rustc_trait_selection/traits/select/mod.rs
1//! Candidate selection. See the [rustc dev guide] for more information on how this works.
2//!
3//! [rustc dev guide]: https://rustc-dev-guide.rust-lang.org/traits/resolution.html#selection
4
5use std::assert_matches::assert_matches;
6use std::cell::{Cell, RefCell};
7use std::fmt::{self, Display};
8use std::ops::ControlFlow;
9use std::{cmp, iter};
10
11use hir::def::DefKind;
12use rustc_data_structures::fx::{FxIndexMap, FxIndexSet};
13use rustc_data_structures::stack::ensure_sufficient_stack;
14use rustc_errors::{Diag, EmissionGuarantee};
15use rustc_hir as hir;
16use rustc_hir::LangItem;
17use rustc_hir::def_id::DefId;
18use rustc_infer::infer::BoundRegionConversionTime::{self, HigherRankedType};
19use rustc_infer::infer::DefineOpaqueTypes;
20use rustc_infer::infer::at::ToTrace;
21use rustc_infer::infer::relate::TypeRelation;
22use rustc_infer::traits::{PredicateObligations, TraitObligation};
23use rustc_middle::bug;
24use rustc_middle::dep_graph::{DepNodeIndex, dep_kinds};
25pub use rustc_middle::traits::select::*;
26use rustc_middle::ty::abstract_const::NotConstEvaluatable;
27use rustc_middle::ty::error::TypeErrorToStringExt;
28use rustc_middle::ty::print::{PrintTraitRefExt as _, with_no_trimmed_paths};
29use rustc_middle::ty::{
30 self, GenericArgsRef, PolyProjectionPredicate, Ty, TyCtxt, TypeFoldable, TypeVisitableExt,
31 TypingMode, Upcast,
32};
33use rustc_span::{Symbol, sym};
34use rustc_type_ir::elaborate;
35use tracing::{debug, instrument, trace};
36
37use self::EvaluationResult::*;
38use self::SelectionCandidate::*;
39use super::coherence::{self, Conflict};
40use super::project::ProjectionTermObligation;
41use super::util::closure_trait_ref_and_return_type;
42use super::{
43 ImplDerivedCause, Normalized, Obligation, ObligationCause, ObligationCauseCode, Overflow,
44 PolyTraitObligation, PredicateObligation, Selection, SelectionError, SelectionResult,
45 TraitQueryMode, const_evaluatable, project, util, wf,
46};
47use crate::error_reporting::InferCtxtErrorExt;
48use crate::infer::{InferCtxt, InferOk, TypeFreshener};
49use crate::solve::InferCtxtSelectExt as _;
50use crate::traits::normalize::{normalize_with_depth, normalize_with_depth_to};
51use crate::traits::project::{ProjectAndUnifyResult, ProjectionCacheKeyExt};
52use crate::traits::{EvaluateConstErr, ProjectionCacheKey, Unimplemented, effects};
53
54mod _match;
55mod candidate_assembly;
56mod confirmation;
57
58#[derive(Clone, Debug, Eq, PartialEq, Hash)]
59pub enum IntercrateAmbiguityCause<'tcx> {
60 DownstreamCrate { trait_ref: ty::TraitRef<'tcx>, self_ty: Option<Ty<'tcx>> },
61 UpstreamCrateUpdate { trait_ref: ty::TraitRef<'tcx>, self_ty: Option<Ty<'tcx>> },
62 ReservationImpl { message: Symbol },
63}
64
65impl<'tcx> IntercrateAmbiguityCause<'tcx> {
66 /// Emits notes when the overlap is caused by complex intercrate ambiguities.
67 /// See #23980 for details.
68 pub fn add_intercrate_ambiguity_hint<G: EmissionGuarantee>(&self, err: &mut Diag<'_, G>) {
69 err.note(self.intercrate_ambiguity_hint());
70 }
71
72 pub fn intercrate_ambiguity_hint(&self) -> String {
73 with_no_trimmed_paths!(match self {
74 IntercrateAmbiguityCause::DownstreamCrate { trait_ref, self_ty } => {
75 format!(
76 "downstream crates may implement trait `{trait_desc}`{self_desc}",
77 trait_desc = trait_ref.print_trait_sugared(),
78 self_desc = if let Some(self_ty) = self_ty {
79 format!(" for type `{self_ty}`")
80 } else {
81 String::new()
82 }
83 )
84 }
85 IntercrateAmbiguityCause::UpstreamCrateUpdate { trait_ref, self_ty } => {
86 format!(
87 "upstream crates may add a new impl of trait `{trait_desc}`{self_desc} \
88 in future versions",
89 trait_desc = trait_ref.print_trait_sugared(),
90 self_desc = if let Some(self_ty) = self_ty {
91 format!(" for type `{self_ty}`")
92 } else {
93 String::new()
94 }
95 )
96 }
97 IntercrateAmbiguityCause::ReservationImpl { message } => message.to_string(),
98 })
99 }
100}
101
102pub struct SelectionContext<'cx, 'tcx> {
103 pub infcx: &'cx InferCtxt<'tcx>,
104
105 /// Freshener used specifically for entries on the obligation
106 /// stack. This ensures that all entries on the stack at one time
107 /// will have the same set of placeholder entries, which is
108 /// important for checking for trait bounds that recursively
109 /// require themselves.
110 freshener: TypeFreshener<'cx, 'tcx>,
111
112 /// If `intercrate` is set, we remember predicates which were
113 /// considered ambiguous because of impls potentially added in other crates.
114 /// This is used in coherence to give improved diagnostics.
115 /// We don't do his until we detect a coherence error because it can
116 /// lead to false overflow results (#47139) and because always
117 /// computing it may negatively impact performance.
118 intercrate_ambiguity_causes: Option<FxIndexSet<IntercrateAmbiguityCause<'tcx>>>,
119
120 /// The mode that trait queries run in, which informs our error handling
121 /// policy. In essence, canonicalized queries need their errors propagated
122 /// rather than immediately reported because we do not have accurate spans.
123 query_mode: TraitQueryMode,
124}
125
126// A stack that walks back up the stack frame.
127struct TraitObligationStack<'prev, 'tcx> {
128 obligation: &'prev PolyTraitObligation<'tcx>,
129
130 /// The trait predicate from `obligation` but "freshened" with the
131 /// selection-context's freshener. Used to check for recursion.
132 fresh_trait_pred: ty::PolyTraitPredicate<'tcx>,
133
134 /// Starts out equal to `depth` -- if, during evaluation, we
135 /// encounter a cycle, then we will set this flag to the minimum
136 /// depth of that cycle for all participants in the cycle. These
137 /// participants will then forego caching their results. This is
138 /// not the most efficient solution, but it addresses #60010. The
139 /// problem we are trying to prevent:
140 ///
141 /// - If you have `A: AutoTrait` requires `B: AutoTrait` and `C: NonAutoTrait`
142 /// - `B: AutoTrait` requires `A: AutoTrait` (coinductive cycle, ok)
143 /// - `C: NonAutoTrait` requires `A: AutoTrait` (non-coinductive cycle, not ok)
144 ///
145 /// you don't want to cache that `B: AutoTrait` or `A: AutoTrait`
146 /// is `EvaluatedToOk`; this is because they were only considered
147 /// ok on the premise that if `A: AutoTrait` held, but we indeed
148 /// encountered a problem (later on) with `A: AutoTrait`. So we
149 /// currently set a flag on the stack node for `B: AutoTrait` (as
150 /// well as the second instance of `A: AutoTrait`) to suppress
151 /// caching.
152 ///
153 /// This is a simple, targeted fix. A more-performant fix requires
154 /// deeper changes, but would permit more caching: we could
155 /// basically defer caching until we have fully evaluated the
156 /// tree, and then cache the entire tree at once. In any case, the
157 /// performance impact here shouldn't be so horrible: every time
158 /// this is hit, we do cache at least one trait, so we only
159 /// evaluate each member of a cycle up to N times, where N is the
160 /// length of the cycle. This means the performance impact is
161 /// bounded and we shouldn't have any terrible worst-cases.
162 reached_depth: Cell<usize>,
163
164 previous: TraitObligationStackList<'prev, 'tcx>,
165
166 /// The number of parent frames plus one (thus, the topmost frame has depth 1).
167 depth: usize,
168
169 /// The depth-first number of this node in the search graph -- a
170 /// pre-order index. Basically, a freshly incremented counter.
171 dfn: usize,
172}
173
174struct SelectionCandidateSet<'tcx> {
175 /// A list of candidates that definitely apply to the current
176 /// obligation (meaning: types unify).
177 vec: Vec<SelectionCandidate<'tcx>>,
178
179 /// If `true`, then there were candidates that might or might
180 /// not have applied, but we couldn't tell. This occurs when some
181 /// of the input types are type variables, in which case there are
182 /// various "builtin" rules that might or might not trigger.
183 ambiguous: bool,
184}
185
186#[derive(PartialEq, Eq, Debug, Clone)]
187struct EvaluatedCandidate<'tcx> {
188 candidate: SelectionCandidate<'tcx>,
189 evaluation: EvaluationResult,
190}
191
192/// When does the builtin impl for `T: Trait` apply?
193#[derive(Debug)]
194enum BuiltinImplConditions<'tcx> {
195 /// The impl is conditional on `T1, T2, ...: Trait`.
196 Where(ty::Binder<'tcx, Vec<Ty<'tcx>>>),
197 /// There is no built-in impl. There may be some other
198 /// candidate (a where-clause or user-defined impl).
199 None,
200 /// It is unknown whether there is an impl.
201 Ambiguous,
202}
203
204impl<'cx, 'tcx> SelectionContext<'cx, 'tcx> {
205 pub fn new(infcx: &'cx InferCtxt<'tcx>) -> SelectionContext<'cx, 'tcx> {
206 SelectionContext {
207 infcx,
208 freshener: infcx.freshener(),
209 intercrate_ambiguity_causes: None,
210 query_mode: TraitQueryMode::Standard,
211 }
212 }
213
214 pub fn with_query_mode(
215 infcx: &'cx InferCtxt<'tcx>,
216 query_mode: TraitQueryMode,
217 ) -> SelectionContext<'cx, 'tcx> {
218 debug!(?query_mode, "with_query_mode");
219 SelectionContext { query_mode, ..SelectionContext::new(infcx) }
220 }
221
222 /// Enables tracking of intercrate ambiguity causes. See
223 /// the documentation of [`Self::intercrate_ambiguity_causes`] for more.
224 pub fn enable_tracking_intercrate_ambiguity_causes(&mut self) {
225 assert_matches!(self.infcx.typing_mode(), TypingMode::Coherence);
226 assert!(self.intercrate_ambiguity_causes.is_none());
227 self.intercrate_ambiguity_causes = Some(FxIndexSet::default());
228 debug!("selcx: enable_tracking_intercrate_ambiguity_causes");
229 }
230
231 /// Gets the intercrate ambiguity causes collected since tracking
232 /// was enabled and disables tracking at the same time. If
233 /// tracking is not enabled, just returns an empty vector.
234 pub fn take_intercrate_ambiguity_causes(
235 &mut self,
236 ) -> FxIndexSet<IntercrateAmbiguityCause<'tcx>> {
237 assert_matches!(self.infcx.typing_mode(), TypingMode::Coherence);
238 self.intercrate_ambiguity_causes.take().unwrap_or_default()
239 }
240
241 pub fn tcx(&self) -> TyCtxt<'tcx> {
242 self.infcx.tcx
243 }
244
245 ///////////////////////////////////////////////////////////////////////////
246 // Selection
247 //
248 // The selection phase tries to identify *how* an obligation will
249 // be resolved. For example, it will identify which impl or
250 // parameter bound is to be used. The process can be inconclusive
251 // if the self type in the obligation is not fully inferred. Selection
252 // can result in an error in one of two ways:
253 //
254 // 1. If no applicable impl or parameter bound can be found.
255 // 2. If the output type parameters in the obligation do not match
256 // those specified by the impl/bound. For example, if the obligation
257 // is `Vec<Foo>: Iterable<Bar>`, but the impl specifies
258 // `impl<T> Iterable<T> for Vec<T>`, than an error would result.
259
260 /// Attempts to satisfy the obligation. If successful, this will affect the surrounding
261 /// type environment by performing unification.
262 #[instrument(level = "debug", skip(self), ret)]
263 pub fn poly_select(
264 &mut self,
265 obligation: &PolyTraitObligation<'tcx>,
266 ) -> SelectionResult<'tcx, Selection<'tcx>> {
267 if self.infcx.next_trait_solver() {
268 return self.infcx.select_in_new_trait_solver(obligation);
269 }
270
271 let candidate = match self.select_from_obligation(obligation) {
272 Err(SelectionError::Overflow(OverflowError::Canonical)) => {
273 // In standard mode, overflow must have been caught and reported
274 // earlier.
275 assert!(self.query_mode == TraitQueryMode::Canonical);
276 return Err(SelectionError::Overflow(OverflowError::Canonical));
277 }
278 Err(e) => {
279 return Err(e);
280 }
281 Ok(None) => {
282 return Ok(None);
283 }
284 Ok(Some(candidate)) => candidate,
285 };
286
287 match self.confirm_candidate(obligation, candidate) {
288 Err(SelectionError::Overflow(OverflowError::Canonical)) => {
289 assert!(self.query_mode == TraitQueryMode::Canonical);
290 Err(SelectionError::Overflow(OverflowError::Canonical))
291 }
292 Err(e) => Err(e),
293 Ok(candidate) => Ok(Some(candidate)),
294 }
295 }
296
297 pub fn select(
298 &mut self,
299 obligation: &TraitObligation<'tcx>,
300 ) -> SelectionResult<'tcx, Selection<'tcx>> {
301 self.poly_select(&Obligation {
302 cause: obligation.cause.clone(),
303 param_env: obligation.param_env,
304 predicate: ty::Binder::dummy(obligation.predicate),
305 recursion_depth: obligation.recursion_depth,
306 })
307 }
308
309 fn select_from_obligation(
310 &mut self,
311 obligation: &PolyTraitObligation<'tcx>,
312 ) -> SelectionResult<'tcx, SelectionCandidate<'tcx>> {
313 debug_assert!(!obligation.predicate.has_escaping_bound_vars());
314
315 let pec = &ProvisionalEvaluationCache::default();
316 let stack = self.push_stack(TraitObligationStackList::empty(pec), obligation);
317
318 self.candidate_from_obligation(&stack)
319 }
320
321 #[instrument(level = "debug", skip(self), ret)]
322 fn candidate_from_obligation<'o>(
323 &mut self,
324 stack: &TraitObligationStack<'o, 'tcx>,
325 ) -> SelectionResult<'tcx, SelectionCandidate<'tcx>> {
326 debug_assert!(!self.infcx.next_trait_solver());
327 // Watch out for overflow. This intentionally bypasses (and does
328 // not update) the cache.
329 self.check_recursion_limit(stack.obligation, stack.obligation)?;
330
331 // Check the cache. Note that we freshen the trait-ref
332 // separately rather than using `stack.fresh_trait_ref` --
333 // this is because we want the unbound variables to be
334 // replaced with fresh types starting from index 0.
335 let cache_fresh_trait_pred = self.infcx.freshen(stack.obligation.predicate);
336 debug!(?cache_fresh_trait_pred);
337 debug_assert!(!stack.obligation.predicate.has_escaping_bound_vars());
338
339 if let Some(c) =
340 self.check_candidate_cache(stack.obligation.param_env, cache_fresh_trait_pred)
341 {
342 debug!("CACHE HIT");
343 return c;
344 }
345
346 // If no match, compute result and insert into cache.
347 //
348 // FIXME(nikomatsakis) -- this cache is not taking into
349 // account cycles that may have occurred in forming the
350 // candidate. I don't know of any specific problems that
351 // result but it seems awfully suspicious.
352 let (candidate, dep_node) =
353 self.in_task(|this| this.candidate_from_obligation_no_cache(stack));
354
355 debug!("CACHE MISS");
356 self.insert_candidate_cache(
357 stack.obligation.param_env,
358 cache_fresh_trait_pred,
359 dep_node,
360 candidate.clone(),
361 );
362 candidate
363 }
364
365 fn candidate_from_obligation_no_cache<'o>(
366 &mut self,
367 stack: &TraitObligationStack<'o, 'tcx>,
368 ) -> SelectionResult<'tcx, SelectionCandidate<'tcx>> {
369 if let Err(conflict) = self.is_knowable(stack) {
370 debug!("coherence stage: not knowable");
371 if self.intercrate_ambiguity_causes.is_some() {
372 debug!("evaluate_stack: intercrate_ambiguity_causes is some");
373 // Heuristics: show the diagnostics when there are no candidates in crate.
