rustc_middle/mir/interpret/allocation/init_mask.rs
1#[cfg(test)]
2mod tests;
3
4use std::ops::Range;
5use std::{hash, iter};
6
7use rustc_abi::Size;
8use rustc_macros::{Decodable_NoContext, Encodable_NoContext, HashStable};
9use rustc_serialize::{Decodable, Decoder, Encodable, Encoder};
10
11use super::AllocRange;
12
13type Block = u64;
14
15/// A bitmask where each bit refers to the byte with the same index. If the bit is `true`, the byte
16/// is initialized. If it is `false` the byte is uninitialized.
17/// The actual bits are only materialized when needed, and we try to keep this data lazy as long as
18/// possible. Currently, if all the blocks have the same value, then the mask represents either a
19/// fully initialized or fully uninitialized const allocation, so we can only store that single
20/// value.
21#[derive(Clone, Debug, Eq, PartialEq, Encodable_NoContext, Decodable_NoContext, Hash, HashStable)]
22pub struct InitMask {
23 blocks: InitMaskBlocks,
24 len: Size,
25}
26
27#[derive(Clone, Debug, Eq, PartialEq, Encodable_NoContext, Decodable_NoContext, Hash, HashStable)]
28enum InitMaskBlocks {
29 Lazy {
30 /// Whether the lazy init mask is fully initialized or uninitialized.
31 state: bool,
32 },
33 Materialized(InitMaskMaterialized),
34}
35
36impl InitMask {
37 pub fn new(size: Size, state: bool) -> Self {
38 // Blocks start lazily allocated, until we have to materialize them.
39 let blocks = InitMaskBlocks::Lazy { state };
40 InitMask { len: size, blocks }
41 }
42
43 /// Checks whether the `range` is entirely initialized.
44 ///
45 /// Returns `Ok(())` if it's initialized. Otherwise returns a range of byte
46 /// indexes for the first contiguous span of the uninitialized access.
47 #[inline]
48 pub fn is_range_initialized(&self, range: AllocRange) -> Result<(), AllocRange> {
49 let end = range.end();
50 if end > self.len {
51 return Err(AllocRange::from(self.len..end));
52 }
53
54 match self.blocks {
55 InitMaskBlocks::Lazy { state } => {
56 // Lazily allocated blocks represent the full mask, and cover the requested range by
57 // definition.
58 if state { Ok(()) } else { Err(range) }
59 }
60 InitMaskBlocks::Materialized(ref blocks) => {
61 blocks.is_range_initialized(range.start, end)
62 }
63 }
64 }
65
66 /// Sets a specified range to a value. If the range is out-of-bounds, the mask will grow to
67 /// accommodate it entirely.
68 pub fn set_range(&mut self, range: AllocRange, new_state: bool) {
69 let start = range.start;
70 let end = range.end();
71
72 let is_full_overwrite = start == Size::ZERO && end >= self.len;
73
74 // Optimize the cases of a full init/uninit state, while handling growth if needed.
75 match self.blocks {
76 InitMaskBlocks::Lazy { ref mut state } if is_full_overwrite => {
77 // This is fully overwriting the mask, and we'll still have a single initialization
78 // state: the blocks can stay lazy.
79 *state = new_state;
80 self.len = end;
81 }
82 InitMaskBlocks::Materialized(_) if is_full_overwrite => {
83 // This is also fully overwriting materialized blocks with a single initialization
84 // state: we'll have no need for these blocks anymore and can make them lazy.
85 self.blocks = InitMaskBlocks::Lazy { state: new_state };
86 self.len = end;
87 }
88 InitMaskBlocks::Lazy { state } if state == new_state => {
89 // Here we're partially overwriting the mask but the initialization state doesn't
90 // change: the blocks can stay lazy.
91 if end > self.len {
92 self.len = end;
93 }
94 }
95 _ => {
96 // Otherwise, we have a partial overwrite that can result in a mix of initialization
97 // states, so we'll need materialized blocks.
