rustc_middle/mir/interpret/allocation/
init_mask.rs

1#[cfg(test)]
2mod tests;
3
4use std::ops::Range;
5use std::{hash, iter};
6
7use rustc_abi::Size;
8use rustc_macros::{Decodable_NoContext, Encodable_NoContext, HashStable};
9use rustc_serialize::{Decodable, Decoder, Encodable, Encoder};
10
11use super::AllocRange;
12
13type Block = u64;
14
15/// A bitmask where each bit refers to the byte with the same index. If the bit is `true`, the byte
16/// is initialized. If it is `false` the byte is uninitialized.
17/// The actual bits are only materialized when needed, and we try to keep this data lazy as long as
18/// possible. Currently, if all the blocks have the same value, then the mask represents either a
19/// fully initialized or fully uninitialized const allocation, so we can only store that single
20/// value.
21#[derive(Clone, Debug, Eq, PartialEq, Encodable_NoContext, Decodable_NoContext, Hash, HashStable)]
22pub struct InitMask {
23    blocks: InitMaskBlocks,
24    len: Size,
25}
26
27#[derive(Clone, Debug, Eq, PartialEq, Encodable_NoContext, Decodable_NoContext, Hash, HashStable)]
28enum InitMaskBlocks {
29    Lazy {
30        /// Whether the lazy init mask is fully initialized or uninitialized.
31        state: bool,
32    },
33    Materialized(InitMaskMaterialized),
34}
35
36impl InitMask {
37    pub fn new(size: Size, state: bool) -> Self {
38        // Blocks start lazily allocated, until we have to materialize them.
39        let blocks = InitMaskBlocks::Lazy { state };
40        InitMask { len: size, blocks }
41    }
42
43    /// Checks whether the `range` is entirely initialized.
44    ///
45    /// Returns `Ok(())` if it's initialized. Otherwise returns a range of byte
46    /// indexes for the first contiguous span of the uninitialized access.
47    #[inline]
48    pub fn is_range_initialized(&self, range: AllocRange) -> Result<(), AllocRange> {
49        let end = range.end();
50        if end > self.len {
51            return Err(AllocRange::from(self.len..end));
52        }
53
54        match self.blocks {
55            InitMaskBlocks::Lazy { state } => {
56                // Lazily allocated blocks represent the full mask, and cover the requested range by
57                // definition.
58                if state { Ok(()) } else { Err(range) }
59            }
60            InitMaskBlocks::Materialized(ref blocks) => {
61                blocks.is_range_initialized(range.start, end)
62            }
63        }
64    }
65
66    /// Sets a specified range to a value. If the range is out-of-bounds, the mask will grow to
67    /// accommodate it entirely.
68    pub fn set_range(&mut self, range: AllocRange, new_state: bool) {
69        let start = range.start;
70        let end = range.end();
71
72        let is_full_overwrite = start == Size::ZERO && end >= self.len;
73
74        // Optimize the cases of a full init/uninit state, while handling growth if needed.
75        match self.blocks {
76            InitMaskBlocks::Lazy { ref mut state } if is_full_overwrite => {
77                // This is fully overwriting the mask, and we'll still have a single initialization
78                // state: the blocks can stay lazy.
79                *state = new_state;
80                self.len = end;
81            }
82            InitMaskBlocks::Materialized(_) if is_full_overwrite => {
83                // This is also fully overwriting materialized blocks with a single initialization
84                // state: we'll have no need for these blocks anymore and can make them lazy.
85                self.blocks = InitMaskBlocks::Lazy { state: new_state };
86                self.len = end;
87            }
88            InitMaskBlocks::Lazy { state } if state == new_state => {
89                // Here we're partially overwriting the mask but the initialization state doesn't
90                // change: the blocks can stay lazy.
91                if end > self.len {
92                    self.len = end;
93                }
94            }
95            _ => {
96                // Otherwise, we have a partial overwrite that can result in a mix of initialization
97                // states, so we'll need materialized blocks.