374 if let Ok(candidate_set) = self.assemble_candidates(stack) {
375 let mut no_candidates_apply = true;
376
377 for c in candidate_set.vec.iter() {
378 if self.evaluate_candidate(stack, c)?.may_apply() {
379 no_candidates_apply = false;
380 break;
381 }
382 }
383
384 if !candidate_set.ambiguous && no_candidates_apply {
385 let trait_ref = self.infcx.resolve_vars_if_possible(
386 stack.obligation.predicate.skip_binder().trait_ref,
387 );
388 if !trait_ref.references_error() {
389 let self_ty = trait_ref.self_ty();
390 let self_ty = self_ty.has_concrete_skeleton().then(|| self_ty);
391 let cause = if let Conflict::Upstream = conflict {
392 IntercrateAmbiguityCause::UpstreamCrateUpdate { trait_ref, self_ty }
393 } else {
394 IntercrateAmbiguityCause::DownstreamCrate { trait_ref, self_ty }
395 };
396 debug!(?cause, "evaluate_stack: pushing cause");
397 self.intercrate_ambiguity_causes.as_mut().unwrap().insert(cause);
398 }
399 }
400 }
401 }
402 return Ok(None);
403 }
404
405 let candidate_set = self.assemble_candidates(stack)?;
406
407 if candidate_set.ambiguous {
408 debug!("candidate set contains ambig");
409 return Ok(None);
410 }
411
412 let candidates = candidate_set.vec;
413
414 debug!(?stack, ?candidates, "assembled {} candidates", candidates.len());
415
416 // At this point, we know that each of the entries in the
417 // candidate set is *individually* applicable. Now we have to
418 // figure out if they contain mutual incompatibilities. This
419 // frequently arises if we have an unconstrained input type --
420 // for example, we are looking for `$0: Eq` where `$0` is some
421 // unconstrained type variable. In that case, we'll get a
422 // candidate which assumes $0 == int, one that assumes `$0 ==
423 // usize`, etc. This spells an ambiguity.
424
425 let mut candidates = self.filter_impls(candidates, stack.obligation);
426
427 // If there is more than one candidate, first winnow them down
428 // by considering extra conditions (nested obligations and so
429 // forth). We don't winnow if there is exactly one
430 // candidate. This is a relatively minor distinction but it
431 // can lead to better inference and error-reporting. An
432 // example would be if there was an impl:
433 //
434 // impl<T:Clone> Vec<T> { fn push_clone(...) { ... } }
435 //
436 // and we were to see some code `foo.push_clone()` where `boo`
437 // is a `Vec<Bar>` and `Bar` does not implement `Clone`. If
438 // we were to winnow, we'd wind up with zero candidates.
439 // Instead, we select the right impl now but report "`Bar` does
440 // not implement `Clone`".
441 if candidates.len() == 1 {
442 return self.filter_reservation_impls(candidates.pop().unwrap());
443 }
444
445 // Winnow, but record the exact outcome of evaluation, which
446 // is needed for specialization. Propagate overflow if it occurs.
447 let candidates = candidates
448 .into_iter()
449 .map(|c| match self.evaluate_candidate(stack, &c) {
450 Ok(eval) if eval.may_apply() => {
451 Ok(Some(EvaluatedCandidate { candidate: c, evaluation: eval }))
452 }
453 Ok(_) => Ok(None),
454 Err(OverflowError::Canonical) => Err(Overflow(OverflowError::Canonical)),
455 Err(OverflowError::Error(e)) => Err(Overflow(OverflowError::Error(e))),
456 })
457 .flat_map(Result::transpose)
458 .collect::<Result<Vec<_>, _>>()?;
459
460 debug!(?stack, ?candidates, "{} potentially applicable candidates", candidates.len());
461 // If there are *NO* candidates, then there are no impls --
462 // that we know of, anyway. Note that in the case where there
463 // are unbound type variables within the obligation, it might
464 // be the case that you could still satisfy the obligation
465 // from another crate by instantiating the type variables with
466 // a type from another crate that does have an impl. This case
467 // is checked for in `evaluate_stack` (and hence users
468 // who might care about this case, like coherence, should use
469 // that function).
470 if candidates.is_empty() {
471 // If there's an error type, 'downgrade' our result from
472 // `Err(Unimplemented)` to `Ok(None)`. This helps us avoid
473 // emitting additional spurious errors, since we're guaranteed
474 // to have emitted at least one.
475 if stack.obligation.predicate.references_error() {
476 debug!(?stack.obligation.predicate, "found error type in predicate, treating as ambiguous");
477 Ok(None)
478 } else {
479 Err(Unimplemented)
480 }
481 } else {
482 let has_non_region_infer = stack.obligation.predicate.has_non_region_infer();
483 if let Some(candidate) = self.winnow_candidates(has_non_region_infer, candidates) {
484 self.filter_reservation_impls(candidate)
485 } else {
486 Ok(None)
487 }
488 }
489 }
490
491 ///////////////////////////////////////////////////////////////////////////
492 // EVALUATION
493 //
494 // Tests whether an obligation can be selected or whether an impl
495 // can be applied to particular types. It skips the "confirmation"
496 // step and hence completely ignores output type parameters.
497 //
498 // The result is "true" if the obligation *may* hold and "false" if
499 // we can be sure it does not.
500
501 /// Evaluates whether the obligation `obligation` can be satisfied
502 /// and returns an `EvaluationResult`. This is meant for the
503 /// *initial* call.
504 ///
505 /// Do not use this directly, use `infcx.evaluate_obligation` instead.
506 pub fn evaluate_root_obligation(
507 &mut self,
508 obligation: &PredicateObligation<'tcx>,
509 ) -> Result<EvaluationResult, OverflowError> {
510 debug_assert!(!self.infcx.next_trait_solver());
511 self.evaluation_probe(|this| {
512 let goal =
513 this.infcx.resolve_vars_if_possible((obligation.predicate, obligation.param_env));
514 let mut result = this.evaluate_predicate_recursively(
515 TraitObligationStackList::empty(&ProvisionalEvaluationCache::default()),
516 obligation.clone(),
517 )?;
518 // If the predicate has done any inference, then downgrade the
519 // result to ambiguous.
520 if this.infcx.resolve_vars_if_possible(goal) != goal {
521 result = result.max(EvaluatedToAmbig);
522 }
523 Ok(result)
524 })
525 }
526
527 /// Computes the evaluation result of `op`, discarding any constraints.
528 ///
529 /// This also runs for leak check to allow higher ranked region errors to impact
530 /// selection. By default it checks for leaks from all universes created inside of
531 /// `op`, but this can be overwritten if necessary.
532 fn evaluation_probe(
533 &mut self,
534 op: impl FnOnce(&mut Self) -> Result<EvaluationResult, OverflowError>,
535 ) -> Result<EvaluationResult, OverflowError> {
536 self.infcx.probe(|snapshot| -> Result<EvaluationResult, OverflowError> {
537 let outer_universe = self.infcx.universe();
538 let result = op(self)?;
539
540 match self.infcx.leak_check(outer_universe, Some(snapshot)) {
541 Ok(()) => {}
542 Err(_) => return Ok(EvaluatedToErr),
543 }
544
545 if self.infcx.opaque_types_added_in_snapshot(snapshot) {
546 return Ok(result.max(EvaluatedToOkModuloOpaqueTypes));
547 }
548
549 if self.infcx.region_constraints_added_in_snapshot(snapshot) {
550 Ok(result.max(EvaluatedToOkModuloRegions))
551 } else {
552 Ok(result)
553 }
554 })
555 }
556
557 /// Evaluates the predicates in `predicates` recursively. This may
558 /// guide inference. If this is not desired, run it inside of a
559 /// is run within an inference probe.
560 /// `probe`.
561 #[instrument(skip(self, stack), level = "debug")]
562 fn evaluate_predicates_recursively<'o, I>(
563 &mut self,
564 stack: TraitObligationStackList<'o, 'tcx>,
565 predicates: I,
566 ) -> Result<EvaluationResult, OverflowError>
567 where
568 I: IntoIterator<Item = PredicateObligation<'tcx>> + std::fmt::Debug,
569 {
570 let mut result = EvaluatedToOk;
571 for mut obligation in predicates {
572 obligation.set_depth_from_parent(stack.depth());
573 let eval = self.evaluate_predicate_recursively(stack, obligation.clone())?;
574 if let EvaluatedToErr = eval {
575 // fast-path - EvaluatedToErr is the top of the lattice,
576 // so we don't need to look on the other predicates.
577 return Ok(EvaluatedToErr);
578 } else {
579 result = cmp::max(result, eval);
580 }
581 }
582 Ok(result)
583 }
584
585 #[instrument(
586 level = "debug",
587 skip(self, previous_stack),
588 fields(previous_stack = ?previous_stack.head())
589 ret,
590 )]
591 fn evaluate_predicate_recursively<'o>(
592 &mut self,
593 previous_stack: TraitObligationStackList<'o, 'tcx>,
594 obligation: PredicateObligation<'tcx>,
595 ) -> Result<EvaluationResult, OverflowError> {
596 debug_assert!(!self.infcx.next_trait_solver());
597 // `previous_stack` stores a `PolyTraitObligation`, while `obligation` is
598 // a `PredicateObligation`. These are distinct types, so we can't
599 // use any `Option` combinator method that would force them to be
600 // the same.
601 match previous_stack.head() {
602 Some(h) => self.check_recursion_limit(&obligation, h.obligation)?,
603 None => self.check_recursion_limit(&obligation, &obligation)?,
604 }
605
606 ensure_sufficient_stack(|| {
607 let bound_predicate = obligation.predicate.kind();
608 match bound_predicate.skip_binder() {
609 ty::PredicateKind::Clause(ty::ClauseKind::Trait(t)) => {
610 let t = bound_predicate.rebind(t);
611 debug_assert!(!t.has_escaping_bound_vars());
612 let obligation = obligation.with(self.tcx(), t);
613 self.evaluate_trait_predicate_recursively(previous_stack, obligation)
614 }
615
616 ty::PredicateKind::Clause(ty::ClauseKind::HostEffect(data)) => {
617 self.infcx.enter_forall(bound_predicate.rebind(data), |data| {
618 match effects::evaluate_host_effect_obligation(
619 self,
620 &obligation.with(self.tcx(), data),
621 ) {
622 Ok(nested) => {
623 self.evaluate_predicates_recursively(previous_stack, nested)
624 }
625 Err(effects::EvaluationFailure::Ambiguous) => Ok(EvaluatedToAmbig),
626 Err(effects::EvaluationFailure::NoSolution) => Ok(EvaluatedToErr),
627 }
628 })
629 }
630
631 ty::PredicateKind::Subtype(p) => {
632 let p = bound_predicate.rebind(p);
633 // Does this code ever run?
634 match self.infcx.subtype_predicate(&obligation.cause, obligation.param_env, p) {
635 Ok(Ok(InferOk { obligations, .. })) => {
636 self.evaluate_predicates_recursively(previous_stack, obligations)
637 }
638 Ok(Err(_)) => Ok(EvaluatedToErr),
639 Err(..) => Ok(EvaluatedToAmbig),
640 }
641 }
642
643 ty::PredicateKind::Coerce(p) => {
644 let p = bound_predicate.rebind(p);
645 // Does this code ever run?
646 match self.infcx.coerce_predicate(&obligation.cause, obligation.param_env, p) {
647 Ok(Ok(InferOk { obligations, .. })) => {
648 self.evaluate_predicates_recursively(previous_stack, obligations)
649 }
650 Ok(Err(_)) => Ok(EvaluatedToErr),
651 Err(..) => Ok(EvaluatedToAmbig),
652 }
653 }
654
655 ty::PredicateKind::Clause(ty::ClauseKind::WellFormed(arg)) => {
656 // So, there is a bit going on here. First, `WellFormed` predicates
657 // are coinductive, like trait predicates with auto traits.
658 // This means that we need to detect if we have recursively
659 // evaluated `WellFormed(X)`. Otherwise, we would run into
660 // a "natural" overflow error.
661 //
662 // Now, the next question is whether we need to do anything
663 // special with caching. Considering the following tree:
664 // - `WF(Foo<T>)`
665 // - `Bar<T>: Send`
666 // - `WF(Foo<T>)`
667 // - `Foo<T>: Trait`
668 // In this case, the innermost `WF(Foo<T>)` should return
669 // `EvaluatedToOk`, since it's coinductive. Then if
670 // `Bar<T>: Send` is resolved to `EvaluatedToOk`, it can be
671 // inserted into a cache (because without thinking about `WF`
672 // goals, it isn't in a cycle). If `Foo<T>: Trait` later doesn't
673 // hold, then `Bar<T>: Send` shouldn't hold. Therefore, we
674 // *do* need to keep track of coinductive cycles.
675
676 let cache = previous_stack.cache;
677 let dfn = cache.next_dfn();
678
679 for stack_arg in previous_stack.cache.wf_args.borrow().iter().rev() {
680 if stack_arg.0 != arg {
681 continue;
682 }
683 debug!("WellFormed({:?}) on stack", arg);
684 if let Some(stack) = previous_stack.head {
685 // Okay, let's imagine we have two different stacks:
686 // `T: NonAutoTrait -> WF(T) -> T: NonAutoTrait`
687 // `WF(T) -> T: NonAutoTrait -> WF(T)`
688 // Because of this, we need to check that all
689 // predicates between the WF goals are coinductive.
690 // Otherwise, we can say that `T: NonAutoTrait` is
691 // true.
692 // Let's imagine we have a predicate stack like
693 // `Foo: Bar -> WF(T) -> T: NonAutoTrait -> T: Auto`
694 // depth ^1 ^2 ^3
695 // and the current predicate is `WF(T)`. `wf_args`
696 // would contain `(T, 1)`. We want to check all
697 // trait predicates greater than `1`. The previous
698 // stack would be `T: Auto`.
699 let cycle = stack.iter().take_while(|s| s.depth > stack_arg.1);
700 let tcx = self.tcx();
701 let cycle = cycle.map(|stack| stack.obligation.predicate.upcast(tcx));
702 if self.coinductive_match(cycle) {
703 stack.update_reached_depth(stack_arg.1);
704 return Ok(EvaluatedToOk);
705 } else {
706 return Ok(EvaluatedToAmbigStackDependent);
707 }
708 }
709 return Ok(EvaluatedToOk);
710 }
711
712 match wf::obligations(
713 self.infcx,
714 obligation.param_env,
715 obligation.cause.body_id,
716 obligation.recursion_depth + 1,
717 arg,
718 obligation.cause.span,
719 ) {
720 Some(obligations) => {
721 cache.wf_args.borrow_mut().push((arg, previous_stack.depth()));
722 let result =
723 self.evaluate_predicates_recursively(previous_stack, obligations);
724 cache.wf_args.borrow_mut().pop();
725
726 let result = result?;
727
728 if !result.must_apply_modulo_regions() {
729 cache.on_failure(dfn);
730 }
731
732 cache.on_completion(dfn);
733
734 Ok(result)
735 }
736 None => Ok(EvaluatedToAmbig),
737 }
738 }
739
740 ty::PredicateKind::Clause(ty::ClauseKind::TypeOutlives(pred)) => {
741 // A global type with no free lifetimes or generic parameters
742 // outlives anything.
743 if pred.0.has_free_regions()
744 || pred.0.has_bound_regions()
745 || pred.0.has_non_region_infer()
746 || pred.0.has_non_region_infer()
747 {
748 Ok(EvaluatedToOkModuloRegions)
749 } else {
750 Ok(EvaluatedToOk)
751 }
752 }
753
754 ty::PredicateKind::Clause(ty::ClauseKind::RegionOutlives(..)) => {
755 // We do not consider region relationships when evaluating trait matches.
756 Ok(EvaluatedToOkModuloRegions)
757 }
758
759 ty::PredicateKind::DynCompatible(trait_def_id) => {
760 if self.tcx().is_dyn_compatible(trait_def_id) {
761 Ok(EvaluatedToOk)
762 } else {
763 Ok(EvaluatedToErr)
764 }
765 }
766
767 ty::PredicateKind::Clause(ty::ClauseKind::Projection(data)) => {
768 let data = bound_predicate.rebind(data);
769 let project_obligation = obligation.with(self.tcx(), data);
770 match project::poly_project_and_unify_term(self, &project_obligation) {
771 ProjectAndUnifyResult::Holds(mut subobligations) => {
772 'compute_res: {
773 // If we've previously marked this projection as 'complete', then
774 // use the final cached result (either `EvaluatedToOk` or
775 // `EvaluatedToOkModuloRegions`), and skip re-evaluating the
776 // sub-obligations.
