn select(
300 &mut self,
301 obligation: &TraitObligation<'tcx>,
302 ) -> SelectionResult<'tcx, Selection<'tcx>> {
303 self.poly_select(&Obligation {
304 cause: obligation.cause.clone(),
305 param_env: obligation.param_env,
306 predicate: ty::Binder::dummy(obligation.predicate),
307 recursion_depth: obligation.recursion_depth,
308 })
309 }
310
311 fn select_from_obligation(
312 &mut self,
313 obligation: &PolyTraitObligation<'tcx>,
314 ) -> SelectionResult<'tcx, SelectionCandidate<'tcx>> {
315 debug_assert!(!obligation.predicate.has_escaping_bound_vars());
316
317 let pec = &ProvisionalEvaluationCache::default();
318 let stack = self.push_stack(TraitObligationStackList::empty(pec), obligation);
319
320 self.candidate_from_obligation(&stack)
321 }
322
323 #[instrument(level = "debug", skip(self), ret)]
324 fn candidate_from_obligation<'o>(
325 &mut self,
326 stack: &TraitObligationStack<'o, 'tcx>,
327 ) -> SelectionResult<'tcx, SelectionCandidate<'tcx>> {
328 debug_assert!(!self.infcx.next_trait_solver());
329 // Watch out for overflow. This intentionally bypasses (and does
330 // not update) the cache.
331 self.check_recursion_limit(stack.obligation, stack.obligation)?;
332
333 // Check the cache. Note that we freshen the trait-ref
334 // separately rather than using `stack.fresh_trait_ref` --
335 // this is because we want the unbound variables to be
336 // replaced with fresh types starting from index 0.
337 let cache_fresh_trait_pred = self.infcx.freshen(stack.obligation.predicate);
338 debug!(?cache_fresh_trait_pred);
339 debug_assert!(!stack.obligation.predicate.has_escaping_bound_vars());
340
341 if let Some(c) =
342 self.check_candidate_cache(stack.obligation.param_env, cache_fresh_trait_pred)
343 {
344 debug!("CACHE HIT");
345 return c;
346 }
347
348 // If no match, compute result and insert into cache.
349 //
350 // FIXME(nikomatsakis) -- this cache is not taking into
351 // account cycles that may have occurred in forming the
352 // candidate. I don't know of any specific problems that
353 // result but it seems awfully suspicious.
354 let (candidate, dep_node) =
355 self.in_task(|this| this.candidate_from_obligation_no_cache(stack));
356
357 debug!("CACHE MISS");
358 self.insert_candidate_cache(
359 stack.obligation.param_env,
360 cache_fresh_trait_pred,
361 dep_node,
362 candidate.clone(),
363 );
364 candidate
365 }
366
367 fn candidate_from_obligation_no_cache<'o>(
368 &mut self,
369 stack: &TraitObligationStack<'o, 'tcx>,
370 ) -> SelectionResult<'tcx, SelectionCandidate<'tcx>> {
371 if let Err(conflict) = self.is_knowable(stack) {
372 debug!("coherence stage: not knowable");
373 if self.intercrate_ambiguity_causes.is_some() {
374 debug!("evaluate_stack: intercrate_ambiguity_causes is some");
375 // Heuristics: show the diagnostics when there are no candidates in crate.
376 if let Ok(candidate_set) = self.assemble_candidates(stack) {
377 let mut no_candidates_apply = true;
378
379 for c in candidate_set.vec.iter() {
380 if self.evaluate_candidate(stack, c)?.may_apply() {
381 no_candidates_apply = false;
382 break;
383 }
384 }
385
386 if !candidate_set.ambiguous && no_candidates_apply {
387 let trait_ref = self.infcx.resolve_vars_if_possible(
388 stack.obligation.predicate.skip_binder().trait_ref,
389 );
390 if !trait_ref.references_error() {
391 let self_ty = trait_ref.self_ty();
392 let self_ty = self_ty.has_concrete_skeleton().then(|| self_ty);
393 let cause = if let Conflict::Upstream = conflict {
394 IntercrateAmbiguityCause::UpstreamCrateUpdate { trait_ref, self_ty }
395 } else {
396 IntercrateAmbiguityCause::DownstreamCrate { trait_ref, self_ty }
397 };
398 debug!(?cause, "evaluate_stack: pushing cause");
399 self.intercrate_ambiguity_causes.as_mut().unwrap().insert(cause);
400 }
401 }
402 }
403 }
404 return Ok(None);
405 }
406
407 let candidate_set = self.assemble_candidates(stack)?;
408
409 if candidate_set.ambiguous {
410 debug!("candidate set contains ambig");
411 return Ok(None);
412 }
413
414 let candidates = candidate_set.vec;
415
416 debug!(?stack, ?candidates, "assembled {} candidates", candidates.len());
417
418 // At this point, we know that each of the entries in the
419 // candidate set is *individually* applicable. Now we have to
420 // figure out if they contain mutual incompatibilities. This
421 // frequently arises if we have an unconstrained input type --
422 // for example, we are looking for `$0: Eq` where `$0` is some
423 // unconstrained type variable. In that case, we'll get a
424 // candidate which assumes $0 == int, one that assumes `$0 ==
425 // usize`, etc. This spells an ambiguity.
426
427 let mut candidates = self.filter_impls(candidates, stack.obligation);
428
429 // If there is more than one candidate, first winnow them down
430 // by considering extra conditions (nested obligations and so
431 // forth). We don't winnow if there is exactly one
432 // candidate. This is a relatively minor distinction but it
433 // can lead to better inference and error-reporting. An
434 // example would be if there was an impl:
435 //
436 // impl<T:Clone> Vec<T> { fn push_clone(...) { ... } }
437 //
438 // and we were to see some code `foo.push_clone()` where `boo`
439 // is a `Vec<Bar>` and `Bar` does not implement `Clone`. If
440 // we were to winnow, we'd wind up with zero candidates.
441 // Instead, we select the right impl now but report "`Bar` does
442 // not implement `Clone`".
443 if candidates.len() == 1 {
444 return self.filter_reservation_impls(candidates.pop().unwrap());
445 }
446
447 // Winnow, but record the exact outcome of evaluation, which
448 // is needed for specialization. Propagate overflow if it occurs.
449 let candidates = candidates
450 .into_iter()
451 .map(|c| match self.evaluate_candidate(stack, &c) {
452 Ok(eval) if eval.may_apply() => {
453 Ok(Some(EvaluatedCandidate { candidate: c, evaluation: eval }))
454 }
455 Ok(_) => Ok(None),
456 Err(OverflowError::Canonical) => Err(Overflow(OverflowError::Canonical)),
457 Err(OverflowError::Error(e)) => Err(Overflow(OverflowError::Error(e))),
458 })
459 .flat_map(Result::transpose)
460 .collect::<Result<Vec<_>, _>>()?;
461
462 debug!(?stack, ?candidates, "{} potentially applicable candidates", candidates.len());
463 // If there are *NO* candidates, then there are no impls --
464 // that we know of, anyway. Note that in the case where there
465 // are unbound type variables within the obligation, it might
466 // be the case that you could still satisfy the obligation
467 // from another crate by instantiating the type variables with
468 // a type from another crate that does have an impl. This case
469 // is checked for in `evaluate_stack` (and hence users
470 // who might care about this case, like coherence, should use
471 // that function).
472 if candidates.is_empty() {
473 // If there's an error type, 'downgrade' our result from
474 // `Err(Unimplemented)` to `Ok(None)`. This helps us avoid
475 // emitting additional spurious errors, since we're guaranteed
476 // to have emitted at least one.
477 if stack.obligation.predicate.references_error() {
478 debug!(?stack.obligation.predicate, "found error type in predicate, treating as ambiguous");
479 Ok(None)
480 } else {
481 Err(Unimplemented)
482 }
483 } else {
484 let has_non_region_infer = stack.obligation.predicate.has_non_region_infer();
485 if let Some(candidate) = self.winnow_candidates(has_non_region_infer, candidates) {
486 self.filter_reservation_impls(candidate)
487 } else {
488 Ok(None)
489 }
490 }
491 }
492
493 ///////////////////////////////////////////////////////////////////////////
494 // EVALUATION
495 //
496 // Tests whether an obligation can be selected or whether an impl
497 // can be applied to particular types. It skips the "confirmation"
498 // step and hence completely ignores output type parameters.
499 //
500 // The result is "true" if the obligation *may* hold and "false" if
501 // we can be sure it does not.
502
503 /// Evaluates whether the obligation `obligation` can be satisfied
504 /// and returns an `EvaluationResult`. This is meant for the
505 /// *initial* call.
506 ///
507 /// Do not use this directly, use `infcx.evaluate_obligation` instead.
508 pub fn evaluate_root_obligation(
509 &mut self,
510 obligation: &PredicateObligation<'tcx>,
511 ) -> Result<EvaluationResult, OverflowError> {
512 debug_assert!(!self.infcx.next_trait_solver());
513 self.evaluation_probe(|this| {
514 let goal =
515 this.infcx.resolve_vars_if_possible((obligation.predicate, obligation.param_env));
516 let mut result = this.evaluate_predicate_recursively(
517 TraitObligationStackList::empty(&ProvisionalEvaluationCache::default()),
518 obligation.clone(),
519 )?;
520 // If the predicate has done any inference, then downgrade the
521 // result to ambiguous.
522 if this.infcx.resolve_vars_if_possible(goal) != goal {
523 result = result.max(EvaluatedToAmbig);
524 }
525 Ok(result)
526 })
527 }
528
529 /// Computes the evaluation result of `op`, discarding any constraints.
530 ///
531 /// This also runs for leak check to allow higher ranked region errors to impact
532 /// selection. By default it checks for leaks from all universes created inside of
533 /// `op`, but this can be overwritten if necessary.
534 fn evaluation_probe(
535 &mut self,
536 op: impl FnOnce(&mut Self) -> Result<EvaluationResult, OverflowError>,
537 ) -> Result<EvaluationResult, OverflowError> {
538 self.infcx.probe(|snapshot| -> Result<EvaluationResult, OverflowError> {
539 let outer_universe = self.infcx.universe();
540 let result = op(self)?;
541
542 match self.infcx.leak_check(outer_universe, Some(snapshot)) {
543 Ok(()) => {}
544 Err(_) => return Ok(EvaluatedToErr),
545 }
546
547 if self.infcx.opaque_types_added_in_snapshot(snapshot) {
548 return Ok(result.max(EvaluatedToOkModuloOpaqueTypes));
549 }
550
551 if self.infcx.region_constraints_added_in_snapshot(snapshot) {
552 Ok(result.max(EvaluatedToOkModuloRegions))
553 } else {
554 Ok(result)
555 }
556 })
557 }
558
559 /// Evaluates the predicates in `predicates` recursively. This may
560 /// guide inference. If this is not desired, run it inside of a
561 /// is run within an inference probe.
562 /// `probe`.
563 #[instrument(skip(self, stack), level = "debug")]
564 fn evaluate_predicates_recursively<'o, I>(
565 &mut self,
566 stack: TraitObligationStackList<'o, 'tcx>,
567 predicates: I,
568 ) -> Result<EvaluationResult, OverflowError>
569 where
570 I: IntoIterator<Item = PredicateObligation<'tcx>> + std::fmt::Debug,
571 {
572 let mut result = EvaluatedToOk;
573 for mut obligation in predicates {
574 obligation.set_depth_from_parent(stack.depth());
575 let eval = self.evaluate_predicate_recursively(stack, obligation.clone())?;
576 if let EvaluatedToErr = eval {
577 // fast-path - EvaluatedToErr is the top of the lattice,
578 // so we don't need to look on the other predicates.
579 return Ok(EvaluatedToErr);
580 } else {
581 result = cmp::max(result, eval);
582 }
583 }
584 Ok(result)
585 }
586
587 #[instrument(
588 level = "debug",
589 skip(self, previous_stack),
590 fields(previous_stack = ?previous_stack.head())
591 ret,
592 )]
593 fn evaluate_predicate_recursively<'o>(
594 &mut self,
595 previous_stack: TraitObligationStackList<'o, 'tcx>,
596 obligation: PredicateObligation<'tcx>,
597 ) -> Result<EvaluationResult, OverflowError> {
598 debug_assert!(!self.infcx.next_trait_solver());
599 // `previous_stack` stores a `PolyTraitObligation`, while `obligation` is
600 // a `PredicateObligation`. These are distinct types, so we can't
601 // use any `Option` combinator method that would force them to be
602 // the same.
603 match previous_stack.head() {
604 Some(h) => self.check_recursion_limit(&obligation, h.obligation)?,
605 None => self.check_recursion_limit(&obligation, &obligation)?,
606 }
607
608 if sizedness_fast_path(self.tcx(), obligation.predicate) {
609 return Ok(EvaluatedToOk);
610 }
611
612 ensure_sufficient_stack(|| {
613 let bound_predicate = obligation.predicate.kind();
614 match bound_predicate.skip_binder() {
615 ty::PredicateKind::Clause(ty::ClauseKind::Trait(t)) => {
616 let t = bound_predicate.rebind(t);
617 debug_assert!(!t.has_escaping_bound_vars());
618 let obligation = obligation.with(self.tcx(), t);
619 self.evaluate_trait_predicate_recursively(previous_stack, obligation)
620 }
621
622 ty::PredicateKind::Clause(ty::ClauseKind::HostEffect(data)) => {
623 self.infcx.enter_forall(bound_predicate.rebind(data), |data| {
624 match effects::evaluate_host_effect_obligation(
625 self,
626 &obligation.with(self.tcx(), data),
627 ) {
628 Ok(nested) => {
629 self.evaluate_predicates_recursively(previous_stack, nested)
630 }
631 Err(effects::EvaluationFailure::Ambiguous) => Ok(EvaluatedToAmbig),
632 Err(effects::EvaluationFailure::NoSolution) => Ok(EvaluatedToErr),
633 }
634 })
635 }
636
637 ty::PredicateKind::Subtype(p) => {
638 let p = bound_predicate.rebind(p);
639 // Does this code ever run?
640 match self.infcx.subtype_predicate(&obligation.cause, obligation.param_env, p) {
641 Ok(Ok(InferOk { obligations, .. })) => {
642 self.evaluate_predicates_recursively(previous_stack, obligations)
643 }
644 Ok(Err(_)) => Ok(EvaluatedToErr),
645 Err(..) => Ok(EvaluatedToAmbig),
646 }
647 }
648
649 ty::PredicateKind::Coerce(p) => {
650 let p = bound_predicate.rebind(p);
651 // Does this code ever run?
652 match self.infcx.coerce_predicate(&obligation.cause, obligation.param_env, p) {
653 Ok(Ok(InferOk { obligations, .. })) => {
654 self.evaluate_predicates_recursively(previous_stack, obligations)
655 }
656 Ok(Err(_)) => Ok(EvaluatedToErr),
657 Err(..) => Ok(EvaluatedToAmbig),
658 }
659 }
660
661 ty::PredicateKind::Clause(ty::ClauseKind::WellFormed(arg)) => {
662 // So, there is a bit going on here. First, `WellFormed` predicates
663 // are coinductive, like trait predicates with auto traits.