98                let len = self.len;
99                let blocks = self.materialize_blocks();
100
101                // There are 3 cases of interest here, if we have:
102                //
103                //         [--------]
104                //         ^        ^
105                //         0        len
106                //
107                // 1) the range to set can be in-bounds:
108                //
109                //            xxxx = [start, end]
110                //         [--------]
111                //         ^        ^
112                //         0        len
113                //
114                // Here, we'll simply set the single `start` to `end` range.
115                //
116                // 2) the range to set can be partially out-of-bounds:
117                //
118                //                xxxx = [start, end]
119                //         [--------]
120                //         ^        ^
121                //         0        len
122                //
123                // We have 2 subranges to handle:
124                // - we'll set the existing `start` to `len` range.
125                // - we'll grow and set the `len` to `end` range.
126                //
127                // 3) the range to set can be fully out-of-bounds:
128                //
129                //                   ---xxxx = [start, end]
130                //         [--------]
131                //         ^        ^
132                //         0        len
133                //
134                // Since we're growing the mask to a single `new_state` value, we consider the gap
135                // from `len` to `start` to be part of the range, and have a single subrange to
136                // handle: we'll grow and set the `len` to `end` range.
137                //
138                // Note that we have to materialize, set blocks, and grow the mask. We could
139                // therefore slightly optimize things in situations where these writes overlap.
140                // However, as of writing this, growing the mask doesn't happen in practice yet, so
141                // we don't do this micro-optimization.
142
143                if end <= len {
144                    // Handle case 1.
145                    blocks.set_range_inbounds(start, end, new_state);
146                } else {
147                    if start < len {
148                        // Handle the first subrange of case 2.
149                        blocks.set_range_inbounds(start, len, new_state);
150                    }
151
152                    // Handle the second subrange of case 2, and case 3.
153                    blocks.grow(len, end - len, new_state); // `Size` operation
154                    self.len = end;
155                }
156            }
157        }
158    }
159
160    /// Materializes this mask's blocks when the mask is lazy.
161    #[inline]
162    fn materialize_blocks(&mut self) -> &mut InitMaskMaterialized {
163        if let InitMaskBlocks::Lazy { state } = self.blocks {
164            self.blocks = InitMaskBlocks::Materialized(InitMaskMaterialized::new(self.len, state));
165        }
166
167        let InitMaskBlocks::Materialized(ref mut blocks) = self.blocks else {
168            bug!("initmask blocks must be materialized here")
169        };
170        blocks
171    }
172
173    /// Returns the initialization state at the specified in-bounds index.
174    #[inline]
175    pub fn get(&self, idx: Size) -> bool {
176        match self.blocks {
177            InitMaskBlocks::Lazy { state } => state,
178            InitMaskBlocks::Materialized(ref blocks) => blocks.get(idx),
179        }
180    }
181}
182
183/// The actual materialized blocks of the bitmask, when we can't keep the `InitMask` lazy.
184// Note: for performance reasons when interning, some of the fields can be partially
185// hashed. (see the `Hash` impl below for more details), so the impl is not derived.
186#[derive(Clone, Debug, Eq, PartialEq, HashStable)]
187struct InitMaskMaterialized {
188    blocks: Vec<Block>,
189}
190
191// `Block` is a `u64`, but it is a bitmask not a numeric value. If we were to just derive
192// Encodable and Decodable we would apply varint encoding to the bitmasks, which is slower
193// and also produces more output when the high bits of each `u64` are occupied.
194// Note: There is probably a remaining optimization for masks that do not use an entire
195// `Block`.
196impl<E: Encoder> Encodable<E> for InitMaskMaterialized {
197    fn encode(&self, encoder: &mut E) {
198        encoder.emit_usize(self.blocks.len());
199        for block in &self.blocks {
200            encoder.emit_raw_bytes(&block.to_le_bytes());
201        }
202    }
203}
204
205// This implementation is deliberately not derived, see the matching `Encodable` impl.