777 if let Some(key) =
778 ProjectionCacheKey::from_poly_projection_obligation(
779 self,
780 &project_obligation,
781 )
782 {
783 if let Some(cached_res) = self
784 .infcx
785 .inner
786 .borrow_mut()
787 .projection_cache()
788 .is_complete(key)
789 {
790 break 'compute_res Ok(cached_res);
791 }
792 }
793
794 // Need to explicitly set the depth of nested goals here as
795 // projection obligations can cycle by themselves and in
796 // `evaluate_predicates_recursively` we only add the depth
797 // for parent trait goals because only these get added to the
798 // `TraitObligationStackList`.
799 for subobligation in subobligations.iter_mut() {
800 subobligation.set_depth_from_parent(obligation.recursion_depth);
801 }
802 let res = self.evaluate_predicates_recursively(
803 previous_stack,
804 subobligations,
805 );
806 if let Ok(eval_rslt) = res
807 && (eval_rslt == EvaluatedToOk
808 || eval_rslt == EvaluatedToOkModuloRegions)
809 && let Some(key) =
810 ProjectionCacheKey::from_poly_projection_obligation(
811 self,
812 &project_obligation,
813 )
814 {
815 // If the result is something that we can cache, then mark this
816 // entry as 'complete'. This will allow us to skip evaluating the
817 // subobligations at all the next time we evaluate the projection
818 // predicate.
819 self.infcx
820 .inner
821 .borrow_mut()
822 .projection_cache()
823 .complete(key, eval_rslt);
824 }
825 res
826 }
827 }
828 ProjectAndUnifyResult::FailedNormalization => Ok(EvaluatedToAmbig),
829 ProjectAndUnifyResult::Recursive => Ok(EvaluatedToAmbigStackDependent),
830 ProjectAndUnifyResult::MismatchedProjectionTypes(_) => Ok(EvaluatedToErr),
831 }
832 }
833
834 ty::PredicateKind::Clause(ty::ClauseKind::ConstEvaluatable(uv)) => {
835 match const_evaluatable::is_const_evaluatable(
836 self.infcx,
837 uv,
838 obligation.param_env,
839 obligation.cause.span,
840 ) {
841 Ok(()) => Ok(EvaluatedToOk),
842 Err(NotConstEvaluatable::MentionsInfer) => Ok(EvaluatedToAmbig),
843 Err(NotConstEvaluatable::MentionsParam) => Ok(EvaluatedToErr),
844 Err(_) => Ok(EvaluatedToErr),
845 }
846 }
847
848 ty::PredicateKind::ConstEquate(c1, c2) => {
849 let tcx = self.tcx();
850 assert!(
851 tcx.features().generic_const_exprs(),
852 "`ConstEquate` without a feature gate: {c1:?} {c2:?}",
853 );
854
855 {
856 let c1 = tcx.expand_abstract_consts(c1);
857 let c2 = tcx.expand_abstract_consts(c2);
858 debug!(
859 "evaluate_predicate_recursively: equating consts:\nc1= {:?}\nc2= {:?}",
860 c1, c2
861 );
862
863 use rustc_hir::def::DefKind;
864 match (c1.kind(), c2.kind()) {
865 (ty::ConstKind::Unevaluated(a), ty::ConstKind::Unevaluated(b))
866 if a.def == b.def && tcx.def_kind(a.def) == DefKind::AssocConst =>
867 {
868 if let Ok(InferOk { obligations, value: () }) = self
869 .infcx
870 .at(&obligation.cause, obligation.param_env)
871 // Can define opaque types as this is only reachable with
872 // `generic_const_exprs`
873 .eq(
874 DefineOpaqueTypes::Yes,
875 ty::AliasTerm::from(a),
876 ty::AliasTerm::from(b),
877 )
878 {
879 return self.evaluate_predicates_recursively(
880 previous_stack,
881 obligations,
882 );
883 }
884 }
885 (_, ty::ConstKind::Unevaluated(_))
886 | (ty::ConstKind::Unevaluated(_), _) => (),
887 (_, _) => {
888 if let Ok(InferOk { obligations, value: () }) = self
889 .infcx
890 .at(&obligation.cause, obligation.param_env)
891 // Can define opaque types as this is only reachable with
892 // `generic_const_exprs`
893 .eq(DefineOpaqueTypes::Yes, c1, c2)
894 {
895 return self.evaluate_predicates_recursively(
896 previous_stack,
897 obligations,
898 );
899 }
900 }
901 }
902 }
903
904 let evaluate = |c: ty::Const<'tcx>| {
905 if let ty::ConstKind::Unevaluated(_) = c.kind() {
906 match crate::traits::try_evaluate_const(
907 self.infcx,
908 c,
909 obligation.param_env,
910 ) {
911 Ok(val) => Ok(val),
912 Err(e) => Err(e),
913 }
914 } else {
915 Ok(c)
916 }
917 };
918
919 match (evaluate(c1), evaluate(c2)) {
920 (Ok(c1), Ok(c2)) => {
921 match self.infcx.at(&obligation.cause, obligation.param_env).eq(
922 // Can define opaque types as this is only reachable with
923 // `generic_const_exprs`
924 DefineOpaqueTypes::Yes,
925 c1,
926 c2,
927 ) {
928 Ok(inf_ok) => self.evaluate_predicates_recursively(
929 previous_stack,
930 inf_ok.into_obligations(),
931 ),
932 Err(_) => Ok(EvaluatedToErr),
933 }
934 }
935 (Err(EvaluateConstErr::InvalidConstParamTy(..)), _)
936 | (_, Err(EvaluateConstErr::InvalidConstParamTy(..))) => Ok(EvaluatedToErr),
937 (Err(EvaluateConstErr::EvaluationFailure(..)), _)
938 | (_, Err(EvaluateConstErr::EvaluationFailure(..))) => Ok(EvaluatedToErr),
939 (Err(EvaluateConstErr::HasGenericsOrInfers), _)
940 | (_, Err(EvaluateConstErr::HasGenericsOrInfers)) => {
941 if c1.has_non_region_infer() || c2.has_non_region_infer() {
942 Ok(EvaluatedToAmbig)
943 } else {
944 // Two different constants using generic parameters ~> error.
945 Ok(EvaluatedToErr)
946 }
947 }
948 }
949 }
950 ty::PredicateKind::NormalizesTo(..) => {
951 bug!("NormalizesTo is only used by the new solver")
952 }
953 ty::PredicateKind::AliasRelate(..) => {
954 bug!("AliasRelate is only used by the new solver")
955 }
956 ty::PredicateKind::Ambiguous => Ok(EvaluatedToAmbig),
957 ty::PredicateKind::Clause(ty::ClauseKind::ConstArgHasType(ct, ty)) => {
958 let ct = self.infcx.shallow_resolve_const(ct);
959 let ct_ty = match ct.kind() {
960 ty::ConstKind::Infer(_) => {
961 return Ok(EvaluatedToAmbig);
962 }
963 ty::ConstKind::Error(_) => return Ok(EvaluatedToOk),
964 ty::ConstKind::Value(cv) => cv.ty,
965 ty::ConstKind::Unevaluated(uv) => {
966 self.tcx().type_of(uv.def).instantiate(self.tcx(), uv.args)
967 }
968 // FIXME(generic_const_exprs): See comment in `fulfill.rs`
969 ty::ConstKind::Expr(_) => return Ok(EvaluatedToOk),
970 ty::ConstKind::Placeholder(_) => {
971 bug!("placeholder const {:?} in old solver", ct)
972 }
973 ty::ConstKind::Bound(_, _) => bug!("escaping bound vars in {:?}", ct),
974 ty::ConstKind::Param(param_ct) => {
975 param_ct.find_ty_from_env(obligation.param_env)
976 }
977 };
978
979 match self.infcx.at(&obligation.cause, obligation.param_env).eq(
980 // Only really exercised by generic_const_exprs
981 DefineOpaqueTypes::Yes,
982 ct_ty,
983 ty,
984 ) {
985 Ok(inf_ok) => self.evaluate_predicates_recursively(
986 previous_stack,
987 inf_ok.into_obligations(),
988 ),
989 Err(_) => Ok(EvaluatedToErr),
990 }
991 }
992 }
993 })
994 }
995
996 #[instrument(skip(self, previous_stack), level = "debug", ret)]
997 fn evaluate_trait_predicate_recursively<'o>(
998 &mut self,
999 previous_stack: TraitObligationStackList<'o, 'tcx>,
1000 mut obligation: PolyTraitObligation<'tcx>,
1001 ) -> Result<EvaluationResult, OverflowError> {
1002 if !matches!(self.infcx.typing_mode(), TypingMode::Coherence)
1003 && obligation.is_global()
1004 && obligation.param_env.caller_bounds().iter().all(|bound| bound.has_param())
1005 {
1006 // If a param env has no global bounds, global obligations do not
1007 // depend on its particular value in order to work, so we can clear
1008 // out the param env and get better caching.
1009 debug!("in global");
1010 obligation.param_env = ty::ParamEnv::empty();
1011 }
1012
1013 let stack = self.push_stack(previous_stack, &obligation);
1014 let fresh_trait_pred = stack.fresh_trait_pred;
1015 let param_env = obligation.param_env;
1016
1017 debug!(?fresh_trait_pred);
1018
1019 // If a trait predicate is in the (local or global) evaluation cache,
1020 // then we know it holds without cycles.
1021 if let Some(result) = self.check_evaluation_cache(param_env, fresh_trait_pred) {
1022 debug!("CACHE HIT");
1023 return Ok(result);
1024 }
1025
1026 if let Some(result) = stack.cache().get_provisional(fresh_trait_pred) {
1027 debug!("PROVISIONAL CACHE HIT");
1028 stack.update_reached_depth(result.reached_depth);
1029 return Ok(result.result);
1030 }
1031
1032 // Check if this is a match for something already on the
1033 // stack. If so, we don't want to insert the result into the
1034 // main cache (it is cycle dependent) nor the provisional
1035 // cache (which is meant for things that have completed but
1036 // for a "backedge" -- this result *is* the backedge).
1037 if let Some(cycle_result) = self.check_evaluation_cycle(&stack) {
1038 return Ok(cycle_result);
1039 }
1040
1041 let (result, dep_node) = self.in_task(|this| {
1042 let mut result = this.evaluate_stack(&stack)?;
1043
1044 // fix issue #103563, we don't normalize
1045 // nested obligations which produced by `TraitDef` candidate
1046 // (i.e. using bounds on assoc items as assumptions).
1047 // because we don't have enough information to
1048 // normalize these obligations before evaluating.
1049 // so we will try to normalize the obligation and evaluate again.
1050 // we will replace it with new solver in the future.
1051 if EvaluationResult::EvaluatedToErr == result
1052 && fresh_trait_pred.has_aliases()
1053 && fresh_trait_pred.is_global()
1054 {
1055 let mut nested_obligations = PredicateObligations::new();
1056 let predicate = normalize_with_depth_to(
1057 this,
1058 param_env,
1059 obligation.cause.clone(),
1060 obligation.recursion_depth + 1,
1061 obligation.predicate,
1062 &mut nested_obligations,
1063 );
1064 if predicate != obligation.predicate {
1065 let mut nested_result = EvaluationResult::EvaluatedToOk;
1066 for obligation in nested_obligations {
1067 nested_result = cmp::max(
1068 this.evaluate_predicate_recursively(previous_stack, obligation)?,
1069 nested_result,
1070 );
1071 }
1072
1073 if nested_result.must_apply_modulo_regions() {
1074 let obligation = obligation.with(this.tcx(), predicate);
1075 result = cmp::max(
1076 nested_result,
1077 this.evaluate_trait_predicate_recursively(previous_stack, obligation)?,
1078 );
1079 }
1080 }
1081 }
1082
1083 Ok::<_, OverflowError>(result)
1084 });
1085
1086 let result = result?;
1087
1088 if !result.must_apply_modulo_regions() {
1089 stack.cache().on_failure(stack.dfn);
1090 }
1091
1092 let reached_depth = stack.reached_depth.get();
1093 if reached_depth >= stack.depth {
1094 debug!("CACHE MISS");
1095 self.insert_evaluation_cache(param_env, fresh_trait_pred, dep_node, result);
1096 stack.cache().on_completion(stack.dfn);
1097 } else {
1098 debug!("PROVISIONAL");
1099 debug!(
1100 "caching provisionally because {:?} \
1101 is a cycle participant (at depth {}, reached depth {})",
1102 fresh_trait_pred, stack.depth, reached_depth,
1103 );
1104
1105 stack.cache().insert_provisional(stack.dfn, reached_depth, fresh_trait_pred, result);
1106 }
1107
1108 Ok(result)
1109 }
1110
1111 /// If there is any previous entry on the stack that precisely
1112 /// matches this obligation, then we can assume that the
1113 /// obligation is satisfied for now (still all other conditions
1114 /// must be met of course). One obvious case this comes up is
1115 /// marker traits like `Send`. Think of a linked list:
1116 ///
1117 /// struct List<T> { data: T, next: Option<Box<List<T>>> }
1118 ///
1119 /// `Box<List<T>>` will be `Send` if `T` is `Send` and
1120 /// `Option<Box<List<T>>>` is `Send`, and in turn
1121 /// `Option<Box<List<T>>>` is `Send` if `Box<List<T>>` is
1122 /// `Send`.
1123 ///
1124 /// Note that we do this comparison using the `fresh_trait_ref`
1125 /// fields. Because these have all been freshened using
1126 /// `self.freshener`, we can be sure that (a) this will not
1127 /// affect the inferencer state and (b) that if we see two
1128 /// fresh regions with the same index, they refer to the same
1129 /// unbound type variable.
1130 fn check_evaluation_cycle(
1131 &mut self,
1132 stack: &TraitObligationStack<'_, 'tcx>,
1133 ) -> Option<EvaluationResult> {
1134 if let Some(cycle_depth) = stack
1135 .iter()
1136 .skip(1) // Skip top-most frame.
1137 .find(|prev| {
1138 stack.obligation.param_env == prev.obligation.param_env
1139 && stack.fresh_trait_pred == prev.fresh_trait_pred
1140 })
1141 .map(|stack| stack.depth)
1142 {
1143 debug!("evaluate_stack --> recursive at depth {}", cycle_depth);
1144
1145 // If we have a stack like `A B C D E A`, where the top of
1146 // the stack is the final `A`, then this will iterate over
1147 // `A, E, D, C, B` -- i.e., all the participants apart
1148 // from the cycle head. We mark them as participating in a
1149 // cycle. This suppresses caching for those nodes. See
1150 // `in_cycle` field for more details.
1151 stack.update_reached_depth(cycle_depth);
1152
1153 // Subtle: when checking for a coinductive cycle, we do
1154 // not compare using the "freshened trait refs" (which
1155 // have erased regions) but rather the fully explicit
1156 // trait refs. This is important because it's only a cycle
1157 // if the regions match exactly.
1158 let cycle = stack.iter().skip(1).take_while(|s| s.depth >= cycle_depth);
1159 let tcx = self.tcx();
1160 let cycle = cycle.map(|stack| stack.obligation.predicate.upcast(tcx));
1161 if self.coinductive_match(cycle) {
1162 debug!("evaluate_stack --> recursive, coinductive");
1163 Some(EvaluatedToOk)
1164 } else {
1165 debug!("evaluate_stack --> recursive, inductive");
1166 Some(EvaluatedToAmbigStackDependent)
1167 }
1168 } else {
1169 None
1170 }
1171 }
1172
1173 fn evaluate_stack<'o>(
1174 &mut self,
1175 stack: &TraitObligationStack<'o, 'tcx>,
1176 ) -> Result<EvaluationResult, OverflowError> {
1177 debug_assert!(!self.infcx.next_trait_solver());
1178 // In intercrate mode, whenever any of the generics are unbound,
1179 // there can always be an impl. Even if there are no impls in
1180 // this crate, perhaps the type would be unified with
1181 // something from another crate that does provide an impl.
1182 //
1183 // In intra mode, we must still be conservative. The reason is
1184 // that we want to avoid cycles. Imagine an impl like:
1185 //
1186 // impl<T:Eq> Eq for Vec<T>
1187 //
1188 // and a trait reference like `$0 : Eq` where `$0` is an
1189 // unbound variable. When we evaluate this trait-reference, we
1190 // will unify `$0` with `Vec<$1>` (for some fresh variable
1191 // `$1`), on the condition that `$1 : Eq`. We will then wind
1192 // up with many candidates (since that are other `Eq` impls
1193 // that apply) and try to winnow things down. This results in
1194 // a recursive evaluation that `$1 : Eq` -- as you can
1195 // imagine, this is just where we started. To avoid that, we
1196 // check for unbound variables and return an ambiguous (hence possible)
1197 // match if we've seen this trait before.
