miri/shims/
foreign_items.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
use std::collections::hash_map::Entry;
use std::io::Write;
use std::iter;
use std::path::Path;

use rustc_apfloat::Float;
use rustc_ast::expand::allocator::alloc_error_handler_name;
use rustc_hir::def::DefKind;
use rustc_hir::def_id::CrateNum;
use rustc_middle::middle::codegen_fn_attrs::CodegenFnAttrFlags;
use rustc_middle::{mir, ty};
use rustc_span::Symbol;
use rustc_target::abi::{Align, AlignFromBytesError, Size};
use rustc_target::spec::abi::Abi;

use self::helpers::{ToHost, ToSoft};
use super::alloc::EvalContextExt as _;
use super::backtrace::EvalContextExt as _;
use crate::*;

/// Type of dynamic symbols (for `dlsym` et al)
#[derive(Debug, Copy, Clone)]
pub struct DynSym(Symbol);

#[allow(clippy::should_implement_trait)]
impl DynSym {
    pub fn from_str(name: &str) -> Self {
        DynSym(Symbol::intern(name))
    }
}

impl<'tcx> EvalContextExt<'tcx> for crate::MiriInterpCx<'tcx> {}
pub trait EvalContextExt<'tcx>: crate::MiriInterpCxExt<'tcx> {
    /// Emulates calling a foreign item, failing if the item is not supported.
    /// This function will handle `goto_block` if needed.
    /// Returns Ok(None) if the foreign item was completely handled
    /// by this function.
    /// Returns Ok(Some(body)) if processing the foreign item
    /// is delegated to another function.
    fn emulate_foreign_item(
        &mut self,
        link_name: Symbol,
        abi: Abi,
        args: &[OpTy<'tcx>],
        dest: &MPlaceTy<'tcx>,
        ret: Option<mir::BasicBlock>,
        unwind: mir::UnwindAction,
    ) -> InterpResult<'tcx, Option<(&'tcx mir::Body<'tcx>, ty::Instance<'tcx>)>> {
        let this = self.eval_context_mut();

        // Some shims forward to other MIR bodies.
        match link_name.as_str() {
            "__rust_alloc_error_handler" => {
                // Forward to the right symbol that implements this function.
                let Some(handler_kind) = this.tcx.alloc_error_handler_kind(()) else {
                    // in real code, this symbol does not exist without an allocator
                    throw_unsup_format!(
                        "`__rust_alloc_error_handler` cannot be called when no alloc error handler is set"
                    );
                };
                let name = alloc_error_handler_name(handler_kind);
                let handler = this
                    .lookup_exported_symbol(Symbol::intern(name))?
                    .expect("missing alloc error handler symbol");
                return interp_ok(Some(handler));
            }
            _ => {}
        }

        // The rest either implements the logic, or falls back to `lookup_exported_symbol`.
        match this.emulate_foreign_item_inner(link_name, abi, args, dest)? {
            EmulateItemResult::NeedsReturn => {
                trace!("{:?}", this.dump_place(&dest.clone().into()));
                this.return_to_block(ret)?;
            }
            EmulateItemResult::NeedsUnwind => {
                // Jump to the unwind block to begin unwinding.
                this.unwind_to_block(unwind)?;
            }
            EmulateItemResult::AlreadyJumped => (),
            EmulateItemResult::NotSupported => {
                if let Some(body) = this.lookup_exported_symbol(link_name)? {
                    return interp_ok(Some(body));
                }

                this.handle_unsupported_foreign_item(format!(
                    "can't call foreign function `{link_name}` on OS `{os}`",
                    os = this.tcx.sess.target.os,
                ))?;
                return interp_ok(None);
            }
        }

        interp_ok(None)
    }

    fn is_dyn_sym(&self, name: &str) -> bool {
        let this = self.eval_context_ref();
        match this.tcx.sess.target.os.as_ref() {
            os if this.target_os_is_unix() => shims::unix::foreign_items::is_dyn_sym(name, os),
            "wasi" => shims::wasi::foreign_items::is_dyn_sym(name),
            "windows" => shims::windows::foreign_items::is_dyn_sym(name),
            _ => false,
        }
    }

    /// Emulates a call to a `DynSym`.
    fn emulate_dyn_sym(
        &mut self,
        sym: DynSym,
        abi: Abi,
        args: &[OpTy<'tcx>],
        dest: &MPlaceTy<'tcx>,
        ret: Option<mir::BasicBlock>,
        unwind: mir::UnwindAction,
    ) -> InterpResult<'tcx> {
        let res = self.emulate_foreign_item(sym.0, abi, args, dest, ret, unwind)?;
        assert!(res.is_none(), "DynSyms that delegate are not supported");
        interp_ok(())
    }

    /// Lookup the body of a function that has `link_name` as the symbol name.
    fn lookup_exported_symbol(
        &mut self,
        link_name: Symbol,
    ) -> InterpResult<'tcx, Option<(&'tcx mir::Body<'tcx>, ty::Instance<'tcx>)>> {
        let this = self.eval_context_mut();
        let tcx = this.tcx.tcx;