664 // This means that we need to detect if we have recursively
665 // evaluated `WellFormed(X)`. Otherwise, we would run into
666 // a "natural" overflow error.
667 //
668 // Now, the next question is whether we need to do anything
669 // special with caching. Considering the following tree:
670 // - `WF(Foo<T>)`
671 // - `Bar<T>: Send`
672 // - `WF(Foo<T>)`
673 // - `Foo<T>: Trait`
674 // In this case, the innermost `WF(Foo<T>)` should return
675 // `EvaluatedToOk`, since it's coinductive. Then if
676 // `Bar<T>: Send` is resolved to `EvaluatedToOk`, it can be
677 // inserted into a cache (because without thinking about `WF`
678 // goals, it isn't in a cycle). If `Foo<T>: Trait` later doesn't
679 // hold, then `Bar<T>: Send` shouldn't hold. Therefore, we
680 // *do* need to keep track of coinductive cycles.
681
682 let cache = previous_stack.cache;
683 let dfn = cache.next_dfn();
684
685 for stack_arg in previous_stack.cache.wf_args.borrow().iter().rev() {
686 if stack_arg.0 != arg {
687 continue;
688 }
689 debug!("WellFormed({:?}) on stack", arg);
690 if let Some(stack) = previous_stack.head {
691 // Okay, let's imagine we have two different stacks:
692 // `T: NonAutoTrait -> WF(T) -> T: NonAutoTrait`
693 // `WF(T) -> T: NonAutoTrait -> WF(T)`
694 // Because of this, we need to check that all
695 // predicates between the WF goals are coinductive.
696 // Otherwise, we can say that `T: NonAutoTrait` is
697 // true.
698 // Let's imagine we have a predicate stack like
699 // `Foo: Bar -> WF(T) -> T: NonAutoTrait -> T: Auto`
700 // depth ^1 ^2 ^3
701 // and the current predicate is `WF(T)`. `wf_args`
702 // would contain `(T, 1)`. We want to check all
703 // trait predicates greater than `1`. The previous
704 // stack would be `T: Auto`.
705 let cycle = stack.iter().take_while(|s| s.depth > stack_arg.1);
706 let tcx = self.tcx();
707 let cycle = cycle.map(|stack| stack.obligation.predicate.upcast(tcx));
708 if self.coinductive_match(cycle) {
709 stack.update_reached_depth(stack_arg.1);
710 return Ok(EvaluatedToOk);
711 } else {
712 return Ok(EvaluatedToAmbigStackDependent);
713 }
714 }
715 return Ok(EvaluatedToOk);
716 }
717
718 match wf::obligations(
719 self.infcx,
720 obligation.param_env,
721 obligation.cause.body_id,
722 obligation.recursion_depth + 1,
723 arg,
724 obligation.cause.span,
725 ) {
726 Some(obligations) => {
727 cache.wf_args.borrow_mut().push((arg, previous_stack.depth()));
728 let result =
729 self.evaluate_predicates_recursively(previous_stack, obligations);
730 cache.wf_args.borrow_mut().pop();
731
732 let result = result?;
733
734 if !result.must_apply_modulo_regions() {
735 cache.on_failure(dfn);
736 }
737
738 cache.on_completion(dfn);
739
740 Ok(result)
741 }
742 None => Ok(EvaluatedToAmbig),
743 }
744 }
745
746 ty::PredicateKind::Clause(ty::ClauseKind::TypeOutlives(pred)) => {
747 // A global type with no free lifetimes or generic parameters
748 // outlives anything.
749 if pred.0.has_free_regions()
750 || pred.0.has_bound_regions()
751 || pred.0.has_non_region_infer()
752 || pred.0.has_non_region_infer()
753 {
754 Ok(EvaluatedToOkModuloRegions)
755 } else {
756 Ok(EvaluatedToOk)
757 }
758 }
759
760 ty::PredicateKind::Clause(ty::ClauseKind::RegionOutlives(..)) => {
761 // We do not consider region relationships when evaluating trait matches.
762 Ok(EvaluatedToOkModuloRegions)
763 }
764
765 ty::PredicateKind::DynCompatible(trait_def_id) => {
766 if self.tcx().is_dyn_compatible(trait_def_id) {
767 Ok(EvaluatedToOk)
768 } else {
769 Ok(EvaluatedToErr)
770 }
771 }
772
773 ty::PredicateKind::Clause(ty::ClauseKind::Projection(data)) => {
774 let data = bound_predicate.rebind(data);
775 let project_obligation = obligation.with(self.tcx(), data);
776 match project::poly_project_and_unify_term(self, &project_obligation) {
777 ProjectAndUnifyResult::Holds(mut subobligations) => {
778 'compute_res: {
779 // If we've previously marked this projection as 'complete', then
780 // use the final cached result (either `EvaluatedToOk` or
781 // `EvaluatedToOkModuloRegions`), and skip re-evaluating the
782 // sub-obligations.
783 if let Some(key) =
784 ProjectionCacheKey::from_poly_projection_obligation(
785 self,
786 &project_obligation,
787 )
788 {
789 if let Some(cached_res) = self
790 .infcx
791 .inner
792 .borrow_mut()
793 .projection_cache()
794 .is_complete(key)
795 {
796 break 'compute_res Ok(cached_res);
797 }
798 }
799
800 // Need to explicitly set the depth of nested goals here as
801 // projection obligations can cycle by themselves and in
802 // `evaluate_predicates_recursively` we only add the depth
803 // for parent trait goals because only these get added to the
804 // `TraitObligationStackList`.
805 for subobligation in subobligations.iter_mut() {
806 subobligation.set_depth_from_parent(obligation.recursion_depth);
807 }
808 let res = self.evaluate_predicates_recursively(
809 previous_stack,
810 subobligations,
811 );
812 if let Ok(eval_rslt) = res
813 && (eval_rslt == EvaluatedToOk
814 || eval_rslt == EvaluatedToOkModuloRegions)
815 && let Some(key) =
816 ProjectionCacheKey::from_poly_projection_obligation(
817 self,
818 &project_obligation,
819 )
820 {
821 // If the result is something that we can cache, then mark this
822 // entry as 'complete'. This will allow us to skip evaluating the
823 // subobligations at all the next time we evaluate the projection
824 // predicate.
825 self.infcx
826 .inner
827 .borrow_mut()
828 .projection_cache()
829 .complete(key, eval_rslt);
830 }
831 res
832 }
833 }
834 ProjectAndUnifyResult::FailedNormalization => Ok(EvaluatedToAmbig),
835 ProjectAndUnifyResult::Recursive => Ok(EvaluatedToAmbigStackDependent),
836 ProjectAndUnifyResult::MismatchedProjectionTypes(_) => Ok(EvaluatedToErr),
837 }
838 }
839
840 ty::PredicateKind::Clause(ty::ClauseKind::ConstEvaluatable(uv)) => {
841 match const_evaluatable::is_const_evaluatable(
842 self.infcx,
843 uv,
844 obligation.param_env,
845 obligation.cause.span,
846 ) {
847 Ok(()) => Ok(EvaluatedToOk),
848 Err(NotConstEvaluatable::MentionsInfer) => Ok(EvaluatedToAmbig),
849 Err(NotConstEvaluatable::MentionsParam) => Ok(EvaluatedToErr),
850 Err(_) => Ok(EvaluatedToErr),
851 }
852 }
853
854 ty::PredicateKind::ConstEquate(c1, c2) => {
855 let tcx = self.tcx();
856 assert!(
857 tcx.features().generic_const_exprs(),
858 "`ConstEquate` without a feature gate: {c1:?} {c2:?}",
859 );
860
861 {
862 let c1 = tcx.expand_abstract_consts(c1);
863 let c2 = tcx.expand_abstract_consts(c2);
864 debug!(
865 "evaluate_predicate_recursively: equating consts:\nc1= {:?}\nc2= {:?}",
866 c1, c2
867 );
868
869 use rustc_hir::def::DefKind;
870 match (c1.kind(), c2.kind()) {
871 (ty::ConstKind::Unevaluated(a), ty::ConstKind::Unevaluated(b))
872 if a.def == b.def && tcx.def_kind(a.def) == DefKind::AssocConst =>
873 {
874 if let Ok(InferOk { obligations, value: () }) = self
875 .infcx
876 .at(&obligation.cause, obligation.param_env)
877 // Can define opaque types as this is only reachable with
878 // `generic_const_exprs`
879 .eq(
880 DefineOpaqueTypes::Yes,
881 ty::AliasTerm::from(a),
882 ty::AliasTerm::from(b),
883 )
884 {
885 return self.evaluate_predicates_recursively(
886 previous_stack,
887 obligations,
888 );
889 }
890 }
891 (_, ty::ConstKind::Unevaluated(_))
892 | (ty::ConstKind::Unevaluated(_), _) => (),
893 (_, _) => {
894 if let Ok(InferOk { obligations, value: () }) = self
895 .infcx
896 .at(&obligation.cause, obligation.param_env)
897 // Can define opaque types as this is only reachable with
898 // `generic_const_exprs`
899 .eq(DefineOpaqueTypes::Yes, c1, c2)
900 {
901 return self.evaluate_predicates_recursively(
902 previous_stack,
903 obligations,
904 );
905 }
906 }
907 }
908 }
909
910 let evaluate = |c: ty::Const<'tcx>| {
911 if let ty::ConstKind::Unevaluated(_) = c.kind() {
912 match crate::traits::try_evaluate_const(
913 self.infcx,
914 c,
915 obligation.param_env,
916 ) {
917 Ok(val) => Ok(val),
918 Err(e) => Err(e),
919 }
920 } else {
921 Ok(c)
922 }
923 };
924
925 match (evaluate(c1), evaluate(c2)) {
926 (Ok(c1), Ok(c2)) => {
927 match self.infcx.at(&obligation.cause, obligation.param_env).eq(
928 // Can define opaque types as this is only reachable with
929 // `generic_const_exprs`
930 DefineOpaqueTypes::Yes,
931 c1,
932 c2,
933 ) {
934 Ok(inf_ok) => self.evaluate_predicates_recursively(
935 previous_stack,
936 inf_ok.into_obligations(),
937 ),
938 Err(_) => Ok(EvaluatedToErr),
939 }
940 }
941 (Err(EvaluateConstErr::InvalidConstParamTy(..)), _)
942 | (_, Err(EvaluateConstErr::InvalidConstParamTy(..))) => Ok(EvaluatedToErr),
943 (Err(EvaluateConstErr::EvaluationFailure(..)), _)
944 | (_, Err(EvaluateConstErr::EvaluationFailure(..))) => Ok(EvaluatedToErr),
945 (Err(EvaluateConstErr::HasGenericsOrInfers), _)
946 | (_, Err(EvaluateConstErr::HasGenericsOrInfers)) => {
947 if c1.has_non_region_infer() || c2.has_non_region_infer() {
948 Ok(EvaluatedToAmbig)
949 } else {
950 // Two different constants using generic parameters ~> error.
951 Ok(EvaluatedToErr)
952 }
953 }
954 }
955 }
956 ty::PredicateKind::NormalizesTo(..) => {
957 bug!("NormalizesTo is only used by the new solver")
958 }
959 ty::PredicateKind::AliasRelate(..) => {
960 bug!("AliasRelate is only used by the new solver")
961 }
962 ty::PredicateKind::Ambiguous => Ok(EvaluatedToAmbig),
963 ty::PredicateKind::Clause(ty::ClauseKind::ConstArgHasType(ct, ty)) => {
964 let ct = self.infcx.shallow_resolve_const(ct);
965 let ct_ty = match ct.kind() {
966 ty::ConstKind::Infer(_) => {
967 return Ok(EvaluatedToAmbig);
968 }
969 ty::ConstKind::Error(_) => return Ok(EvaluatedToOk),
970 ty::ConstKind::Value(cv) => cv.ty,
971 ty::ConstKind::Unevaluated(uv) => {
972 self.tcx().type_of(uv.def).instantiate(self.tcx(), uv.args)
973 }
974 // FIXME(generic_const_exprs): See comment in `fulfill.rs`
975 ty::ConstKind::Expr(_) => return Ok(EvaluatedToOk),
976 ty::ConstKind::Placeholder(_) => {
977 bug!("placeholder const {:?} in old solver", ct)
978 }
979 ty::ConstKind::Bound(_, _) => bug!("escaping bound vars in {:?}", ct),
980 ty::ConstKind::Param(param_ct) => {
981 param_ct.find_ty_from_env(obligation.param_env)
982 }
983 };
984
985 match self.infcx.at(&obligation.cause, obligation.param_env).eq(
986 // Only really exercised by generic_const_exprs
987 DefineOpaqueTypes::Yes,
988 ct_ty,
989 ty,
990 ) {
991 Ok(inf_ok) => self.evaluate_predicates_recursively(
992 previous_stack,
993 inf_ok.into_obligations(),
994 ),
995 Err(_) => Ok(EvaluatedToErr),
996 }
997 }
998 }
999 })
1000 }
1001
1002 #[instrument(skip(self, previous_stack), level = "debug", ret)]
1003 fn evaluate_trait_predicate_recursively<'o>(
1004 &mut self,
1005 previous_stack: TraitObligationStackList<'o, 'tcx>,
1006 mut obligation: PolyTraitObligation<'tcx>,
1007 ) -> Result<EvaluationResult, OverflowError> {
1008 if !matches!(self.infcx.typing_mode(), TypingMode::Coherence)
1009 && obligation.is_global()
1010 && obligation.param_env.caller_bounds().iter().all(|bound| bound.has_param())
1011 {
1012 // If a param env has no global bounds, global obligations do not
1013 // depend on its particular value in order to work, so we can clear
1014 // out the param env and get better caching.
1015 debug!("in global");
1016 obligation.param_env = ty::ParamEnv::empty();
1017 }
1018
1019 let stack = self.push_stack(previous_stack, &obligation);
1020 let fresh_trait_pred = stack.fresh_trait_pred;
1021 let param_env = obligation.param_env;
1022
1023 debug!(?fresh_trait_pred);
1024
1025 // If a trait predicate is in the (local or global) evaluation cache,
1026 // then we know it holds without cycles.
1027 if let Some(result) = self.check_evaluation_cache(param_env, fresh_trait_pred) {
1028 debug!("CACHE HIT");
1029 return Ok(result);
1030 }
1031
1032 if let Some(result) = stack.cache().get_provisional(fresh_trait_pred) {
1033 debug!("PROVISIONAL CACHE HIT");
1034 stack.update_reached_depth(result.reached_depth);
1035 return Ok(result.result);
1036 }
1037
1038 // Check if this is a match for something already on the
1039 // stack. If so, we don't want to insert the result into the
1040 // main cache (it is cycle dependent) nor the provisional
1041 // cache (which is meant for things that have completed but
1042 // for a "backedge" -- this result *is* the backedge).