1198 //
1199 // This suffices to allow chains like `FnMut` implemented in
1200 // terms of `Fn` etc, but we could probably make this more
1201 // precise still.
1202 let unbound_input_types =
1203 stack.fresh_trait_pred.skip_binder().trait_ref.args.types().any(|ty| ty.is_fresh());
1204
1205 if unbound_input_types
1206 && stack.iter().skip(1).any(|prev| {
1207 stack.obligation.param_env == prev.obligation.param_env
1208 && self.match_fresh_trait_refs(stack.fresh_trait_pred, prev.fresh_trait_pred)
1209 })
1210 {
1211 debug!("evaluate_stack --> unbound argument, recursive --> giving up",);
1212 return Ok(EvaluatedToAmbigStackDependent);
1213 }
1214
1215 match self.candidate_from_obligation(stack) {
1216 Ok(Some(c)) => self.evaluate_candidate(stack, &c),
1217 Ok(None) => Ok(EvaluatedToAmbig),
1218 Err(Overflow(OverflowError::Canonical)) => Err(OverflowError::Canonical),
1219 Err(..) => Ok(EvaluatedToErr),
1220 }
1221 }
1222
1223 /// For defaulted traits, we use a co-inductive strategy to solve, so
1224 /// that recursion is ok. This routine returns `true` if the top of the
1225 /// stack (`cycle[0]`):
1226 ///
1227 /// - is a coinductive trait: an auto-trait or `Sized`,
1228 /// - it also appears in the backtrace at some position `X`,
1229 /// - all the predicates at positions `X..` between `X` and the top are
1230 /// also coinductive traits.
1231 pub(crate) fn coinductive_match<I>(&mut self, mut cycle: I) -> bool
1232 where
1233 I: Iterator<Item = ty::Predicate<'tcx>>,
1234 {
1235 cycle.all(|p| match p.kind().skip_binder() {
1236 ty::PredicateKind::Clause(ty::ClauseKind::Trait(data)) => {
1237 self.infcx.tcx.trait_is_coinductive(data.def_id())
1238 }
1239 ty::PredicateKind::Clause(ty::ClauseKind::WellFormed(_)) => true,
1240 _ => false,
1241 })
1242 }
1243
1244 /// Further evaluates `candidate` to decide whether all type parameters match and whether nested
1245 /// obligations are met. Returns whether `candidate` remains viable after this further
1246 /// scrutiny.
1247 #[instrument(
1248 level = "debug",
1249 skip(self, stack),
1250 fields(depth = stack.obligation.recursion_depth),
1251 ret
1252 )]
1253 fn evaluate_candidate<'o>(
1254 &mut self,
1255 stack: &TraitObligationStack<'o, 'tcx>,
1256 candidate: &SelectionCandidate<'tcx>,
1257 ) -> Result<EvaluationResult, OverflowError> {
1258 let mut result = self.evaluation_probe(|this| {
1259 match this.confirm_candidate(stack.obligation, candidate.clone()) {
1260 Ok(selection) => {
1261 debug!(?selection);
1262 this.evaluate_predicates_recursively(
1263 stack.list(),
1264 selection.nested_obligations().into_iter(),
1265 )
1266 }
1267 Err(..) => Ok(EvaluatedToErr),
1268 }
1269 })?;
1270
1271 // If we erased any lifetimes, then we want to use
1272 // `EvaluatedToOkModuloRegions` instead of `EvaluatedToOk`
1273 // as your final result. The result will be cached using
1274 // the freshened trait predicate as a key, so we need
1275 // our result to be correct by *any* choice of original lifetimes,
1276 // not just the lifetime choice for this particular (non-erased)
1277 // predicate.
1278 // See issue #80691
1279 if stack.fresh_trait_pred.has_erased_regions() {
1280 result = result.max(EvaluatedToOkModuloRegions);
1281 }
1282
1283 Ok(result)
1284 }
1285
1286 fn check_evaluation_cache(
1287 &self,
1288 param_env: ty::ParamEnv<'tcx>,
1289 trait_pred: ty::PolyTraitPredicate<'tcx>,
1290 ) -> Option<EvaluationResult> {
1291 let infcx = self.infcx;
1292 let tcx = infcx.tcx;
1293 if self.can_use_global_caches(param_env, trait_pred) {
1294 let key = (infcx.typing_env(param_env), trait_pred);
1295 if let Some(res) = tcx.evaluation_cache.get(&key, tcx) {
1296 Some(res)
1297 } else {
1298 debug_assert_eq!(infcx.evaluation_cache.get(&(param_env, trait_pred), tcx), None);
1299 None
1300 }
1301 } else {
1302 self.infcx.evaluation_cache.get(&(param_env, trait_pred), tcx)
1303 }
1304 }
1305
1306 fn insert_evaluation_cache(
1307 &mut self,
1308 param_env: ty::ParamEnv<'tcx>,
1309 trait_pred: ty::PolyTraitPredicate<'tcx>,
1310 dep_node: DepNodeIndex,
1311 result: EvaluationResult,
1312 ) {
1313 // Avoid caching results that depend on more than just the trait-ref
1314 // - the stack can create recursion.
1315 if result.is_stack_dependent() {
1316 return;
1317 }
1318
1319 let infcx = self.infcx;
1320 let tcx = infcx.tcx;
1321 if self.can_use_global_caches(param_env, trait_pred) {
1322 debug!(?trait_pred, ?result, "insert_evaluation_cache global");
1323 // This may overwrite the cache with the same value
1324 tcx.evaluation_cache.insert(
1325 (infcx.typing_env(param_env), trait_pred),
1326 dep_node,
1327 result,
1328 );
1329 return;
1330 } else {
1331 debug!(?trait_pred, ?result, "insert_evaluation_cache local");
1332 self.infcx.evaluation_cache.insert((param_env, trait_pred), dep_node, result);
1333 }
1334 }
1335
1336 fn check_recursion_depth<T>(
1337 &self,
1338 depth: usize,
1339 error_obligation: &Obligation<'tcx, T>,
1340 ) -> Result<(), OverflowError>
1341 where
1342 T: Upcast<TyCtxt<'tcx>, ty::Predicate<'tcx>> + Clone,
1343 {
1344 if !self.infcx.tcx.recursion_limit().value_within_limit(depth) {
1345 match self.query_mode {
1346 TraitQueryMode::Standard => {
1347 if let Some(e) = self.infcx.tainted_by_errors() {
1348 return Err(OverflowError::Error(e));
1349 }
1350 self.infcx.err_ctxt().report_overflow_obligation(error_obligation, true);
1351 }
1352 TraitQueryMode::Canonical => {
1353 return Err(OverflowError::Canonical);
1354 }
1355 }
1356 }
1357 Ok(())
1358 }
1359
1360 /// Checks that the recursion limit has not been exceeded.
1361 ///
1362 /// The weird return type of this function allows it to be used with the `try` (`?`)
1363 /// operator within certain functions.
1364 #[inline(always)]
1365 fn check_recursion_limit<T: Display + TypeFoldable<TyCtxt<'tcx>>, V>(
1366 &self,
1367 obligation: &Obligation<'tcx, T>,
1368 error_obligation: &Obligation<'tcx, V>,
1369 ) -> Result<(), OverflowError>
1370 where
1371 V: Upcast<TyCtxt<'tcx>, ty::Predicate<'tcx>> + Clone,
1372 {
1373 self.check_recursion_depth(obligation.recursion_depth, error_obligation)
1374 }
1375
1376 fn in_task<OP, R>(&mut self, op: OP) -> (R, DepNodeIndex)
1377 where
1378 OP: FnOnce(&mut Self) -> R,
1379 {
1380 self.tcx().dep_graph.with_anon_task(self.tcx(), dep_kinds::TraitSelect, || op(self))
1381 }
1382
1383 /// filter_impls filters candidates that have a positive impl for a negative
1384 /// goal and a negative impl for a positive goal
1385 #[instrument(level = "debug", skip(self, candidates))]
1386 fn filter_impls(
1387 &mut self,
1388 candidates: Vec<SelectionCandidate<'tcx>>,
1389 obligation: &PolyTraitObligation<'tcx>,
1390 ) -> Vec<SelectionCandidate<'tcx>> {
1391 trace!("{candidates:#?}");
1392 let tcx = self.tcx();
1393 let mut result = Vec::with_capacity(candidates.len());
1394
1395 for candidate in candidates {
1396 if let ImplCandidate(def_id) = candidate {
1397 match (tcx.impl_polarity(def_id), obligation.polarity()) {
1398 (ty::ImplPolarity::Reservation, _)
1399 | (ty::ImplPolarity::Positive, ty::PredicatePolarity::Positive)
1400 | (ty::ImplPolarity::Negative, ty::PredicatePolarity::Negative) => {
1401 result.push(candidate);
1402 }
1403 _ => {}
1404 }
1405 } else {
1406 result.push(candidate);
1407 }
1408 }
1409
1410 trace!("{result:#?}");
1411 result
1412 }
1413
1414 /// filter_reservation_impls filter reservation impl for any goal as ambiguous
1415 #[instrument(level = "debug", skip(self))]
1416 fn filter_reservation_impls(
1417 &mut self,
1418 candidate: SelectionCandidate<'tcx>,
1419 ) -> SelectionResult<'tcx, SelectionCandidate<'tcx>> {
1420 let tcx = self.tcx();
1421 // Treat reservation impls as ambiguity.
1422 if let ImplCandidate(def_id) = candidate {
1423 if let ty::ImplPolarity::Reservation = tcx.impl_polarity(def_id) {
1424 if let Some(intercrate_ambiguity_clauses) = &mut self.intercrate_ambiguity_causes {
1425 let message = tcx
1426 .get_attr(def_id, sym::rustc_reservation_impl)
1427 .and_then(|a| a.value_str());
1428 if let Some(message) = message {
1429 debug!(
1430 "filter_reservation_impls: \
1431 reservation impl ambiguity on {:?}",
1432 def_id
1433 );
1434 intercrate_ambiguity_clauses
1435 .insert(IntercrateAmbiguityCause::ReservationImpl { message });
1436 }
1437 }
1438 return Ok(None);
1439 }
1440 }
1441 Ok(Some(candidate))
1442 }
1443
1444 fn is_knowable<'o>(&mut self, stack: &TraitObligationStack<'o, 'tcx>) -> Result<(), Conflict> {
1445 let obligation = &stack.obligation;
1446 match self.infcx.typing_mode() {
1447 TypingMode::Coherence => {}
1448 TypingMode::Analysis { .. }
1449 | TypingMode::PostBorrowckAnalysis { .. }
1450 | TypingMode::PostAnalysis => return Ok(()),
1451 }
1452
1453 debug!("is_knowable()");
1454
1455 let predicate = self.infcx.resolve_vars_if_possible(obligation.predicate);
1456
1457 // Okay to skip binder because of the nature of the
1458 // trait-ref-is-knowable check, which does not care about
1459 // bound regions.
1460 let trait_ref = predicate.skip_binder().trait_ref;
1461
1462 coherence::trait_ref_is_knowable(self.infcx, trait_ref, |ty| Ok::<_, !>(ty)).into_ok()
1463 }
1464
1465 /// Returns `true` if the global caches can be used.
1466 fn can_use_global_caches(
1467 &self,
1468 param_env: ty::ParamEnv<'tcx>,
1469 pred: ty::PolyTraitPredicate<'tcx>,
1470 ) -> bool {
1471 // If there are any inference variables in the `ParamEnv`, then we
1472 // always use a cache local to this particular scope. Otherwise, we
1473 // switch to a global cache.
1474 if param_env.has_infer() || pred.has_infer() {
1475 return false;
1476 }
1477
1478 match self.infcx.typing_mode() {
1479 // Avoid using the global cache during coherence and just rely
1480 // on the local cache. It is really just a simplification to
1481 // avoid us having to fear that coherence results "pollute"
1482 // the master cache. Since coherence executes pretty quickly,
1483 // it's not worth going to more trouble to increase the
1484 // hit-rate, I don't think.
1485 TypingMode::Coherence => false,
1486 // Avoid using the global cache when we're defining opaque types
1487 // as their hidden type may impact the result of candidate selection.
1488 //
1489 // HACK: This is still theoretically unsound. Goals can indirectly rely
1490 // on opaques in the defining scope, and it's easier to do so with TAIT.
1491 // However, if we disqualify *all* goals from being cached, perf suffers.
1492 // This is likely fixed by better caching in general in the new solver.
1493 // See: <https://github.com/rust-lang/rust/issues/132064>.
1494 TypingMode::Analysis { defining_opaque_types } => {
1495 defining_opaque_types.is_empty() || !pred.has_opaque_types()
1496 }
1497 // The hidden types of `defined_opaque_types` is not local to the current
1498 // inference context, so we can freely move this to the global cache.
1499 TypingMode::PostBorrowckAnalysis { .. } => true,
1500 // The global cache is only used if there are no opaque types in
1501 // the defining scope or we're outside of analysis.
1502 //
1503 // FIXME(#132279): This is still incorrect as we treat opaque types
1504 // and default associated items differently between these two modes.
1505 TypingMode::PostAnalysis => true,
1506 }
1507 }
1508
1509 fn check_candidate_cache(
1510 &mut self,
1511 param_env: ty::ParamEnv<'tcx>,
1512 cache_fresh_trait_pred: ty::PolyTraitPredicate<'tcx>,
1513 ) -> Option<SelectionResult<'tcx, SelectionCandidate<'tcx>>> {
1514 let infcx = self.infcx;
1515 let tcx = infcx.tcx;
1516 let pred = cache_fresh_trait_pred.skip_binder();
1517
1518 if self.can_use_global_caches(param_env, cache_fresh_trait_pred) {
1519 if let Some(res) = tcx.selection_cache.get(&(infcx.typing_env(param_env), pred), tcx) {
1520 return Some(res);
1521 } else if cfg!(debug_assertions) {
1522 match infcx.selection_cache.get(&(param_env, pred), tcx) {
1523 None | Some(Err(Overflow(OverflowError::Canonical))) => {}
1524 res => bug!("unexpected local cache result: {res:?}"),
1525 }
1526 }
1527 }
1528
1529 // Subtle: we need to check the local cache even if we're able to use the
1530 // global cache as we don't cache overflow in the global cache but need to
1531 // cache it as otherwise rustdoc hangs when compiling diesel.
1532 infcx.selection_cache.get(&(param_env, pred), tcx)
1533 }
1534
1535 /// Determines whether can we safely cache the result
1536 /// of selecting an obligation. This is almost always `true`,
1537 /// except when dealing with certain `ParamCandidate`s.
1538 ///
1539 /// Ordinarily, a `ParamCandidate` will contain no inference variables,
1540 /// since it was usually produced directly from a `DefId`. However,
1541 /// certain cases (currently only librustdoc's blanket impl finder),
1542 /// a `ParamEnv` may be explicitly constructed with inference types.
1543 /// When this is the case, we do *not* want to cache the resulting selection
1544 /// candidate. This is due to the fact that it might not always be possible
1545 /// to equate the obligation's trait ref and the candidate's trait ref,
1546 /// if more constraints end up getting added to an inference variable.
1547 ///
1548 /// Because of this, we always want to re-run the full selection
1549 /// process for our obligation the next time we see it, since
1550 /// we might end up picking a different `SelectionCandidate` (or none at all).
1551 fn can_cache_candidate(
1552 &self,
1553 result: &SelectionResult<'tcx, SelectionCandidate<'tcx>>,
1554 ) -> bool {
1555 match result {
1556 Ok(Some(SelectionCandidate::ParamCandidate(trait_ref))) => !trait_ref.has_infer(),
1557 _ => true,
1558 }
1559 }
1560
1561 #[instrument(skip(self, param_env, cache_fresh_trait_pred, dep_node), level = "debug")]
1562 fn insert_candidate_cache(
1563 &mut self,
1564 param_env: ty::ParamEnv<'tcx>,
1565 cache_fresh_trait_pred: ty::PolyTraitPredicate<'tcx>,
1566 dep_node: DepNodeIndex,
1567 candidate: SelectionResult<'tcx, SelectionCandidate<'tcx>>,
1568 ) {
1569 let infcx = self.infcx;
1570 let tcx = infcx.tcx;
1571 let pred = cache_fresh_trait_pred.skip_binder();
1572
1573 if !self.can_cache_candidate(&candidate) {
1574 debug!(?pred, ?candidate, "insert_candidate_cache - candidate is not cacheable");
1575 return;
1576 }
1577
1578 if self.can_use_global_caches(param_env, cache_fresh_trait_pred) {
1579 if let Err(Overflow(OverflowError::Canonical)) = candidate {
1580 // Don't cache overflow globally; we only produce this in certain modes.