206impl<D: Decoder> Decodable<D> for InitMaskMaterialized {
207    fn decode(decoder: &mut D) -> Self {
208        let num_blocks = decoder.read_usize();
209        let mut blocks = Vec::with_capacity(num_blocks);
210        for _ in 0..num_blocks {
211            let bytes = decoder.read_raw_bytes(8);
212            let block = u64::from_le_bytes(bytes.try_into().unwrap());
213            blocks.push(block);
214        }
215        InitMaskMaterialized { blocks }
216    }
217}
218
219// Const allocations are only hashed for interning. However, they can be large, making the hashing
220// expensive especially since it uses `FxHash`: it's better suited to short keys, not potentially
221// big buffers like the allocation's init mask. We can partially hash some fields when they're
222// large.
223impl hash::Hash for InitMaskMaterialized {
224    fn hash<H: hash::Hasher>(&self, state: &mut H) {
225        const MAX_BLOCKS_TO_HASH: usize = super::MAX_BYTES_TO_HASH / size_of::<Block>();
226        const MAX_BLOCKS_LEN: usize = super::MAX_HASHED_BUFFER_LEN / size_of::<Block>();
227
228        // Partially hash the `blocks` buffer when it is large. To limit collisions with common
229        // prefixes and suffixes, we hash the length and some slices of the buffer.
230        let block_count = self.blocks.len();
231        if block_count > MAX_BLOCKS_LEN {
232            // Hash the buffer's length.
233            block_count.hash(state);
234
235            // And its head and tail.
236            self.blocks[..MAX_BLOCKS_TO_HASH].hash(state);
237            self.blocks[block_count - MAX_BLOCKS_TO_HASH..].hash(state);
238        } else {
239            self.blocks.hash(state);
240        }
241    }
242}
243
244impl InitMaskMaterialized {
245    const BLOCK_SIZE: u64 = 64;
246
247    fn new(size: Size, state: bool) -> Self {
248        let mut m = InitMaskMaterialized { blocks: vec![] };
249        m.grow(Size::ZERO, size, state);
250        m
251    }
252
253    #[inline]
254    fn bit_index(bits: Size) -> (usize, usize) {
255        // BLOCK_SIZE is the number of bits that can fit in a `Block`.
256        // Each bit in a `Block` represents the initialization state of one byte of an allocation,
257        // so we use `.bytes()` here.
258        let bits = bits.bytes();
259        let a = bits / Self::BLOCK_SIZE;
260        let b = bits % Self::BLOCK_SIZE;
261        (usize::try_from(a).unwrap(), usize::try_from(b).unwrap())
262    }
263
264    #[inline]
265    fn size_from_bit_index(block: impl TryInto<u64>, bit: impl TryInto<u64>) -> Size {
266        let block = block.try_into().ok().unwrap();
267        let bit = bit.try_into().ok().unwrap();
268        Size::from_bytes(block * Self::BLOCK_SIZE + bit)
269    }
270
271    /// Checks whether the `range` is entirely initialized.
272    ///
273    /// Returns `Ok(())` if it's initialized. Otherwise returns a range of byte
274    /// indexes for the first contiguous span of the uninitialized access.
275    #[inline]
276    fn is_range_initialized(&self, start: Size, end: Size) -> Result<(), AllocRange> {
277        let uninit_start = self.find_bit(start, end, false);
278
279        match uninit_start {
280            Some(uninit_start) => {
281                let uninit_end = self.find_bit(uninit_start, end, true).unwrap_or(end);
282                Err(AllocRange::from(uninit_start..uninit_end))
283            }
284            None => Ok(()),
285        }
286    }
287
288    fn set_range_inbounds(&mut self, start: Size, end: Size, new_state: bool) {
289        let (block_a, bit_a) = Self::bit_index(start);
290        let (block_b, bit_b) = Self::bit_index(end);
291        if block_a == block_b {
292            // First set all bits except the first `bit_a`,
293            // then unset the last `64 - bit_b` bits.
294            let range = if bit_b == 0 {
295                u64::MAX << bit_a
296            } else {
297                (u64::MAX << bit_a) & (u64::MAX >> (64 - bit_b))
298            };
299            if new_state {
300                self.blocks[block_a] |= range;
301            } else {
302                self.blocks[block_a] &= !range;
303            }
304            return;
305        }
306        // across block boundaries
307        if new_state {
308            // Set `bit_a..64` to `1`.
