miri/concurrency/sync.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
use std::cell::RefCell;
use std::collections::VecDeque;
use std::collections::hash_map::Entry;
use std::default::Default;
use std::ops::Not;
use std::rc::Rc;
use std::time::Duration;
use rustc_abi::Size;
use rustc_data_structures::fx::FxHashMap;
use rustc_index::{Idx, IndexVec};
use super::init_once::InitOnce;
use super::vector_clock::VClock;
use crate::*;
/// We cannot use the `newtype_index!` macro because we have to use 0 as a
/// sentinel value meaning that the identifier is not assigned. This is because
/// the pthreads static initializers initialize memory with zeros (see the
/// `src/shims/sync.rs` file).
macro_rules! declare_id {
($name: ident) => {
/// 0 is used to indicate that the id was not yet assigned and,
/// therefore, is not a valid identifier.
#[derive(Clone, Copy, Debug, PartialOrd, Ord, PartialEq, Eq, Hash)]
pub struct $name(std::num::NonZero<u32>);
impl $crate::VisitProvenance for $name {
fn visit_provenance(&self, _visit: &mut VisitWith<'_>) {}
}
impl Idx for $name {
fn new(idx: usize) -> Self {
// We use 0 as a sentinel value (see the comment above) and,
// therefore, need to shift by one when converting from an index
// into a vector.
let shifted_idx = u32::try_from(idx).unwrap().strict_add(1);
$name(std::num::NonZero::new(shifted_idx).unwrap())
}
fn index(self) -> usize {
// See the comment in `Self::new`.
// (This cannot underflow because `self.0` is `NonZero<u32>`.)
usize::try_from(self.0.get() - 1).unwrap()
}
}
};
}
pub(super) use declare_id;
/// The mutex state.
#[derive(Default, Debug)]
struct Mutex {
/// The thread that currently owns the lock.
owner: Option<ThreadId>,
/// How many times the mutex was locked by the owner.
lock_count: usize,
/// The queue of threads waiting for this mutex.
queue: VecDeque<ThreadId>,
/// Mutex clock. This tracks the moment of the last unlock.
clock: VClock,
}
#[derive(Default, Clone, Debug)]
pub struct MutexRef(Rc<RefCell<Mutex>>);
impl MutexRef {
fn new() -> Self {
MutexRef(Rc::new(RefCell::new(Mutex::default())))
}
}
impl VisitProvenance for MutexRef {
fn visit_provenance(&self, _visit: &mut VisitWith<'_>) {
// Mutex contains no provenance.
}
}
declare_id!(RwLockId);
/// The read-write lock state.
#[derive(Default, Debug)]
struct RwLock {
/// The writer thread that currently owns the lock.
writer: Option<ThreadId>,
/// The readers that currently own the lock and how many times they acquired
/// the lock.
readers: FxHashMap<ThreadId, usize>,
/// The queue of writer threads waiting for this lock.
writer_queue: VecDeque<ThreadId>,
/// The queue of reader threads waiting for this lock.
reader_queue: VecDeque<ThreadId>,
/// Data race clock for writers. Tracks the happens-before
/// ordering between each write access to a rwlock and is updated
/// after a sequence of concurrent readers to track the happens-
/// before ordering between the set of previous readers and
/// the current writer.
/// Contains the clock of the last thread to release a writer
/// lock or the joined clock of the set of last threads to release
/// shared reader locks.
clock_unlocked: VClock,
/// Data race clock for readers. This is temporary storage
/// for the combined happens-before ordering for between all
/// concurrent readers and the next writer, and the value
/// is stored to the main data_race variable once all
/// readers are finished.
/// Has to be stored separately since reader lock acquires
/// must load the clock of the last write and must not
/// add happens-before orderings between shared reader
/// locks.
/// This is only relevant when there is an active reader.
clock_current_readers: VClock,
}
declare_id!(CondvarId);
/// The conditional variable state.
#[derive(Default, Debug)]
struct Condvar {
waiters: VecDeque<ThreadId>,
/// Tracks the happens-before relationship
/// between a cond-var signal and a cond-var
/// wait during a non-spurious signal event.