        // If the result was cached, just return it.
        // (Cannot use `or_insert` since the code below might have to throw an error.)
        let entry = this.machine.exported_symbols_cache.entry(link_name);
        let instance = *match entry {
            Entry::Occupied(e) => e.into_mut(),
            Entry::Vacant(e) => {
                // Find it if it was not cached.
                let mut instance_and_crate: Option<(ty::Instance<'_>, CrateNum)> = None;
                helpers::iter_exported_symbols(tcx, |cnum, def_id| {
                    let attrs = tcx.codegen_fn_attrs(def_id);
                    let symbol_name = if let Some(export_name) = attrs.export_name {
                        export_name
                    } else if attrs.flags.contains(CodegenFnAttrFlags::NO_MANGLE) {
                        tcx.item_name(def_id)
                    } else {
                        // Skip over items without an explicitly defined symbol name.
                        return interp_ok(());
                    };
                    if symbol_name == link_name {
                        if let Some((original_instance, original_cnum)) = instance_and_crate {
                            // Make sure we are consistent wrt what is 'first' and 'second'.
                            let original_span = tcx.def_span(original_instance.def_id()).data();
                            let span = tcx.def_span(def_id).data();
                            if original_span < span {
                                throw_machine_stop!(TerminationInfo::MultipleSymbolDefinitions {
                                    link_name,
                                    first: original_span,
                                    first_crate: tcx.crate_name(original_cnum),
                                    second: span,
                                    second_crate: tcx.crate_name(cnum),
                                });
                            } else {
                                throw_machine_stop!(TerminationInfo::MultipleSymbolDefinitions {
                                    link_name,
                                    first: span,
                                    first_crate: tcx.crate_name(cnum),
                                    second: original_span,
                                    second_crate: tcx.crate_name(original_cnum),
                                });
                            }
                        }
                        if !matches!(tcx.def_kind(def_id), DefKind::Fn | DefKind::AssocFn) {
                            throw_ub_format!(
                                "attempt to call an exported symbol that is not defined as a function"
                            );
                        }
                        instance_and_crate = Some((ty::Instance::mono(tcx, def_id), cnum));
                    }
                    interp_ok(())
                })?;

                e.insert(instance_and_crate.map(|ic| ic.0))
            }
        };
        match instance {
            None => interp_ok(None), // no symbol with this name
            Some(instance) => interp_ok(Some((this.load_mir(instance.def, None)?, instance))),
        }
    }
}

impl<'tcx> EvalContextExtPriv<'tcx> for crate::MiriInterpCx<'tcx> {}
trait EvalContextExtPriv<'tcx>: crate::MiriInterpCxExt<'tcx> {
    /// Check some basic requirements for this allocation request:
    /// non-zero size, power-of-two alignment.
    fn check_rustc_alloc_request(&self, size: u64, align: u64) -> InterpResult<'tcx> {
        let this = self.eval_context_ref();
        if size == 0 {
            throw_ub_format!("creating allocation with size 0");
        }
        if size > this.max_size_of_val().bytes() {
            throw_ub_format!("creating an allocation larger than half the address space");
        }
        if let Err(e) = Align::from_bytes(align) {
            match e {
                AlignFromBytesError::TooLarge(_) => {
                    throw_unsup_format!(
                        "creating allocation with alignment {align} exceeding rustc's maximum \
                         supported value"
                    );
                }
                AlignFromBytesError::NotPowerOfTwo(_) => {
                    throw_ub_format!("creating allocation with non-power-of-two alignment {align}");
                }
            }
        }

        interp_ok(())
    }

    fn emulate_foreign_item_inner(
        &mut self,
        link_name: Symbol,
        abi: Abi,
        args: &[OpTy<'tcx>],
        dest: &MPlaceTy<'tcx>,
    ) -> InterpResult<'tcx, EmulateItemResult> {
        let this = self.eval_context_mut();

        // First deal with any external C functions in linked .so file.
        #[cfg(unix)]
        if this.machine.native_lib.as_ref().is_some() {
            use crate::shims::native_lib::EvalContextExt as _;
            // An Ok(false) here means that the function being called was not exported
            // by the specified `.so` file; we should continue and check if it corresponds to
            // a provided shim.
            if this.call_native_fn(link_name, dest, args)? {
                return interp_ok(EmulateItemResult::NeedsReturn);
            }
        }