309            self.blocks[block_a] |= u64::MAX << bit_a;
310            // Set `0..bit_b` to `1`.
311            if bit_b != 0 {
312                self.blocks[block_b] |= u64::MAX >> (64 - bit_b);
313            }
314            // Fill in all the other blocks (much faster than one bit at a time).
315            for block in (block_a + 1)..block_b {
316                self.blocks[block] = u64::MAX;
317            }
318        } else {
319            // Set `bit_a..64` to `0`.
320            self.blocks[block_a] &= !(u64::MAX << bit_a);
321            // Set `0..bit_b` to `0`.
322            if bit_b != 0 {
323                self.blocks[block_b] &= !(u64::MAX >> (64 - bit_b));
324            }
325            // Fill in all the other blocks (much faster than one bit at a time).
326            for block in (block_a + 1)..block_b {
327                self.blocks[block] = 0;
328            }
329        }
330    }
331
332    #[inline]
333    fn get(&self, i: Size) -> bool {
334        let (block, bit) = Self::bit_index(i);
335        (self.blocks[block] & (1 << bit)) != 0
336    }
337
338    fn grow(&mut self, len: Size, amount: Size, new_state: bool) {
339        if amount.bytes() == 0 {
340            return;
341        }
342        let unused_trailing_bits =
343            u64::try_from(self.blocks.len()).unwrap() * Self::BLOCK_SIZE - len.bytes();
344
345        // If there's not enough capacity in the currently allocated blocks, allocate some more.
346        if amount.bytes() > unused_trailing_bits {
347            let additional_blocks = amount.bytes() / Self::BLOCK_SIZE + 1;
348
349            // We allocate the blocks to the correct value for the requested init state, so we won't
350            // have to manually set them with another write.
351            let block = if new_state { u64::MAX } else { 0 };
352            self.blocks
353                .extend(iter::repeat(block).take(usize::try_from(additional_blocks).unwrap()));
354        }
355
356        // New blocks have already been set here, so we only need to set the unused trailing bits,
357        // if any.
358        if unused_trailing_bits > 0 {
359            let in_bounds_tail = Size::from_bytes(unused_trailing_bits);
360            self.set_range_inbounds(len, len + in_bounds_tail, new_state); // `Size` operation
361        }
362    }
363
364    /// Returns the index of the first bit in `start..end` (end-exclusive) that is equal to is_init.
365    fn find_bit(&self, start: Size, end: Size, is_init: bool) -> Option<Size> {
366        /// A fast implementation of `find_bit`,
367        /// which skips over an entire block at a time if it's all 0s (resp. 1s),
368        /// and finds the first 1 (resp. 0) bit inside a block using `trailing_zeros` instead of a loop.
369        ///
370        /// Note that all examples below are written with 8 (instead of 64) bit blocks for simplicity,
371        /// and with the least significant bit (and lowest block) first:
372        /// ```text
373        ///        00000000|00000000
374        ///        ^      ^ ^      ^
375        /// index: 0      7 8      15
376        /// ```
377        /// Also, if not stated, assume that `is_init = true`, that is, we are searching for the first 1 bit.
378        fn find_bit_fast(
379            init_mask: &InitMaskMaterialized,
380            start: Size,
381            end: Size,
382            is_init: bool,
383        ) -> Option<Size> {
384            /// Search one block, returning the index of the first bit equal to `is_init`.
385            fn search_block(
386                bits: Block,
387                block: usize,
388                start_bit: usize,
389                is_init: bool,
390            ) -> Option<Size> {
391                // For the following examples, assume this function was called with:
392                //   bits = 0b00111011
393                //   start_bit = 3
394                //   is_init = false
395                // Note that, for the examples in this function, the most significant bit is written first,
396                // which is backwards compared to the comments in `find_bit`/`find_bit_fast`.
397
398                // Invert bits so we're always looking for the first set bit.