98 let len = self.len;
99 let blocks = self.materialize_blocks();
100
101 // There are 3 cases of interest here, if we have:
102 //
103 // [--------]
104 // ^ ^
105 // 0 len
106 //
107 // 1) the range to set can be in-bounds:
108 //
109 // xxxx = [start, end]
110 // [--------]
111 // ^ ^
112 // 0 len
113 //
114 // Here, we'll simply set the single `start` to `end` range.
115 //
116 // 2) the range to set can be partially out-of-bounds:
117 //
118 // xxxx = [start, end]
119 // [--------]
120 // ^ ^
121 // 0 len
122 //
123 // We have 2 subranges to handle:
124 // - we'll set the existing `start` to `len` range.
125 // - we'll grow and set the `len` to `end` range.
126 //
127 // 3) the range to set can be fully out-of-bounds:
128 //
129 // ---xxxx = [start, end]
130 // [--------]
131 // ^ ^
132 // 0 len
133 //
134 // Since we're growing the mask to a single `new_state` value, we consider the gap
135 // from `len` to `start` to be part of the range, and have a single subrange to
136 // handle: we'll grow and set the `len` to `end` range.
137 //
138 // Note that we have to materialize, set blocks, and grow the mask. We could
139 // therefore slightly optimize things in situations where these writes overlap.
140 // However, as of writing this, growing the mask doesn't happen in practice yet, so
141 // we don't do this micro-optimization.
142
143 if end <= len {
144 // Handle case 1.
145 blocks.set_range_inbounds(start, end, new_state);
146 } else {
147 if start < len {
148 // Handle the first subrange of case 2.
149 blocks.set_range_inbounds(start, len, new_state);
150 }
151
152 // Handle the second subrange of case 2, and case 3.
153 blocks.grow(len, end - len, new_state); // `Size` operation
154 self.len = end;
155 }
156 }
157 }
158 }
159
160 /// Materializes this mask's blocks when the mask is lazy.
161 #[inline]
162 fn materialize_blocks(&mut self) -> &mut InitMaskMaterialized {
163 if let InitMaskBlocks::Lazy { state } = self.blocks {
164 self.blocks = InitMaskBlocks::Materialized(InitMaskMaterialized::new(self.len, state));
165 }
166
167 let InitMaskBlocks::Materialized(ref mut blocks) = self.blocks else {
168 bug!("initmask blocks must be materialized here")
169 };
170 blocks
171 }
172
173 /// Returns the initialization state at the specified in-bounds index.
174 #[inline]
175 pub fn get(&self, idx: Size) -> bool {
176 match self.blocks {
177 InitMaskBlocks::Lazy { state } => state,
178 InitMaskBlocks::Materialized(ref blocks) => blocks.get(idx),
179 }
180 }
181}
182
183/// The actual materialized blocks of the bitmask, when we can't keep the `InitMask` lazy.
184// Note: for performance reasons when interning, some of the fields can be partially
185// hashed. (see the `Hash` impl below for more details), so the impl is not derived.
186#[derive(Clone, Debug, Eq, PartialEq, HashStable)]
187struct InitMaskMaterialized {
188 blocks: Vec<Block>,
189}
190
191// `Block` is a `u64`, but it is a bitmask not a numeric value. If we were to just derive
192// Encodable and Decodable we would apply varint encoding to the bitmasks, which is slower
193// and also produces more output when the high bits of each `u64` are occupied.
194// Note: There is probably a remaining optimization for masks that do not use an entire
195// `Block`.
196impl<E: Encoder> Encodable<E> for InitMaskMaterialized {
197 fn encode(&self, encoder: &mut E) {
198 encoder.emit_usize(self.blocks.len());
199 for block in &self.blocks {
200 encoder.emit_raw_bytes(&block.to_le_bytes());
201 }
202 }
203}
204
205// This implementation is deliberately not derived, see the matching `Encodable` impl.