1581 } else {
1582 debug!(?pred, ?candidate, "insert_candidate_cache global");
1583 debug_assert!(!candidate.has_infer());
1584
1585 // This may overwrite the cache with the same value.
1586 tcx.selection_cache.insert(
1587 (infcx.typing_env(param_env), pred),
1588 dep_node,
1589 candidate,
1590 );
1591 return;
1592 }
1593 }
1594
1595 debug!(?pred, ?candidate, "insert_candidate_cache local");
1596 self.infcx.selection_cache.insert((param_env, pred), dep_node, candidate);
1597 }
1598
1599 /// Looks at the item bounds of the projection or opaque type.
1600 /// If this is a nested rigid projection, such as
1601 /// `<<T as Tr1>::Assoc as Tr2>::Assoc`, consider the item bounds
1602 /// on both `Tr1::Assoc` and `Tr2::Assoc`, since we may encounter
1603 /// relative bounds on both via the `associated_type_bounds` feature.
1604 pub(super) fn for_each_item_bound<T>(
1605 &mut self,
1606 mut self_ty: Ty<'tcx>,
1607 mut for_each: impl FnMut(&mut Self, ty::Clause<'tcx>, usize) -> ControlFlow<T, ()>,
1608 on_ambiguity: impl FnOnce(),
1609 ) -> ControlFlow<T, ()> {
1610 let mut idx = 0;
1611 let mut in_parent_alias_type = false;
1612
1613 loop {
1614 let (kind, alias_ty) = match *self_ty.kind() {
1615 ty::Alias(kind @ (ty::Projection | ty::Opaque), alias_ty) => (kind, alias_ty),
1616 ty::Infer(ty::TyVar(_)) => {
1617 on_ambiguity();
1618 return ControlFlow::Continue(());
1619 }
1620 _ => return ControlFlow::Continue(()),
1621 };
1622
1623 // HACK: On subsequent recursions, we only care about bounds that don't
1624 // share the same type as `self_ty`. This is because for truly rigid
1625 // projections, we will never be able to equate, e.g. `<T as Tr>::A`
1626 // with `<<T as Tr>::A as Tr>::A`.
1627 let relevant_bounds = if in_parent_alias_type {
1628 self.tcx().item_non_self_bounds(alias_ty.def_id)
1629 } else {
1630 self.tcx().item_self_bounds(alias_ty.def_id)
1631 };
1632
1633 for bound in relevant_bounds.instantiate(self.tcx(), alias_ty.args) {
1634 for_each(self, bound, idx)?;
1635 idx += 1;
1636 }
1637
1638 if kind == ty::Projection {
1639 self_ty = alias_ty.self_ty();
1640 } else {
1641 return ControlFlow::Continue(());
1642 }
1643
1644 in_parent_alias_type = true;
1645 }
1646 }
1647
1648 /// Equates the trait in `obligation` with trait bound. If the two traits
1649 /// can be equated and the normalized trait bound doesn't contain inference
1650 /// variables or placeholders, the normalized bound is returned.
1651 fn match_normalize_trait_ref(
1652 &mut self,
1653 obligation: &PolyTraitObligation<'tcx>,
1654 placeholder_trait_ref: ty::TraitRef<'tcx>,
1655 trait_bound: ty::PolyTraitRef<'tcx>,
1656 ) -> Result<Option<ty::TraitRef<'tcx>>, ()> {
1657 debug_assert!(!placeholder_trait_ref.has_escaping_bound_vars());
1658 if placeholder_trait_ref.def_id != trait_bound.def_id() {
1659 // Avoid unnecessary normalization
1660 return Err(());
1661 }
1662
1663 let trait_bound = self.infcx.instantiate_binder_with_fresh_vars(
1664 obligation.cause.span,
1665 HigherRankedType,
1666 trait_bound,
1667 );
1668 let Normalized { value: trait_bound, obligations: _ } = ensure_sufficient_stack(|| {
1669 normalize_with_depth(
1670 self,
1671 obligation.param_env,
1672 obligation.cause.clone(),
1673 obligation.recursion_depth + 1,
1674 trait_bound,
1675 )
1676 });
1677 self.infcx
1678 .at(&obligation.cause, obligation.param_env)
1679 .eq(DefineOpaqueTypes::No, placeholder_trait_ref, trait_bound)
1680 .map(|InferOk { obligations: _, value: () }| {
1681 // This method is called within a probe, so we can't have
1682 // inference variables and placeholders escape.
1683 if !trait_bound.has_infer() && !trait_bound.has_placeholders() {
1684 Some(trait_bound)
1685 } else {
1686 None
1687 }
1688 })
1689 .map_err(|_| ())
1690 }
1691
1692 fn where_clause_may_apply<'o>(
1693 &mut self,
1694 stack: &TraitObligationStack<'o, 'tcx>,
1695 where_clause_trait_ref: ty::PolyTraitRef<'tcx>,
1696 ) -> Result<EvaluationResult, OverflowError> {
1697 self.evaluation_probe(|this| {
1698 match this.match_where_clause_trait_ref(stack.obligation, where_clause_trait_ref) {
1699 Ok(obligations) => this.evaluate_predicates_recursively(stack.list(), obligations),
1700 Err(()) => Ok(EvaluatedToErr),
1701 }
1702 })
1703 }
1704
1705 /// Return `Yes` if the obligation's predicate type applies to the env_predicate, and
1706 /// `No` if it does not. Return `Ambiguous` in the case that the projection type is a GAT,
1707 /// and applying this env_predicate constrains any of the obligation's GAT parameters.
1708 ///
1709 /// This behavior is a somewhat of a hack to prevent over-constraining inference variables
1710 /// in cases like #91762.
1711 pub(super) fn match_projection_projections(
1712 &mut self,
1713 obligation: &ProjectionTermObligation<'tcx>,
1714 env_predicate: PolyProjectionPredicate<'tcx>,
1715 potentially_unnormalized_candidates: bool,
1716 ) -> ProjectionMatchesProjection {
1717 debug_assert_eq!(obligation.predicate.def_id, env_predicate.item_def_id());
1718
1719 let mut nested_obligations = PredicateObligations::new();
1720 let infer_predicate = self.infcx.instantiate_binder_with_fresh_vars(
1721 obligation.cause.span,
1722 BoundRegionConversionTime::HigherRankedType,
1723 env_predicate,
1724 );
1725 let infer_projection = if potentially_unnormalized_candidates {
1726 ensure_sufficient_stack(|| {
1727 normalize_with_depth_to(
1728 self,
1729 obligation.param_env,
1730 obligation.cause.clone(),
1731 obligation.recursion_depth + 1,
1732 infer_predicate.projection_term,
1733 &mut nested_obligations,
1734 )
1735 })
1736 } else {
1737 infer_predicate.projection_term
1738 };
1739
1740 let is_match = self
1741 .infcx
1742 .at(&obligation.cause, obligation.param_env)
1743 .eq(DefineOpaqueTypes::No, obligation.predicate, infer_projection)
1744 .is_ok_and(|InferOk { obligations, value: () }| {
1745 self.evaluate_predicates_recursively(
1746 TraitObligationStackList::empty(&ProvisionalEvaluationCache::default()),
1747 nested_obligations.into_iter().chain(obligations),
1748 )
1749 .is_ok_and(|res| res.may_apply())
1750 });
1751
1752 if is_match {
1753 let generics = self.tcx().generics_of(obligation.predicate.def_id);
1754 // FIXME(generic-associated-types): Addresses aggressive inference in #92917.
1755 // If this type is a GAT, and of the GAT args resolve to something new,
1756 // that means that we must have newly inferred something about the GAT.
1757 // We should give up in that case.
1758 // FIXME(generic-associated-types): This only detects one layer of inference,
1759 // which is probably not what we actually want, but fixing it causes some ambiguity:
1760 // <https://github.com/rust-lang/rust/issues/125196>.
1761 if !generics.is_own_empty()
1762 && obligation.predicate.args[generics.parent_count..].iter().any(|&p| {
1763 p.has_non_region_infer()
1764 && match p.unpack() {
1765 ty::GenericArgKind::Const(ct) => {
1766 self.infcx.shallow_resolve_const(ct) != ct
1767 }
1768 ty::GenericArgKind::Type(ty) => self.infcx.shallow_resolve(ty) != ty,
1769 ty::GenericArgKind::Lifetime(_) => false,
1770 }
1771 })
1772 {
1773 ProjectionMatchesProjection::Ambiguous
1774 } else {
1775 ProjectionMatchesProjection::Yes
1776 }
1777 } else {
1778 ProjectionMatchesProjection::No
1779 }
1780 }
1781}
1782
1783/// ## Winnowing
1784///
1785/// Winnowing is the process of attempting to resolve ambiguity by
1786/// probing further. During the winnowing process, we unify all
1787/// type variables and then we also attempt to evaluate recursive
1788/// bounds to see if they are satisfied.
1789impl<'tcx> SelectionContext<'_, 'tcx> {
1790 /// If there are multiple ways to prove a trait goal, we make some
1791 /// *fairly arbitrary* choices about which candidate is actually used.
1792 ///
1793 /// For more details, look at the implementation of this method :)
1794 #[instrument(level = "debug", skip(self), ret)]
1795 fn winnow_candidates(
1796 &mut self,
1797 has_non_region_infer: bool,
1798 mut candidates: Vec<EvaluatedCandidate<'tcx>>,
1799 ) -> Option<SelectionCandidate<'tcx>> {
1800 if candidates.len() == 1 {
1801 return Some(candidates.pop().unwrap().candidate);
1802 }
1803
1804 // We prefer trivial builtin candidates, i.e. builtin impls without any nested
1805 // requirements, over all others. This is a fix for #53123 and prevents winnowing
1806 // from accidentally extending the lifetime of a variable.
1807 let mut trivial_builtin = candidates
1808 .iter()
1809 .filter(|c| matches!(c.candidate, BuiltinCandidate { has_nested: false }));
1810 if let Some(_trivial) = trivial_builtin.next() {
1811 // There should only ever be a single trivial builtin candidate
1812 // as they would otherwise overlap.
1813 debug_assert_eq!(trivial_builtin.next(), None);
1814 return Some(BuiltinCandidate { has_nested: false });
1815 }
1816
1817 // Before we consider where-bounds, we have to deduplicate them here and also
1818 // drop where-bounds in case the same where-bound exists without bound vars.
1819 // This is necessary as elaborating super-trait bounds may result in duplicates.
1820 'search_victim: loop {
1821 for (i, this) in candidates.iter().enumerate() {
1822 let ParamCandidate(this) = this.candidate else { continue };
1823 for (j, other) in candidates.iter().enumerate() {
1824 if i == j {
1825 continue;
1826 }
1827
1828 let ParamCandidate(other) = other.candidate else { continue };
1829 if this == other {
1830 candidates.remove(j);
1831 continue 'search_victim;
1832 }
1833
1834 if this.skip_binder().trait_ref == other.skip_binder().trait_ref
1835 && this.skip_binder().polarity == other.skip_binder().polarity
1836 && !this.skip_binder().trait_ref.has_escaping_bound_vars()
1837 {
1838 candidates.remove(j);
1839 continue 'search_victim;
1840 }
1841 }
1842 }
1843
1844 break;
1845 }
1846
1847 // The next highest priority is for non-global where-bounds. However, while we don't
1848 // prefer global where-clauses here, we do bail with ambiguity when encountering both
1849 // a global and a non-global where-clause.
1850 //
1851 // Our handling of where-bounds is generally fairly messy but necessary for backwards
1852 // compatibility, see #50825 for why we need to handle global where-bounds like this.
1853 let is_global = |c: ty::PolyTraitPredicate<'tcx>| c.is_global() && !c.has_bound_vars();
1854 let param_candidates = candidates
1855 .iter()
1856 .filter_map(|c| if let ParamCandidate(p) = c.candidate { Some(p) } else { None });
1857 let mut has_global_bounds = false;
1858 let mut param_candidate = None;
1859 for c in param_candidates {
1860 if is_global(c) {
1861 has_global_bounds = true;
1862 } else if param_candidate.replace(c).is_some() {
1863 // Ambiguity, two potentially different where-clauses
1864 return None;
1865 }
1866 }
1867 if let Some(predicate) = param_candidate {
1868 // Ambiguity, a global and a non-global where-bound.
1869 if has_global_bounds {
1870 return None;
1871 } else {
1872 return Some(ParamCandidate(predicate));
1873 }
1874 }
1875
1876 // Prefer alias-bounds over blanket impls for rigid associated types. This is
1877 // fairly arbitrary but once again necessary for backwards compatibility.
1878 // If there are multiple applicable candidates which don't affect type inference,
1879 // choose the one with the lowest index.
1880 let alias_bound = candidates
1881 .iter()
1882 .filter_map(|c| if let ProjectionCandidate(i) = c.candidate { Some(i) } else { None })
1883 .try_reduce(|c1, c2| if has_non_region_infer { None } else { Some(c1.min(c2)) });
1884 match alias_bound {
1885 Some(Some(index)) => return Some(ProjectionCandidate(index)),
1886 Some(None) => {}
1887 None => return None,
1888 }
1889
1890 // Need to prioritize builtin trait object impls as `<dyn Any as Any>::type_id`
1891 // should use the vtable method and not the method provided by the user-defined
1892 // impl `impl<T: ?Sized> Any for T { .. }`. This really shouldn't exist but is
1893 // necessary due to #57893. We again arbitrarily prefer the applicable candidate
1894 // with the lowest index.
1895 let object_bound = candidates
1896 .iter()
1897 .filter_map(|c| if let ObjectCandidate(i) = c.candidate { Some(i) } else { None })
1898 .try_reduce(|c1, c2| if has_non_region_infer { None } else { Some(c1.min(c2)) });
1899 match object_bound {
1900 Some(Some(index)) => return Some(ObjectCandidate(index)),
1901 Some(None) => {}
1902 None => return None,
1903 }
1904 // Same for upcasting.
1905 let upcast_bound = candidates
1906 .iter()
1907 .filter_map(|c| {
1908 if let TraitUpcastingUnsizeCandidate(i) = c.candidate { Some(i) } else { None }
1909 })
1910 .try_reduce(|c1, c2| if has_non_region_infer { None } else { Some(c1.min(c2)) });
1911 match upcast_bound {
1912 Some(Some(index)) => return Some(TraitUpcastingUnsizeCandidate(index)),
1913 Some(None) => {}
1914 None => return None,
1915 }
1916
1917 // Finally, handle overlapping user-written impls.
1918 let impls = candidates.iter().filter_map(|c| {
1919 if let ImplCandidate(def_id) = c.candidate {
1920 Some((def_id, c.evaluation))
1921 } else {
1922 None
1923 }
1924 });
1925 let mut impl_candidate = None;
1926 for c in impls {
1927 if let Some(prev) = impl_candidate.replace(c) {
1928 if self.prefer_lhs_over_victim(has_non_region_infer, c, prev.0) {
1929 // Ok, prefer `c` over the previous entry
1930 } else if self.prefer_lhs_over_victim(has_non_region_infer, prev, c.0) {
1931 // Ok, keep `prev` instead of the new entry
1932 impl_candidate = Some(prev);
1933 } else {
1934 // Ambiguity, two potentially different where-clauses
1935 return None;
1936 }
1937 }
1938 }
1939 if let Some((def_id, _evaluation)) = impl_candidate {
1940 // Don't use impl candidates which overlap with other candidates.
1941 // This should pretty much only ever happen with malformed impls.
1942 if candidates.iter().all(|c| match c.candidate {
1943 BuiltinCandidate { has_nested: _ }
1944 | TransmutabilityCandidate
1945 | AutoImplCandidate
1946 | ClosureCandidate { .. }
1947 | AsyncClosureCandidate
1948 | AsyncFnKindHelperCandidate
1949 | CoroutineCandidate
1950 | FutureCandidate
1951 | IteratorCandidate
1952 | AsyncIteratorCandidate
1953 | FnPointerCandidate
1954 | TraitAliasCandidate
1955 | TraitUpcastingUnsizeCandidate(_)
1956 | BuiltinObjectCandidate
1957 | BuiltinUnsizeCandidate
1958 | BikeshedGuaranteedNoDropCandidate => false,
1959 // Non-global param candidates have already been handled, global
1960 // where-bounds get ignored.
