rustc_type_ir/outlives.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
//! The outlives relation `T: 'a` or `'a: 'b`. This code frequently
//! refers to rules defined in RFC 1214 (`OutlivesFooBar`), so see that
//! RFC for reference.
use derive_where::derive_where;
use smallvec::{SmallVec, smallvec};
use crate::data_structures::SsoHashSet;
use crate::inherent::*;
use crate::visit::{TypeSuperVisitable, TypeVisitable, TypeVisitableExt as _, TypeVisitor};
use crate::{self as ty, Interner};
#[derive_where(Debug; I: Interner)]
pub enum Component<I: Interner> {
Region(I::Region),
Param(I::ParamTy),
Placeholder(I::PlaceholderTy),
UnresolvedInferenceVariable(ty::InferTy),
// Projections like `T::Foo` are tricky because a constraint like
// `T::Foo: 'a` can be satisfied in so many ways. There may be a
// where-clause that says `T::Foo: 'a`, or the defining trait may
// include a bound like `type Foo: 'static`, or -- in the most
// conservative way -- we can prove that `T: 'a` (more generally,
// that all components in the projection outlive `'a`). This code
// is not in a position to judge which is the best technique, so
// we just product the projection as a component and leave it to
// the consumer to decide (but see `EscapingProjection` below).
Alias(ty::AliasTy<I>),
// In the case where a projection has escaping regions -- meaning
// regions bound within the type itself -- we always use
// the most conservative rule, which requires that all components
// outlive the bound. So for example if we had a type like this:
//
// for<'a> Trait1< <T as Trait2<'a,'b>>::Foo >
// ~~~~~~~~~~~~~~~~~~~~~~~~~
//
// then the inner projection (underlined) has an escaping region
// `'a`. We consider that outer trait `'c` to meet a bound if `'b`
// outlives `'b: 'c`, and we don't consider whether the trait
// declares that `Foo: 'static` etc. Therefore, we just return the
// free components of such a projection (in this case, `'b`).
//
// However, in the future, we may want to get smarter, and
// actually return a "higher-ranked projection" here. Therefore,
// we mark that these components are part of an escaping
// projection, so that implied bounds code can avoid relying on
// them. This gives us room to improve the regionck reasoning in
// the future without breaking backwards compat.
EscapingAlias(Vec<Component<I>>),
}
/// Push onto `out` all the things that must outlive `'a` for the condition
/// `ty0: 'a` to hold. Note that `ty0` must be a **fully resolved type**.
pub fn push_outlives_components<I: Interner>(
cx: I,
ty: I::Ty,
out: &mut SmallVec<[Component<I>; 4]>,
) {
ty.visit_with(&mut OutlivesCollector { cx, out, visited: Default::default() });
}
struct OutlivesCollector<'a, I: Interner> {
cx: I,
out: &'a mut SmallVec<[Component<I>; 4]>,
visited: SsoHashSet<I::Ty>,
}
impl<I: Interner> TypeVisitor<I> for OutlivesCollector<'_, I> {
#[cfg(not(feature = "nightly"))]
type Result = ();
fn visit_ty(&mut self, ty: I::Ty) -> Self::Result {
if !self.visited.insert(ty) {
return;
}
// Descend through the types, looking for the various "base"
// components and collecting them into `out`. This is not written
// with `collect()` because of the need to sometimes skip subtrees
// in the `subtys` iterator (e.g., when encountering a
// projection).
match ty.kind() {
ty::FnDef(_, args) => {
// HACK(eddyb) ignore lifetimes found shallowly in `args`.
// This is inconsistent with `ty::Adt` (including all args)
// and with `ty::Closure` (ignoring all args other than
// upvars, of which a `ty::FnDef` doesn't have any), but
// consistent with previous (accidental) behavior.
// See https://github.com/rust-lang/rust/issues/70917
// for further background and discussion.
for child in args.iter() {
match child.kind() {
ty::GenericArgKind::Lifetime(_) => {}
ty::GenericArgKind::Type(_) | ty::GenericArgKind::Const(_) => {
child.visit_with(self);
}
}
}
}
ty::Closure(_, args) => {
args.as_closure().tupled_upvars_ty().visit_with(self);
}
ty::CoroutineClosure(_, args) => {
args.as_coroutine_closure().tupled_upvars_ty().visit_with(self);
}
ty::Coroutine(_, args) => {
args.as_coroutine().tupled_upvars_ty().visit_with(self);
// Coroutines may not outlive a region unless the resume
// ty outlives a region. This is because the resume ty may
// store data that lives shorter than this outlives region
// across yield points, which may subsequently be accessed
// after the coroutine is resumed again.