206impl<D: Decoder> Decodable<D> for InitMaskMaterialized {
207 fn decode(decoder: &mut D) -> Self {
208 let num_blocks = decoder.read_usize();
209 let mut blocks = Vec::with_capacity(num_blocks);
210 for _ in 0..num_blocks {
211 let bytes = decoder.read_raw_bytes(8);
212 let block = u64::from_le_bytes(bytes.try_into().unwrap());
213 blocks.push(block);
214 }
215 InitMaskMaterialized { blocks }
216 }
217}
218
219// Const allocations are only hashed for interning. However, they can be large, making the hashing
220// expensive especially since it uses `FxHash`: it's better suited to short keys, not potentially
221// big buffers like the allocation's init mask. We can partially hash some fields when they're
222// large.
223impl hash::Hash for InitMaskMaterialized {
224 fn hash<H: hash::Hasher>(&self, state: &mut H) {
225 const MAX_BLOCKS_TO_HASH: usize = super::MAX_BYTES_TO_HASH / size_of::<Block>();
226 const MAX_BLOCKS_LEN: usize = super::MAX_HASHED_BUFFER_LEN / size_of::<Block>();
227
228 // Partially hash the `blocks` buffer when it is large. To limit collisions with common
229 // prefixes and suffixes, we hash the length and some slices of the buffer.
230 let block_count = self.blocks.len();
231 if block_count > MAX_BLOCKS_LEN {
232 // Hash the buffer's length.
233 block_count.hash(state);
234
235 // And its head and tail.
236 self.blocks[..MAX_BLOCKS_TO_HASH].hash(state);
237 self.blocks[block_count - MAX_BLOCKS_TO_HASH..].hash(state);
238 } else {
239 self.blocks.hash(state);
240 }
241 }
242}
243
244impl InitMaskMaterialized {
245 const BLOCK_SIZE: u64 = 64;
246
247 fn new(size: Size, state: bool) -> Self {
248 let mut m = InitMaskMaterialized { blocks: vec![] };
249 m.grow(Size::ZERO, size, state);
250 m
251 }
252
253 #[inline]
254 fn bit_index(bits: Size) -> (usize, usize) {
255 // BLOCK_SIZE is the number of bits that can fit in a `Block`.
256 // Each bit in a `Block` represents the initialization state of one byte of an allocation,
257 // so we use `.bytes()` here.
258 let bits = bits.bytes();
259 let a = bits / Self::BLOCK_SIZE;
260 let b = bits % Self::BLOCK_SIZE;
261 (usize::try_from(a).unwrap(), usize::try_from(b).unwrap())
262 }
263
264 #[inline]
265 fn size_from_bit_index(block: impl TryInto<u64>, bit: impl TryInto<u64>) -> Size {
266 let block = block.try_into().ok().unwrap();
267 let bit = bit.try_into().ok().unwrap();
268 Size::from_bytes(block * Self::BLOCK_SIZE + bit)
269 }
270
271 /// Checks whether the `range` is entirely initialized.
272 ///
273 /// Returns `Ok(())` if it's initialized. Otherwise returns a range of byte
274 /// indexes for the first contiguous span of the uninitialized access.
275 #[inline]
276 fn is_range_initialized(&self, start: Size, end: Size) -> Result<(), AllocRange> {
277 let uninit_start = self.find_bit(start, end, false);
278
279 match uninit_start {
280 Some(uninit_start) => {
281 let uninit_end = self.find_bit(uninit_start, end, true).unwrap_or(end);
282 Err(AllocRange::from(uninit_start..uninit_end))
283 }
284 None => Ok(()),
285 }
286 }
287
288 fn set_range_inbounds(&mut self, start: Size, end: Size, new_state: bool) {
289 let (block_a, bit_a) = Self::bit_index(start);
290 let (block_b, bit_b) = Self::bit_index(end);
291 if block_a == block_b {
292 // First set all bits except the first `bit_a`,
293 // then unset the last `64 - bit_b` bits.
294 let range = if bit_b == 0 {
295 u64::MAX << bit_a
296 } else {
297 (u64::MAX << bit_a) & (u64::MAX >> (64 - bit_b))
298 };
299 if new_state {
300 self.blocks[block_a] |= range;
301 } else {
302 self.blocks[block_a] &= !range;
303 }
304 return;
305 }
306 // across block boundaries
307 if new_state {
308 // Set `bit_a..64` to `1`.