1961 ParamCandidate(_) | ImplCandidate(_) => true,
1962 ProjectionCandidate(_) | ObjectCandidate(_) => unreachable!(),
1963 }) {
1964 return Some(ImplCandidate(def_id));
1965 } else {
1966 return None;
1967 }
1968 }
1969
1970 if candidates.len() == 1 {
1971 Some(candidates.pop().unwrap().candidate)
1972 } else {
1973 // Also try ignoring all global where-bounds and check whether we end
1974 // with a unique candidate in this case.
1975 let mut not_a_global_where_bound = candidates
1976 .into_iter()
1977 .filter(|c| !matches!(c.candidate, ParamCandidate(p) if is_global(p)));
1978 not_a_global_where_bound
1979 .next()
1980 .map(|c| c.candidate)
1981 .filter(|_| not_a_global_where_bound.next().is_none())
1982 }
1983 }
1984
1985 fn prefer_lhs_over_victim(
1986 &self,
1987 has_non_region_infer: bool,
1988 (lhs, lhs_evaluation): (DefId, EvaluationResult),
1989 victim: DefId,
1990 ) -> bool {
1991 let tcx = self.tcx();
1992 // See if we can toss out `victim` based on specialization.
1993 //
1994 // While this requires us to know *for sure* that the `lhs` impl applies
1995 // we still use modulo regions here. This is fine as specialization currently
1996 // assumes that specializing impls have to be always applicable, meaning that
1997 // the only allowed region constraints may be constraints also present on the default impl.
1998 if lhs_evaluation.must_apply_modulo_regions() {
1999 if tcx.specializes((lhs, victim)) {
2000 return true;
2001 }
2002 }
2003
2004 match tcx.impls_are_allowed_to_overlap(lhs, victim) {
2005 // For candidates which already reference errors it doesn't really
2006 // matter what we do 🤷
2007 Some(ty::ImplOverlapKind::Permitted { marker: false }) => {
2008 lhs_evaluation.must_apply_considering_regions()
2009 }
2010 Some(ty::ImplOverlapKind::Permitted { marker: true }) => {
2011 // Subtle: If the predicate we are evaluating has inference
2012 // variables, do *not* allow discarding candidates due to
2013 // marker trait impls.
2014 //
2015 // Without this restriction, we could end up accidentally
2016 // constraining inference variables based on an arbitrarily
2017 // chosen trait impl.
2018 //
2019 // Imagine we have the following code:
2020 //
2021 // ```rust
2022 // #[marker] trait MyTrait {}
2023 // impl MyTrait for u8 {}
2024 // impl MyTrait for bool {}
2025 // ```
2026 //
2027 // And we are evaluating the predicate `<_#0t as MyTrait>`.
2028 //
2029 // During selection, we will end up with one candidate for each
2030 // impl of `MyTrait`. If we were to discard one impl in favor
2031 // of the other, we would be left with one candidate, causing
2032 // us to "successfully" select the predicate, unifying
2033 // _#0t with (for example) `u8`.
2034 //
2035 // However, we have no reason to believe that this unification
2036 // is correct - we've essentially just picked an arbitrary
2037 // *possibility* for _#0t, and required that this be the *only*
2038 // possibility.
2039 //
2040 // Eventually, we will either:
2041 // 1) Unify all inference variables in the predicate through
2042 // some other means (e.g. type-checking of a function). We will
2043 // then be in a position to drop marker trait candidates
2044 // without constraining inference variables (since there are
2045 // none left to constrain)
2046 // 2) Be left with some unconstrained inference variables. We
2047 // will then correctly report an inference error, since the
2048 // existence of multiple marker trait impls tells us nothing
2049 // about which one should actually apply.
2050 !has_non_region_infer && lhs_evaluation.must_apply_considering_regions()
2051 }
2052 None => false,
2053 }
2054 }
2055}
2056
2057impl<'tcx> SelectionContext<'_, 'tcx> {
2058 fn sized_conditions(
2059 &mut self,
2060 obligation: &PolyTraitObligation<'tcx>,
2061 ) -> BuiltinImplConditions<'tcx> {
2062 use self::BuiltinImplConditions::{Ambiguous, None, Where};
2063
2064 // NOTE: binder moved to (*)
2065 let self_ty = self.infcx.shallow_resolve(obligation.predicate.skip_binder().self_ty());
2066
2067 match self_ty.kind() {
2068 ty::Infer(ty::IntVar(_) | ty::FloatVar(_))
2069 | ty::Uint(_)
2070 | ty::Int(_)
2071 | ty::Bool
2072 | ty::Float(_)
2073 | ty::FnDef(..)
2074 | ty::FnPtr(..)
2075 | ty::RawPtr(..)
2076 | ty::Char
2077 | ty::Ref(..)
2078 | ty::Coroutine(..)
2079 | ty::CoroutineWitness(..)
2080 | ty::Array(..)
2081 | ty::Closure(..)
2082 | ty::CoroutineClosure(..)
2083 | ty::Never
2084 | ty::Dynamic(_, _, ty::DynStar)
2085 | ty::Error(_) => {
2086 // safe for everything
2087 Where(ty::Binder::dummy(Vec::new()))
2088 }
2089
2090 ty::Str | ty::Slice(_) | ty::Dynamic(..) | ty::Foreign(..) => None,
2091
2092 ty::Tuple(tys) => Where(
2093 obligation.predicate.rebind(tys.last().map_or_else(Vec::new, |&last| vec![last])),
2094 ),
2095
2096 ty::Pat(ty, _) => Where(obligation.predicate.rebind(vec![*ty])),
2097
2098 ty::Adt(def, args) => {
2099 if let Some(sized_crit) = def.sized_constraint(self.tcx()) {
2100 // (*) binder moved here
2101 Where(
2102 obligation.predicate.rebind(vec![sized_crit.instantiate(self.tcx(), args)]),
2103 )
2104 } else {
2105 Where(ty::Binder::dummy(Vec::new()))
2106 }
2107 }
2108
2109 // FIXME(unsafe_binders): This binder needs to be squashed
2110 ty::UnsafeBinder(binder_ty) => Where(binder_ty.map_bound(|ty| vec![ty])),
2111
2112 ty::Alias(..) | ty::Param(_) | ty::Placeholder(..) => None,
2113 ty::Infer(ty::TyVar(_)) => Ambiguous,
2114
2115 // We can make this an ICE if/once we actually instantiate the trait obligation eagerly.
2116 ty::Bound(..) => None,
2117
2118 ty::Infer(ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => {
2119 bug!("asked to assemble builtin bounds of unexpected type: {:?}", self_ty);
2120 }
2121 }
2122 }
2123
2124 fn copy_clone_conditions(
2125 &mut self,
2126 obligation: &PolyTraitObligation<'tcx>,
2127 ) -> BuiltinImplConditions<'tcx> {
2128 // NOTE: binder moved to (*)
2129 let self_ty = self.infcx.shallow_resolve(obligation.predicate.skip_binder().self_ty());
2130
2131 use self::BuiltinImplConditions::{Ambiguous, None, Where};
2132
2133 match *self_ty.kind() {
2134 ty::FnDef(..) | ty::FnPtr(..) | ty::Error(_) => Where(ty::Binder::dummy(Vec::new())),
2135
2136 ty::Uint(_)
2137 | ty::Int(_)
2138 | ty::Infer(ty::IntVar(_) | ty::FloatVar(_))
2139 | ty::Bool
2140 | ty::Float(_)
2141 | ty::Char
2142 | ty::RawPtr(..)
2143 | ty::Never
2144 | ty::Ref(_, _, hir::Mutability::Not)
2145 | ty::Array(..) => {
2146 // Implementations provided in libcore
2147 None
2148 }
2149
2150 // FIXME(unsafe_binder): Should we conditionally
2151 // (i.e. universally) implement copy/clone?
2152 ty::UnsafeBinder(_) => None,
2153
2154 ty::Dynamic(..)
2155 | ty::Str
2156 | ty::Slice(..)
2157 | ty::Foreign(..)
2158 | ty::Ref(_, _, hir::Mutability::Mut) => None,
2159
2160 ty::Tuple(tys) => {
2161 // (*) binder moved here
2162 Where(obligation.predicate.rebind(tys.iter().collect()))
2163 }
2164
2165 ty::Pat(ty, _) => {
2166 // (*) binder moved here
2167 Where(obligation.predicate.rebind(vec![ty]))
2168 }
2169
2170 ty::Coroutine(coroutine_def_id, args) => {
2171 match self.tcx().coroutine_movability(coroutine_def_id) {
2172 hir::Movability::Static => None,
2173 hir::Movability::Movable => {
2174 if self.tcx().features().coroutine_clone() {
2175 let resolved_upvars =
2176 self.infcx.shallow_resolve(args.as_coroutine().tupled_upvars_ty());
2177 let resolved_witness =
2178 self.infcx.shallow_resolve(args.as_coroutine().witness());
2179 if resolved_upvars.is_ty_var() || resolved_witness.is_ty_var() {
2180 // Not yet resolved.
2181 Ambiguous
2182 } else {
2183 let all = args
2184 .as_coroutine()
2185 .upvar_tys()
2186 .iter()
2187 .chain([args.as_coroutine().witness()])
2188 .collect::<Vec<_>>();
2189 Where(obligation.predicate.rebind(all))
2190 }
2191 } else {
2192 None
2193 }
2194 }
2195 }
2196 }
2197
2198 ty::CoroutineWitness(def_id, args) => {
2199 let hidden_types = rebind_coroutine_witness_types(
2200 self.infcx.tcx,
2201 def_id,
2202 args,
2203 obligation.predicate.bound_vars(),
2204 );
2205 Where(hidden_types)
2206 }
2207
2208 ty::Closure(_, args) => {
2209 // (*) binder moved here
2210 let ty = self.infcx.shallow_resolve(args.as_closure().tupled_upvars_ty());
2211 if let ty::Infer(ty::TyVar(_)) = ty.kind() {
2212 // Not yet resolved.
2213 Ambiguous
2214 } else {
2215 Where(obligation.predicate.rebind(args.as_closure().upvar_tys().to_vec()))
2216 }
2217 }
2218
2219 ty::CoroutineClosure(_, args) => {
2220 // (*) binder moved here
2221 let ty = self.infcx.shallow_resolve(args.as_coroutine_closure().tupled_upvars_ty());
2222 if let ty::Infer(ty::TyVar(_)) = ty.kind() {
2223 // Not yet resolved.
2224 Ambiguous
2225 } else {
2226 Where(
2227 obligation
2228 .predicate
2229 .rebind(args.as_coroutine_closure().upvar_tys().to_vec()),
2230 )
2231 }
2232 }
2233
2234 ty::Adt(..) | ty::Alias(..) | ty::Param(..) | ty::Placeholder(..) => {
2235 // Fallback to whatever user-defined impls exist in this case.
2236 None
2237 }
2238
2239 ty::Infer(ty::TyVar(_)) => {
2240 // Unbound type variable. Might or might not have
2241 // applicable impls and so forth, depending on what
2242 // those type variables wind up being bound to.
2243 Ambiguous
2244 }
2245
2246 // We can make this an ICE if/once we actually instantiate the trait obligation eagerly.
2247 ty::Bound(..) => None,
2248
2249 ty::Infer(ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => {
2250 bug!("asked to assemble builtin bounds of unexpected type: {:?}", self_ty);
2251 }
2252 }
2253 }
2254
2255 fn fused_iterator_conditions(
2256 &mut self,
2257 obligation: &PolyTraitObligation<'tcx>,
2258 ) -> BuiltinImplConditions<'tcx> {
2259 let self_ty = self.infcx.shallow_resolve(obligation.self_ty().skip_binder());
2260 if let ty::Coroutine(did, ..) = *self_ty.kind()
2261 && self.tcx().coroutine_is_gen(did)
2262 {
2263 BuiltinImplConditions::Where(ty::Binder::dummy(Vec::new()))
2264 } else {
2265 BuiltinImplConditions::None
2266 }
2267 }
2268
2269 /// For default impls, we need to break apart a type into its
2270 /// "constituent types" -- meaning, the types that it contains.
2271 ///
2272 /// Here are some (simple) examples:
2273 ///
2274 /// ```ignore (illustrative)
2275 /// (i32, u32) -> [i32, u32]
2276 /// Foo where struct Foo { x: i32, y: u32 } -> [i32, u32]
2277 /// Bar<i32> where struct Bar<T> { x: T, y: u32 } -> [i32, u32]
2278 /// Zed<i32> where enum Zed { A(T), B(u32) } -> [i32, u32]
2279 /// ```
2280 #[instrument(level = "debug", skip(self), ret)]
2281 fn constituent_types_for_ty(
2282 &self,
2283 t: ty::Binder<'tcx, Ty<'tcx>>,
2284 ) -> Result<ty::Binder<'tcx, Vec<Ty<'tcx>>>, SelectionError<'tcx>> {
2285 Ok(match *t.skip_binder().kind() {
2286 ty::Uint(_)
2287 | ty::Int(_)
2288 | ty::Bool
2289 | ty::Float(_)
2290 | ty::FnDef(..)
2291 | ty::FnPtr(..)
2292 | ty::Error(_)
2293 | ty::Infer(ty::IntVar(_) | ty::FloatVar(_))
2294 | ty::Never
2295 | ty::Char => ty::Binder::dummy(Vec::new()),
2296
2297 // FIXME(unsafe_binders): Squash the double binder for now, I guess.
2298 ty::UnsafeBinder(_) => return Err(SelectionError::Unimplemented),
2299
2300 // Treat this like `struct str([u8]);`
2301 ty::Str => ty::Binder::dummy(vec![Ty::new_slice(self.tcx(), self.tcx().types.u8)]),
2302
2303 ty::Placeholder(..)
2304 | ty::Dynamic(..)
2305 | ty::Param(..)
2306 | ty::Foreign(..)
2307 | ty::Alias(ty::Projection | ty::Inherent | ty::Weak, ..)
2308 | ty::Bound(..)
2309 | ty::Infer(ty::TyVar(_) | ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => {
2310 bug!("asked to assemble constituent types of unexpected type: {:?}", t);
2311 }
2312
2313 ty::RawPtr(element_ty, _) | ty::Ref(_, element_ty, _) => t.rebind(vec![element_ty]),
2314
2315 ty::Pat(ty, _) | ty::Array(ty, _) | ty::Slice(ty) => t.rebind(vec![ty]),
2316
2317 ty::Tuple(tys) => {
2318 // (T1, ..., Tn) -- meets any bound that all of T1...Tn meet
2319 t.rebind(tys.iter().collect())
2320 }
2321
2322 ty::Closure(_, args) => {
2323 let ty = self.infcx.shallow_resolve(args.as_closure().tupled_upvars_ty());
2324 t.rebind(vec![ty])
2325 }
2326
2327 ty::CoroutineClosure(_, args) => {
2328 let ty = self.infcx.shallow_resolve(args.as_coroutine_closure().tupled_upvars_ty());
2329 t.rebind(vec![ty])
2330 }
2331
2332 ty::Coroutine(_, args) => {
2333 let ty = self.infcx.shallow_resolve(args.as_coroutine().tupled_upvars_ty());
2334 let witness = args.as_coroutine().witness();
2335 t.rebind([ty].into_iter().chain(iter::once(witness)).collect())
2336 }
2337
2338 ty::CoroutineWitness(def_id, args) => {
2339 rebind_coroutine_witness_types(self.infcx.tcx, def_id, args, t.bound_vars())
2340 }
2341
2342 // For `PhantomData<T>`, we pass `T`.
2343 ty::Adt(def, args) if def.is_phantom_data() => t.rebind(args.types().collect()),
2344
2345 ty::Adt(def, args) => {
2346 t.rebind(def.all_fields().map(|f| f.ty(self.tcx(), args)).collect())
2347 }
2348
2349 ty::Alias(ty::Opaque, ty::AliasTy { def_id, args, .. }) => {
2350 if self.infcx.can_define_opaque_ty(def_id) {
2351 unreachable!()
2352 } else {
2353 // We can resolve the `impl Trait` to its concrete type,
2354 // which enforces a DAG between the functions requiring
2355 // the auto trait bounds in question.