399                //        ! 0b00111011
400                //   bits = 0b11000100
401                let bits = if is_init { bits } else { !bits };
402                // Mask off unused start bits.
403                //          0b11000100
404                //        & 0b11111000
405                //   bits = 0b11000000
406                let bits = bits & (!0 << start_bit);
407                // Find set bit, if any.
408                //   bit = trailing_zeros(0b11000000)
409                //   bit = 6
410                if bits == 0 {
411                    None
412                } else {
413                    let bit = bits.trailing_zeros();
414                    Some(InitMaskMaterialized::size_from_bit_index(block, bit))
415                }
416            }
417
418            if start >= end {
419                return None;
420            }
421
422            // Convert `start` and `end` to block indexes and bit indexes within each block.
423            // We must convert `end` to an inclusive bound to handle block boundaries correctly.
424            //
425            // For example:
426            //
427            //   (a) 00000000|00000000    (b) 00000000|
428            //       ^~~~~~~~~~~^             ^~~~~~~~~^
429            //     start       end          start     end
430            //
431            // In both cases, the block index of `end` is 1.
432            // But we do want to search block 1 in (a), and we don't in (b).
433            //
434            // We subtract 1 from both end positions to make them inclusive:
435            //
436            //   (a) 00000000|00000000    (b) 00000000|
437            //       ^~~~~~~~~~^              ^~~~~~~^
438            //     start    end_inclusive   start end_inclusive
439            //
440            // For (a), the block index of `end_inclusive` is 1, and for (b), it's 0.
441            // This provides the desired behavior of searching blocks 0 and 1 for (a),
442            // and searching only block 0 for (b).
443            // There is no concern of overflows since we checked for `start >= end` above.
444            let (start_block, start_bit) = InitMaskMaterialized::bit_index(start);
445            let end_inclusive = Size::from_bytes(end.bytes() - 1);
446            let (end_block_inclusive, _) = InitMaskMaterialized::bit_index(end_inclusive);
447
448            // Handle first block: need to skip `start_bit` bits.
449            //
450            // We need to handle the first block separately,
451            // because there may be bits earlier in the block that should be ignored,
452            // such as the bit marked (1) in this example:
453            //
454            //       (1)
455            //       -|------
456            //   (c) 01000000|00000000|00000001
457            //          ^~~~~~~~~~~~~~~~~~^
458            //        start              end
459            if let Some(i) =
460                search_block(init_mask.blocks[start_block], start_block, start_bit, is_init)
461            {
462                // If the range is less than a block, we may find a matching bit after `end`.
463                //
464                // For example, we shouldn't successfully find bit (2), because it's after `end`:
465                //
466                //             (2)
467                //       -------|
468                //   (d) 00000001|00000000|00000001
469                //        ^~~~~^
470                //      start end
471                //
472                // An alternative would be to mask off end bits in the same way as we do for start bits,
473                // but performing this check afterwards is faster and simpler to implement.
474                if i < end {
475                    return Some(i);
476                } else {
477                    return None;
478                }
479            }
480
481            // Handle remaining blocks.
482            //
483            // We can skip over an entire block at once if it's all 0s (resp. 1s).
484            // The block marked (3) in this example is the first block that will be handled by this loop,
485            // and it will be skipped for that reason:
486            //
487            //                   (3)
488            //                --------
489            //   (e) 01000000|00000000|00000001
490            //          ^~~~~~~~~~~~~~~~~~^
491            //        start              end
492            if start_block < end_block_inclusive {
493                // This loop is written in a specific way for performance.
494                // Notably: `..end_block_inclusive + 1` is used for an inclusive range instead of `..=end_block_inclusive`,
495                // and `.zip(start_block + 1..)` is used to track the index instead of `.enumerate().skip().take()`,
496                // because both alternatives result in significantly worse codegen.
497                // `end_block_inclusive + 1` is guaranteed not to wrap, because `end_block_inclusive <= end / BLOCK_SIZE`,
498                // and `BLOCK_SIZE` (the number of bits per block) will always be at least 8 (1 byte).
499                for (&bits, block) in init_mask.blocks[start_block + 1..end_block_inclusive + 1]
500                    .iter()
501                    .zip(start_block + 1..)