309 self.blocks[block_a] |= u64::MAX << bit_a;
310 // Set `0..bit_b` to `1`.
311 if bit_b != 0 {
312 self.blocks[block_b] |= u64::MAX >> (64 - bit_b);
313 }
314 // Fill in all the other blocks (much faster than one bit at a time).
315 for block in (block_a + 1)..block_b {
316 self.blocks[block] = u64::MAX;
317 }
318 } else {
319 // Set `bit_a..64` to `0`.
320 self.blocks[block_a] &= !(u64::MAX << bit_a);
321 // Set `0..bit_b` to `0`.
322 if bit_b != 0 {
323 self.blocks[block_b] &= !(u64::MAX >> (64 - bit_b));
324 }
325 // Fill in all the other blocks (much faster than one bit at a time).
326 for block in (block_a + 1)..block_b {
327 self.blocks[block] = 0;
328 }
329 }
330 }
331
332 #[inline]
333 fn get(&self, i: Size) -> bool {
334 let (block, bit) = Self::bit_index(i);
335 (self.blocks[block] & (1 << bit)) != 0
336 }
337
338 fn grow(&mut self, len: Size, amount: Size, new_state: bool) {
339 if amount.bytes() == 0 {
340 return;
341 }
342 let unused_trailing_bits =
343 u64::try_from(self.blocks.len()).unwrap() * Self::BLOCK_SIZE - len.bytes();
344
345 // If there's not enough capacity in the currently allocated blocks, allocate some more.
346 if amount.bytes() > unused_trailing_bits {
347 let additional_blocks = amount.bytes() / Self::BLOCK_SIZE + 1;
348
349 // We allocate the blocks to the correct value for the requested init state, so we won't
350 // have to manually set them with another write.
351 let block = if new_state { u64::MAX } else { 0 };
352 self.blocks
353 .extend(iter::repeat(block).take(usize::try_from(additional_blocks).unwrap()));
354 }
355
356 // New blocks have already been set here, so we only need to set the unused trailing bits,
357 // if any.
358 if unused_trailing_bits > 0 {
359 let in_bounds_tail = Size::from_bytes(unused_trailing_bits);
360 self.set_range_inbounds(len, len + in_bounds_tail, new_state); // `Size` operation
361 }
362 }
363
364 /// Returns the index of the first bit in `start..end` (end-exclusive) that is equal to is_init.
365 fn find_bit(&self, start: Size, end: Size, is_init: bool) -> Option<Size> {
366 /// A fast implementation of `find_bit`,
367 /// which skips over an entire block at a time if it's all 0s (resp. 1s),
368 /// and finds the first 1 (resp. 0) bit inside a block using `trailing_zeros` instead of a loop.
369 ///
370 /// Note that all examples below are written with 8 (instead of 64) bit blocks for simplicity,
371 /// and with the least significant bit (and lowest block) first:
372 /// ```text
373 /// 00000000|00000000
374 /// ^ ^ ^ ^
375 /// index: 0 7 8 15
376 /// ```
377 /// Also, if not stated, assume that `is_init = true`, that is, we are searching for the first 1 bit.
378 fn find_bit_fast(
379 init_mask: &InitMaskMaterialized,
380 start: Size,
381 end: Size,
382 is_init: bool,
383 ) -> Option<Size> {
384 /// Search one block, returning the index of the first bit equal to `is_init`.
385 fn search_block(
386 bits: Block,
387 block: usize,
388 start_bit: usize,
389 is_init: bool,
390 ) -> Option<Size> {
391 // For the following examples, assume this function was called with:
392 // bits = 0b00111011
393 // start_bit = 3
394 // is_init = false
395 // Note that, for the examples in this function, the most significant bit is written first,
396 // which is backwards compared to the comments in `find_bit`/`find_bit_fast`.
397
398 // Invert bits so we're always looking for the first set bit.