2356 match self.tcx().type_of_opaque(def_id) {
2357 Ok(ty) => t.rebind(vec![ty.instantiate(self.tcx(), args)]),
2358 Err(_) => {
2359 return Err(SelectionError::OpaqueTypeAutoTraitLeakageUnknown(def_id));
2360 }
2361 }
2362 }
2363 }
2364 })
2365 }
2366
2367 fn collect_predicates_for_types(
2368 &mut self,
2369 param_env: ty::ParamEnv<'tcx>,
2370 cause: ObligationCause<'tcx>,
2371 recursion_depth: usize,
2372 trait_def_id: DefId,
2373 types: ty::Binder<'tcx, Vec<Ty<'tcx>>>,
2374 ) -> PredicateObligations<'tcx> {
2375 // Because the types were potentially derived from
2376 // higher-ranked obligations they may reference late-bound
2377 // regions. For example, `for<'a> Foo<&'a i32> : Copy` would
2378 // yield a type like `for<'a> &'a i32`. In general, we
2379 // maintain the invariant that we never manipulate bound
2380 // regions, so we have to process these bound regions somehow.
2381 //
2382 // The strategy is to:
2383 //
2384 // 1. Instantiate those regions to placeholder regions (e.g.,
2385 // `for<'a> &'a i32` becomes `&0 i32`.
2386 // 2. Produce something like `&'0 i32 : Copy`
2387 // 3. Re-bind the regions back to `for<'a> &'a i32 : Copy`
2388
2389 types
2390 .as_ref()
2391 .skip_binder() // binder moved -\
2392 .iter()
2393 .flat_map(|ty| {
2394 let ty: ty::Binder<'tcx, Ty<'tcx>> = types.rebind(*ty); // <----/
2395
2396 let placeholder_ty = self.infcx.enter_forall_and_leak_universe(ty);
2397 let Normalized { value: normalized_ty, mut obligations } =
2398 ensure_sufficient_stack(|| {
2399 normalize_with_depth(
2400 self,
2401 param_env,
2402 cause.clone(),
2403 recursion_depth,
2404 placeholder_ty,
2405 )
2406 });
2407
2408 let tcx = self.tcx();
2409 let trait_ref = if tcx.generics_of(trait_def_id).own_params.len() == 1 {
2410 ty::TraitRef::new(tcx, trait_def_id, [normalized_ty])
2411 } else {
2412 // If this is an ill-formed auto/built-in trait, then synthesize
2413 // new error args for the missing generics.
2414 let err_args = ty::GenericArgs::extend_with_error(
2415 tcx,
2416 trait_def_id,
2417 &[normalized_ty.into()],
2418 );
2419 ty::TraitRef::new_from_args(tcx, trait_def_id, err_args)
2420 };
2421
2422 let obligation = Obligation::new(self.tcx(), cause.clone(), param_env, trait_ref);
2423 obligations.push(obligation);
2424 obligations
2425 })
2426 .collect()
2427 }
2428
2429 ///////////////////////////////////////////////////////////////////////////
2430 // Matching
2431 //
2432 // Matching is a common path used for both evaluation and
2433 // confirmation. It basically unifies types that appear in impls
2434 // and traits. This does affect the surrounding environment;
2435 // therefore, when used during evaluation, match routines must be
2436 // run inside of a `probe()` so that their side-effects are
2437 // contained.
2438
2439 fn rematch_impl(
2440 &mut self,
2441 impl_def_id: DefId,
2442 obligation: &PolyTraitObligation<'tcx>,
2443 ) -> Normalized<'tcx, GenericArgsRef<'tcx>> {
2444 let impl_trait_header = self.tcx().impl_trait_header(impl_def_id).unwrap();
2445 match self.match_impl(impl_def_id, impl_trait_header, obligation) {
2446 Ok(args) => args,
2447 Err(()) => {
2448 let predicate = self.infcx.resolve_vars_if_possible(obligation.predicate);
2449 bug!("impl {impl_def_id:?} was matchable against {predicate:?} but now is not")
2450 }
2451 }
2452 }
2453
2454 #[instrument(level = "debug", skip(self), ret)]
2455 fn match_impl(
2456 &mut self,
2457 impl_def_id: DefId,
2458 impl_trait_header: ty::ImplTraitHeader<'tcx>,
2459 obligation: &PolyTraitObligation<'tcx>,
2460 ) -> Result<Normalized<'tcx, GenericArgsRef<'tcx>>, ()> {
2461 let placeholder_obligation =
2462 self.infcx.enter_forall_and_leak_universe(obligation.predicate);
2463 let placeholder_obligation_trait_ref = placeholder_obligation.trait_ref;
2464
2465 let impl_args = self.infcx.fresh_args_for_item(obligation.cause.span, impl_def_id);
2466
2467 let trait_ref = impl_trait_header.trait_ref.instantiate(self.tcx(), impl_args);
2468 debug!(?impl_trait_header);
2469
2470 let Normalized { value: impl_trait_ref, obligations: mut nested_obligations } =
2471 ensure_sufficient_stack(|| {
2472 normalize_with_depth(
2473 self,
2474 obligation.param_env,
2475 obligation.cause.clone(),
2476 obligation.recursion_depth + 1,
2477 trait_ref,
2478 )
2479 });
2480
2481 debug!(?impl_trait_ref, ?placeholder_obligation_trait_ref);
2482
2483 let cause = ObligationCause::new(
2484 obligation.cause.span,
2485 obligation.cause.body_id,
2486 ObligationCauseCode::MatchImpl(obligation.cause.clone(), impl_def_id),
2487 );
2488
2489 let InferOk { obligations, .. } = self
2490 .infcx
2491 .at(&cause, obligation.param_env)
2492 .eq(DefineOpaqueTypes::No, placeholder_obligation_trait_ref, impl_trait_ref)
2493 .map_err(|e| {
2494 debug!("match_impl: failed eq_trait_refs due to `{}`", e.to_string(self.tcx()))
2495 })?;
2496 nested_obligations.extend(obligations);
2497
2498 if impl_trait_header.polarity == ty::ImplPolarity::Reservation
2499 && !matches!(self.infcx.typing_mode(), TypingMode::Coherence)
2500 {
2501 debug!("reservation impls only apply in intercrate mode");
2502 return Err(());
2503 }
2504
2505 Ok(Normalized { value: impl_args, obligations: nested_obligations })
2506 }
2507
2508 fn match_upcast_principal(
2509 &mut self,
2510 obligation: &PolyTraitObligation<'tcx>,
2511 unnormalized_upcast_principal: ty::PolyTraitRef<'tcx>,
2512 a_data: &'tcx ty::List<ty::PolyExistentialPredicate<'tcx>>,
2513 b_data: &'tcx ty::List<ty::PolyExistentialPredicate<'tcx>>,
2514 a_region: ty::Region<'tcx>,
2515 b_region: ty::Region<'tcx>,
2516 ) -> SelectionResult<'tcx, PredicateObligations<'tcx>> {
2517 let tcx = self.tcx();
2518 let mut nested = PredicateObligations::new();
2519
2520 // We may upcast to auto traits that are either explicitly listed in
2521 // the object type's bounds, or implied by the principal trait ref's
2522 // supertraits.
2523 let a_auto_traits: FxIndexSet<DefId> = a_data
2524 .auto_traits()
2525 .chain(a_data.principal_def_id().into_iter().flat_map(|principal_def_id| {
2526 elaborate::supertrait_def_ids(tcx, principal_def_id)
2527 .filter(|def_id| tcx.trait_is_auto(*def_id))
2528 }))
2529 .collect();
2530
2531 let upcast_principal = normalize_with_depth_to(
2532 self,
2533 obligation.param_env,
2534 obligation.cause.clone(),
2535 obligation.recursion_depth + 1,
2536 unnormalized_upcast_principal,
2537 &mut nested,
2538 );
2539
2540 for bound in b_data {
2541 match bound.skip_binder() {
2542 // Check that a_ty's supertrait (upcast_principal) is compatible
2543 // with the target (b_ty).
2544 ty::ExistentialPredicate::Trait(target_principal) => {
2545 let hr_source_principal = upcast_principal.map_bound(|trait_ref| {
2546 ty::ExistentialTraitRef::erase_self_ty(tcx, trait_ref)
2547 });
2548 let hr_target_principal = bound.rebind(target_principal);
2549
2550 nested.extend(
2551 self.infcx
2552 .enter_forall(hr_target_principal, |target_principal| {
2553 let source_principal =
2554 self.infcx.instantiate_binder_with_fresh_vars(
2555 obligation.cause.span,
2556 HigherRankedType,
2557 hr_source_principal,
2558 );
2559 self.infcx.at(&obligation.cause, obligation.param_env).eq_trace(
2560 DefineOpaqueTypes::Yes,
2561 ToTrace::to_trace(
2562 &obligation.cause,
2563 hr_target_principal,
2564 hr_source_principal,
2565 ),
2566 target_principal,
2567 source_principal,
2568 )
2569 })
2570 .map_err(|_| SelectionError::Unimplemented)?
2571 .into_obligations(),
2572 );
2573 }
2574 // Check that b_ty's projection is satisfied by exactly one of
2575 // a_ty's projections. First, we look through the list to see if
2576 // any match. If not, error. Then, if *more* than one matches, we
2577 // return ambiguity. Otherwise, if exactly one matches, equate
2578 // it with b_ty's projection.
2579 ty::ExistentialPredicate::Projection(target_projection) => {
2580 let hr_target_projection = bound.rebind(target_projection);
2581
2582 let mut matching_projections =
2583 a_data.projection_bounds().filter(|&hr_source_projection| {
2584 // Eager normalization means that we can just use can_eq
2585 // here instead of equating and processing obligations.
2586 hr_source_projection.item_def_id() == hr_target_projection.item_def_id()
2587 && self.infcx.probe(|_| {
2588 self.infcx
2589 .enter_forall(hr_target_projection, |target_projection| {
2590 let source_projection =
2591 self.infcx.instantiate_binder_with_fresh_vars(
2592 obligation.cause.span,
2593 HigherRankedType,
2594 hr_source_projection,
2595 );
2596 self.infcx
2597 .at(&obligation.cause, obligation.param_env)
2598 .eq_trace(
2599 DefineOpaqueTypes::Yes,
2600 ToTrace::to_trace(
2601 &obligation.cause,
2602 hr_target_projection,
2603 hr_source_projection,
2604 ),
2605 target_projection,
2606 source_projection,
2607 )
2608 })
2609 .is_ok()
2610 })
2611 });
2612
2613 let Some(hr_source_projection) = matching_projections.next() else {
2614 return Err(SelectionError::Unimplemented);
2615 };
2616 if matching_projections.next().is_some() {
2617 return Ok(None);
2618 }
2619 nested.extend(
2620 self.infcx
2621 .enter_forall(hr_target_projection, |target_projection| {
2622 let source_projection =
2623 self.infcx.instantiate_binder_with_fresh_vars(
2624 obligation.cause.span,
2625 HigherRankedType,
2626 hr_source_projection,
2627 );
2628 self.infcx.at(&obligation.cause, obligation.param_env).eq_trace(
2629 DefineOpaqueTypes::Yes,
2630 ToTrace::to_trace(
2631 &obligation.cause,
2632 hr_target_projection,
2633 hr_source_projection,
2634 ),
2635 target_projection,
2636 source_projection,
2637 )
2638 })
2639 .map_err(|_| SelectionError::Unimplemented)?
2640 .into_obligations(),
2641 );
2642 }
2643 // Check that b_ty's auto traits are present in a_ty's bounds.
2644 ty::ExistentialPredicate::AutoTrait(def_id) => {
2645 if !a_auto_traits.contains(&def_id) {
2646 return Err(SelectionError::Unimplemented);
2647 }
2648 }
2649 }
2650 }
2651
2652 nested.push(Obligation::with_depth(
2653 tcx,
2654 obligation.cause.clone(),
2655 obligation.recursion_depth + 1,
2656 obligation.param_env,
2657 ty::Binder::dummy(ty::OutlivesPredicate(a_region, b_region)),
2658 ));
2659
2660 Ok(Some(nested))
2661 }
2662
2663 /// Normalize `where_clause_trait_ref` and try to match it against
2664 /// `obligation`. If successful, return any predicates that
2665 /// result from the normalization.
2666 fn match_where_clause_trait_ref(
2667 &mut self,
2668 obligation: &PolyTraitObligation<'tcx>,
2669 where_clause_trait_ref: ty::PolyTraitRef<'tcx>,
2670 ) -> Result<PredicateObligations<'tcx>, ()> {
2671 self.match_poly_trait_ref(obligation, where_clause_trait_ref)
2672 }
2673
2674 /// Returns `Ok` if `poly_trait_ref` being true implies that the
2675 /// obligation is satisfied.
2676 #[instrument(skip(self), level = "debug")]
2677 fn match_poly_trait_ref(
2678 &mut self,
2679 obligation: &PolyTraitObligation<'tcx>,
2680 poly_trait_ref: ty::PolyTraitRef<'tcx>,
2681 ) -> Result<PredicateObligations<'tcx>, ()> {
2682 let predicate = self.infcx.enter_forall_and_leak_universe(obligation.predicate);
2683 let trait_ref = self.infcx.instantiate_binder_with_fresh_vars(
2684 obligation.cause.span,
2685 HigherRankedType,
2686 poly_trait_ref,
2687 );
2688 self.infcx
2689 .at(&obligation.cause, obligation.param_env)
2690 .eq(DefineOpaqueTypes::No, predicate.trait_ref, trait_ref)
2691 .map(|InferOk { obligations, .. }| obligations)
2692 .map_err(|_| ())
2693 }
2694
2695 ///////////////////////////////////////////////////////////////////////////
2696 // Miscellany
2697
2698 fn match_fresh_trait_refs(
2699 &self,
2700 previous: ty::PolyTraitPredicate<'tcx>,
2701 current: ty::PolyTraitPredicate<'tcx>,
2702 ) -> bool {
2703 let mut matcher = _match::MatchAgainstFreshVars::new(self.tcx());
2704 matcher.relate(previous, current).is_ok()
2705 }
2706
2707 fn push_stack<'o>(
2708 &mut self,
2709 previous_stack: TraitObligationStackList<'o, 'tcx>,
2710 obligation: &'o PolyTraitObligation<'tcx>,
2711 ) -> TraitObligationStack<'o, 'tcx> {
2712 let fresh_trait_pred = obligation.predicate.fold_with(&mut self.freshener);
2713
2714 let dfn = previous_stack.cache.next_dfn();
2715 let depth = previous_stack.depth() + 1;
2716 TraitObligationStack {
2717 obligation,
2718 fresh_trait_pred,
2719 reached_depth: Cell::new(depth),
2720 previous: previous_stack,
2721 dfn,
2722 depth,
2723 }
2724 }
2725
2726 #[instrument(skip(self), level = "debug")]
2727 fn closure_trait_ref_unnormalized(
2728 &mut self,
2729 self_ty: Ty<'tcx>,
2730 fn_trait_def_id: DefId,
2731 ) -> ty::PolyTraitRef<'tcx> {
2732 let ty::Closure(_, args) = *self_ty.kind() else {
2733 bug!("expected closure, found {self_ty}");
2734 };
2735 let closure_sig = args.as_closure().sig();
2736
2737 closure_trait_ref_and_return_type(
2738 self.tcx(),
2739 fn_trait_def_id,
2740 self_ty,
2741 closure_sig,
2742 util::TupleArgumentsFlag::No,
2743 )
2744 .map_bound(|(trait_ref, _)| trait_ref)
2745 }
2746
2747 /// Returns the obligations that are implied by instantiating an
2748 /// impl or trait. The obligations are instantiated and fully
2749 /// normalized. This is used when confirming an impl or default
2750 /// impl.
2751 #[instrument(level = "debug", skip(self, cause, param_env))]
2752 fn impl_or_trait_obligations(
2753 &mut self,
2754 cause: &ObligationCause<'tcx>,
2755 recursion_depth: usize,
2756 param_env: ty::ParamEnv<'tcx>,
2757 def_id: DefId, // of impl or trait
2758 args: GenericArgsRef<'tcx>, // for impl or trait
2759 parent_trait_pred: ty::Binder<'tcx, ty::TraitPredicate<'tcx>>,
2760 ) -> PredicateObligations<'tcx> {
2761 let tcx = self.tcx();
2762
2763 // To allow for one-pass evaluation of the nested obligation,
2764 // each predicate must be preceded by the obligations required
2765 // to normalize it.
2766 // for example, if we have:
2767 // impl<U: Iterator<Item: Copy>, V: Iterator<Item = U>> Foo for V
2768 // the impl will have the following predicates:
2769 // <V as Iterator>::Item = U,
2770 // U: Iterator, U: Sized,
2771 // V: Iterator, V: Sized,
2772 // <U as Iterator>::Item: Copy
2773 // When we instantiate, say, `V => IntoIter<u32>, U => $0`, the last
2774 // obligation will normalize to `<$0 as Iterator>::Item = $1` and
2775 // `$1: Copy`, so we must ensure the obligations are emitted in
2776 // that order.