        // When adding a new shim, you should follow the following pattern:
        // ```
        // "shim_name" => {
        //     let [arg1, arg2, arg3] = this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
        //     let result = this.shim_name(arg1, arg2, arg3)?;
        //     this.write_scalar(result, dest)?;
        // }
        // ```
        // and then define `shim_name` as a helper function in an extension trait in a suitable file
        // (see e.g. `unix/fs.rs`):
        // ```
        // fn shim_name(
        //     &mut self,
        //     arg1: &OpTy<'tcx>,
        //     arg2: &OpTy<'tcx>,
        //     arg3: &OpTy<'tcx>,
        //     arg4: &OpTy<'tcx>)
        // -> InterpResult<'tcx, Scalar> {
        //     let this = self.eval_context_mut();
        //
        //     // First thing: load all the arguments. Details depend on the shim.
        //     let arg1 = this.read_scalar(arg1)?.to_u32()?;
        //     let arg2 = this.read_pointer(arg2)?; // when you need to work with the pointer directly
        //     let arg3 = this.deref_pointer_as(arg3, this.libc_ty_layout("some_libc_struct"))?; // when you want to load/store
        //         // through the pointer and supply the type information yourself
        //     let arg4 = this.deref_pointer(arg4)?; // when you want to load/store through the pointer and trust
        //         // the user-given type (which you shouldn't usually do)
        //
        //     // ...
        //
        //     interp_ok(Scalar::from_u32(42))
        // }
        // ```
        // You might find existing shims not following this pattern, most
        // likely because they predate it or because for some reason they cannot be made to fit.

        // Here we dispatch all the shims for foreign functions. If you have a platform specific
        // shim, add it to the corresponding submodule.
        match link_name.as_str() {
            // Miri-specific extern functions
            "miri_start_unwind" => {
                let [payload] = this.check_shim(abi, Abi::Rust, link_name, args)?;
                this.handle_miri_start_unwind(payload)?;
                return interp_ok(EmulateItemResult::NeedsUnwind);
            }
            "miri_run_provenance_gc" => {
                let [] = this.check_shim(abi, Abi::Rust, link_name, args)?;
                this.run_provenance_gc();
            }
            "miri_get_alloc_id" => {
                let [ptr] = this.check_shim(abi, Abi::Rust, link_name, args)?;
                let ptr = this.read_pointer(ptr)?;
                let (alloc_id, _, _) = this.ptr_get_alloc_id(ptr, 0).map_err(|_e| {
                    err_machine_stop!(TerminationInfo::Abort(format!(
                        "pointer passed to `miri_get_alloc_id` must not be dangling, got {ptr:?}"
                    )))
                    .into()
                })?;
                this.write_scalar(Scalar::from_u64(alloc_id.0.get()), dest)?;
            }
            "miri_print_borrow_state" => {
                let [id, show_unnamed] = this.check_shim(abi, Abi::Rust, link_name, args)?;
                let id = this.read_scalar(id)?.to_u64()?;
                let show_unnamed = this.read_scalar(show_unnamed)?.to_bool()?;
                if let Some(id) = std::num::NonZero::new(id).map(AllocId)
                    && this.get_alloc_info(id).2 == AllocKind::LiveData
                {
                    this.print_borrow_state(id, show_unnamed)?;
                } else {
                    eprintln!("{id} is not the ID of a live data allocation");
                }
            }
            "miri_pointer_name" => {
                // This associates a name to a tag. Very useful for debugging, and also makes
                // tests more strict.
                let [ptr, nth_parent, name] = this.check_shim(abi, Abi::Rust, link_name, args)?;
                let ptr = this.read_pointer(ptr)?;
                let nth_parent = this.read_scalar(nth_parent)?.to_u8()?;
                let name = this.read_immediate(name)?;

                let name = this.read_byte_slice(&name)?;
                // We must make `name` owned because we need to
                // end the shared borrow from `read_byte_slice` before we can
                // start the mutable borrow for `give_pointer_debug_name`.
                let name = String::from_utf8_lossy(name).into_owned();
                this.give_pointer_debug_name(ptr, nth_parent, &name)?;
            }
            "miri_static_root" => {
                let [ptr] = this.check_shim(abi, Abi::Rust, link_name, args)?;
                let ptr = this.read_pointer(ptr)?;
                let (alloc_id, offset, _) = this.ptr_get_alloc_id(ptr, 0)?;
                if offset != Size::ZERO {
                    throw_unsup_format!(
                        "pointer passed to `miri_static_root` must point to beginning of an allocated block"
                    );
                }
                this.machine.static_roots.push(alloc_id);
            }
            "miri_host_to_target_path" => {
                let [ptr, out, out_size] = this.check_shim(abi, Abi::Rust, link_name, args)?;
                let ptr = this.read_pointer(ptr)?;
                let out = this.read_pointer(out)?;
                let out_size = this.read_scalar(out_size)?.to_target_usize(this)?;

                // The host affects program behavior here, so this requires isolation to be disabled.
                this.check_no_isolation("`miri_host_to_target_path`")?;