399 // ! 0b00111011
400 // bits = 0b11000100
401 let bits = if is_init { bits } else { !bits };
402 // Mask off unused start bits.
403 // 0b11000100
404 // & 0b11111000
405 // bits = 0b11000000
406 let bits = bits & (!0 << start_bit);
407 // Find set bit, if any.
408 // bit = trailing_zeros(0b11000000)
409 // bit = 6
410 if bits == 0 {
411 None
412 } else {
413 let bit = bits.trailing_zeros();
414 Some(InitMaskMaterialized::size_from_bit_index(block, bit))
415 }
416 }
417
418 if start >= end {
419 return None;
420 }
421
422 // Convert `start` and `end` to block indexes and bit indexes within each block.
423 // We must convert `end` to an inclusive bound to handle block boundaries correctly.
424 //
425 // For example:
426 //
427 // (a) 00000000|00000000 (b) 00000000|
428 // ^~~~~~~~~~~^ ^~~~~~~~~^
429 // start end start end
430 //
431 // In both cases, the block index of `end` is 1.
432 // But we do want to search block 1 in (a), and we don't in (b).
433 //
434 // We subtract 1 from both end positions to make them inclusive:
435 //
436 // (a) 00000000|00000000 (b) 00000000|
437 // ^~~~~~~~~~^ ^~~~~~~^
438 // start end_inclusive start end_inclusive
439 //
440 // For (a), the block index of `end_inclusive` is 1, and for (b), it's 0.
441 // This provides the desired behavior of searching blocks 0 and 1 for (a),
442 // and searching only block 0 for (b).
443 // There is no concern of overflows since we checked for `start >= end` above.
444 let (start_block, start_bit) = InitMaskMaterialized::bit_index(start);
445 let end_inclusive = Size::from_bytes(end.bytes() - 1);
446 let (end_block_inclusive, _) = InitMaskMaterialized::bit_index(end_inclusive);
447
448 // Handle first block: need to skip `start_bit` bits.
449 //
450 // We need to handle the first block separately,
451 // because there may be bits earlier in the block that should be ignored,
452 // such as the bit marked (1) in this example:
453 //
454 // (1)
455 // -|------
456 // (c) 01000000|00000000|00000001
457 // ^~~~~~~~~~~~~~~~~~^
458 // start end
459 if let Some(i) =
460 search_block(init_mask.blocks[start_block], start_block, start_bit, is_init)
461 {
462 // If the range is less than a block, we may find a matching bit after `end`.
463 //
464 // For example, we shouldn't successfully find bit (2), because it's after `end`:
465 //
466 // (2)
467 // -------|
468 // (d) 00000001|00000000|00000001
469 // ^~~~~^
470 // start end
471 //
472 // An alternative would be to mask off end bits in the same way as we do for start bits,
473 // but performing this check afterwards is faster and simpler to implement.
474 if i < end {
475 return Some(i);
476 } else {
477 return None;
478 }
479 }
480
481 // Handle remaining blocks.
482 //
483 // We can skip over an entire block at once if it's all 0s (resp. 1s).
484 // The block marked (3) in this example is the first block that will be handled by this loop,
485 // and it will be skipped for that reason:
486 //
487 // (3)
488 // --------
489 // (e) 01000000|00000000|00000001
490 // ^~~~~~~~~~~~~~~~~~^
491 // start end
492 if start_block < end_block_inclusive {
493 // This loop is written in a specific way for performance.
494 // Notably: `..end_block_inclusive + 1` is used for an inclusive range instead of `..=end_block_inclusive`,
495 // and `.zip(start_block + 1..)` is used to track the index instead of `.enumerate().skip().take()`,
496 // because both alternatives result in significantly worse codegen.
497 // `end_block_inclusive + 1` is guaranteed not to wrap, because `end_block_inclusive <= end / BLOCK_SIZE`,
498 // and `BLOCK_SIZE` (the number of bits per block) will always be at least 8 (1 byte).
499 for (&bits, block) in init_mask.blocks[start_block + 1..end_block_inclusive + 1]
500 .iter()
501 .zip(start_block + 1..)