1043 if let Some(cycle_result) = self.check_evaluation_cycle(&stack) {
1044 return Ok(cycle_result);
1045 }
1046
1047 let (result, dep_node) = self.in_task(|this| {
1048 let mut result = this.evaluate_stack(&stack)?;
1049
1050 // fix issue #103563, we don't normalize
1051 // nested obligations which produced by `TraitDef` candidate
1052 // (i.e. using bounds on assoc items as assumptions).
1053 // because we don't have enough information to
1054 // normalize these obligations before evaluating.
1055 // so we will try to normalize the obligation and evaluate again.
1056 // we will replace it with new solver in the future.
1057 if EvaluationResult::EvaluatedToErr == result
1058 && fresh_trait_pred.has_aliases()
1059 && fresh_trait_pred.is_global()
1060 {
1061 let mut nested_obligations = PredicateObligations::new();
1062 let predicate = normalize_with_depth_to(
1063 this,
1064 param_env,
1065 obligation.cause.clone(),
1066 obligation.recursion_depth + 1,
1067 obligation.predicate,
1068 &mut nested_obligations,
1069 );
1070 if predicate != obligation.predicate {
1071 let mut nested_result = EvaluationResult::EvaluatedToOk;
1072 for obligation in nested_obligations {
1073 nested_result = cmp::max(
1074 this.evaluate_predicate_recursively(previous_stack, obligation)?,
1075 nested_result,
1076 );
1077 }
1078
1079 if nested_result.must_apply_modulo_regions() {
1080 let obligation = obligation.with(this.tcx(), predicate);
1081 result = cmp::max(
1082 nested_result,
1083 this.evaluate_trait_predicate_recursively(previous_stack, obligation)?,
1084 );
1085 }
1086 }
1087 }
1088
1089 Ok::<_, OverflowError>(result)
1090 });
1091
1092 let result = result?;
1093
1094 if !result.must_apply_modulo_regions() {
1095 stack.cache().on_failure(stack.dfn);
1096 }
1097
1098 let reached_depth = stack.reached_depth.get();
1099 if reached_depth >= stack.depth {
1100 debug!("CACHE MISS");
1101 self.insert_evaluation_cache(param_env, fresh_trait_pred, dep_node, result);
1102 stack.cache().on_completion(stack.dfn);
1103 } else {
1104 debug!("PROVISIONAL");
1105 debug!(
1106 "caching provisionally because {:?} \
1107 is a cycle participant (at depth {}, reached depth {})",
1108 fresh_trait_pred, stack.depth, reached_depth,
1109 );
1110
1111 stack.cache().insert_provisional(stack.dfn, reached_depth, fresh_trait_pred, result);
1112 }
1113
1114 Ok(result)
1115 }
1116
1117 /// If there is any previous entry on the stack that precisely
1118 /// matches this obligation, then we can assume that the
1119 /// obligation is satisfied for now (still all other conditions
1120 /// must be met of course). One obvious case this comes up is
1121 /// marker traits like `Send`. Think of a linked list:
1122 ///
1123 /// struct List<T> { data: T, next: Option<Box<List<T>>> }
1124 ///
1125 /// `Box<List<T>>` will be `Send` if `T` is `Send` and
1126 /// `Option<Box<List<T>>>` is `Send`, and in turn
1127 /// `Option<Box<List<T>>>` is `Send` if `Box<List<T>>` is
1128 /// `Send`.
1129 ///
1130 /// Note that we do this comparison using the `fresh_trait_ref`
1131 /// fields. Because these have all been freshened using
1132 /// `self.freshener`, we can be sure that (a) this will not
1133 /// affect the inferencer state and (b) that if we see two
1134 /// fresh regions with the same index, they refer to the same
1135 /// unbound type variable.
1136 fn check_evaluation_cycle(
1137 &mut self,
1138 stack: &TraitObligationStack<'_, 'tcx>,
1139 ) -> Option<EvaluationResult> {
1140 if let Some(cycle_depth) = stack
1141 .iter()
1142 .skip(1) // Skip top-most frame.
1143 .find(|prev| {
1144 stack.obligation.param_env == prev.obligation.param_env
1145 && stack.fresh_trait_pred == prev.fresh_trait_pred
1146 })
1147 .map(|stack| stack.depth)
1148 {
1149 debug!("evaluate_stack --> recursive at depth {}", cycle_depth);
1150
1151 // If we have a stack like `A B C D E A`, where the top of
1152 // the stack is the final `A`, then this will iterate over
1153 // `A, E, D, C, B` -- i.e., all the participants apart
1154 // from the cycle head. We mark them as participating in a
1155 // cycle. This suppresses caching for those nodes. See
1156 // `in_cycle` field for more details.
1157 stack.update_reached_depth(cycle_depth);
1158
1159 // Subtle: when checking for a coinductive cycle, we do
1160 // not compare using the "freshened trait refs" (which
1161 // have erased regions) but rather the fully explicit
1162 // trait refs. This is important because it's only a cycle
1163 // if the regions match exactly.
1164 let cycle = stack.iter().skip(1).take_while(|s| s.depth >= cycle_depth);
1165 let tcx = self.tcx();
1166 let cycle = cycle.map(|stack| stack.obligation.predicate.upcast(tcx));
1167 if self.coinductive_match(cycle) {
1168 debug!("evaluate_stack --> recursive, coinductive");
1169 Some(EvaluatedToOk)
1170 } else {
1171 debug!("evaluate_stack --> recursive, inductive");
1172 Some(EvaluatedToAmbigStackDependent)
1173 }
1174 } else {
1175 None
1176 }
1177 }
1178
1179 fn evaluate_stack<'o>(
1180 &mut self,
1181 stack: &TraitObligationStack<'o, 'tcx>,
1182 ) -> Result<EvaluationResult, OverflowError> {
1183 debug_assert!(!self.infcx.next_trait_solver());
1184 // In intercrate mode, whenever any of the generics are unbound,
1185 // there can always be an impl. Even if there are no impls in
1186 // this crate, perhaps the type would be unified with
1187 // something from another crate that does provide an impl.
1188 //
1189 // In intra mode, we must still be conservative. The reason is
1190 // that we want to avoid cycles. Imagine an impl like:
1191 //
1192 // impl<T:Eq> Eq for Vec<T>
1193 //
1194 // and a trait reference like `$0 : Eq` where `$0` is an
1195 // unbound variable. When we evaluate this trait-reference, we
1196 // will unify `$0` with `Vec<$1>` (for some fresh variable
1197 // `$1`), on the condition that `$1 : Eq`. We will then wind
1198 // up with many candidates (since that are other `Eq` impls
1199 // that apply) and try to winnow things down. This results in
1200 // a recursive evaluation that `$1 : Eq` -- as you can
1201 // imagine, this is just where we started. To avoid that, we
1202 // check for unbound variables and return an ambiguous (hence possible)
1203 // match if we've seen this trait before.
1204 //
1205 // This suffices to allow chains like `FnMut` implemented in
1206 // terms of `Fn` etc, but we could probably make this more
1207 // precise still.
1208 let unbound_input_types =
1209 stack.fresh_trait_pred.skip_binder().trait_ref.args.types().any(|ty| ty.is_fresh());
1210
1211 if unbound_input_types
1212 && stack.iter().skip(1).any(|prev| {
1213 stack.obligation.param_env == prev.obligation.param_env
1214 && self.match_fresh_trait_refs(stack.fresh_trait_pred, prev.fresh_trait_pred)
1215 })
1216 {
1217 debug!("evaluate_stack --> unbound argument, recursive --> giving up",);
1218 return Ok(EvaluatedToAmbigStackDependent);
1219 }
1220
1221 match self.candidate_from_obligation(stack) {
1222 Ok(Some(c)) => self.evaluate_candidate(stack, &c),
1223 Ok(None) => Ok(EvaluatedToAmbig),
1224 Err(Overflow(OverflowError::Canonical)) => Err(OverflowError::Canonical),
1225 Err(..) => Ok(EvaluatedToErr),
1226 }
1227 }
1228
1229 /// For defaulted traits, we use a co-inductive strategy to solve, so
1230 /// that recursion is ok. This routine returns `true` if the top of the
1231 /// stack (`cycle[0]`):
1232 ///
1233 /// - is a coinductive trait: an auto-trait or `Sized`,
1234 /// - it also appears in the backtrace at some position `X`,
1235 /// - all the predicates at positions `X..` between `X` and the top are
1236 /// also coinductive traits.
1237 pub(crate) fn coinductive_match<I>(&mut self, mut cycle: I) -> bool
1238 where
1239 I: Iterator<Item = ty::Predicate<'tcx>>,
1240 {
1241 cycle.all(|p| match p.kind().skip_binder() {
1242 ty::PredicateKind::Clause(ty::ClauseKind::Trait(data)) => {
1243 self.infcx.tcx.trait_is_coinductive(data.def_id())
1244 }
1245 ty::PredicateKind::Clause(ty::ClauseKind::WellFormed(_)) => true,
1246 _ => false,
1247 })
1248 }
1249
1250 /// Further evaluates `candidate` to decide whether all type parameters match and whether nested
1251 /// obligations are met. Returns whether `candidate` remains viable after this further
1252 /// scrutiny.
1253 #[instrument(
1254 level = "debug",
1255 skip(self, stack),
1256 fields(depth = stack.obligation.recursion_depth),
1257 ret
1258 )]
1259 fn evaluate_candidate<'o>(
1260 &mut self,
1261 stack: &TraitObligationStack<'o, 'tcx>,
1262 candidate: &SelectionCandidate<'tcx>,
1263 ) -> Result<EvaluationResult, OverflowError> {
1264 let mut result = self.evaluation_probe(|this| {
1265 match this.confirm_candidate(stack.obligation, candidate.clone()) {
1266 Ok(selection) => {
1267 debug!(?selection);
1268 this.evaluate_predicates_recursively(
1269 stack.list(),
1270 selection.nested_obligations().into_iter(),
1271 )
1272 }
1273 Err(..) => Ok(EvaluatedToErr),
1274 }
1275 })?;
1276
1277 // If we erased any lifetimes, then we want to use
1278 // `EvaluatedToOkModuloRegions` instead of `EvaluatedToOk`
1279 // as your final result. The result will be cached using
1280 // the freshened trait predicate as a key, so we need
1281 // our result to be correct by *any* choice of original lifetimes,
1282 // not just the lifetime choice for this particular (non-erased)
1283 // predicate.
1284 // See issue #80691
1285 if stack.fresh_trait_pred.has_erased_regions() {
1286 result = result.max(EvaluatedToOkModuloRegions);
1287 }
1288
1289 Ok(result)
1290 }
1291
1292 fn check_evaluation_cache(
1293 &self,
1294 param_env: ty::ParamEnv<'tcx>,
1295 trait_pred: ty::PolyTraitPredicate<'tcx>,
1296 ) -> Option<EvaluationResult> {
1297 let infcx = self.infcx;
1298 let tcx = infcx.tcx;
1299 if self.can_use_global_caches(param_env, trait_pred) {
1300 let key = (infcx.typing_env(param_env), trait_pred);
1301 if let Some(res) = tcx.evaluation_cache.get(&key, tcx) {
1302 Some(res)
1303 } else {
1304 debug_assert_eq!(infcx.evaluation_cache.get(&(param_env, trait_pred), tcx), None);
1305 None
1306 }
1307 } else {
1308 self.infcx.evaluation_cache.get(&(param_env, trait_pred), tcx)
1309 }
1310 }
1311
1312 fn insert_evaluation_cache(
1313 &mut self,
1314 param_env: ty::ParamEnv<'tcx>,
1315 trait_pred: ty::PolyTraitPredicate<'tcx>,
1316 dep_node: DepNodeIndex,
1317 result: EvaluationResult,
1318 ) {
1319 // Avoid caching results that depend on more than just the trait-ref
1320 // - the stack can create recursion.
1321 if result.is_stack_dependent() {
1322 return;
1323 }
1324
1325 let infcx = self.infcx;
1326 let tcx = infcx.tcx;
1327 if self.can_use_global_caches(param_env, trait_pred) {
1328 debug!(?trait_pred, ?result, "insert_evaluation_cache global");
1329 // This may overwrite the cache with the same value
1330 tcx.evaluation_cache.insert(
1331 (infcx.typing_env(param_env), trait_pred),
1332 dep_node,
1333 result,
1334 );
1335 return;
1336 } else {
1337 debug!(?trait_pred, ?result, "insert_evaluation_cache local");
1338 self.infcx.evaluation_cache.insert((param_env, trait_pred), dep_node, result);
1339 }
1340 }
1341
1342 fn check_recursion_depth<T>(
1343 &self,
1344 depth: usize,
1345 error_obligation: &Obligation<'tcx, T>,
1346 ) -> Result<(), OverflowError>
1347 where
1348 T: Upcast<TyCtxt<'tcx>, ty::Predicate<'tcx>> + Clone,
1349 {
1350 if !self.infcx.tcx.recursion_limit().value_within_limit(depth) {
1351 match self.query_mode {
1352 TraitQueryMode::Standard => {
1353 if let Some(e) = self.infcx.tainted_by_errors() {
1354 return Err(OverflowError::Error(e));
1355 }
1356 self.infcx.err_ctxt().report_overflow_obligation(error_obligation, true);
1357 }
1358 TraitQueryMode::Canonical => {
1359 return Err(OverflowError::Canonical);
1360 }
1361 }
1362 }
1363 Ok(())
1364 }
1365
1366 /// Checks that the recursion limit has not been exceeded.
1367 ///
1368 /// The weird return type of this function allows it to be used with the `try` (`?`)
1369 /// operator within certain functions.
1370 #[inline(always)]
1371 fn check_recursion_limit<T: Display + TypeFoldable<TyCtxt<'tcx>>, V>(
1372 &self,
1373 obligation: &Obligation<'tcx, T>,
1374 error_obligation: &Obligation<'tcx, V>,
1375 ) -> Result<(), OverflowError>
1376 where
1377 V: Upcast<TyCtxt<'tcx>, ty::Predicate<'tcx>> + Clone,
1378 {
1379 self.check_recursion_depth(obligation.recursion_depth, error_obligation)
1380 }
1381
1382 fn in_task<OP, R>(&mut self, op: OP) -> (R, DepNodeIndex)
1383 where
1384 OP: FnOnce(&mut Self) -> R,
1385 {
1386 self.tcx().dep_graph.with_anon_task(self.tcx(), dep_kinds::TraitSelect, || op(self))
1387 }
1388
1389 /// filter_impls filters candidates that have a positive impl for a negative
1390 /// goal and a negative impl for a positive goal
1391 #[instrument(level = "debug", skip(self, candidates))]
1392 fn filter_impls(
1393 &mut self,
1394 candidates: Vec<SelectionCandidate<'tcx>>,
1395 obligation: &PolyTraitObligation<'tcx>,
1396 ) -> Vec<SelectionCandidate<'tcx>> {
1397 trace!("{candidates:#?}");
1398 let tcx = self.tcx();
1399 let mut result = Vec::with_capacity(candidates.len());
1400
1401 for candidate in candidates {
1402 if let ImplCandidate(def_id) = candidate {
1403 match (tcx.impl_polarity(def_id), obligation.polarity()) {
1404 (ty::ImplPolarity::Reservation, _)
1405 | (ty::ImplPolarity::Positive, ty::PredicatePolarity::Positive)
1406 | (ty::ImplPolarity::Negative, ty::PredicatePolarity::Negative) => {
1407 result.push(candidate);
1408 }
1409 _ => {}
1410 }
1411 } else {
1412 result.push(candidate);
1413 }
1414 }
1415
1416 trace!("{result:#?}");
1417 result
1418 }
1419
1420 /// filter_reservation_impls filter reservation impl for any goal as ambiguous
1421 #[instrument(level = "debug", skip(self))]
1422 fn filter_reservation_impls(
1423 &mut self,
1424 candidate: SelectionCandidate<'tcx>,
1425 ) -> SelectionResult<'tcx, SelectionCandidate<'tcx>> {
1426 let tcx = self.tcx();
1427 // Treat reservation impls as ambiguity.