                // We read this as a plain OsStr and write it as a path, which will convert it to the target.
                let path = this.read_os_str_from_c_str(ptr)?.to_owned();
                let (success, needed_size) =
                    this.write_path_to_c_str(Path::new(&path), out, out_size)?;
                // Return value: 0 on success, otherwise the size it would have needed.
                this.write_int(if success { 0 } else { needed_size }, dest)?;
            }
            // Obtains the size of a Miri backtrace. See the README for details.
            "miri_backtrace_size" => {
                this.handle_miri_backtrace_size(abi, link_name, args, dest)?;
            }
            // Obtains a Miri backtrace. See the README for details.
            "miri_get_backtrace" => {
                // `check_shim` happens inside `handle_miri_get_backtrace`.
                this.handle_miri_get_backtrace(abi, link_name, args, dest)?;
            }
            // Resolves a Miri backtrace frame. See the README for details.
            "miri_resolve_frame" => {
                // `check_shim` happens inside `handle_miri_resolve_frame`.
                this.handle_miri_resolve_frame(abi, link_name, args, dest)?;
            }
            // Writes the function and file names of a Miri backtrace frame into a user provided buffer. See the README for details.
            "miri_resolve_frame_names" => {
                this.handle_miri_resolve_frame_names(abi, link_name, args)?;
            }
            // Writes some bytes to the interpreter's stdout/stderr. See the
            // README for details.
            "miri_write_to_stdout" | "miri_write_to_stderr" => {
                let [msg] = this.check_shim(abi, Abi::Rust, link_name, args)?;
                let msg = this.read_immediate(msg)?;
                let msg = this.read_byte_slice(&msg)?;
                // Note: we're ignoring errors writing to host stdout/stderr.
                let _ignore = match link_name.as_str() {
                    "miri_write_to_stdout" => std::io::stdout().write_all(msg),
                    "miri_write_to_stderr" => std::io::stderr().write_all(msg),
                    _ => unreachable!(),
                };
            }
            // Promises that a pointer has a given symbolic alignment.
            "miri_promise_symbolic_alignment" => {
                use rustc_target::abi::AlignFromBytesError;

                let [ptr, align] = this.check_shim(abi, Abi::Rust, link_name, args)?;
                let ptr = this.read_pointer(ptr)?;
                let align = this.read_target_usize(align)?;
                if !align.is_power_of_two() {
                    throw_unsup_format!(
                        "`miri_promise_symbolic_alignment`: alignment must be a power of 2, got {align}"
                    );
                }
                let align = Align::from_bytes(align).unwrap_or_else(|err| {
                    match err {
                        AlignFromBytesError::NotPowerOfTwo(_) => unreachable!(),
                        // When the alignment is a power of 2 but too big, clamp it to MAX.
                        AlignFromBytesError::TooLarge(_) => Align::MAX,
                    }
                });
                let (_, addr) = ptr.into_parts(); // we know the offset is absolute
                // Cannot panic since `align` is a power of 2 and hence non-zero.
                if addr.bytes().strict_rem(align.bytes()) != 0 {
                    throw_unsup_format!(
                        "`miri_promise_symbolic_alignment`: pointer is not actually aligned"
                    );
                }
                if let Ok((alloc_id, offset, ..)) = this.ptr_try_get_alloc_id(ptr, 0) {
                    let (_size, alloc_align, _kind) = this.get_alloc_info(alloc_id);
                    // If the newly promised alignment is bigger than the native alignment of this
                    // allocation, and bigger than the previously promised alignment, then set it.
                    if align > alloc_align
                        && this
                            .machine
                            .symbolic_alignment
                            .get_mut()
                            .get(&alloc_id)
                            .is_none_or(|&(_, old_align)| align > old_align)
                    {
                        this.machine.symbolic_alignment.get_mut().insert(alloc_id, (offset, align));
                    }
                }
            }

            // Aborting the process.
            "exit" => {
                let [code] = this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
                let code = this.read_scalar(code)?.to_i32()?;
                throw_machine_stop!(TerminationInfo::Exit { code: code.into(), leak_check: false });
            }
            "abort" => {
                let [] = this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
                throw_machine_stop!(TerminationInfo::Abort(
                    "the program aborted execution".to_owned()
                ))
            }

            // Standard C allocation
            "malloc" => {
                let [size] = this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
                let size = this.read_target_usize(size)?;
                if size <= this.max_size_of_val().bytes() {
                    let res = this.malloc(size, /*zero_init:*/ false)?;
                    this.write_pointer(res, dest)?;
                } else {
                    // If this does not fit in an isize, return null and, on Unix, set errno.
                    if this.target_os_is_unix() {
                        let einval = this.eval_libc("ENOMEM");
                        this.set_last_error(einval)?;
                    }
                    this.write_null(dest)?;
                }
            }
            "calloc" => {
                let [items, elem_size] =
                    this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
                let items = this.read_target_usize(items)?;
                let elem_size = this.read_target_usize(elem_size)?;
                if let Some(size) = this.compute_size_in_bytes(Size::from_bytes(elem_size), items) {
                    let res = this.malloc(size.bytes(), /*zero_init:*/ true)?;
                    this.write_pointer(res, dest)?;
                } else {
                    // On size overflow, return null and, on Unix, set errno.
                    if this.target_os_is_unix() {
                        let einval = this.eval_libc("ENOMEM");
                        this.set_last_error(einval)?;
                    }
                    this.write_null(dest)?;
                }
            }
            "free" => {
                let [ptr] = this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
                let ptr = this.read_pointer(ptr)?;
                this.free(ptr)?;
            }
            "realloc" => {
                let [old_ptr, new_size] =
                    this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
                let old_ptr = this.read_pointer(old_ptr)?;
                let new_size = this.read_target_usize(new_size)?;
                if new_size <= this.max_size_of_val().bytes() {
                    let res = this.realloc(old_ptr, new_size)?;
                    this.write_pointer(res, dest)?;
                } else {
                    // If this does not fit in an isize, return null and, on Unix, set errno.
                    if this.target_os_is_unix() {
                        let einval = this.eval_libc("ENOMEM");
                        this.set_last_error(einval)?;
                    }
                    this.write_null(dest)?;
                }
            }