/// Contains the clock of the last thread to
/// perform a condvar-signal.
clock: VClock,
}
/// The futex state.
#[derive(Default, Debug)]
struct Futex {
waiters: VecDeque<FutexWaiter>,
/// Tracks the happens-before relationship
/// between a futex-wake and a futex-wait
/// during a non-spurious wake event.
/// Contains the clock of the last thread to
/// perform a futex-wake.
clock: VClock,
}
#[derive(Default, Clone)]
pub struct FutexRef(Rc<RefCell<Futex>>);
impl VisitProvenance for FutexRef {
fn visit_provenance(&self, _visit: &mut VisitWith<'_>) {
// No provenance in `Futex`.
}
}
/// A thread waiting on a futex.
#[derive(Debug)]
struct FutexWaiter {
/// The thread that is waiting on this futex.
thread: ThreadId,
/// The bitset used by FUTEX_*_BITSET, or u32::MAX for other operations.
bitset: u32,
}
/// The state of all synchronization objects.
#[derive(Default, Debug)]
pub struct SynchronizationObjects {
rwlocks: IndexVec<RwLockId, RwLock>,
condvars: IndexVec<CondvarId, Condvar>,
pub(super) init_onces: IndexVec<InitOnceId, InitOnce>,
}
// Private extension trait for local helper methods
impl<'tcx> EvalContextExtPriv<'tcx> for crate::MiriInterpCx<'tcx> {}
pub(super) trait EvalContextExtPriv<'tcx>: crate::MiriInterpCxExt<'tcx> {
fn condvar_reacquire_mutex(
&mut self,
mutex_ref: &MutexRef,
retval: Scalar,
dest: MPlaceTy<'tcx>,
) -> InterpResult<'tcx> {
let this = self.eval_context_mut();
if this.mutex_is_locked(mutex_ref) {
assert_ne!(this.mutex_get_owner(mutex_ref), this.active_thread());
this.mutex_enqueue_and_block(mutex_ref, Some((retval, dest)));
} else {
// We can have it right now!
this.mutex_lock(mutex_ref);
// Don't forget to write the return value.
this.write_scalar(retval, &dest)?;
}
interp_ok(())
}
}
impl SynchronizationObjects {
pub fn mutex_create(&mut self) -> MutexRef {
MutexRef::new()
}
pub fn rwlock_create(&mut self) -> RwLockId {
self.rwlocks.push(Default::default())
}
pub fn condvar_create(&mut self) -> CondvarId {
self.condvars.push(Default::default())
}
pub fn init_once_create(&mut self) -> InitOnceId {
self.init_onces.push(Default::default())
}
}
impl<'tcx> AllocExtra<'tcx> {
fn get_sync<T: 'static>(&self, offset: Size) -> Option<&T> {
self.sync.get(&offset).and_then(|s| s.downcast_ref::<T>())
}
}
/// We designate an `init`` field in all primitives.
/// If `init` is set to this, we consider the primitive initialized.
pub const LAZY_INIT_COOKIE: u32 = 0xcafe_affe;
// Public interface to synchronization primitives. Please note that in most
// cases, the function calls are infallible and it is the client's (shim
// implementation's) responsibility to detect and deal with erroneous
// situations.
impl<'tcx> EvalContextExt<'tcx> for crate::MiriInterpCx<'tcx> {}
pub trait EvalContextExt<'tcx>: crate::MiriInterpCxExt<'tcx> {
/// Helper for lazily initialized `alloc_extra.sync` data:
/// this forces an immediate init.
/// Return a reference to the data in the machine state.
fn lazy_sync_init<'a, T: 'static>(
&'a mut self,
primitive: &MPlaceTy<'tcx>,
init_offset: Size,
data: T,
) -> InterpResult<'tcx, &'a T>
where
'tcx: 'a,
{
let this = self.eval_context_mut();
let (alloc, offset, _) = this.ptr_get_alloc_id(primitive.ptr(), 0)?;
let (alloc_extra, _machine) = this.get_alloc_extra_mut(alloc)?;
alloc_extra.sync.insert(offset, Box::new(data));
// Mark this as "initialized".
let init_field = primitive.offset(init_offset, this.machine.layouts.u32, this)?;
this.write_scalar_atomic(
Scalar::from_u32(LAZY_INIT_COOKIE),
&init_field,
AtomicWriteOrd::Relaxed,
)?;
interp_ok(this.get_alloc_extra(alloc)?.get_sync::<T>(offset).unwrap())
}
/// Helper for lazily initialized `alloc_extra.sync` data:
/// Checks if the primitive is initialized:
/// - If yes, fetches the data from `alloc_extra.sync`, or calls `missing_data` if that fails
/// and stores that in `alloc_extra.sync`.