1428 if let ImplCandidate(def_id) = candidate {
1429 if let ty::ImplPolarity::Reservation = tcx.impl_polarity(def_id) {
1430 if let Some(intercrate_ambiguity_clauses) = &mut self.intercrate_ambiguity_causes {
1431 let message = tcx
1432 .get_attr(def_id, sym::rustc_reservation_impl)
1433 .and_then(|a| a.value_str());
1434 if let Some(message) = message {
1435 debug!(
1436 "filter_reservation_impls: \
1437 reservation impl ambiguity on {:?}",
1438 def_id
1439 );
1440 intercrate_ambiguity_clauses
1441 .insert(IntercrateAmbiguityCause::ReservationImpl { message });
1442 }
1443 }
1444 return Ok(None);
1445 }
1446 }
1447 Ok(Some(candidate))
1448 }
1449
1450 fn is_knowable<'o>(&mut self, stack: &TraitObligationStack<'o, 'tcx>) -> Result<(), Conflict> {
1451 let obligation = &stack.obligation;
1452 match self.infcx.typing_mode() {
1453 TypingMode::Coherence => {}
1454 TypingMode::Analysis { .. }
1455 | TypingMode::Borrowck { .. }
1456 | TypingMode::PostBorrowckAnalysis { .. }
1457 | TypingMode::PostAnalysis => return Ok(()),
1458 }
1459
1460 debug!("is_knowable()");
1461
1462 let predicate = self.infcx.resolve_vars_if_possible(obligation.predicate);
1463
1464 // Okay to skip binder because of the nature of the
1465 // trait-ref-is-knowable check, which does not care about
1466 // bound regions.
1467 let trait_ref = predicate.skip_binder().trait_ref;
1468
1469 coherence::trait_ref_is_knowable(self.infcx, trait_ref, |ty| Ok::<_, !>(ty)).into_ok()
1470 }
1471
1472 /// Returns `true` if the global caches can be used.
1473 fn can_use_global_caches(
1474 &self,
1475 param_env: ty::ParamEnv<'tcx>,
1476 pred: ty::PolyTraitPredicate<'tcx>,
1477 ) -> bool {
1478 // If there are any inference variables in the `ParamEnv`, then we
1479 // always use a cache local to this particular scope. Otherwise, we
1480 // switch to a global cache.
1481 if param_env.has_infer() || pred.has_infer() {
1482 return false;
1483 }
1484
1485 match self.infcx.typing_mode() {
1486 // Avoid using the global cache during coherence and just rely
1487 // on the local cache. It is really just a simplification to
1488 // avoid us having to fear that coherence results "pollute"
1489 // the master cache. Since coherence executes pretty quickly,
1490 // it's not worth going to more trouble to increase the
1491 // hit-rate, I don't think.
1492 TypingMode::Coherence => false,
1493 // Avoid using the global cache when we're defining opaque types
1494 // as their hidden type may impact the result of candidate selection.
1495 //
1496 // HACK: This is still theoretically unsound. Goals can indirectly rely
1497 // on opaques in the defining scope, and it's easier to do so with TAIT.
1498 // However, if we disqualify *all* goals from being cached, perf suffers.
1499 // This is likely fixed by better caching in general in the new solver.
1500 // See: <https://github.com/rust-lang/rust/issues/132064>.
1501 TypingMode::Analysis { defining_opaque_types }
1502 | TypingMode::Borrowck { defining_opaque_types } => {
1503 defining_opaque_types.is_empty() || !pred.has_opaque_types()
1504 }
1505 // The hidden types of `defined_opaque_types` is not local to the current
1506 // inference context, so we can freely move this to the global cache.
1507 TypingMode::PostBorrowckAnalysis { .. } => true,
1508 // The global cache is only used if there are no opaque types in
1509 // the defining scope or we're outside of analysis.
1510 //
1511 // FIXME(#132279): This is still incorrect as we treat opaque types
1512 // and default associated items differently between these two modes.
1513 TypingMode::PostAnalysis => true,
1514 }
1515 }
1516
1517 fn check_candidate_cache(
1518 &mut self,
1519 param_env: ty::ParamEnv<'tcx>,
1520 cache_fresh_trait_pred: ty::PolyTraitPredicate<'tcx>,
1521 ) -> Option<SelectionResult<'tcx, SelectionCandidate<'tcx>>> {
1522 let infcx = self.infcx;
1523 let tcx = infcx.tcx;
1524 let pred = cache_fresh_trait_pred.skip_binder();
1525
1526 if self.can_use_global_caches(param_env, cache_fresh_trait_pred) {
1527 if let Some(res) = tcx.selection_cache.get(&(infcx.typing_env(param_env), pred), tcx) {
1528 return Some(res);
1529 } else if cfg!(debug_assertions) {
1530 match infcx.selection_cache.get(&(param_env, pred), tcx) {
1531 None | Some(Err(Overflow(OverflowError::Canonical))) => {}
1532 res => bug!("unexpected local cache result: {res:?}"),
1533 }
1534 }
1535 }
1536
1537 // Subtle: we need to check the local cache even if we're able to use the
1538 // global cache as we don't cache overflow in the global cache but need to
1539 // cache it as otherwise rustdoc hangs when compiling diesel.
1540 infcx.selection_cache.get(&(param_env, pred), tcx)
1541 }
1542
1543 /// Determines whether can we safely cache the result
1544 /// of selecting an obligation. This is almost always `true`,
1545 /// except when dealing with certain `ParamCandidate`s.
1546 ///
1547 /// Ordinarily, a `ParamCandidate` will contain no inference variables,
1548 /// since it was usually produced directly from a `DefId`. However,
1549 /// certain cases (currently only librustdoc's blanket impl finder),
1550 /// a `ParamEnv` may be explicitly constructed with inference types.
1551 /// When this is the case, we do *not* want to cache the resulting selection
1552 /// candidate. This is due to the fact that it might not always be possible
1553 /// to equate the obligation's trait ref and the candidate's trait ref,
1554 /// if more constraints end up getting added to an inference variable.
1555 ///
1556 /// Because of this, we always want to re-run the full selection
1557 /// process for our obligation the next time we see it, since
1558 /// we might end up picking a different `SelectionCandidate` (or none at all).
1559 fn can_cache_candidate(
1560 &self,
1561 result: &SelectionResult<'tcx, SelectionCandidate<'tcx>>,
1562 ) -> bool {
1563 match result {
1564 Ok(Some(SelectionCandidate::ParamCandidate(trait_ref))) => !trait_ref.has_infer(),
1565 _ => true,
1566 }
1567 }
1568
1569 #[instrument(skip(self, param_env, cache_fresh_trait_pred, dep_node), level = "debug")]
1570 fn insert_candidate_cache(
1571 &mut self,
1572 param_env: ty::ParamEnv<'tcx>,
1573 cache_fresh_trait_pred: ty::PolyTraitPredicate<'tcx>,
1574 dep_node: DepNodeIndex,
1575 candidate: SelectionResult<'tcx, SelectionCandidate<'tcx>>,
1576 ) {
1577 let infcx = self.infcx;
1578 let tcx = infcx.tcx;
1579 let pred = cache_fresh_trait_pred.skip_binder();
1580
1581 if !self.can_cache_candidate(&candidate) {
1582 debug!(?pred, ?candidate, "insert_candidate_cache - candidate is not cacheable");
1583 return;
1584 }
1585
1586 if self.can_use_global_caches(param_env, cache_fresh_trait_pred) {
1587 if let Err(Overflow(OverflowError::Canonical)) = candidate {
1588 // Don't cache overflow globally; we only produce this in certain modes.
1589 } else {
1590 debug!(?pred, ?candidate, "insert_candidate_cache global");
1591 debug_assert!(!candidate.has_infer());
1592
1593 // This may overwrite the cache with the same value.
1594 tcx.selection_cache.insert(
1595 (infcx.typing_env(param_env), pred),
1596 dep_node,
1597 candidate,
1598 );
1599 return;
1600 }
1601 }
1602
1603 debug!(?pred, ?candidate, "insert_candidate_cache local");
1604 self.infcx.selection_cache.insert((param_env, pred), dep_node, candidate);
1605 }
1606
1607 /// Looks at the item bounds of the projection or opaque type.
1608 /// If this is a nested rigid projection, such as
1609 /// `<<T as Tr1>::Assoc as Tr2>::Assoc`, consider the item bounds
1610 /// on both `Tr1::Assoc` and `Tr2::Assoc`, since we may encounter
1611 /// relative bounds on both via the `associated_type_bounds` feature.
1612 pub(super) fn for_each_item_bound<T>(
1613 &mut self,
1614 mut self_ty: Ty<'tcx>,
1615 mut for_each: impl FnMut(&mut Self, ty::Clause<'tcx>, usize) -> ControlFlow<T, ()>,
1616 on_ambiguity: impl FnOnce(),
1617 ) -> ControlFlow<T, ()> {
1618 let mut idx = 0;
1619 let mut in_parent_alias_type = false;
1620
1621 loop {
1622 let (kind, alias_ty) = match *self_ty.kind() {
1623 ty::Alias(kind @ (ty::Projection | ty::Opaque), alias_ty) => (kind, alias_ty),
1624 ty::Infer(ty::TyVar(_)) => {
1625 on_ambiguity();
1626 return ControlFlow::Continue(());
1627 }
1628 _ => return ControlFlow::Continue(()),
1629 };
1630
1631 // HACK: On subsequent recursions, we only care about bounds that don't
1632 // share the same type as `self_ty`. This is because for truly rigid
1633 // projections, we will never be able to equate, e.g. `<T as Tr>::A`
1634 // with `<<T as Tr>::A as Tr>::A`.
1635 let relevant_bounds = if in_parent_alias_type {
1636 self.tcx().item_non_self_bounds(alias_ty.def_id)
1637 } else {
1638 self.tcx().item_self_bounds(alias_ty.def_id)
1639 };
1640
1641 for bound in relevant_bounds.instantiate(self.tcx(), alias_ty.args) {
1642 for_each(self, bound, idx)?;
1643 idx += 1;
1644 }
1645
1646 if kind == ty::Projection {
1647 self_ty = alias_ty.self_ty();
1648 } else {
1649 return ControlFlow::Continue(());
1650 }
1651
1652 in_parent_alias_type = true;
1653 }
1654 }
1655
1656 /// Equates the trait in `obligation` with trait bound. If the two traits
1657 /// can be equated and the normalized trait bound doesn't contain inference
1658 /// variables or placeholders, the normalized bound is returned.
1659 fn match_normalize_trait_ref(
1660 &mut self,
1661 obligation: &PolyTraitObligation<'tcx>,
1662 placeholder_trait_ref: ty::TraitRef<'tcx>,
1663 trait_bound: ty::PolyTraitRef<'tcx>,
1664 ) -> Result<Option<ty::TraitRef<'tcx>>, ()> {
1665 debug_assert!(!placeholder_trait_ref.has_escaping_bound_vars());
1666 if placeholder_trait_ref.def_id != trait_bound.def_id() {
1667 // Avoid unnecessary normalization
1668 return Err(());
1669 }
1670
1671 let trait_bound = self.infcx.instantiate_binder_with_fresh_vars(
1672 obligation.cause.span,
1673 HigherRankedType,
1674 trait_bound,
1675 );
1676 let Normalized { value: trait_bound, obligations: _ } = ensure_sufficient_stack(|| {
1677 normalize_with_depth(
1678 self,
1679 obligation.param_env,
1680 obligation.cause.clone(),
1681 obligation.recursion_depth + 1,
1682 trait_bound,
1683 )
1684 });
1685 self.infcx
1686 .at(&obligation.cause, obligation.param_env)
1687 .eq(DefineOpaqueTypes::No, placeholder_trait_ref, trait_bound)
1688 .map(|InferOk { obligations: _, value: () }| {
1689 // This method is called within a probe, so we can't have
1690 // inference variables and placeholders escape.
1691 if !trait_bound.has_infer() && !trait_bound.has_placeholders() {
1692 Some(trait_bound)
1693 } else {
1694 None
1695 }
1696 })
1697 .map_err(|_| ())
1698 }
1699
1700 fn where_clause_may_apply<'o>(
1701 &mut self,
1702 stack: &TraitObligationStack<'o, 'tcx>,
1703 where_clause_trait_ref: ty::PolyTraitRef<'tcx>,
1704 ) -> Result<EvaluationResult, OverflowError> {
1705 self.evaluation_probe(|this| {
1706 match this.match_where_clause_trait_ref(stack.obligation, where_clause_trait_ref) {
1707 Ok(obligations) => this.evaluate_predicates_recursively(stack.list(), obligations),
1708 Err(()) => Ok(EvaluatedToErr),
1709 }
1710 })
1711 }
1712
1713 /// Return `Yes` if the obligation's predicate type applies to the env_predicate, and
1714 /// `No` if it does not. Return `Ambiguous` in the case that the projection type is a GAT,
1715 /// and applying this env_predicate constrains any of the obligation's GAT parameters.
1716 ///
1717 /// This behavior is a somewhat of a hack to prevent over-constraining inference variables
1718 /// in cases like #91762.