            // Rust allocation
            "__rust_alloc" | "miri_alloc" => {
                let default = |this: &mut MiriInterpCx<'tcx>| {
                    // Only call `check_shim` when `#[global_allocator]` isn't used. When that
                    // macro is used, we act like no shim exists, so that the exported function can run.
                    let [size, align] = this.check_shim(abi, Abi::Rust, link_name, args)?;
                    let size = this.read_target_usize(size)?;
                    let align = this.read_target_usize(align)?;

                    this.check_rustc_alloc_request(size, align)?;

                    let memory_kind = match link_name.as_str() {
                        "__rust_alloc" => MiriMemoryKind::Rust,
                        "miri_alloc" => MiriMemoryKind::Miri,
                        _ => unreachable!(),
                    };

                    let ptr = this.allocate_ptr(
                        Size::from_bytes(size),
                        Align::from_bytes(align).unwrap(),
                        memory_kind.into(),
                    )?;

                    this.write_pointer(ptr, dest)
                };

                match link_name.as_str() {
                    "__rust_alloc" => return this.emulate_allocator(default),
                    "miri_alloc" => {
                        default(this)?;
                        return interp_ok(EmulateItemResult::NeedsReturn);
                    }
                    _ => unreachable!(),
                }
            }
            "__rust_alloc_zeroed" => {
                return this.emulate_allocator(|this| {
                    // See the comment for `__rust_alloc` why `check_shim` is only called in the
                    // default case.
                    let [size, align] = this.check_shim(abi, Abi::Rust, link_name, args)?;
                    let size = this.read_target_usize(size)?;
                    let align = this.read_target_usize(align)?;

                    this.check_rustc_alloc_request(size, align)?;

                    let ptr = this.allocate_ptr(
                        Size::from_bytes(size),
                        Align::from_bytes(align).unwrap(),
                        MiriMemoryKind::Rust.into(),
                    )?;

                    // We just allocated this, the access is definitely in-bounds.
                    this.write_bytes_ptr(
                        ptr.into(),
                        iter::repeat(0u8).take(usize::try_from(size).unwrap()),
                    )
                    .unwrap();
                    this.write_pointer(ptr, dest)
                });
            }
            "__rust_dealloc" | "miri_dealloc" => {
                let default = |this: &mut MiriInterpCx<'tcx>| {
                    // See the comment for `__rust_alloc` why `check_shim` is only called in the
                    // default case.
                    let [ptr, old_size, align] =
                        this.check_shim(abi, Abi::Rust, link_name, args)?;
                    let ptr = this.read_pointer(ptr)?;
                    let old_size = this.read_target_usize(old_size)?;
                    let align = this.read_target_usize(align)?;

                    let memory_kind = match link_name.as_str() {
                        "__rust_dealloc" => MiriMemoryKind::Rust,
                        "miri_dealloc" => MiriMemoryKind::Miri,
                        _ => unreachable!(),
                    };

                    // No need to check old_size/align; we anyway check that they match the allocation.
                    this.deallocate_ptr(
                        ptr,
                        Some((Size::from_bytes(old_size), Align::from_bytes(align).unwrap())),
                        memory_kind.into(),
                    )
                };

                match link_name.as_str() {
                    "__rust_dealloc" => {
                        return this.emulate_allocator(default);
                    }
                    "miri_dealloc" => {
                        default(this)?;
                        return interp_ok(EmulateItemResult::NeedsReturn);
                    }
                    _ => unreachable!(),
                }
            }
            "__rust_realloc" => {
                return this.emulate_allocator(|this| {
                    // See the comment for `__rust_alloc` why `check_shim` is only called in the
                    // default case.
                    let [ptr, old_size, align, new_size] =
                        this.check_shim(abi, Abi::Rust, link_name, args)?;
                    let ptr = this.read_pointer(ptr)?;
                    let old_size = this.read_target_usize(old_size)?;
                    let align = this.read_target_usize(align)?;
                    let new_size = this.read_target_usize(new_size)?;
                    // No need to check old_size; we anyway check that they match the allocation.

                    this.check_rustc_alloc_request(new_size, align)?;

                    let align = Align::from_bytes(align).unwrap();
                    let new_ptr = this.reallocate_ptr(
                        ptr,
                        Some((Size::from_bytes(old_size), align)),
                        Size::from_bytes(new_size),
                        align,
                        MiriMemoryKind::Rust.into(),
                    )?;
                    this.write_pointer(new_ptr, dest)
                });
            }