/// - Otherwise, calls `new_data` to initialize the primitive.
///
/// Return a reference to the data in the machine state.
fn lazy_sync_get_data<'a, T: 'static>(
&'a mut self,
primitive: &MPlaceTy<'tcx>,
init_offset: Size,
missing_data: impl FnOnce() -> InterpResult<'tcx, T>,
new_data: impl FnOnce(&mut MiriInterpCx<'tcx>) -> InterpResult<'tcx, T>,
) -> InterpResult<'tcx, &'a T>
where
'tcx: 'a,
{
let this = self.eval_context_mut();
// Check if this is already initialized. Needs to be atomic because we can race with another
// thread initializing. Needs to be an RMW operation to ensure we read the *latest* value.
// So we just try to replace MUTEX_INIT_COOKIE with itself.
let init_cookie = Scalar::from_u32(LAZY_INIT_COOKIE);
let init_field = primitive.offset(init_offset, this.machine.layouts.u32, this)?;
let (_init, success) = this
.atomic_compare_exchange_scalar(
&init_field,
&ImmTy::from_scalar(init_cookie, this.machine.layouts.u32),
init_cookie,
AtomicRwOrd::Relaxed,
AtomicReadOrd::Relaxed,
/* can_fail_spuriously */ false,
)?
.to_scalar_pair();
if success.to_bool()? {
// If it is initialized, it must be found in the "sync primitive" table,
// or else it has been moved illegally.
let (alloc, offset, _) = this.ptr_get_alloc_id(primitive.ptr(), 0)?;
let (alloc_extra, _machine) = this.get_alloc_extra_mut(alloc)?;
// Due to borrow checker reasons, we have to do the lookup twice.
if alloc_extra.get_sync::<T>(offset).is_none() {
let data = missing_data()?;
alloc_extra.sync.insert(offset, Box::new(data));
}
interp_ok(alloc_extra.get_sync::<T>(offset).unwrap())
} else {
let data = new_data(this)?;
this.lazy_sync_init(primitive, init_offset, data)
}
}
/// Get the synchronization primitive associated with the given pointer,
/// or initialize a new one.
///
/// Return `None` if this pointer does not point to at least 1 byte of mutable memory.
fn get_sync_or_init<'a, T: 'static>(
&'a mut self,
ptr: Pointer,
new: impl FnOnce(&'a mut MiriMachine<'tcx>) -> T,
) -> Option<&'a T>
where
'tcx: 'a,
{
let this = self.eval_context_mut();
if !this.ptr_try_get_alloc_id(ptr, 0).ok().is_some_and(|(alloc_id, offset, ..)| {
let info = this.get_alloc_info(alloc_id);
info.kind == AllocKind::LiveData && info.mutbl.is_mut() && offset < info.size
}) {
return None;
}
// This cannot fail now.
let (alloc, offset, _) = this.ptr_get_alloc_id(ptr, 0).unwrap();
let (alloc_extra, machine) = this.get_alloc_extra_mut(alloc).unwrap();
// Due to borrow checker reasons, we have to do the lookup twice.
if alloc_extra.get_sync::<T>(offset).is_none() {
let new = new(machine);
alloc_extra.sync.insert(offset, Box::new(new));
}
Some(alloc_extra.get_sync::<T>(offset).unwrap())
}
#[inline]
/// Get the id of the thread that currently owns this lock.
fn mutex_get_owner(&self, mutex_ref: &MutexRef) -> ThreadId {
mutex_ref.0.borrow().owner.unwrap()
}
#[inline]
/// Check if locked.