502 {
503 if let Some(i) = search_block(bits, block, 0, is_init) {
504 // If this is the last block, we may find a matching bit after `end`.
505 //
506 // For example, we shouldn't successfully find bit (4), because it's after `end`:
507 //
508 // (4)
509 // -------|
510 // (f) 00000001|00000000|00000001
511 // ^~~~~~~~~~~~~~~~~~^
512 // start end
513 //
514 // As above with example (d), we could handle the end block separately and mask off end bits,
515 // but unconditionally searching an entire block at once and performing this check afterwards
516 // is faster and much simpler to implement.
517 if i < end {
518 return Some(i);
519 } else {
520 return None;
521 }
522 }
523 }
524 }
525
526 None
527 }
528
529 #[cfg_attr(not(debug_assertions), allow(dead_code))]
530 fn find_bit_slow(
531 init_mask: &InitMaskMaterialized,
532 start: Size,
533 end: Size,
534 is_init: bool,
535 ) -> Option<Size> {
536 (start..end).find(|&i| init_mask.get(i) == is_init)
537 }
538
539 let result = find_bit_fast(self, start, end, is_init);
540
541 debug_assert_eq!(
542 result,
543 find_bit_slow(self, start, end, is_init),
544 "optimized implementation of find_bit is wrong for start={start:?} end={end:?} is_init={is_init} init_mask={self:#?}"
545 );
546
547 result
548 }
549}
550
551/// A contiguous chunk of initialized or uninitialized memory.
552pub enum InitChunk {
553 Init(Range<Size>),
554 Uninit(Range<Size>),
555}
556
557impl InitChunk {
558 #[inline]
559 pub fn is_init(&self) -> bool {
560 match self {
561 Self::Init(_) => true,
562 Self::Uninit(_) => false,
563 }
564 }
565
566 #[inline]
567 pub fn range(&self) -> Range<Size> {
568 match self {
569 Self::Init(r) => r.clone(),
570 Self::Uninit(r) => r.clone(),
571 }
572 }
573}
574
575impl InitMask {
576 /// Returns an iterator, yielding a range of byte indexes for each contiguous region
577 /// of initialized or uninitialized bytes inside the range `start..end` (end-exclusive).
578 ///
579 /// The iterator guarantees the following:
580 /// - Chunks are nonempty.
581 /// - Chunks are adjacent (each range's start is equal to the previous range's end).
582 /// - Chunks span exactly `start..end` (the first starts at `start`, the last ends at `end`).
583 /// - Chunks alternate between [`InitChunk::Init`] and [`InitChunk::Uninit`].
584 #[inline]
585 pub fn range_as_init_chunks(&self, range: AllocRange) -> InitChunkIter<'_> {
586 let start = range.start;
587 let end = range.end();
588 assert!(end <= self.len);
589
590 let is_init = if start < end {
591 self.get(start)
592 } else {
593 // `start..end` is empty: there are no chunks, so use some arbitrary value
594 false
595 };
596
597 InitChunkIter { init_mask: self, is_init, start, end }
598 }
599}
600
601/// Yields [`InitChunk`]s. See [`InitMask::range_as_init_chunks`].
602#[derive(Clone)]
603pub struct InitChunkIter<'a> {
604 init_mask: &'a InitMask,
605 /// Whether the next chunk we will return is initialized.
606 /// If there are no more chunks, contains some arbitrary value.
607 is_init: bool,
608 /// The current byte index into `init_mask`.
609 start: Size,
610 /// The end byte index into `init_mask`.
611 end: Size,
612}
613
614impl<'a> Iterator for InitChunkIter<'a> {
615 type Item = InitChunk;
616
617 #[inline]
618 fn next(&mut self) -> Option<Self::Item> {
619 if self.start >= self.end {
620 return None;
621 }
622
623 let end_of_chunk = match self.init_mask.blocks {
624 InitMaskBlocks::Lazy { .. } => {
625 // If we're iterating over the chunks of lazy blocks, we just emit a single
626 // full-size chunk.