            // C memory handling functions
            "memcmp" => {
                let [left, right, n] =
                    this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
                let left = this.read_pointer(left)?;
                let right = this.read_pointer(right)?;
                let n = Size::from_bytes(this.read_target_usize(n)?);

                // C requires that this must always be a valid pointer (C18 §7.1.4).
                this.ptr_get_alloc_id(left, 0)?;
                this.ptr_get_alloc_id(right, 0)?;

                let result = {
                    let left_bytes = this.read_bytes_ptr_strip_provenance(left, n)?;
                    let right_bytes = this.read_bytes_ptr_strip_provenance(right, n)?;

                    use std::cmp::Ordering::*;
                    match left_bytes.cmp(right_bytes) {
                        Less => -1i32,
                        Equal => 0,
                        Greater => 1,
                    }
                };

                this.write_scalar(Scalar::from_i32(result), dest)?;
            }
            "memrchr" => {
                let [ptr, val, num] =
                    this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
                let ptr = this.read_pointer(ptr)?;
                let val = this.read_scalar(val)?.to_i32()?;
                let num = this.read_target_usize(num)?;
                // The docs say val is "interpreted as unsigned char".
                #[allow(clippy::cast_sign_loss, clippy::cast_possible_truncation)]
                let val = val as u8;

                // C requires that this must always be a valid pointer (C18 §7.1.4).
                this.ptr_get_alloc_id(ptr, 0)?;

                if let Some(idx) = this
                    .read_bytes_ptr_strip_provenance(ptr, Size::from_bytes(num))?
                    .iter()
                    .rev()
                    .position(|&c| c == val)
                {
                    let idx = u64::try_from(idx).unwrap();
                    #[allow(clippy::arithmetic_side_effects)] // idx < num, so this never wraps
                    let new_ptr = ptr.wrapping_offset(Size::from_bytes(num - idx - 1), this);
                    this.write_pointer(new_ptr, dest)?;
                } else {
                    this.write_null(dest)?;
                }
            }
            "memchr" => {
                let [ptr, val, num] =
                    this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
                let ptr = this.read_pointer(ptr)?;
                let val = this.read_scalar(val)?.to_i32()?;
                let num = this.read_target_usize(num)?;
                // The docs say val is "interpreted as unsigned char".
                #[allow(clippy::cast_sign_loss, clippy::cast_possible_truncation)]
                let val = val as u8;

                // C requires that this must always be a valid pointer (C18 §7.1.4).
                this.ptr_get_alloc_id(ptr, 0)?;

                let idx = this
                    .read_bytes_ptr_strip_provenance(ptr, Size::from_bytes(num))?
                    .iter()
                    .position(|&c| c == val);
                if let Some(idx) = idx {
                    let new_ptr = ptr.wrapping_offset(Size::from_bytes(idx as u64), this);
                    this.write_pointer(new_ptr, dest)?;
                } else {
                    this.write_null(dest)?;
                }
            }
            "strlen" => {
                let [ptr] = this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
                let ptr = this.read_pointer(ptr)?;
                // This reads at least 1 byte, so we are already enforcing that this is a valid pointer.
                let n = this.read_c_str(ptr)?.len();
                this.write_scalar(
                    Scalar::from_target_usize(u64::try_from(n).unwrap(), this),
                    dest,
                )?;
            }
            "wcslen" => {
                let [ptr] = this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
                let ptr = this.read_pointer(ptr)?;
                // This reads at least 1 byte, so we are already enforcing that this is a valid pointer.
                let n = this.read_wchar_t_str(ptr)?.len();
                this.write_scalar(
                    Scalar::from_target_usize(u64::try_from(n).unwrap(), this),
                    dest,
                )?;
            }
            "memcpy" => {
                let [ptr_dest, ptr_src, n] =
                    this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
                let ptr_dest = this.read_pointer(ptr_dest)?;
                let ptr_src = this.read_pointer(ptr_src)?;
                let n = this.read_target_usize(n)?;

                // C requires that this must always be a valid pointer, even if `n` is zero, so we better check that.
                // (This is more than Rust requires, so `mem_copy` is not sufficient.)
                this.ptr_get_alloc_id(ptr_dest, 0)?;
                this.ptr_get_alloc_id(ptr_src, 0)?;

                this.mem_copy(ptr_src, ptr_dest, Size::from_bytes(n), true)?;
                this.write_pointer(ptr_dest, dest)?;
            }
            "strcpy" => {
                let [ptr_dest, ptr_src] =
                    this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
                let ptr_dest = this.read_pointer(ptr_dest)?;
                let ptr_src = this.read_pointer(ptr_src)?;

                // We use `read_c_str` to determine the amount of data to copy,
                // and then use `mem_copy` for the actual copy. This means
                // pointer provenance is preserved by this implementation of `strcpy`.
                // That is probably overly cautious, but there also is no fundamental
                // reason to have `strcpy` destroy pointer provenance.
                // This reads at least 1 byte, so we are already enforcing that this is a valid pointer.
                let n = this.read_c_str(ptr_src)?.len().strict_add(1);
                this.mem_copy(ptr_src, ptr_dest, Size::from_bytes(n), true)?;
                this.write_pointer(ptr_dest, dest)?;
            }