fn mutex_is_locked(&self, mutex_ref: &MutexRef) -> bool {
mutex_ref.0.borrow().owner.is_some()
}
/// Lock by setting the mutex owner and increasing the lock count.
fn mutex_lock(&mut self, mutex_ref: &MutexRef) {
let this = self.eval_context_mut();
let thread = this.active_thread();
let mut mutex = mutex_ref.0.borrow_mut();
if let Some(current_owner) = mutex.owner {
assert_eq!(thread, current_owner, "mutex already locked by another thread");
assert!(
mutex.lock_count > 0,
"invariant violation: lock_count == 0 iff the thread is unlocked"
);
} else {
mutex.owner = Some(thread);
}
mutex.lock_count = mutex.lock_count.strict_add(1);
if let Some(data_race) = &this.machine.data_race {
data_race.acquire_clock(&mutex.clock, &this.machine.threads);
}
}
/// Try unlocking by decreasing the lock count and returning the old lock
/// count. If the lock count reaches 0, release the lock and potentially
/// give to a new owner. If the lock was not locked by the current thread,
/// return `None`.
fn mutex_unlock(&mut self, mutex_ref: &MutexRef) -> InterpResult<'tcx, Option<usize>> {
let this = self.eval_context_mut();
let mut mutex = mutex_ref.0.borrow_mut();
interp_ok(if let Some(current_owner) = mutex.owner {
// Mutex is locked.
if current_owner != this.machine.threads.active_thread() {
// Only the owner can unlock the mutex.
return interp_ok(None);
}
let old_lock_count = mutex.lock_count;
mutex.lock_count = old_lock_count.strict_sub(1);
if mutex.lock_count == 0 {
mutex.owner = None;
// The mutex is completely unlocked. Try transferring ownership
// to another thread.
if let Some(data_race) = &this.machine.data_race {
data_race.release_clock(&this.machine.threads, |clock| {
mutex.clock.clone_from(clock)
});
}
let thread_id = mutex.queue.pop_front();
// We need to drop our mutex borrow before unblock_thread
// because it will be borrowed again in the unblock callback.
drop(mutex);
if thread_id.is_some() {
this.unblock_thread(thread_id.unwrap(), BlockReason::Mutex)?;
}
}
Some(old_lock_count)
} else {
// Mutex is not locked.
None
})
}
/// Put the thread into the queue waiting for the mutex.
///
/// Once the Mutex becomes available and if it exists, `retval_dest.0` will
/// be written to `retval_dest.1`.
#[inline]
fn mutex_enqueue_and_block(
&mut self,
mutex_ref: &MutexRef,
retval_dest: Option<(Scalar, MPlaceTy<'tcx>)>,
) {
let this = self.eval_context_mut();
assert!(this.mutex_is_locked(mutex_ref), "queuing on unlocked mutex");
let thread = this.active_thread();
mutex_ref.0.borrow_mut().queue.push_back(thread);
let mutex_ref = mutex_ref.clone();
this.block_thread(
BlockReason::Mutex,
None,
callback!(
@capture<'tcx> {
mutex_ref: MutexRef,
retval_dest: Option<(Scalar, MPlaceTy<'tcx>)>,
}
@unblock = |this| {
assert!(!this.mutex_is_locked(&mutex_ref));
this.mutex_lock(&mutex_ref);
if let Some((retval, dest)) = retval_dest {
this.write_scalar(retval, &dest)?;
}
interp_ok(())
}
),
);
}
#[inline]
/// Check if locked.
fn rwlock_is_locked(&self, id: RwLockId) -> bool {
let this = self.eval_context_ref();
let rwlock = &this.machine.sync.rwlocks[id];
trace!(
"rwlock_is_locked: {:?} writer is {:?} and there are {} reader threads (some of which could hold multiple read locks)",
id,
rwlock.writer,
rwlock.readers.len(),
);
rwlock.writer.is_some() || rwlock.readers.is_empty().not()
}
/// Check if write locked.