//
// Conceptually, you may think of the resume arg as an upvar
// of `&mut Option<ResumeArgTy>`, since it is kinda like
// storage shared between the callee of the coroutine and the
// coroutine body.
args.as_coroutine().resume_ty().visit_with(self);
// We ignore regions in the coroutine interior as we don't
// want these to affect region inference
}
// All regions are bound inside a witness, and we don't emit
// higher-ranked outlives components currently.
ty::CoroutineWitness(..) => {}
// OutlivesTypeParameterEnv -- the actual checking that `X:'a`
// is implied by the environment is done in regionck.
ty::Param(p) => {
self.out.push(Component::Param(p));
}
ty::Placeholder(p) => {
self.out.push(Component::Placeholder(p));
}
// For projections, we prefer to generate an obligation like
// `<P0 as Trait<P1...Pn>>::Foo: 'a`, because this gives the
// regionck more ways to prove that it holds. However,
// regionck is not (at least currently) prepared to deal with
// higher-ranked regions that may appear in the
// trait-ref. Therefore, if we see any higher-ranked regions,
// we simply fallback to the most restrictive rule, which
// requires that `Pi: 'a` for all `i`.
ty::Alias(_, alias_ty) => {
if !alias_ty.has_escaping_bound_vars() {
// best case: no escaping regions, so push the
// projection and skip the subtree (thus generating no
// constraints for Pi). This defers the choice between
// the rules OutlivesProjectionEnv,
// OutlivesProjectionTraitDef, and
// OutlivesProjectionComponents to regionck.
self.out.push(Component::Alias(alias_ty));
} else {
// fallback case: hard code
// OutlivesProjectionComponents. Continue walking
// through and constrain Pi.
let mut subcomponents = smallvec![];
compute_alias_components_recursive(self.cx, ty, &mut subcomponents);
self.out.push(Component::EscapingAlias(subcomponents.into_iter().collect()));
}
}
// We assume that inference variables are fully resolved.
// So, if we encounter an inference variable, just record
// the unresolved variable as a component.
ty::Infer(infer_ty) => {
self.out.push(Component::UnresolvedInferenceVariable(infer_ty));
}
// Most types do not introduce any region binders, nor
// involve any other subtle cases, and so the WF relation
// simply constraints any regions referenced directly by
// the type and then visits the types that are lexically
// contained within.
ty::Bool
| ty::Char
| ty::Int(_)
| ty::Uint(_)
| ty::Float(_)
| ty::Str
| ty::Never
| ty::Error(_) => {
// Trivial
}
ty::Bound(_, _) => {
// FIXME: Bound vars matter here!
}
ty::Adt(_, _)
| ty::Foreign(_)
| ty::Array(_, _)
| ty::Pat(_, _)
| ty::Slice(_)
| ty::RawPtr(_, _)
| ty::Ref(_, _, _)
| ty::FnPtr(..)
| ty::Dynamic(_, _, _)
| ty::Tuple(_) => {
ty.super_visit_with(self);
}
}
}
fn visit_region(&mut self, lt: I::Region) -> Self::Result {
if !lt.is_bound() {
self.out.push(Component::Region(lt));
}
}
}
/// Collect [Component]s for *all* the args of `parent`.
///
/// This should not be used to get the components of `parent` itself.
/// Use [push_outlives_components] instead.
pub fn compute_alias_components_recursive<I: Interner>(
cx: I,
alias_ty: I::Ty,
out: &mut SmallVec<[Component<I>; 4]>,
) {
let ty::Alias(kind, alias_ty) = alias_ty.kind() else {
unreachable!("can only call `compute_alias_components_recursive` on an alias type")
};
let opt_variances =
if kind == ty::Opaque { Some(cx.variances_of(alias_ty.def_id)) } else { None };
let mut visitor = OutlivesCollector { cx, out, visited: Default::default() };
for (index, child) in alias_ty.args.iter().enumerate() {
if opt_variances.and_then(|variances| variances.get(index)) == Some(ty::Bivariant) {
continue;
}
child.visit_with(&mut visitor);
}
}