            // math functions (note that there are also intrinsics for some other functions)
            #[rustfmt::skip]
            | "cbrtf"
            | "coshf"
            | "sinhf"
            | "tanf"
            | "tanhf"
            | "acosf"
            | "asinf"
            | "atanf"
            | "log1pf"
            | "expm1f"
            | "tgammaf"
            => {
                let [f] = this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
                let f = this.read_scalar(f)?.to_f32()?;
                // Using host floats (but it's fine, these operations do not have guaranteed precision).
                let f_host = f.to_host();
                let res = match link_name.as_str() {
                    "cbrtf" => f_host.cbrt(),
                    "coshf" => f_host.cosh(),
                    "sinhf" => f_host.sinh(),
                    "tanf" => f_host.tan(),
                    "tanhf" => f_host.tanh(),
                    "acosf" => f_host.acos(),
                    "asinf" => f_host.asin(),
                    "atanf" => f_host.atan(),
                    "log1pf" => f_host.ln_1p(),
                    "expm1f" => f_host.exp_m1(),
                    "tgammaf" => f_host.gamma(),
                    _ => bug!(),
                };
                let res = res.to_soft();
                let res = this.adjust_nan(res, &[f]);
                this.write_scalar(res, dest)?;
            }
            #[rustfmt::skip]
            | "_hypotf"
            | "hypotf"
            | "atan2f"
            | "fdimf"
            => {
                let [f1, f2] = this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
                let f1 = this.read_scalar(f1)?.to_f32()?;
                let f2 = this.read_scalar(f2)?.to_f32()?;
                // underscore case for windows, here and below
                // (see https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/floating-point-primitives?view=vs-2019)
                // Using host floats (but it's fine, these operations do not have guaranteed precision).
                let res = match link_name.as_str() {
                    "_hypotf" | "hypotf" => f1.to_host().hypot(f2.to_host()).to_soft(),
                    "atan2f" => f1.to_host().atan2(f2.to_host()).to_soft(),
                    #[allow(deprecated)]
                    "fdimf" => f1.to_host().abs_sub(f2.to_host()).to_soft(),
                    _ => bug!(),
                };
                let res = this.adjust_nan(res, &[f1, f2]);
                this.write_scalar(res, dest)?;
            }
            #[rustfmt::skip]
            | "cbrt"
            | "cosh"
            | "sinh"
            | "tan"
            | "tanh"
            | "acos"
            | "asin"
            | "atan"
            | "log1p"
            | "expm1"
            | "tgamma"
            => {
                let [f] = this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
                let f = this.read_scalar(f)?.to_f64()?;
                // Using host floats (but it's fine, these operations do not have guaranteed precision).
                let f_host = f.to_host();
                let res = match link_name.as_str() {
                    "cbrt" => f_host.cbrt(),
                    "cosh" => f_host.cosh(),
                    "sinh" => f_host.sinh(),
                    "tan" => f_host.tan(),
                    "tanh" => f_host.tanh(),
                    "acos" => f_host.acos(),
                    "asin" => f_host.asin(),
                    "atan" => f_host.atan(),
                    "log1p" => f_host.ln_1p(),
                    "expm1" => f_host.exp_m1(),
                    "tgamma" => f_host.gamma(),
                    _ => bug!(),
                };
                let res = res.to_soft();
                let res = this.adjust_nan(res, &[f]);
                this.write_scalar(res, dest)?;
            }
            #[rustfmt::skip]
            | "_hypot"
            | "hypot"
            | "atan2"
            | "fdim"
            => {
                let [f1, f2] = this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
                let f1 = this.read_scalar(f1)?.to_f64()?;
                let f2 = this.read_scalar(f2)?.to_f64()?;
                // underscore case for windows, here and below
                // (see https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/floating-point-primitives?view=vs-2019)
                // Using host floats (but it's fine, these operations do not have guaranteed precision).
                let res = match link_name.as_str() {
                    "_hypot" | "hypot" => f1.to_host().hypot(f2.to_host()).to_soft(),
                    "atan2" => f1.to_host().atan2(f2.to_host()).to_soft(),
                    #[allow(deprecated)]
                    "fdim" => f1.to_host().abs_sub(f2.to_host()).to_soft(),
                    _ => bug!(),
                };
                let res = this.adjust_nan(res, &[f1, f2]);
                this.write_scalar(res, dest)?;
            }
            #[rustfmt::skip]
            | "_ldexp"
            | "ldexp"
            | "scalbn"
            => {
                let [x, exp] = this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
                // For radix-2 (binary) systems, `ldexp` and `scalbn` are the same.
                let x = this.read_scalar(x)?.to_f64()?;
                let exp = this.read_scalar(exp)?.to_i32()?;

                let res = x.scalbn(exp);
                let res = this.adjust_nan(res, &[x]);
                this.write_scalar(res, dest)?;
            }
            "lgammaf_r" => {
                let [x, signp] = this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
                let x = this.read_scalar(x)?.to_f32()?;
                let signp = this.deref_pointer(signp)?;