#[inline]
fn rwlock_is_write_locked(&self, id: RwLockId) -> bool {
let this = self.eval_context_ref();
let rwlock = &this.machine.sync.rwlocks[id];
trace!("rwlock_is_write_locked: {:?} writer is {:?}", id, rwlock.writer);
rwlock.writer.is_some()
}
/// Read-lock the lock by adding the `reader` the list of threads that own
/// this lock.
fn rwlock_reader_lock(&mut self, id: RwLockId) {
let this = self.eval_context_mut();
let thread = this.active_thread();
assert!(!this.rwlock_is_write_locked(id), "the lock is write locked");
trace!("rwlock_reader_lock: {:?} now also held (one more time) by {:?}", id, thread);
let rwlock = &mut this.machine.sync.rwlocks[id];
let count = rwlock.readers.entry(thread).or_insert(0);
*count = count.strict_add(1);
if let Some(data_race) = &this.machine.data_race {
data_race.acquire_clock(&rwlock.clock_unlocked, &this.machine.threads);
}
}
/// Try read-unlock the lock for the current threads and potentially give the lock to a new owner.
/// Returns `true` if succeeded, `false` if this `reader` did not hold the lock.
fn rwlock_reader_unlock(&mut self, id: RwLockId) -> InterpResult<'tcx, bool> {
let this = self.eval_context_mut();
let thread = this.active_thread();
let rwlock = &mut this.machine.sync.rwlocks[id];
match rwlock.readers.entry(thread) {
Entry::Occupied(mut entry) => {
let count = entry.get_mut();
assert!(*count > 0, "rwlock locked with count == 0");
*count -= 1;
if *count == 0 {
trace!("rwlock_reader_unlock: {:?} no longer held by {:?}", id, thread);
entry.remove();
} else {
trace!("rwlock_reader_unlock: {:?} held one less time by {:?}", id, thread);
}
}
Entry::Vacant(_) => return interp_ok(false), // we did not even own this lock
}
if let Some(data_race) = &this.machine.data_race {
// Add this to the shared-release clock of all concurrent readers.
data_race.release_clock(&this.machine.threads, |clock| {
rwlock.clock_current_readers.join(clock)
});
}
// The thread was a reader. If the lock is not held any more, give it to a writer.
if this.rwlock_is_locked(id).not() {
// All the readers are finished, so set the writer data-race handle to the value
// of the union of all reader data race handles, since the set of readers
// happen-before the writers
let rwlock = &mut this.machine.sync.rwlocks[id];
rwlock.clock_unlocked.clone_from(&rwlock.clock_current_readers);
// See if there is a thread to unblock.
if let Some(writer) = rwlock.writer_queue.pop_front() {
this.unblock_thread(writer, BlockReason::RwLock(id))?;
}
}
interp_ok(true)
}
/// Put the reader in the queue waiting for the lock and block it.
/// Once the lock becomes available, `retval` will be written to `dest`.
#[inline]
fn rwlock_enqueue_and_block_reader(
&mut self,
id: RwLockId,
retval: Scalar,
dest: MPlaceTy<'tcx>,
) {
let this = self.eval_context_mut();
let thread = this.active_thread();
assert!(this.rwlock_is_write_locked(id), "read-queueing on not write locked rwlock");
this.machine.sync.rwlocks[id].reader_queue.push_back(thread);
this.block_thread(
BlockReason::RwLock(id),
None,
callback!(
@capture<'tcx> {
id: RwLockId,
retval: Scalar,
dest: MPlaceTy<'tcx>,
}
@unblock = |this| {
this.rwlock_reader_lock(id);
this.write_scalar(retval, &dest)?;
interp_ok(())
}
),
);
}
/// Lock by setting the writer that owns the lock.
#[inline]
fn rwlock_writer_lock(&mut self, id: RwLockId) {
let this = self.eval_context_mut();
let thread = this.active_thread();
assert!(!this.rwlock_is_locked(id), "the rwlock is already locked");
trace!("rwlock_writer_lock: {:?} now held by {:?}", id, thread);
let rwlock = &mut this.machine.sync.rwlocks[id];
rwlock.writer = Some(thread);
if let Some(data_race) = &this.machine.data_race {
data_race.acquire_clock(&rwlock.clock_unlocked, &this.machine.threads);
}
}
/// Try to unlock an rwlock held by the current thread.