1719 pub(super) fn match_projection_projections(
1720 &mut self,
1721 obligation: &ProjectionTermObligation<'tcx>,
1722 env_predicate: PolyProjectionPredicate<'tcx>,
1723 potentially_unnormalized_candidates: bool,
1724 ) -> ProjectionMatchesProjection {
1725 debug_assert_eq!(obligation.predicate.def_id, env_predicate.item_def_id());
1726
1727 let mut nested_obligations = PredicateObligations::new();
1728 let infer_predicate = self.infcx.instantiate_binder_with_fresh_vars(
1729 obligation.cause.span,
1730 BoundRegionConversionTime::HigherRankedType,
1731 env_predicate,
1732 );
1733 let infer_projection = if potentially_unnormalized_candidates {
1734 ensure_sufficient_stack(|| {
1735 normalize_with_depth_to(
1736 self,
1737 obligation.param_env,
1738 obligation.cause.clone(),
1739 obligation.recursion_depth + 1,
1740 infer_predicate.projection_term,
1741 &mut nested_obligations,
1742 )
1743 })
1744 } else {
1745 infer_predicate.projection_term
1746 };
1747
1748 let is_match = self
1749 .infcx
1750 .at(&obligation.cause, obligation.param_env)
1751 .eq(DefineOpaqueTypes::No, obligation.predicate, infer_projection)
1752 .is_ok_and(|InferOk { obligations, value: () }| {
1753 self.evaluate_predicates_recursively(
1754 TraitObligationStackList::empty(&ProvisionalEvaluationCache::default()),
1755 nested_obligations.into_iter().chain(obligations),
1756 )
1757 .is_ok_and(|res| res.may_apply())
1758 });
1759
1760 if is_match {
1761 let generics = self.tcx().generics_of(obligation.predicate.def_id);
1762 // FIXME(generic-associated-types): Addresses aggressive inference in #92917.
1763 // If this type is a GAT, and of the GAT args resolve to something new,
1764 // that means that we must have newly inferred something about the GAT.
1765 // We should give up in that case.
1766 // FIXME(generic-associated-types): This only detects one layer of inference,
1767 // which is probably not what we actually want, but fixing it causes some ambiguity:
1768 // <https://github.com/rust-lang/rust/issues/125196>.
1769 if !generics.is_own_empty()
1770 && obligation.predicate.args[generics.parent_count..].iter().any(|&p| {
1771 p.has_non_region_infer()
1772 && match p.unpack() {
1773 ty::GenericArgKind::Const(ct) => {
1774 self.infcx.shallow_resolve_const(ct) != ct
1775 }
1776 ty::GenericArgKind::Type(ty) => self.infcx.shallow_resolve(ty) != ty,
1777 ty::GenericArgKind::Lifetime(_) => false,
1778 }
1779 })
1780 {
1781 ProjectionMatchesProjection::Ambiguous
1782 } else {
1783 ProjectionMatchesProjection::Yes
1784 }
1785 } else {
1786 ProjectionMatchesProjection::No
1787 }
1788 }
1789}
1790
1791/// ## Winnowing
1792///
1793/// Winnowing is the process of attempting to resolve ambiguity by
1794/// probing further. During the winnowing process, we unify all
1795/// type variables and then we also attempt to evaluate recursive
1796/// bounds to see if they are satisfied.
1797impl<'tcx> SelectionContext<'_, 'tcx> {
1798 /// If there are multiple ways to prove a trait goal, we make some
1799 /// *fairly arbitrary* choices about which candidate is actually used.
1800 ///
1801 /// For more details, look at the implementation of this method :)
1802 #[instrument(level = "debug", skip(self), ret)]
1803 fn winnow_candidates(
1804 &mut self,
1805 has_non_region_infer: bool,
1806 mut candidates: Vec<EvaluatedCandidate<'tcx>>,
1807 ) -> Option<SelectionCandidate<'tcx>> {
1808 if candidates.len() == 1 {
1809 return Some(candidates.pop().unwrap().candidate);
1810 }
1811
1812 // We prefer `Sized` candidates over everything.
1813 let mut sized_candidates =
1814 candidates.iter().filter(|c| matches!(c.candidate, SizedCandidate { has_nested: _ }));
1815 if let Some(sized_candidate) = sized_candidates.next() {
1816 // There should only ever be a single sized candidate
1817 // as they would otherwise overlap.
1818 debug_assert_eq!(sized_candidates.next(), None);
1819 // Only prefer the built-in `Sized` candidate if its nested goals are certain.
1820 // Otherwise, we may encounter failure later on if inference causes this candidate
1821 // to not hold, but a where clause would've applied instead.
1822 if sized_candidate.evaluation.must_apply_modulo_regions() {
1823 return Some(sized_candidate.candidate.clone());
1824 } else {
1825 return None;
1826 }
1827 }
1828
1829 // Before we consider where-bounds, we have to deduplicate them here and also
1830 // drop where-bounds in case the same where-bound exists without bound vars.
1831 // This is necessary as elaborating super-trait bounds may result in duplicates.
1832 'search_victim: loop {
1833 for (i, this) in candidates.iter().enumerate() {
1834 let ParamCandidate(this) = this.candidate else { continue };
1835 for (j, other) in candidates.iter().enumerate() {
1836 if i == j {
1837 continue;
1838 }
1839
1840 let ParamCandidate(other) = other.candidate else { continue };
1841 if this == other {
1842 candidates.remove(j);
1843 continue 'search_victim;
1844 }
1845
1846 if this.skip_binder().trait_ref == other.skip_binder().trait_ref
1847 && this.skip_binder().polarity == other.skip_binder().polarity
1848 && !this.skip_binder().trait_ref.has_escaping_bound_vars()
1849 {
1850 candidates.remove(j);
1851 continue 'search_victim;
1852 }
1853 }
1854 }
1855
1856 break;
1857 }
1858
1859 // The next highest priority is for non-global where-bounds. However, while we don't
1860 // prefer global where-clauses here, we do bail with ambiguity when encountering both
1861 // a global and a non-global where-clause.
1862 //
1863 // Our handling of where-bounds is generally fairly messy but necessary for backwards
1864 // compatibility, see #50825 for why we need to handle global where-bounds like this.
1865 let is_global = |c: ty::PolyTraitPredicate<'tcx>| c.is_global() && !c.has_bound_vars();
1866 let param_candidates = candidates
1867 .iter()
1868 .filter_map(|c| if let ParamCandidate(p) = c.candidate { Some(p) } else { None });
1869 let mut has_global_bounds = false;
1870 let mut param_candidate = None;
1871 for c in param_candidates {
1872 if is_global(c) {
1873 has_global_bounds = true;
1874 } else if param_candidate.replace(c).is_some() {
1875 // Ambiguity, two potentially different where-clauses
1876 return None;
1877 }
1878 }
1879 if let Some(predicate) = param_candidate {
1880 // Ambiguity, a global and a non-global where-bound.
1881 if has_global_bounds {
1882 return None;
1883 } else {
1884 return Some(ParamCandidate(predicate));
1885 }
1886 }
1887
1888 // Prefer alias-bounds over blanket impls for rigid associated types. This is
1889 // fairly arbitrary but once again necessary for backwards compatibility.
1890 // If there are multiple applicable candidates which don't affect type inference,
1891 // choose the one with the lowest index.
1892 let alias_bound = candidates
1893 .iter()
1894 .filter_map(|c| if let ProjectionCandidate(i) = c.candidate { Some(i) } else { None })
1895 .try_reduce(|c1, c2| if has_non_region_infer { None } else { Some(c1.min(c2)) });
1896 match alias_bound {
1897 Some(Some(index)) => return Some(ProjectionCandidate(index)),
1898 Some(None) => {}
1899 None => return None,
1900 }
1901
1902 // Need to prioritize builtin trait object impls as `<dyn Any as Any>::type_id`
1903 // should use the vtable method and not the method provided by the user-defined
1904 // impl `impl<T: ?Sized> Any for T { .. }`. This really shouldn't exist but is
1905 // necessary due to #57893. We again arbitrarily prefer the applicable candidate
1906 // with the lowest index.
1907 let object_bound = candidates
1908 .iter()
1909 .filter_map(|c| if let ObjectCandidate(i) = c.candidate { Some(i) } else { None })
1910 .try_reduce(|c1, c2| if has_non_region_infer { None } else { Some(c1.min(c2)) });
1911 match object_bound {
1912 Some(Some(index)) => return Some(ObjectCandidate(index)),
1913 Some(None) => {}
1914 None => return None,
1915 }
1916 // Same for upcasting.
1917 let upcast_bound = candidates
1918 .iter()
1919 .filter_map(|c| {
1920 if let TraitUpcastingUnsizeCandidate(i) = c.candidate { Some(i) } else { None }
1921 })
1922 .try_reduce(|c1, c2| if has_non_region_infer { None } else { Some(c1.min(c2)) });
1923 match upcast_bound {
1924 Some(Some(index)) => return Some(TraitUpcastingUnsizeCandidate(index)),
1925 Some(None) => {}
1926 None => return None,
1927 }
1928
1929 // Finally, handle overlapping user-written impls.
1930 let impls = candidates.iter().filter_map(|c| {
1931 if let ImplCandidate(def_id) = c.candidate {
1932 Some((def_id, c.evaluation))
1933 } else {
1934 None
1935 }
1936 });
1937 let mut impl_candidate = None;
1938 for c in impls {
1939 if let Some(prev) = impl_candidate.replace(c) {
1940 if self.prefer_lhs_over_victim(has_non_region_infer, c, prev.0) {
1941 // Ok, prefer `c` over the previous entry
1942 } else if self.prefer_lhs_over_victim(has_non_region_infer, prev, c.0) {
1943 // Ok, keep `prev` instead of the new entry
1944 impl_candidate = Some(prev);
1945 } else {
1946 // Ambiguity, two potentially different where-clauses
1947 return None;
1948 }
1949 }
1950 }
1951 if let Some((def_id, _evaluation)) = impl_candidate {
1952 // Don't use impl candidates which overlap with other candidates.
1953 // This should pretty much only ever happen with malformed impls.
1954 if candidates.iter().all(|c| match c.candidate {
1955 SizedCandidate { has_nested: _ }
1956 | BuiltinCandidate { has_nested: _ }
1957 | TransmutabilityCandidate
1958 | AutoImplCandidate
1959 | ClosureCandidate { .. }
1960 | AsyncClosureCandidate
1961 | AsyncFnKindHelperCandidate
1962 | CoroutineCandidate
1963 | FutureCandidate
1964 | IteratorCandidate
1965 | AsyncIteratorCandidate
1966 | FnPointerCandidate
1967 | TraitAliasCandidate
1968 | TraitUpcastingUnsizeCandidate(_)
1969 | BuiltinObjectCandidate
1970 | BuiltinUnsizeCandidate
1971 | BikeshedGuaranteedNoDropCandidate => false,
1972 // Non-global param candidates have already been handled, global
1973 // where-bounds get ignored.
1974 ParamCandidate(_) | ImplCandidate(_) => true,
1975 ProjectionCandidate(_) | ObjectCandidate(_) => unreachable!(),
1976 }) {
1977 return Some(ImplCandidate(def_id));
1978 } else {
1979 return None;
1980 }
1981 }
1982
1983 if candidates.len() == 1 {
1984 Some(candidates.pop().unwrap().candidate)
1985 } else {
1986 // Also try ignoring all global where-bounds and check whether we end
1987 // with a unique candidate in this case.
1988 let mut not_a_global_where_bound = candidates
1989 .into_iter()
1990 .filter(|c| !matches!(c.candidate, ParamCandidate(p) if is_global(p)));
1991 not_a_global_where_bound
1992 .next()
1993 .map(|c| c.candidate)
1994 .filter(|_| not_a_global_where_bound.next().is_none())
1995 }
1996 }
1997
1998 fn prefer_lhs_over_victim(
1999 &self,
2000 has_non_region_infer: bool,
2001 (lhs, lhs_evaluation): (DefId, EvaluationResult),
2002 victim: DefId,
2003 ) -> bool {
2004 let tcx = self.tcx();
2005 // See if we can toss out `victim` based on specialization.
2006 //
2007 // While this requires us to know *for sure* that the `lhs` impl applies
2008 // we still use modulo regions here. This is fine as specialization currently
2009 // assumes that specializing impls have to be always applicable, meaning that
2010 // the only allowed region constraints may be constraints also present on the default impl.
2011 if lhs_evaluation.must_apply_modulo_regions() {
2012 if tcx.specializes((lhs, victim)) {
2013 return true;
2014 }
2015 }
2016
2017 match tcx.impls_are_allowed_to_overlap(lhs, victim) {
2018 // For candidates which already reference errors it doesn't really
2019 // matter what we do 🤷
2020 Some(ty::ImplOverlapKind::Permitted { marker: false }) => {
2021 lhs_evaluation.must_apply_considering_regions()
2022 }
2023 Some(ty::ImplOverlapKind::Permitted { marker: true }) => {
2024 // Subtle: If the predicate we are evaluating has inference
2025 // variables, do *not* allow discarding candidates due to
2026 // marker trait impls.
2027 //
2028 // Without this restriction, we could end up accidentally
2029 // constraining inference variables based on an arbitrarily
2030 // chosen trait impl.
2031 //
2032 // Imagine we have the following code:
2033 //
2034 // ```rust
2035 // #[marker] trait MyTrait {}
2036 // impl MyTrait for u8 {}
2037 // impl MyTrait for bool {}
2038 // ```
2039 //
2040 // And we are evaluating the predicate `<_#0t as MyTrait>`.
2041 //
2042 // During selection, we will end up with one candidate for each
2043 // impl of `MyTrait`. If we were to discard one impl in favor
2044 // of the other, we would be left with one candidate, causing
2045 // us to "successfully" select the predicate, unifying
2046 // _#0t with (for example) `u8`.
2047 //
2048 // However, we have no reason to believe that this unification
2049 // is correct - we've essentially just picked an arbitrary
2050 // *possibility* for _#0t, and required that this be the *only*
2051 // possibility.
2052 //
2053 // Eventually, we will either:
2054 // 1) Unify all inference variables in the predicate through
2055 // some other means (e.g. type-checking of a function). We will
2056 // then be in a position to drop marker trait candidates
2057 // without constraining inference variables (since there are
2058 // none left to constrain)
2059 // 2) Be left with some unconstrained inference variables. We
2060 // will then correctly report an inference error, since the
2061 // existence of multiple marker trait impls tells us nothing
2062 // about which one should actually apply.
2063 !has_non_region_infer && lhs_evaluation.must_apply_considering_regions()
2064 }
2065 None => false,
2066 }
2067 }
2068}
2069
2070impl<'tcx> SelectionContext<'_, 'tcx> {
2071 fn sized_conditions(
2072 &mut self,
2073 obligation: &PolyTraitObligation<'tcx>,
2074 ) -> BuiltinImplConditions<'tcx> {
2075 use self::BuiltinImplConditions::{Ambiguous, None, Where};
2076
2077 // NOTE: binder moved to (*)
2078 let self_ty = self.infcx.shallow_resolve(obligation.predicate.skip_binder().self_ty());
2079
2080 match self_ty.kind() {
2081 ty::Infer(ty::IntVar(_) | ty::FloatVar(_))
2082 | ty::Uint(_)
2083 | ty::Int(_)
2084 | ty::Bool
2085 | ty::Float(_)
2086 | ty::FnDef(..)
2087 | ty::FnPtr(..)
2088 | ty::RawPtr(..)
2089 | ty::Char
2090 | ty::Ref(..)
2091 | ty::Coroutine(..)
2092 | ty::CoroutineWitness(..)
2093 | ty::Array(..)