2777 let predicates = tcx.predicates_of(def_id);
2778 assert_eq!(predicates.parent, None);
2779 let predicates = predicates.instantiate_own(tcx, args);
2780 let mut obligations = PredicateObligations::with_capacity(predicates.len());
2781 for (index, (predicate, span)) in predicates.into_iter().enumerate() {
2782 let cause = if tcx.is_lang_item(parent_trait_pred.def_id(), LangItem::CoerceUnsized) {
2783 cause.clone()
2784 } else {
2785 cause.clone().derived_cause(parent_trait_pred, |derived| {
2786 ObligationCauseCode::ImplDerived(Box::new(ImplDerivedCause {
2787 derived,
2788 impl_or_alias_def_id: def_id,
2789 impl_def_predicate_index: Some(index),
2790 span,
2791 }))
2792 })
2793 };
2794 let clause = normalize_with_depth_to(
2795 self,
2796 param_env,
2797 cause.clone(),
2798 recursion_depth,
2799 predicate,
2800 &mut obligations,
2801 );
2802 obligations.push(Obligation {
2803 cause,
2804 recursion_depth,
2805 param_env,
2806 predicate: clause.as_predicate(),
2807 });
2808 }
2809
2810 // Register any outlives obligations from the trait here, cc #124336.
2811 if matches!(tcx.def_kind(def_id), DefKind::Impl { of_trait: true }) {
2812 for clause in tcx.impl_super_outlives(def_id).iter_instantiated(tcx, args) {
2813 let clause = normalize_with_depth_to(
2814 self,
2815 param_env,
2816 cause.clone(),
2817 recursion_depth,
2818 clause,
2819 &mut obligations,
2820 );
2821 obligations.push(Obligation {
2822 cause: cause.clone(),
2823 recursion_depth,
2824 param_env,
2825 predicate: clause.as_predicate(),
2826 });
2827 }
2828 }
2829
2830 obligations
2831 }
2832}
2833
2834fn rebind_coroutine_witness_types<'tcx>(
2835 tcx: TyCtxt<'tcx>,
2836 def_id: DefId,
2837 args: ty::GenericArgsRef<'tcx>,
2838 bound_vars: &'tcx ty::List<ty::BoundVariableKind>,
2839) -> ty::Binder<'tcx, Vec<Ty<'tcx>>> {
2840 let bound_coroutine_types = tcx.coroutine_hidden_types(def_id).skip_binder();
2841 let shifted_coroutine_types =
2842 tcx.shift_bound_var_indices(bound_vars.len(), bound_coroutine_types.skip_binder());
2843 ty::Binder::bind_with_vars(
2844 ty::EarlyBinder::bind(shifted_coroutine_types.to_vec()).instantiate(tcx, args),
2845 tcx.mk_bound_variable_kinds_from_iter(
2846 bound_vars.iter().chain(bound_coroutine_types.bound_vars()),
2847 ),
2848 )
2849}
2850
2851impl<'o, 'tcx> TraitObligationStack<'o, 'tcx> {
2852 fn list(&'o self) -> TraitObligationStackList<'o, 'tcx> {
2853 TraitObligationStackList::with(self)
2854 }
2855
2856 fn cache(&self) -> &'o ProvisionalEvaluationCache<'tcx> {
2857 self.previous.cache
2858 }
2859
2860 fn iter(&'o self) -> TraitObligationStackList<'o, 'tcx> {
2861 self.list()
2862 }
2863
2864 /// Indicates that attempting to evaluate this stack entry
2865 /// required accessing something from the stack at depth `reached_depth`.
2866 fn update_reached_depth(&self, reached_depth: usize) {
2867 assert!(
2868 self.depth >= reached_depth,
2869 "invoked `update_reached_depth` with something under this stack: \
2870 self.depth={} reached_depth={}",
2871 self.depth,
2872 reached_depth,
2873 );
2874 debug!(reached_depth, "update_reached_depth");
2875 let mut p = self;
2876 while reached_depth < p.depth {
2877 debug!(?p.fresh_trait_pred, "update_reached_depth: marking as cycle participant");
2878 p.reached_depth.set(p.reached_depth.get().min(reached_depth));
2879 p = p.previous.head.unwrap();
2880 }
2881 }
2882}
2883
2884/// The "provisional evaluation cache" is used to store intermediate cache results
2885/// when solving auto traits. Auto traits are unusual in that they can support
2886/// cycles. So, for example, a "proof tree" like this would be ok:
2887///
2888/// - `Foo<T>: Send` :-
2889/// - `Bar<T>: Send` :-
2890/// - `Foo<T>: Send` -- cycle, but ok
2891/// - `Baz<T>: Send`
2892///
2893/// Here, to prove `Foo<T>: Send`, we have to prove `Bar<T>: Send` and
2894/// `Baz<T>: Send`. Proving `Bar<T>: Send` in turn required `Foo<T>: Send`.
2895/// For non-auto traits, this cycle would be an error, but for auto traits (because
2896/// they are coinductive) it is considered ok.
2897///
2898/// However, there is a complication: at the point where we have
2899/// "proven" `Bar<T>: Send`, we have in fact only proven it
2900/// *provisionally*. In particular, we proved that `Bar<T>: Send`
2901/// *under the assumption* that `Foo<T>: Send`. But what if we later
2902/// find out this assumption is wrong? Specifically, we could
2903/// encounter some kind of error proving `Baz<T>: Send`. In that case,
2904/// `Bar<T>: Send` didn't turn out to be true.
2905///
2906/// In Issue #60010, we found a bug in rustc where it would cache
2907/// these intermediate results. This was fixed in #60444 by disabling
2908/// *all* caching for things involved in a cycle -- in our example,
2909/// that would mean we don't cache that `Bar<T>: Send`. But this led
2910/// to large slowdowns.
2911///
2912/// Specifically, imagine this scenario, where proving `Baz<T>: Send`
2913/// first requires proving `Bar<T>: Send` (which is true:
2914///
2915/// - `Foo<T>: Send` :-
2916/// - `Bar<T>: Send` :-
2917/// - `Foo<T>: Send` -- cycle, but ok
2918/// - `Baz<T>: Send`
2919/// - `Bar<T>: Send` -- would be nice for this to be a cache hit!
2920/// - `*const T: Send` -- but what if we later encounter an error?
2921///
2922/// The *provisional evaluation cache* resolves this issue. It stores
2923/// cache results that we've proven but which were involved in a cycle
2924/// in some way. We track the minimal stack depth (i.e., the
2925/// farthest from the top of the stack) that we are dependent on.
2926/// The idea is that the cache results within are all valid -- so long as
2927/// none of the nodes in between the current node and the node at that minimum
2928/// depth result in an error (in which case the cached results are just thrown away).
2929///
2930/// During evaluation, we consult this provisional cache and rely on
2931/// it. Accessing a cached value is considered equivalent to accessing
2932/// a result at `reached_depth`, so it marks the *current* solution as
2933/// provisional as well. If an error is encountered, we toss out any
2934/// provisional results added from the subtree that encountered the
2935/// error. When we pop the node at `reached_depth` from the stack, we
2936/// can commit all the things that remain in the provisional cache.
2937struct ProvisionalEvaluationCache<'tcx> {
2938 /// next "depth first number" to issue -- just a counter
2939 dfn: Cell<usize>,
2940
2941 /// Map from cache key to the provisionally evaluated thing.
2942 /// The cache entries contain the result but also the DFN in which they
2943 /// were added. The DFN is used to clear out values on failure.
2944 ///
2945 /// Imagine we have a stack like:
2946 ///
2947 /// - `A B C` and we add a cache for the result of C (DFN 2)
2948 /// - Then we have a stack `A B D` where `D` has DFN 3
2949 /// - We try to solve D by evaluating E: `A B D E` (DFN 4)
2950 /// - `E` generates various cache entries which have cyclic dependencies on `B`
2951 /// - `A B D E F` and so forth
2952 /// - the DFN of `F` for example would be 5
2953 /// - then we determine that `E` is in error -- we will then clear
2954 /// all cache values whose DFN is >= 4 -- in this case, that
2955 /// means the cached value for `F`.
2956 map: RefCell<FxIndexMap<ty::PolyTraitPredicate<'tcx>, ProvisionalEvaluation>>,
2957
2958 /// The stack of args that we assume to be true because a `WF(arg)` predicate
2959 /// is on the stack above (and because of wellformedness is coinductive).
2960 /// In an "ideal" world, this would share a stack with trait predicates in
2961 /// `TraitObligationStack`. However, trait predicates are *much* hotter than
2962 /// `WellFormed` predicates, and it's very likely that the additional matches
2963 /// will have a perf effect. The value here is the well-formed `GenericArg`
2964 /// and the depth of the trait predicate *above* that well-formed predicate.
2965 wf_args: RefCell<Vec<(ty::GenericArg<'tcx>, usize)>>,
2966}
2967
2968/// A cache value for the provisional cache: contains the depth-first
2969/// number (DFN) and result.
2970#[derive(Copy, Clone, Debug)]
2971struct ProvisionalEvaluation {
2972 from_dfn: usize,
2973 reached_depth: usize,
2974 result: EvaluationResult,
2975}
2976
2977impl<'tcx> Default for ProvisionalEvaluationCache<'tcx> {
2978 fn default() -> Self {
2979 Self { dfn: Cell::new(0), map: Default::default(), wf_args: Default::default() }
2980 }
2981}
2982
2983impl<'tcx> ProvisionalEvaluationCache<'tcx> {
2984 /// Get the next DFN in sequence (basically a counter).
2985 fn next_dfn(&self) -> usize {
2986 let result = self.dfn.get();
2987 self.dfn.set(result + 1);
2988 result
2989 }
2990
2991 /// Check the provisional cache for any result for
2992 /// `fresh_trait_ref`. If there is a hit, then you must consider
2993 /// it an access to the stack slots at depth
2994 /// `reached_depth` (from the returned value).
2995 fn get_provisional(
2996 &self,
2997 fresh_trait_pred: ty::PolyTraitPredicate<'tcx>,
2998 ) -> Option<ProvisionalEvaluation> {
2999 debug!(
3000 ?fresh_trait_pred,
3001 "get_provisional = {:#?}",
3002 self.map.borrow().get(&fresh_trait_pred),
3003 );
3004 Some(*self.map.borrow().get(&fresh_trait_pred)?)
3005 }
3006
3007 /// Insert a provisional result into the cache. The result came
3008 /// from the node with the given DFN. It accessed a minimum depth
3009 /// of `reached_depth` to compute. It evaluated `fresh_trait_pred`
3010 /// and resulted in `result`.
3011 fn insert_provisional(
3012 &self,
3013 from_dfn: usize,
3014 reached_depth: usize,
3015 fresh_trait_pred: ty::PolyTraitPredicate<'tcx>,
3016 result: EvaluationResult,
3017 ) {
3018 debug!(?from_dfn, ?fresh_trait_pred, ?result, "insert_provisional");
3019
3020 let mut map = self.map.borrow_mut();
3021
3022 // Subtle: when we complete working on the DFN `from_dfn`, anything
3023 // that remains in the provisional cache must be dependent on some older
3024 // stack entry than `from_dfn`. We have to update their depth with our transitive
3025 // depth in that case or else it would be referring to some popped note.
3026 //
3027 // Example:
3028 // A (reached depth 0)
3029 // ...
3030 // B // depth 1 -- reached depth = 0
3031 // C // depth 2 -- reached depth = 1 (should be 0)
3032 // B
3033 // A // depth 0
3034 // D (reached depth 1)
3035 // C (cache -- reached depth = 2)
3036 for (_k, v) in &mut *map {
3037 if v.from_dfn >= from_dfn {
3038 v.reached_depth = reached_depth.min(v.reached_depth);
3039 }
3040 }
3041
3042 map.insert(fresh_trait_pred, ProvisionalEvaluation { from_dfn, reached_depth, result });
3043 }
3044
3045 /// Invoked when the node with dfn `dfn` does not get a successful
3046 /// result. This will clear out any provisional cache entries
3047 /// that were added since `dfn` was created. This is because the
3048 /// provisional entries are things which must assume that the
3049 /// things on the stack at the time of their creation succeeded --
3050 /// since the failing node is presently at the top of the stack,
3051 /// these provisional entries must either depend on it or some
3052 /// ancestor of it.
3053 fn on_failure(&self, dfn: usize) {
3054 debug!(?dfn, "on_failure");
3055 self.map.borrow_mut().retain(|key, eval| {
3056 if !eval.from_dfn >= dfn {
3057 debug!("on_failure: removing {:?}", key);
3058 false
3059 } else {
3060 true
3061 }
3062 });
3063 }
3064
3065 /// Invoked when the node at depth `depth` completed without
3066 /// depending on anything higher in the stack (if that completion
3067 /// was a failure, then `on_failure` should have been invoked
3068 /// already).
3069 ///
3070 /// Note that we may still have provisional cache items remaining
3071 /// in the cache when this is done. For example, if there is a
3072 /// cycle:
3073 ///
3074 /// * A depends on...
3075 /// * B depends on A
3076 /// * C depends on...
3077 /// * D depends on C
3078 /// * ...
3079 ///
3080 /// Then as we complete the C node we will have a provisional cache
3081 /// with results for A, B, C, and D. This method would clear out
3082 /// the C and D results, but leave A and B provisional.
3083 ///
3084 /// This is determined based on the DFN: we remove any provisional
3085 /// results created since `dfn` started (e.g., in our example, dfn
3086 /// would be 2, representing the C node, and hence we would
3087 /// remove the result for D, which has DFN 3, but not the results for
3088 /// A and B, which have DFNs 0 and 1 respectively).
3089 ///
3090 /// Note that we *do not* attempt to cache these cycle participants
3091 /// in the evaluation cache. Doing so would require carefully computing
3092 /// the correct `DepNode` to store in the cache entry:
3093 /// cycle participants may implicitly depend on query results
3094 /// related to other participants in the cycle, due to our logic
3095 /// which examines the evaluation stack.
3096 ///
3097 /// We used to try to perform this caching,
3098 /// but it lead to multiple incremental compilation ICEs
3099 /// (see #92987 and #96319), and was very hard to understand.
3100 /// Fortunately, removing the caching didn't seem to
3101 /// have a performance impact in practice.
3102 fn on_completion(&self, dfn: usize) {
3103 debug!(?dfn, "on_completion");
3104 self.map.borrow_mut().retain(|fresh_trait_pred, eval| {
3105 if eval.from_dfn >= dfn {
3106 debug!(?fresh_trait_pred, ?eval, "on_completion");
3107 return false;
3108 }
3109 true
3110 });
3111 }
3112}
3113
3114#[derive(Copy, Clone)]
3115struct TraitObligationStackList<'o, 'tcx> {
3116 cache: &'o ProvisionalEvaluationCache<'tcx>,
3117 head: Option<&'o TraitObligationStack<'o, 'tcx>>,
3118}
3119
3120impl<'o, 'tcx> TraitObligationStackList<'o, 'tcx> {
3121 fn empty(cache: &'o ProvisionalEvaluationCache<'tcx>) -> TraitObligationStackList<'o, 'tcx> {
3122 TraitObligationStackList { cache, head: None }
3123 }
3124
3125 fn with(r: &'o TraitObligationStack<'o, 'tcx>) -> TraitObligationStackList<'o, 'tcx> {
3126 TraitObligationStackList { cache: r.cache(), head: Some(r) }
3127 }
3128
3129 fn head(&self) -> Option<&'o TraitObligationStack<'o, 'tcx>> {
3130 self.head
3131 }
3132
3133 fn depth(&self) -> usize {
3134 if let Some(head) = self.head { head.depth } else { 0 }
3135 }
3136}
3137
3138impl<'o, 'tcx> Iterator for TraitObligationStackList<'o, 'tcx> {
3139 type Item = &'o TraitObligationStack<'o, 'tcx>;
3140
3141 fn next(&mut self) -> Option<&'o TraitObligationStack<'o, 'tcx>> {
3142 let o = self.head?;
3143 *self = o.previous;
3144 Some(o)
3145 }
3146}
3147
3148impl<'o, 'tcx> fmt::Debug for TraitObligationStack<'o, 'tcx> {
3149 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3150 write!(f, "TraitObligationStack({:?})", self.obligation)
3151 }
3152}
3153
3154pub(crate) enum ProjectionMatchesProjection {
3155 Yes,
3156 Ambiguous,
3157 No,
3158}