/// Return `false` if it is held by another thread.
#[inline]
fn rwlock_writer_unlock(&mut self, id: RwLockId) -> InterpResult<'tcx, bool> {
let this = self.eval_context_mut();
let thread = this.active_thread();
let rwlock = &mut this.machine.sync.rwlocks[id];
interp_ok(if let Some(current_writer) = rwlock.writer {
if current_writer != thread {
// Only the owner can unlock the rwlock.
return interp_ok(false);
}
rwlock.writer = None;
trace!("rwlock_writer_unlock: {:?} unlocked by {:?}", id, thread);
// Record release clock for next lock holder.
if let Some(data_race) = &this.machine.data_race {
data_race.release_clock(&this.machine.threads, |clock| {
rwlock.clock_unlocked.clone_from(clock)
});
}
// The thread was a writer.
//
// We are prioritizing writers here against the readers. As a
// result, not only readers can starve writers, but also writers can
// starve readers.
if let Some(writer) = rwlock.writer_queue.pop_front() {
this.unblock_thread(writer, BlockReason::RwLock(id))?;
} else {
// Take the entire read queue and wake them all up.
let readers = std::mem::take(&mut rwlock.reader_queue);
for reader in readers {
this.unblock_thread(reader, BlockReason::RwLock(id))?;
}
}
true
} else {
false
})
}
/// Put the writer in the queue waiting for the lock.
/// Once the lock becomes available, `retval` will be written to `dest`.
#[inline]
fn rwlock_enqueue_and_block_writer(
&mut self,
id: RwLockId,
retval: Scalar,
dest: MPlaceTy<'tcx>,
) {
let this = self.eval_context_mut();
assert!(this.rwlock_is_locked(id), "write-queueing on unlocked rwlock");
let thread = this.active_thread();
this.machine.sync.rwlocks[id].writer_queue.push_back(thread);
this.block_thread(
BlockReason::RwLock(id),
None,
callback!(
@capture<'tcx> {
id: RwLockId,
retval: Scalar,
dest: MPlaceTy<'tcx>,
}
@unblock = |this| {
this.rwlock_writer_lock(id);
this.write_scalar(retval, &dest)?;
interp_ok(())
}
),
);
}
/// Is the conditional variable awaited?
#[inline]
fn condvar_is_awaited(&mut self, id: CondvarId) -> bool {
let this = self.eval_context_mut();
!this.machine.sync.condvars[id].waiters.is_empty()
}
/// Release the mutex and let the current thread wait on the given condition variable.
/// Once it is signaled, the mutex will be acquired and `retval_succ` will be written to `dest`.
/// If the timeout happens first, `retval_timeout` will be written to `dest`.
fn condvar_wait(
&mut self,
condvar: CondvarId,
mutex_ref: MutexRef,
timeout: Option<(TimeoutClock, TimeoutAnchor, Duration)>,
retval_succ: Scalar,
retval_timeout: Scalar,
dest: MPlaceTy<'tcx>,
) -> InterpResult<'tcx> {
let this = self.eval_context_mut();
if let Some(old_locked_count) = this.mutex_unlock(&mutex_ref)? {
if old_locked_count != 1 {
throw_unsup_format!(
"awaiting a condvar on a mutex acquired multiple times is not supported"
);
}
} else {
throw_ub_format!(
"awaiting a condvar on a mutex that is unlocked or owned by a different thread"
);
}
let thread = this.active_thread();
let waiters = &mut this.machine.sync.condvars[condvar].waiters;
waiters.push_back(thread);
this.block_thread(
BlockReason::Condvar(condvar),
timeout,
callback!(
@capture<'tcx> {
condvar: CondvarId,
mutex_ref: MutexRef,
retval_succ: Scalar,
retval_timeout: Scalar,
dest: MPlaceTy<'tcx>,
}
@unblock = |this| {
// The condvar was signaled. Make sure we get the clock for that.
if let Some(data_race) = &this.machine.data_race {
data_race.acquire_clock(
&this.machine.sync.condvars[condvar].clock,
&this.machine.threads,
);
}
// Try to acquire the mutex.