2094 | ty::Closure(..)
2095 | ty::CoroutineClosure(..)
2096 | ty::Never
2097 | ty::Dynamic(_, _, ty::DynStar)
2098 | ty::Error(_) => {
2099 // safe for everything
2100 Where(ty::Binder::dummy(Vec::new()))
2101 }
2102
2103 ty::Str | ty::Slice(_) | ty::Dynamic(..) | ty::Foreign(..) => None,
2104
2105 ty::Tuple(tys) => Where(
2106 obligation.predicate.rebind(tys.last().map_or_else(Vec::new, |&last| vec![last])),
2107 ),
2108
2109 ty::Pat(ty, _) => Where(obligation.predicate.rebind(vec![*ty])),
2110
2111 ty::Adt(def, args) => {
2112 if let Some(sized_crit) = def.sized_constraint(self.tcx()) {
2113 // (*) binder moved here
2114 Where(
2115 obligation.predicate.rebind(vec![sized_crit.instantiate(self.tcx(), args)]),
2116 )
2117 } else {
2118 Where(ty::Binder::dummy(Vec::new()))
2119 }
2120 }
2121
2122 // FIXME(unsafe_binders): This binder needs to be squashed
2123 ty::UnsafeBinder(binder_ty) => Where(binder_ty.map_bound(|ty| vec![ty])),
2124
2125 ty::Alias(..) | ty::Param(_) | ty::Placeholder(..) => None,
2126 ty::Infer(ty::TyVar(_)) => Ambiguous,
2127
2128 // We can make this an ICE if/once we actually instantiate the trait obligation eagerly.
2129 ty::Bound(..) => None,
2130
2131 ty::Infer(ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => {
2132 bug!("asked to assemble builtin bounds of unexpected type: {:?}", self_ty);
2133 }
2134 }
2135 }
2136
2137 fn copy_clone_conditions(
2138 &mut self,
2139 obligation: &PolyTraitObligation<'tcx>,
2140 ) -> BuiltinImplConditions<'tcx> {
2141 // NOTE: binder moved to (*)
2142 let self_ty = self.infcx.shallow_resolve(obligation.predicate.skip_binder().self_ty());
2143
2144 use self::BuiltinImplConditions::{Ambiguous, None, Where};
2145
2146 match *self_ty.kind() {
2147 ty::FnDef(..) | ty::FnPtr(..) | ty::Error(_) => Where(ty::Binder::dummy(Vec::new())),
2148
2149 ty::Uint(_)
2150 | ty::Int(_)
2151 | ty::Infer(ty::IntVar(_) | ty::FloatVar(_))
2152 | ty::Bool
2153 | ty::Float(_)
2154 | ty::Char
2155 | ty::RawPtr(..)
2156 | ty::Never
2157 | ty::Ref(_, _, hir::Mutability::Not)
2158 | ty::Array(..) => {
2159 // Implementations provided in libcore
2160 None
2161 }
2162
2163 // FIXME(unsafe_binder): Should we conditionally
2164 // (i.e. universally) implement copy/clone?
2165 ty::UnsafeBinder(_) => None,
2166
2167 ty::Dynamic(..)
2168 | ty::Str
2169 | ty::Slice(..)
2170 | ty::Foreign(..)
2171 | ty::Ref(_, _, hir::Mutability::Mut) => None,
2172
2173 ty::Tuple(tys) => {
2174 // (*) binder moved here
2175 Where(obligation.predicate.rebind(tys.iter().collect()))
2176 }
2177
2178 ty::Pat(ty, _) => {
2179 // (*) binder moved here
2180 Where(obligation.predicate.rebind(vec![ty]))
2181 }
2182
2183 ty::Coroutine(coroutine_def_id, args) => {
2184 match self.tcx().coroutine_movability(coroutine_def_id) {
2185 hir::Movability::Static => None,
2186 hir::Movability::Movable => {
2187 if self.tcx().features().coroutine_clone() {
2188 let resolved_upvars =
2189 self.infcx.shallow_resolve(args.as_coroutine().tupled_upvars_ty());
2190 let resolved_witness =
2191 self.infcx.shallow_resolve(args.as_coroutine().witness());
2192 if resolved_upvars.is_ty_var() || resolved_witness.is_ty_var() {
2193 // Not yet resolved.
2194 Ambiguous
2195 } else {
2196 let all = args
2197 .as_coroutine()
2198 .upvar_tys()
2199 .iter()
2200 .chain([args.as_coroutine().witness()])
2201 .collect::<Vec<_>>();
2202 Where(obligation.predicate.rebind(all))
2203 }
2204 } else {
2205 None
2206 }
2207 }
2208 }
2209 }
2210
2211 ty::CoroutineWitness(def_id, args) => {
2212 let hidden_types = rebind_coroutine_witness_types(
2213 self.infcx.tcx,
2214 def_id,
2215 args,
2216 obligation.predicate.bound_vars(),
2217 );
2218 Where(hidden_types)
2219 }
2220
2221 ty::Closure(_, args) => {
2222 // (*) binder moved here
2223 let ty = self.infcx.shallow_resolve(args.as_closure().tupled_upvars_ty());
2224 if let ty::Infer(ty::TyVar(_)) = ty.kind() {
2225 // Not yet resolved.
2226 Ambiguous
2227 } else {
2228 Where(obligation.predicate.rebind(args.as_closure().upvar_tys().to_vec()))
2229 }
2230 }
2231
2232 ty::CoroutineClosure(_, args) => {
2233 // (*) binder moved here
2234 let ty = self.infcx.shallow_resolve(args.as_coroutine_closure().tupled_upvars_ty());
2235 if let ty::Infer(ty::TyVar(_)) = ty.kind() {
2236 // Not yet resolved.
2237 Ambiguous
2238 } else {
2239 Where(
2240 obligation
2241 .predicate
2242 .rebind(args.as_coroutine_closure().upvar_tys().to_vec()),
2243 )
2244 }
2245 }
2246
2247 ty::Adt(..) | ty::Alias(..) | ty::Param(..) | ty::Placeholder(..) => {
2248 // Fallback to whatever user-defined impls exist in this case.
2249 None
2250 }
2251
2252 ty::Infer(ty::TyVar(_)) => {
2253 // Unbound type variable. Might or might not have
2254 // applicable impls and so forth, depending on what
2255 // those type variables wind up being bound to.
2256 Ambiguous
2257 }
2258
2259 // We can make this an ICE if/once we actually instantiate the trait obligation eagerly.
2260 ty::Bound(..) => None,
2261
2262 ty::Infer(ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => {
2263 bug!("asked to assemble builtin bounds of unexpected type: {:?}", self_ty);
2264 }
2265 }
2266 }
2267
2268 fn fused_iterator_conditions(
2269 &mut self,
2270 obligation: &PolyTraitObligation<'tcx>,
2271 ) -> BuiltinImplConditions<'tcx> {
2272 let self_ty = self.infcx.shallow_resolve(obligation.self_ty().skip_binder());
2273 if let ty::Coroutine(did, ..) = *self_ty.kind()
2274 && self.tcx().coroutine_is_gen(did)
2275 {
2276 BuiltinImplConditions::Where(ty::Binder::dummy(Vec::new()))
2277 } else {
2278 BuiltinImplConditions::None
2279 }
2280 }
2281
2282 /// For default impls, we need to break apart a type into its
2283 /// "constituent types" -- meaning, the types that it contains.
2284 ///
2285 /// Here are some (simple) examples:
2286 ///
2287 /// ```ignore (illustrative)
2288 /// (i32, u32) -> [i32, u32]
2289 /// Foo where struct Foo { x: i32, y: u32 } -> [i32, u32]
2290 /// Bar<i32> where struct Bar<T> { x: T, y: u32 } -> [i32, u32]
2291 /// Zed<i32> where enum Zed { A(T), B(u32) } -> [i32, u32]
2292 /// ```
2293 #[instrument(level = "debug", skip(self), ret)]
2294 fn constituent_types_for_ty(
2295 &self,
2296 t: ty::Binder<'tcx, Ty<'tcx>>,
2297 ) -> Result<ty::Binder<'tcx, Vec<Ty<'tcx>>>, SelectionError<'tcx>> {
2298 Ok(match *t.skip_binder().kind() {
2299 ty::Uint(_)
2300 | ty::Int(_)
2301 | ty::Bool
2302 | ty::Float(_)
2303 | ty::FnDef(..)
2304 | ty::FnPtr(..)
2305 | ty::Error(_)
2306 | ty::Infer(ty::IntVar(_) | ty::FloatVar(_))
2307 | ty::Never
2308 | ty::Char => ty::Binder::dummy(Vec::new()),
2309
2310 // This branch is only for `experimental_default_bounds`.
2311 // Other foreign types were rejected earlier in
2312 // `assemble_candidates_from_auto_impls`.
2313 ty::Foreign(..) => ty::Binder::dummy(Vec::new()),
2314
2315 // FIXME(unsafe_binders): Squash the double binder for now, I guess.
2316 ty::UnsafeBinder(_) => return Err(SelectionError::Unimplemented),
2317
2318 // Treat this like `struct str([u8]);`
2319 ty::Str => ty::Binder::dummy(vec![Ty::new_slice(self.tcx(), self.tcx().types.u8)]),
2320
2321 ty::Placeholder(..)
2322 | ty::Dynamic(..)
2323 | ty::Param(..)
2324 | ty::Alias(ty::Projection | ty::Inherent | ty::Weak, ..)
2325 | ty::Bound(..)
2326 | ty::Infer(ty::TyVar(_) | ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => {
2327 bug!("asked to assemble constituent types of unexpected type: {:?}", t);
2328 }
2329
2330 ty::RawPtr(element_ty, _) | ty::Ref(_, element_ty, _) => t.rebind(vec![element_ty]),
2331
2332 ty::Pat(ty, _) | ty::Array(ty, _) | ty::Slice(ty) => t.rebind(vec![ty]),
2333
2334 ty::Tuple(tys) => {
2335 // (T1, ..., Tn) -- meets any bound that all of T1...Tn meet
2336 t.rebind(tys.iter().collect())
2337 }
2338
2339 ty::Closure(_, args) => {
2340 let ty = self.infcx.shallow_resolve(args.as_closure().tupled_upvars_ty());
2341 t.rebind(vec![ty])
2342 }
2343
2344 ty::CoroutineClosure(_, args) => {
2345 let ty = self.infcx.shallow_resolve(args.as_coroutine_closure().tupled_upvars_ty());
2346 t.rebind(vec![ty])
2347 }
2348
2349 ty::Coroutine(_, args) => {
2350 let ty = self.infcx.shallow_resolve(args.as_coroutine().tupled_upvars_ty());
2351 let witness = args.as_coroutine().witness();
2352 t.rebind([ty].into_iter().chain(iter::once(witness)).collect())
2353 }
2354
2355 ty::CoroutineWitness(def_id, args) => {
2356 rebind_coroutine_witness_types(self.infcx.tcx, def_id, args, t.bound_vars())
2357 }
2358
2359 // For `PhantomData<T>`, we pass `T`.
2360 ty::Adt(def, args) if def.is_phantom_data() => t.rebind(args.types().collect()),
2361
2362 ty::Adt(def, args) => {
2363 t.rebind(def.all_fields().map(|f| f.ty(self.tcx(), args)).collect())
2364 }
2365
2366 ty::Alias(ty::Opaque, ty::AliasTy { def_id, args, .. }) => {
2367 if self.infcx.can_define_opaque_ty(def_id) {
2368 unreachable!()
2369 } else {
2370 // We can resolve the `impl Trait` to its concrete type,
2371 // which enforces a DAG between the functions requiring
2372 // the auto trait bounds in question.
2373 match self.tcx().type_of_opaque(def_id) {
2374 Ok(ty) => t.rebind(vec![ty.instantiate(self.tcx(), args)]),
2375 Err(_) => {
2376 return Err(SelectionError::OpaqueTypeAutoTraitLeakageUnknown(def_id));
2377 }
2378 }
2379 }
2380 }
2381 })
2382 }
2383
2384 fn collect_predicates_for_types(
2385 &mut self,
2386 param_env: ty::ParamEnv<'tcx>,
2387 cause: ObligationCause<'tcx>,
2388 recursion_depth: usize,
2389 trait_def_id: DefId,
2390 types: Vec<Ty<'tcx>>,
2391 ) -> PredicateObligations<'tcx> {
2392 // Because the types were potentially derived from
2393 // higher-ranked obligations they may reference late-bound
2394 // regions. For example, `for<'a> Foo<&'a i32> : Copy` would
2395 // yield a type like `for<'a> &'a i32`. In general, we
2396 // maintain the invariant that we never manipulate bound
2397 // regions, so we have to process these bound regions somehow.
2398 //
2399 // The strategy is to:
2400 //
2401 // 1. Instantiate those regions to placeholder regions (e.g.,
2402 // `for<'a> &'a i32` becomes `&0 i32`.
2403 // 2. Produce something like `&'0 i32 : Copy`
2404 // 3. Re-bind the regions back to `for<'a> &'a i32 : Copy`
2405
2406 types
2407 .into_iter()
2408 .flat_map(|placeholder_ty| {
2409 let Normalized { value: normalized_ty, mut obligations } =
2410 ensure_sufficient_stack(|| {
2411 normalize_with_depth(
2412 self,
2413 param_env,
2414 cause.clone(),
2415 recursion_depth,
2416 placeholder_ty,
2417 )
2418 });
2419
2420 let tcx = self.tcx();
2421 let trait_ref = if tcx.generics_of(trait_def_id).own_params.len() == 1 {
2422 ty::TraitRef::new(tcx, trait_def_id, [normalized_ty])
2423 } else {
2424 // If this is an ill-formed auto/built-in trait, then synthesize
2425 // new error args for the missing generics.
2426 let err_args = ty::GenericArgs::extend_with_error(
2427 tcx,
2428 trait_def_id,
2429 &[normalized_ty.into()],
2430 );
2431 ty::TraitRef::new_from_args(tcx, trait_def_id, err_args)
2432 };
2433
2434 let obligation = Obligation::new(self.tcx(), cause.clone(), param_env, trait_ref);
2435 obligations.push(obligation);
2436 obligations
2437 })
2438 .collect()
2439 }
2440
2441 ///////////////////////////////////////////////////////////////////////////
2442 // Matching
2443 //
2444 // Matching is a common path used for both evaluation and
2445 // confirmation. It basically unifies types that appear in impls
2446 // and traits. This does affect the surrounding environment;
2447 // therefore, when used during evaluation, match routines must be
2448 // run inside of a `probe()` so that their side-effects are
2449 // contained.