502                {
503                    if let Some(i) = search_block(bits, block, 0, is_init) {
504                        // If this is the last block, we may find a matching bit after `end`.
505                        //
506                        // For example, we shouldn't successfully find bit (4), because it's after `end`:
507                        //
508                        //                               (4)
509                        //                         -------|
510                        //   (f) 00000001|00000000|00000001
511                        //          ^~~~~~~~~~~~~~~~~~^
512                        //        start              end
513                        //
514                        // As above with example (d), we could handle the end block separately and mask off end bits,
515                        // but unconditionally searching an entire block at once and performing this check afterwards
516                        // is faster and much simpler to implement.
517                        if i < end {
518                            return Some(i);
519                        } else {
520                            return None;
521                        }
522                    }
523                }
524            }
525
526            None
527        }
528
529        #[cfg_attr(not(debug_assertions), allow(dead_code))]
530        fn find_bit_slow(
531            init_mask: &InitMaskMaterialized,
532            start: Size,
533            end: Size,
534            is_init: bool,
535        ) -> Option<Size> {
536            (start..end).find(|&i| init_mask.get(i) == is_init)
537        }
538
539        let result = find_bit_fast(self, start, end, is_init);
540
541        debug_assert_eq!(
542            result,
543            find_bit_slow(self, start, end, is_init),
544            "optimized implementation of find_bit is wrong for start={start:?} end={end:?} is_init={is_init} init_mask={self:#?}"
545        );
546
547        result
548    }
549}
550
551/// A contiguous chunk of initialized or uninitialized memory.
552pub enum InitChunk {
553    Init(Range<Size>),
554    Uninit(Range<Size>),
555}
556
557impl InitChunk {
558    #[inline]
559    pub fn is_init(&self) -> bool {
560        match self {
561            Self::Init(_) => true,
562            Self::Uninit(_) => false,
563        }
564    }
565
566    #[inline]
567    pub fn range(&self) -> Range<Size> {
568        match self {
569            Self::Init(r) => r.clone(),
570            Self::Uninit(r) => r.clone(),
571        }
572    }
573}
574
575impl InitMask {
576    /// Returns an iterator, yielding a range of byte indexes for each contiguous region
577    /// of initialized or uninitialized bytes inside the range `start..end` (end-exclusive).
578    ///
579    /// The iterator guarantees the following:
580    /// - Chunks are nonempty.
581    /// - Chunks are adjacent (each range's start is equal to the previous range's end).
582    /// - Chunks span exactly `start..end` (the first starts at `start`, the last ends at `end`).
583    /// - Chunks alternate between [`InitChunk::Init`] and [`InitChunk::Uninit`].
584    #[inline]
585    pub fn range_as_init_chunks(&self, range: AllocRange) -> InitChunkIter<'_> {
586        let start = range.start;
587        let end = range.end();
588        assert!(end <= self.len);
589
590        let is_init = if start < end {
591            self.get(start)
592        } else {
593            // `start..end` is empty: there are no chunks, so use some arbitrary value
594            false
595        };
596
597        InitChunkIter { init_mask: self, is_init, start, end }
598    }
599}
600
601/// Yields [`InitChunk`]s. See [`InitMask::range_as_init_chunks`].
602#[derive(Clone)]
603pub struct InitChunkIter<'a> {
604    init_mask: &'a InitMask,
605    /// Whether the next chunk we will return is initialized.
606    /// If there are no more chunks, contains some arbitrary value.
607    is_init: bool,
608    /// The current byte index into `init_mask`.
609    start: Size,
610    /// The end byte index into `init_mask`.
611    end: Size,
612}
613
614impl<'a> Iterator for InitChunkIter<'a> {
615    type Item = InitChunk;
616
617    #[inline]
618    fn next(&mut self) -> Option<Self::Item> {
619        if self.start >= self.end {
620            return None;
621        }
622
623        let end_of_chunk = match self.init_mask.blocks {
624            InitMaskBlocks::Lazy { .. } => {
625                // If we're iterating over the chunks of lazy blocks, we just emit a single
626                // full-size chunk.