                // Using host floats (but it's fine, these operations do not have guaranteed precision).
                let (res, sign) = x.to_host().ln_gamma();
                this.write_int(sign, &signp)?;
                let res = this.adjust_nan(res.to_soft(), &[x]);
                this.write_scalar(res, dest)?;
            }
            "lgamma_r" => {
                let [x, signp] = this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
                let x = this.read_scalar(x)?.to_f64()?;
                let signp = this.deref_pointer(signp)?;

                // Using host floats (but it's fine, these operations do not have guaranteed precision).
                let (res, sign) = x.to_host().ln_gamma();
                this.write_int(sign, &signp)?;
                let res = this.adjust_nan(res.to_soft(), &[x]);
                this.write_scalar(res, dest)?;
            }

            // LLVM intrinsics
            "llvm.prefetch" => {
                let [p, rw, loc, ty] =
                    this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;

                let _ = this.read_pointer(p)?;
                let rw = this.read_scalar(rw)?.to_i32()?;
                let loc = this.read_scalar(loc)?.to_i32()?;
                let ty = this.read_scalar(ty)?.to_i32()?;

                if ty == 1 {
                    // Data cache prefetch.
                    // Notably, we do not have to check the pointer, this operation is never UB!

                    if !matches!(rw, 0 | 1) {
                        throw_unsup_format!("invalid `rw` value passed to `llvm.prefetch`: {}", rw);
                    }
                    if !matches!(loc, 0..=3) {
                        throw_unsup_format!(
                            "invalid `loc` value passed to `llvm.prefetch`: {}",
                            loc
                        );
                    }
                } else {
                    throw_unsup_format!("unsupported `llvm.prefetch` type argument: {}", ty);
                }
            }
            // Used to implement the x86 `_mm{,256,512}_popcnt_epi{8,16,32,64}` and wasm
            // `{i,u}8x16_popcnt` functions.
            name if name.starts_with("llvm.ctpop.v") => {
                let [op] = this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;

                let (op, op_len) = this.project_to_simd(op)?;
                let (dest, dest_len) = this.project_to_simd(dest)?;

                assert_eq!(dest_len, op_len);

                for i in 0..dest_len {
                    let op = this.read_immediate(&this.project_index(&op, i)?)?;
                    // Use `to_uint` to get a zero-extended `u128`. Those
                    // extra zeros will not affect `count_ones`.
                    let res = op.to_scalar().to_uint(op.layout.size)?.count_ones();

                    this.write_scalar(
                        Scalar::from_uint(res, op.layout.size),
                        &this.project_index(&dest, i)?,
                    )?;
                }
            }

            // Target-specific shims
            name if name.starts_with("llvm.x86.")
                && (this.tcx.sess.target.arch == "x86"
                    || this.tcx.sess.target.arch == "x86_64") =>
            {
                return shims::x86::EvalContextExt::emulate_x86_intrinsic(
                    this, link_name, abi, args, dest,
                );
            }
            // FIXME: Move these to an `arm` submodule.
            "llvm.aarch64.isb" if this.tcx.sess.target.arch == "aarch64" => {
                let [arg] = this.check_shim(abi, Abi::Unadjusted, link_name, args)?;
                let arg = this.read_scalar(arg)?.to_i32()?;
                match arg {
                    // SY ("full system scope")
                    15 => {
                        this.yield_active_thread();
                    }
                    _ => {
                        throw_unsup_format!("unsupported llvm.aarch64.isb argument {}", arg);
                    }
                }
            }
            "llvm.arm.hint" if this.tcx.sess.target.arch == "arm" => {
                let [arg] = this.check_shim(abi, Abi::Unadjusted, link_name, args)?;
                let arg = this.read_scalar(arg)?.to_i32()?;
                // Note that different arguments might have different target feature requirements.
                match arg {
                    // YIELD
                    1 => {
                        this.expect_target_feature_for_intrinsic(link_name, "v6")?;
                        this.yield_active_thread();
                    }
                    _ => {
                        throw_unsup_format!("unsupported llvm.arm.hint argument {}", arg);
                    }
                }
            }

            // Platform-specific shims
            _ =>
                return match this.tcx.sess.target.os.as_ref() {
                    _ if this.target_os_is_unix() =>
                        shims::unix::foreign_items::EvalContextExt::emulate_foreign_item_inner(
                            this, link_name, abi, args, dest,
                        ),
                    "wasi" =>
                        shims::wasi::foreign_items::EvalContextExt::emulate_foreign_item_inner(
                            this, link_name, abi, args, dest,
                        ),
                    "windows" =>
                        shims::windows::foreign_items::EvalContextExt::emulate_foreign_item_inner(
                            this, link_name, abi, args, dest,
                        ),
                    _ => interp_ok(EmulateItemResult::NotSupported),
                },
        };
        // We only fall through to here if we did *not* hit the `_` arm above,
        // i.e., if we actually emulated the function with one of the shims.
        interp_ok(EmulateItemResult::NeedsReturn)
    }
}