2450
2451 fn rematch_impl(
2452 &mut self,
2453 impl_def_id: DefId,
2454 obligation: &PolyTraitObligation<'tcx>,
2455 ) -> Normalized<'tcx, GenericArgsRef<'tcx>> {
2456 let impl_trait_header = self.tcx().impl_trait_header(impl_def_id).unwrap();
2457 match self.match_impl(impl_def_id, impl_trait_header, obligation) {
2458 Ok(args) => args,
2459 Err(()) => {
2460 let predicate = self.infcx.resolve_vars_if_possible(obligation.predicate);
2461 bug!("impl {impl_def_id:?} was matchable against {predicate:?} but now is not")
2462 }
2463 }
2464 }
2465
2466 #[instrument(level = "debug", skip(self), ret)]
2467 fn match_impl(
2468 &mut self,
2469 impl_def_id: DefId,
2470 impl_trait_header: ty::ImplTraitHeader<'tcx>,
2471 obligation: &PolyTraitObligation<'tcx>,
2472 ) -> Result<Normalized<'tcx, GenericArgsRef<'tcx>>, ()> {
2473 let placeholder_obligation =
2474 self.infcx.enter_forall_and_leak_universe(obligation.predicate);
2475 let placeholder_obligation_trait_ref = placeholder_obligation.trait_ref;
2476
2477 let impl_args = self.infcx.fresh_args_for_item(obligation.cause.span, impl_def_id);
2478
2479 let trait_ref = impl_trait_header.trait_ref.instantiate(self.tcx(), impl_args);
2480 debug!(?impl_trait_header);
2481
2482 let Normalized { value: impl_trait_ref, obligations: mut nested_obligations } =
2483 ensure_sufficient_stack(|| {
2484 normalize_with_depth(
2485 self,
2486 obligation.param_env,
2487 obligation.cause.clone(),
2488 obligation.recursion_depth + 1,
2489 trait_ref,
2490 )
2491 });
2492
2493 debug!(?impl_trait_ref, ?placeholder_obligation_trait_ref);
2494
2495 let cause = ObligationCause::new(
2496 obligation.cause.span,
2497 obligation.cause.body_id,
2498 ObligationCauseCode::MatchImpl(obligation.cause.clone(), impl_def_id),
2499 );
2500
2501 let InferOk { obligations, .. } = self
2502 .infcx
2503 .at(&cause, obligation.param_env)
2504 .eq(DefineOpaqueTypes::No, placeholder_obligation_trait_ref, impl_trait_ref)
2505 .map_err(|e| {
2506 debug!("match_impl: failed eq_trait_refs due to `{}`", e.to_string(self.tcx()))
2507 })?;
2508 nested_obligations.extend(obligations);
2509
2510 if impl_trait_header.polarity == ty::ImplPolarity::Reservation
2511 && !matches!(self.infcx.typing_mode(), TypingMode::Coherence)
2512 {
2513 debug!("reservation impls only apply in intercrate mode");
2514 return Err(());
2515 }
2516
2517 Ok(Normalized { value: impl_args, obligations: nested_obligations })
2518 }
2519
2520 fn match_upcast_principal(
2521 &mut self,
2522 obligation: &PolyTraitObligation<'tcx>,
2523 unnormalized_upcast_principal: ty::PolyTraitRef<'tcx>,
2524 a_data: &'tcx ty::List<ty::PolyExistentialPredicate<'tcx>>,
2525 b_data: &'tcx ty::List<ty::PolyExistentialPredicate<'tcx>>,
2526 a_region: ty::Region<'tcx>,
2527 b_region: ty::Region<'tcx>,
2528 ) -> SelectionResult<'tcx, PredicateObligations<'tcx>> {
2529 let tcx = self.tcx();
2530 let mut nested = PredicateObligations::new();
2531
2532 // We may upcast to auto traits that are either explicitly listed in
2533 // the object type's bounds, or implied by the principal trait ref's
2534 // supertraits.
2535 let a_auto_traits: FxIndexSet<DefId> = a_data
2536 .auto_traits()
2537 .chain(a_data.principal_def_id().into_iter().flat_map(|principal_def_id| {
2538 elaborate::supertrait_def_ids(tcx, principal_def_id)
2539 .filter(|def_id| tcx.trait_is_auto(*def_id))
2540 }))
2541 .collect();
2542
2543 let upcast_principal = normalize_with_depth_to(
2544 self,
2545 obligation.param_env,
2546 obligation.cause.clone(),
2547 obligation.recursion_depth + 1,
2548 unnormalized_upcast_principal,
2549 &mut nested,
2550 );
2551
2552 for bound in b_data {
2553 match bound.skip_binder() {
2554 // Check that a_ty's supertrait (upcast_principal) is compatible
2555 // with the target (b_ty).
2556 ty::ExistentialPredicate::Trait(target_principal) => {
2557 let hr_source_principal = upcast_principal.map_bound(|trait_ref| {
2558 ty::ExistentialTraitRef::erase_self_ty(tcx, trait_ref)
2559 });
2560 let hr_target_principal = bound.rebind(target_principal);
2561
2562 nested.extend(
2563 self.infcx
2564 .enter_forall(hr_target_principal, |target_principal| {
2565 let source_principal =
2566 self.infcx.instantiate_binder_with_fresh_vars(
2567 obligation.cause.span,
2568 HigherRankedType,
2569 hr_source_principal,
2570 );
2571 self.infcx.at(&obligation.cause, obligation.param_env).eq_trace(
2572 DefineOpaqueTypes::Yes,
2573 ToTrace::to_trace(
2574 &obligation.cause,
2575 hr_target_principal,
2576 hr_source_principal,
2577 ),
2578 target_principal,
2579 source_principal,
2580 )
2581 })
2582 .map_err(|_| SelectionError::Unimplemented)?
2583 .into_obligations(),
2584 );
2585 }
2586 // Check that b_ty's projection is satisfied by exactly one of
2587 // a_ty's projections. First, we look through the list to see if
2588 // any match. If not, error. Then, if *more* than one matches, we
2589 // return ambiguity. Otherwise, if exactly one matches, equate
2590 // it with b_ty's projection.
2591 ty::ExistentialPredicate::Projection(target_projection) => {
2592 let hr_target_projection = bound.rebind(target_projection);
2593
2594 let mut matching_projections =
2595 a_data.projection_bounds().filter(|&hr_source_projection| {
2596 // Eager normalization means that we can just use can_eq
2597 // here instead of equating and processing obligations.
2598 hr_source_projection.item_def_id() == hr_target_projection.item_def_id()
2599 && self.infcx.probe(|_| {
2600 self.infcx
2601 .enter_forall(hr_target_projection, |target_projection| {
2602 let source_projection =
2603 self.infcx.instantiate_binder_with_fresh_vars(
2604 obligation.cause.span,
2605 HigherRankedType,
2606 hr_source_projection,
2607 );
2608 self.infcx
2609 .at(&obligation.cause, obligation.param_env)
2610 .eq_trace(
2611 DefineOpaqueTypes::Yes,
2612 ToTrace::to_trace(
2613 &obligation.cause,
2614 hr_target_projection,
2615 hr_source_projection,
2616 ),
2617 target_projection,
2618 source_projection,
2619 )
2620 })
2621 .is_ok()
2622 })
2623 });
2624
2625 let Some(hr_source_projection) = matching_projections.next() else {
2626 return Err(SelectionError::Unimplemented);
2627 };
2628 if matching_projections.next().is_some() {
2629 return Ok(None);
2630 }
2631 nested.extend(
2632 self.infcx
2633 .enter_forall(hr_target_projection, |target_projection| {
2634 let source_projection =
2635 self.infcx.instantiate_binder_with_fresh_vars(
2636 obligation.cause.span,
2637 HigherRankedType,
2638 hr_source_projection,
2639 );
2640 self.infcx.at(&obligation.cause, obligation.param_env).eq_trace(
2641 DefineOpaqueTypes::Yes,
2642 ToTrace::to_trace(
2643 &obligation.cause,
2644 hr_target_projection,
2645 hr_source_projection,
2646 ),
2647 target_projection,
2648 source_projection,
2649 )
2650 })
2651 .map_err(|_| SelectionError::Unimplemented)?
2652 .into_obligations(),
2653 );
2654 }
2655 // Check that b_ty's auto traits are present in a_ty's bounds.
2656 ty::ExistentialPredicate::AutoTrait(def_id) => {
2657 if !a_auto_traits.contains(&def_id) {
2658 return Err(SelectionError::Unimplemented);
2659 }
2660 }
2661 }
2662 }
2663
2664 nested.push(Obligation::with_depth(
2665 tcx,
2666 obligation.cause.clone(),
2667 obligation.recursion_depth + 1,
2668 obligation.param_env,
2669 ty::Binder::dummy(ty::OutlivesPredicate(a_region, b_region)),
2670 ));
2671
2672 Ok(Some(nested))
2673 }
2674
2675 /// Normalize `where_clause_trait_ref` and try to match it against
2676 /// `obligation`. If successful, return any predicates that
2677 /// result from the normalization.
2678 fn match_where_clause_trait_ref(
2679 &mut self,
2680 obligation: &PolyTraitObligation<'tcx>,
2681 where_clause_trait_ref: ty::PolyTraitRef<'tcx>,
2682 ) -> Result<PredicateObligations<'tcx>, ()> {
2683 self.match_poly_trait_ref(obligation, where_clause_trait_ref)
2684 }
2685
2686 /// Returns `Ok` if `poly_trait_ref` being true implies that the
2687 /// obligation is satisfied.
2688 #[instrument(skip(self), level = "debug")]
2689 fn match_poly_trait_ref(
2690 &mut self,
2691 obligation: &PolyTraitObligation<'tcx>,
2692 poly_trait_ref: ty::PolyTraitRef<'tcx>,
2693 ) -> Result<PredicateObligations<'tcx>, ()> {
2694 let predicate = self.infcx.enter_forall_and_leak_universe(obligation.predicate);
2695 let trait_ref = self.infcx.instantiate_binder_with_fresh_vars(
2696 obligation.cause.span,
2697 HigherRankedType,
2698 poly_trait_ref,
2699 );
2700 self.infcx
2701 .at(&obligation.cause, obligation.param_env)
2702 .eq(DefineOpaqueTypes::No, predicate.trait_ref, trait_ref)
2703 .map(|InferOk { obligations, .. }| obligations)
2704 .map_err(|_| ())
2705 }
2706
2707 ///////////////////////////////////////////////////////////////////////////
2708 // Miscellany
2709
2710 fn match_fresh_trait_refs(
2711 &self,
2712 previous: ty::PolyTraitPredicate<'tcx>,
2713 current: ty::PolyTraitPredicate<'tcx>,
2714 ) -> bool {
2715 let mut matcher = _match::MatchAgainstFreshVars::new(self.tcx());
2716 matcher.relate(previous, current).is_ok()
2717 }
2718
2719 fn push_stack<'o>(
2720 &mut self,
2721 previous_stack: TraitObligationStackList<'o, 'tcx>,
2722 obligation: &'o PolyTraitObligation<'tcx>,
2723 ) -> TraitObligationStack<'o, 'tcx> {
2724 let fresh_trait_pred = obligation.predicate.fold_with(&mut self.freshener);
2725
2726 let dfn = previous_stack.cache.next_dfn();
2727 let depth = previous_stack.depth() + 1;
2728 TraitObligationStack {
2729 obligation,
2730 fresh_trait_pred,
2731 reached_depth: Cell::new(depth),
2732 previous: previous_stack,
2733 dfn,
2734 depth,
2735 }
2736 }
2737
2738 #[instrument(skip(self), level = "debug")]
2739 fn closure_trait_ref_unnormalized(
2740 &mut self,
2741 self_ty: Ty<'tcx>,
2742 fn_trait_def_id: DefId,
2743 ) -> ty::PolyTraitRef<'tcx> {
2744 let ty::Closure(_, args) = *self_ty.kind() else {
2745 bug!("expected closure, found {self_ty}");
2746 };
2747 let closure_sig = args.as_closure().sig();
2748
2749 closure_trait_ref_and_return_type(
2750 self.tcx(),
2751 fn_trait_def_id,
2752 self_ty,
2753 closure_sig,
2754 util::TupleArgumentsFlag::No,
2755 )
2756 .map_bound(|(trait_ref, _)| trait_ref)
2757 }
2758
2759 /// Returns the obligations that are implied by instantiating an
2760 /// impl or trait. The obligations are instantiated and fully
2761 /// normalized. This is used when confirming an impl or default
2762 /// impl.
2763 #[instrument(level = "debug", skip(self, cause, param_env))]
2764 fn impl_or_trait_obligations(
2765 &mut self,
2766 cause: &ObligationCause<'tcx>,
2767 recursion_depth: usize,
2768 param_env: ty::ParamEnv<'tcx>,
2769 def_id: DefId, // of impl or trait
2770 args: GenericArgsRef<'tcx>, // for impl or trait
2771 parent_trait_pred: ty::Binder<'tcx, ty::TraitPredicate<'tcx>>,
2772 ) -> PredicateObligations<'tcx> {
2773 let tcx = self.tcx();
2774
2775 // To allow for one-pass evaluation of the nested obligation,
2776 // each predicate must be preceded by the obligations required
2777 // to normalize it.
2778 // for example, if we have:
2779 // impl<U: Iterator<Item: Copy>, V: Iterator<Item = U>> Foo for V
2780 // the impl will have the following predicates:
2781 // <V as Iterator>::Item = U,
2782 // U: Iterator, U: Sized,
2783 // V: Iterator, V: Sized,
2784 // <U as Iterator>::Item: Copy
2785 // When we instantiate, say, `V => IntoIter<u32>, U => $0`, the last
2786 // obligation will normalize to `<$0 as Iterator>::Item = $1` and
2787 // `$1: Copy`, so we must ensure the obligations are emitted in
2788 // that order.
2789 let predicates = tcx.predicates_of(def_id);
2790 assert_eq!(predicates.parent, None);
2791 let predicates = predicates.instantiate_own(tcx, args);
2792 let mut obligations = PredicateObligations::with_capacity(predicates.len());
2793 for (index, (predicate, span)) in predicates.into_iter().enumerate() {
2794 let cause = if tcx.is_lang_item(parent_trait_pred.def_id(), LangItem::CoerceUnsized) {
2795 cause.clone()
2796 } else {
2797 cause.clone().derived_cause(parent_trait_pred, |derived| {
2798 ObligationCauseCode::ImplDerived(Box::new(ImplDerivedCause {
2799 derived,
2800 impl_or_alias_def_id: def_id,
2801 impl_def_predicate_index: Some(index),
2802 span,
2803 }))
2804 })
2805 };
2806 let clause = normalize_with_depth_to(
2807 self,
2808 param_env,
2809 cause.clone(),
2810 recursion_depth,
2811 predicate,
2812 &mut obligations,
2813 );
2814 obligations.push(Obligation {
2815 cause,
2816 recursion_depth,
2817 param_env,
2818 predicate: clause.as_predicate(),
2819 });
2820 }
2821
2822 // Register any outlives obligations from the trait here, cc #124336.