627                self.end
628            }
629            InitMaskBlocks::Materialized(ref blocks) => {
630                let end_of_chunk =
631                    blocks.find_bit(self.start, self.end, !self.is_init).unwrap_or(self.end);
632                end_of_chunk
633            }
634        };
635        let range = self.start..end_of_chunk;
636        let ret =
637            Some(if self.is_init { InitChunk::Init(range) } else { InitChunk::Uninit(range) });
638
639        self.is_init = !self.is_init;
640        self.start = end_of_chunk;
641
642        ret
643    }
644}
645
646/// Run-length encoding of the uninit mask.
647/// Used to copy parts of a mask multiple times to another allocation.
648pub struct InitCopy {
649    /// Whether the first range is initialized.
650    initial: bool,
651    /// The lengths of ranges that are run-length encoded.
652    /// The initialization state of the ranges alternate starting with `initial`.
653    ranges: smallvec::SmallVec<[u64; 1]>,
654}
655
656impl InitCopy {
657    pub fn no_bytes_init(&self) -> bool {
658        // The `ranges` are run-length encoded and of alternating initialization state.
659        // So if `ranges.len() > 1` then the second block is an initialized range.
660        !self.initial && self.ranges.len() == 1
661    }
662}
663
664/// Transferring the initialization mask to other allocations.
665impl InitMask {
666    /// Creates a run-length encoding of the initialization mask; panics if range is empty.
667    ///
668    /// This is essentially a more space-efficient version of
669    /// `InitMask::range_as_init_chunks(...).collect::<Vec<_>>()`.
670    pub fn prepare_copy(&self, range: AllocRange) -> InitCopy {
671        // Since we are copying `size` bytes from `src` to `dest + i * size` (`for i in 0..repeat`),
672        // a naive initialization mask copying algorithm would repeatedly have to read the initialization mask from
673        // the source and write it to the destination. Even if we optimized the memory accesses,
674        // we'd be doing all of this `repeat` times.
675        // Therefore we precompute a compressed version of the initialization mask of the source value and
676        // then write it back `repeat` times without computing any more information from the source.
677
678        // A precomputed cache for ranges of initialized / uninitialized bits
679        // 0000010010001110 will become
680        // `[5, 1, 2, 1, 3, 3, 1]`,
681        // where each element toggles the state.
682
683        let mut ranges = smallvec::SmallVec::<[u64; 1]>::new();
684
685        let mut chunks = self.range_as_init_chunks(range).peekable();
686
687        let initial = chunks.peek().expect("range should be nonempty").is_init();
688
689        // Here we rely on `range_as_init_chunks` to yield alternating init/uninit chunks.
690        for chunk in chunks {
691            let len = chunk.range().end.bytes() - chunk.range().start.bytes();
692            ranges.push(len);
693        }
694
695        InitCopy { ranges, initial }
696    }
697
698    /// Applies multiple instances of the run-length encoding to the initialization mask.
699    pub fn apply_copy(&mut self, defined: InitCopy, range: AllocRange, repeat: u64) {
700        // An optimization where we can just overwrite an entire range of initialization bits if
701        // they are going to be uniformly `1` or `0`. If this happens to be a full-range overwrite,
702        // we won't need materialized blocks either.
703        if defined.ranges.len() <= 1 {
704            let start = range.start;
705            let end = range.start + range.size * repeat; // `Size` operations
706            self.set_range(AllocRange::from(start..end), defined.initial);
707            return;
708        }
709
710        // We're about to do one or more partial writes, so we ensure the blocks are materialized.
711        let blocks = self.materialize_blocks();
712
713        for mut j in 0..repeat {
714            j *= range.size.bytes();
715            j += range.start.bytes();
716            let mut cur = defined.initial;
717            for range in &defined.ranges {
718                let old_j = j;
719                j += range;
720                blocks.set_range_inbounds(Size::from_bytes(old_j), Size::from_bytes(j), cur);
721                cur = !cur;
722            }
723        }
724    }
725}