// The timeout only applies to the first wait (until the signal), not for mutex acquisition.
this.condvar_reacquire_mutex(&mutex_ref, retval_succ, dest)
}
@timeout = |this| {
// We have to remove the waiter from the queue again.
let thread = this.active_thread();
let waiters = &mut this.machine.sync.condvars[condvar].waiters;
waiters.retain(|waiter| *waiter != thread);
// Now get back the lock.
this.condvar_reacquire_mutex(&mutex_ref, retval_timeout, dest)
}
),
);
interp_ok(())
}
/// Wake up some thread (if there is any) sleeping on the conditional
/// variable. Returns `true` iff any thread was woken up.
fn condvar_signal(&mut self, id: CondvarId) -> InterpResult<'tcx, bool> {
let this = self.eval_context_mut();
let condvar = &mut this.machine.sync.condvars[id];
let data_race = &this.machine.data_race;
// Each condvar signal happens-before the end of the condvar wake
if let Some(data_race) = data_race {
data_race.release_clock(&this.machine.threads, |clock| condvar.clock.clone_from(clock));
}
let Some(waiter) = condvar.waiters.pop_front() else {
return interp_ok(false);
};
this.unblock_thread(waiter, BlockReason::Condvar(id))?;
interp_ok(true)
}
/// Wait for the futex to be signaled, or a timeout.
/// On a signal, `retval_succ` is written to `dest`.
/// On a timeout, `retval_timeout` is written to `dest` and `errno_timeout` is set as the last error.
fn futex_wait(
&mut self,
futex_ref: FutexRef,
bitset: u32,
timeout: Option<(TimeoutClock, TimeoutAnchor, Duration)>,
retval_succ: Scalar,
retval_timeout: Scalar,
dest: MPlaceTy<'tcx>,
errno_timeout: IoError,
) {
let this = self.eval_context_mut();
let thread = this.active_thread();
let mut futex = futex_ref.0.borrow_mut();
let waiters = &mut futex.waiters;
assert!(waiters.iter().all(|waiter| waiter.thread != thread), "thread is already waiting");
waiters.push_back(FutexWaiter { thread, bitset });
drop(futex);
this.block_thread(
BlockReason::Futex,
timeout,
callback!(
@capture<'tcx> {
futex_ref: FutexRef,
retval_succ: Scalar,
retval_timeout: Scalar,
dest: MPlaceTy<'tcx>,
errno_timeout: IoError,
}
@unblock = |this| {
let futex = futex_ref.0.borrow();
// Acquire the clock of the futex.
if let Some(data_race) = &this.machine.data_race {
data_race.acquire_clock(&futex.clock, &this.machine.threads);
}
// Write the return value.
this.write_scalar(retval_succ, &dest)?;
interp_ok(())
}
@timeout = |this| {
// Remove the waiter from the futex.
let thread = this.active_thread();
let mut futex = futex_ref.0.borrow_mut();
futex.waiters.retain(|waiter| waiter.thread != thread);
// Set errno and write return value.
this.set_last_error(errno_timeout)?;
this.write_scalar(retval_timeout, &dest)?;
interp_ok(())
}
),
);
}
/// Wake up the first thread in the queue that matches any of the bits in the bitset.
/// Returns whether anything was woken.
fn futex_wake(&mut self, futex_ref: &FutexRef, bitset: u32) -> InterpResult<'tcx, bool> {
let this = self.eval_context_mut();
let mut futex = futex_ref.0.borrow_mut();
let data_race = &this.machine.data_race;
// Each futex-wake happens-before the end of the futex wait
if let Some(data_race) = data_race {
data_race.release_clock(&this.machine.threads, |clock| futex.clock.clone_from(clock));
}
// Wake up the first thread in the queue that matches any of the bits in the bitset.
let Some(i) = futex.waiters.iter().position(|w| w.bitset & bitset != 0) else {
return interp_ok(false);
};
let waiter = futex.waiters.remove(i).unwrap();
drop(futex);
this.unblock_thread(waiter.thread, BlockReason::Futex)?;
interp_ok(true)
}
}