627 self.end
628 }
629 InitMaskBlocks::Materialized(ref blocks) => {
630 let end_of_chunk =
631 blocks.find_bit(self.start, self.end, !self.is_init).unwrap_or(self.end);
632 end_of_chunk
633 }
634 };
635 let range = self.start..end_of_chunk;
636 let ret =
637 Some(if self.is_init { InitChunk::Init(range) } else { InitChunk::Uninit(range) });
638
639 self.is_init = !self.is_init;
640 self.start = end_of_chunk;
641
642 ret
643 }
644}
645
646/// Run-length encoding of the uninit mask.
647/// Used to copy parts of a mask multiple times to another allocation.
648pub struct InitCopy {
649 /// Whether the first range is initialized.
650 initial: bool,
651 /// The lengths of ranges that are run-length encoded.
652 /// The initialization state of the ranges alternate starting with `initial`.
653 ranges: smallvec::SmallVec<[u64; 1]>,
654}
655
656impl InitCopy {
657 pub fn no_bytes_init(&self) -> bool {
658 // The `ranges` are run-length encoded and of alternating initialization state.
659 // So if `ranges.len() > 1` then the second block is an initialized range.
660 !self.initial && self.ranges.len() == 1
661 }
662}
663
664/// Transferring the initialization mask to other allocations.
665impl InitMask {
666 /// Creates a run-length encoding of the initialization mask; panics if range is empty.
667 ///
668 /// This is essentially a more space-efficient version of
669 /// `InitMask::range_as_init_chunks(...).collect::<Vec<_>>()`.
670 pub fn prepare_copy(&self, range: AllocRange) -> InitCopy {
671 // Since we are copying `size` bytes from `src` to `dest + i * size` (`for i in 0..repeat`),
672 // a naive initialization mask copying algorithm would repeatedly have to read the initialization mask from
673 // the source and write it to the destination. Even if we optimized the memory accesses,
674 // we'd be doing all of this `repeat` times.
675 // Therefore we precompute a compressed version of the initialization mask of the source value and
676 // then write it back `repeat` times without computing any more information from the source.
677
678 // A precomputed cache for ranges of initialized / uninitialized bits
679 // 0000010010001110 will become
680 // `[5, 1, 2, 1, 3, 3, 1]`,
681 // where each element toggles the state.
682
683 let mut ranges = smallvec::SmallVec::<[u64; 1]>::new();
684
685 let mut chunks = self.range_as_init_chunks(range).peekable();
686
687 let initial = chunks.peek().expect("range should be nonempty").is_init();
688
689 // Here we rely on `range_as_init_chunks` to yield alternating init/uninit chunks.
690 for chunk in chunks {
691 let len = chunk.range().end.bytes() - chunk.range().start.bytes();
692 ranges.push(len);
693 }
694
695 InitCopy { ranges, initial }
696 }
697
698 /// Applies multiple instances of the run-length encoding to the initialization mask.
699 pub fn apply_copy(&mut self, defined: InitCopy, range: AllocRange, repeat: u64) {
700 // An optimization where we can just overwrite an entire range of initialization bits if
701 // they are going to be uniformly `1` or `0`. If this happens to be a full-range overwrite,
702 // we won't need materialized blocks either.
703 if defined.ranges.len() <= 1 {
704 let start = range.start;
705 let end = range.start + range.size * repeat; // `Size` operations
706 self.set_range(AllocRange::from(start..end), defined.initial);
707 return;
708 }
709
710 // We're about to do one or more partial writes, so we ensure the blocks are materialized.
711 let blocks = self.materialize_blocks();
712
713 for mut j in 0..repeat {
714 j *= range.size.bytes();
715 j += range.start.bytes();
716 let mut cur = defined.initial;
717 for range in &defined.ranges {
718 let old_j = j;
719 j += range;
720 blocks.set_range_inbounds(Size::from_bytes(old_j), Size::from_bytes(j), cur);
721 cur = !cur;
722 }
723 }
724 }
725}