2823 if matches!(tcx.def_kind(def_id), DefKind::Impl { of_trait: true }) {
2824 for clause in tcx.impl_super_outlives(def_id).iter_instantiated(tcx, args) {
2825 let clause = normalize_with_depth_to(
2826 self,
2827 param_env,
2828 cause.clone(),
2829 recursion_depth,
2830 clause,
2831 &mut obligations,
2832 );
2833 obligations.push(Obligation {
2834 cause: cause.clone(),
2835 recursion_depth,
2836 param_env,
2837 predicate: clause.as_predicate(),
2838 });
2839 }
2840 }
2841
2842 obligations
2843 }
2844}
2845
2846fn rebind_coroutine_witness_types<'tcx>(
2847 tcx: TyCtxt<'tcx>,
2848 def_id: DefId,
2849 args: ty::GenericArgsRef<'tcx>,
2850 bound_vars: &'tcx ty::List<ty::BoundVariableKind>,
2851) -> ty::Binder<'tcx, Vec<Ty<'tcx>>> {
2852 let bound_coroutine_types = tcx.coroutine_hidden_types(def_id).skip_binder();
2853 let shifted_coroutine_types =
2854 tcx.shift_bound_var_indices(bound_vars.len(), bound_coroutine_types.skip_binder());
2855 ty::Binder::bind_with_vars(
2856 ty::EarlyBinder::bind(shifted_coroutine_types.to_vec()).instantiate(tcx, args),
2857 tcx.mk_bound_variable_kinds_from_iter(
2858 bound_vars.iter().chain(bound_coroutine_types.bound_vars()),
2859 ),
2860 )
2861}
2862
2863impl<'o, 'tcx> TraitObligationStack<'o, 'tcx> {
2864 fn list(&'o self) -> TraitObligationStackList<'o, 'tcx> {
2865 TraitObligationStackList::with(self)
2866 }
2867
2868 fn cache(&self) -> &'o ProvisionalEvaluationCache<'tcx> {
2869 self.previous.cache
2870 }
2871
2872 fn iter(&'o self) -> TraitObligationStackList<'o, 'tcx> {
2873 self.list()
2874 }
2875
2876 /// Indicates that attempting to evaluate this stack entry
2877 /// required accessing something from the stack at depth `reached_depth`.
2878 fn update_reached_depth(&self, reached_depth: usize) {
2879 assert!(
2880 self.depth >= reached_depth,
2881 "invoked `update_reached_depth` with something under this stack: \
2882 self.depth={} reached_depth={}",
2883 self.depth,
2884 reached_depth,
2885 );
2886 debug!(reached_depth, "update_reached_depth");
2887 let mut p = self;
2888 while reached_depth < p.depth {
2889 debug!(?p.fresh_trait_pred, "update_reached_depth: marking as cycle participant");
2890 p.reached_depth.set(p.reached_depth.get().min(reached_depth));
2891 p = p.previous.head.unwrap();
2892 }
2893 }
2894}
2895
2896/// The "provisional evaluation cache" is used to store intermediate cache results
2897/// when solving auto traits. Auto traits are unusual in that they can support
2898/// cycles. So, for example, a "proof tree" like this would be ok:
2899///
2900/// - `Foo<T>: Send` :-
2901/// - `Bar<T>: Send` :-
2902/// - `Foo<T>: Send` -- cycle, but ok
2903/// - `Baz<T>: Send`
2904///
2905/// Here, to prove `Foo<T>: Send`, we have to prove `Bar<T>: Send` and
2906/// `Baz<T>: Send`. Proving `Bar<T>: Send` in turn required `Foo<T>: Send`.
2907/// For non-auto traits, this cycle would be an error, but for auto traits (because
2908/// they are coinductive) it is considered ok.
2909///
2910/// However, there is a complication: at the point where we have
2911/// "proven" `Bar<T>: Send`, we have in fact only proven it
2912/// *provisionally*. In particular, we proved that `Bar<T>: Send`
2913/// *under the assumption* that `Foo<T>: Send`. But what if we later
2914/// find out this assumption is wrong? Specifically, we could
2915/// encounter some kind of error proving `Baz<T>: Send`. In that case,
2916/// `Bar<T>: Send` didn't turn out to be true.
2917///
2918/// In Issue #60010, we found a bug in rustc where it would cache
2919/// these intermediate results. This was fixed in #60444 by disabling
2920/// *all* caching for things involved in a cycle -- in our example,
2921/// that would mean we don't cache that `Bar<T>: Send`. But this led
2922/// to large slowdowns.
2923///
2924/// Specifically, imagine this scenario, where proving `Baz<T>: Send`
2925/// first requires proving `Bar<T>: Send` (which is true:
2926///
2927/// - `Foo<T>: Send` :-
2928/// - `Bar<T>: Send` :-
2929/// - `Foo<T>: Send` -- cycle, but ok
2930/// - `Baz<T>: Send`
2931/// - `Bar<T>: Send` -- would be nice for this to be a cache hit!
2932/// - `*const T: Send` -- but what if we later encounter an error?
2933///
2934/// The *provisional evaluation cache* resolves this issue. It stores
2935/// cache results that we've proven but which were involved in a cycle
2936/// in some way. We track the minimal stack depth (i.e., the
2937/// farthest from the top of the stack) that we are dependent on.
2938/// The idea is that the cache results within are all valid -- so long as
2939/// none of the nodes in between the current node and the node at that minimum
2940/// depth result in an error (in which case the cached results are just thrown away).
2941///
2942/// During evaluation, we consult this provisional cache and rely on
2943/// it. Accessing a cached value is considered equivalent to accessing
2944/// a result at `reached_depth`, so it marks the *current* solution as
2945/// provisional as well. If an error is encountered, we toss out any
2946/// provisional results added from the subtree that encountered the
2947/// error. When we pop the node at `reached_depth` from the stack, we
2948/// can commit all the things that remain in the provisional cache.
2949struct ProvisionalEvaluationCache<'tcx> {
2950 /// next "depth first number" to issue -- just a counter
2951 dfn: Cell<usize>,
2952
2953 /// Map from cache key to the provisionally evaluated thing.
2954 /// The cache entries contain the result but also the DFN in which they
2955 /// were added. The DFN is used to clear out values on failure.
2956 ///
2957 /// Imagine we have a stack like:
2958 ///
2959 /// - `A B C` and we add a cache for the result of C (DFN 2)
2960 /// - Then we have a stack `A B D` where `D` has DFN 3
2961 /// - We try to solve D by evaluating E: `A B D E` (DFN 4)
2962 /// - `E` generates various cache entries which have cyclic dependencies on `B`
2963 /// - `A B D E F` and so forth
2964 /// - the DFN of `F` for example would be 5
2965 /// - then we determine that `E` is in error -- we will then clear
2966 /// all cache values whose DFN is >= 4 -- in this case, that
2967 /// means the cached value for `F`.
2968 map: RefCell<FxIndexMap<ty::PolyTraitPredicate<'tcx>, ProvisionalEvaluation>>,
2969
2970 /// The stack of args that we assume to be true because a `WF(arg)` predicate
2971 /// is on the stack above (and because of wellformedness is coinductive).
2972 /// In an "ideal" world, this would share a stack with trait predicates in
2973 /// `TraitObligationStack`. However, trait predicates are *much* hotter than
2974 /// `WellFormed` predicates, and it's very likely that the additional matches
2975 /// will have a perf effect. The value here is the well-formed `GenericArg`
2976 /// and the depth of the trait predicate *above* that well-formed predicate.
2977 wf_args: RefCell<Vec<(ty::GenericArg<'tcx>, usize)>>,
2978}
2979
2980/// A cache value for the provisional cache: contains the depth-first
2981/// number (DFN) and result.
2982#[derive(Copy, Clone, Debug)]
2983struct ProvisionalEvaluation {
2984 from_dfn: usize,
2985 reached_depth: usize,
2986 result: EvaluationResult,
2987}
2988
2989impl<'tcx> Default for ProvisionalEvaluationCache<'tcx> {
2990 fn default() -> Self {
2991 Self { dfn: Cell::new(0), map: Default::default(), wf_args: Default::default() }
2992 }
2993}
2994
2995impl<'tcx> ProvisionalEvaluationCache<'tcx> {
2996 /// Get the next DFN in sequence (basically a counter).
2997 fn next_dfn(&self) -> usize {
2998 let result = self.dfn.get();
2999 self.dfn.set(result + 1);
3000 result
3001 }
3002
3003 /// Check the provisional cache for any result for
3004 /// `fresh_trait_ref`. If there is a hit, then you must consider
3005 /// it an access to the stack slots at depth
3006 /// `reached_depth` (from the returned value).
3007 fn get_provisional(
3008 &self,
3009 fresh_trait_pred: ty::PolyTraitPredicate<'tcx>,
3010 ) -> Option<ProvisionalEvaluation> {
3011 debug!(
3012 ?fresh_trait_pred,
3013 "get_provisional = {:#?}",
3014 self.map.borrow().get(&fresh_trait_pred),
3015 );
3016 Some(*self.map.borrow().get(&fresh_trait_pred)?)
3017 }
3018
3019 /// Insert a provisional result into the cache. The result came
3020 /// from the node with the given DFN. It accessed a minimum depth
3021 /// of `reached_depth` to compute. It evaluated `fresh_trait_pred`
3022 /// and resulted in `result`.
3023 fn insert_provisional(
3024 &self,
3025 from_dfn: usize,
3026 reached_depth: usize,
3027 fresh_trait_pred: ty::PolyTraitPredicate<'tcx>,
3028 result: EvaluationResult,
3029 ) {
3030 debug!(?from_dfn, ?fresh_trait_pred, ?result, "insert_provisional");
3031
3032 let mut map = self.map.borrow_mut();
3033
3034 // Subtle: when we complete working on the DFN `from_dfn`, anything
3035 // that remains in the provisional cache must be dependent on some older
3036 // stack entry than `from_dfn`. We have to update their depth with our transitive
3037 // depth in that case or else it would be referring to some popped note.
3038 //
3039 // Example:
3040 // A (reached depth 0)
3041 // ...
3042 // B // depth 1 -- reached depth = 0
3043 // C // depth 2 -- reached depth = 1 (should be 0)
3044 // B
3045 // A // depth 0
3046 // D (reached depth 1)
3047 // C (cache -- reached depth = 2)
3048 for (_k, v) in &mut *map {
3049 if v.from_dfn >= from_dfn {
3050 v.reached_depth = reached_depth.min(v.reached_depth);
3051 }
3052 }
3053
3054 map.insert(fresh_trait_pred, ProvisionalEvaluation { from_dfn, reached_depth, result });
3055 }
3056
3057 /// Invoked when the node with dfn `dfn` does not get a successful
3058 /// result. This will clear out any provisional cache entries
3059 /// that were added since `dfn` was created. This is because the
3060 /// provisional entries are things which must assume that the
3061 /// things on the stack at the time of their creation succeeded --
3062 /// since the failing node is presently at the top of the stack,
3063 /// these provisional entries must either depend on it or some
3064 /// ancestor of it.
3065 fn on_failure(&self, dfn: usize) {
3066 debug!(?dfn, "on_failure");
3067 self.map.borrow_mut().retain(|key, eval| {
3068 if !eval.from_dfn >= dfn {
3069 debug!("on_failure: removing {:?}", key);
3070 false
3071 } else {
3072 true
3073 }
3074 });
3075 }
3076
3077 /// Invoked when the node at depth `depth` completed without
3078 /// depending on anything higher in the stack (if that completion
3079 /// was a failure, then `on_failure` should have been invoked
3080 /// already).
3081 ///
3082 /// Note that we may still have provisional cache items remaining
3083 /// in the cache when this is done. For example, if there is a
3084 /// cycle:
3085 ///
3086 /// * A depends on...
3087 /// * B depends on A
3088 /// * C depends on...
3089 /// * D depends on C
3090 /// * ...
3091 ///
3092 /// Then as we complete the C node we will have a provisional cache
3093 /// with results for A, B, C, and D. This method would clear out
3094 /// the C and D results, but leave A and B provisional.
3095 ///
3096 /// This is determined based on the DFN: we remove any provisional
3097 /// results created since `dfn` started (e.g., in our example, dfn
3098 /// would be 2, representing the C node, and hence we would
3099 /// remove the result for D, which has DFN 3, but not the results for
3100 /// A and B, which have DFNs 0 and 1 respectively).
3101 ///
3102 /// Note that we *do not* attempt to cache these cycle participants
3103 /// in the evaluation cache. Doing so would require carefully computing
3104 /// the correct `DepNode` to store in the cache entry:
3105 /// cycle participants may implicitly depend on query results
3106 /// related to other participants in the cycle, due to our logic
3107 /// which examines the evaluation stack.
3108 ///
3109 /// We used to try to perform this caching,
3110 /// but it lead to multiple incremental compilation ICEs
3111 /// (see #92987 and #96319), and was very hard to understand.
3112 /// Fortunately, removing the caching didn't seem to
3113 /// have a performance impact in practice.
3114 fn on_completion(&self, dfn: usize) {
3115 debug!(?dfn, "on_completion");
3116 self.map.borrow_mut().retain(|fresh_trait_pred, eval| {
3117 if eval.from_dfn >= dfn {
3118 debug!(?fresh_trait_pred, ?eval, "on_completion");
3119 return false;
3120 }
3121 true
3122 });
3123 }
3124}
3125
3126#[derive(Copy, Clone)]
3127struct TraitObligationStackList<'o, 'tcx> {
3128 cache: &'o ProvisionalEvaluationCache<'tcx>,
3129 head: Option<&'o TraitObligationStack<'o, 'tcx>>,
3130}
3131
3132impl<'o, 'tcx> TraitObligationStackList<'o, 'tcx> {
3133 fn empty(cache: &'o ProvisionalEvaluationCache<'tcx>) -> TraitObligationStackList<'o, 'tcx> {
3134 TraitObligationStackList { cache, head: None }
3135 }
3136
3137 fn with(r: &'o TraitObligationStack<'o, 'tcx>) -> TraitObligationStackList<'o, 'tcx> {
3138 TraitObligationStackList { cache: r.cache(), head: Some(r) }
3139 }
3140
3141 fn head(&self) -> Option<&'o TraitObligationStack<'o, 'tcx>> {
3142 self.head
3143 }
3144
3145 fn depth(&self) -> usize {
3146 if let Some(head) = self.head { head.depth } else { 0 }
3147 }
3148}
3149
3150impl<'o, 'tcx> Iterator for TraitObligationStackList<'o, 'tcx> {
3151 type Item = &'o TraitObligationStack<'o, 'tcx>;
3152
3153 fn next(&mut self) -> Option<&'o TraitObligationStack<'o, 'tcx>> {
3154 let o = self.head?;
3155 *self = o.previous;
3156 Some(o)
3157 }
3158}
3159
3160impl<'o, 'tcx> fmt::Debug for TraitObligationStack<'o, 'tcx> {
3161 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3162 write!(f, "TraitObligationStack({:?})", self.obligation)
3163 }
3164}
3165
3166pub(crate) enum ProjectionMatchesProjection {
3167 Yes,
3168 Ambiguous,
3169 No,
3170}