rustc_codegen_llvm/builder/autodiff.rs
1use std::ptr;
2
3use rustc_ast::expand::autodiff_attrs::{AutoDiffAttrs, AutoDiffItem, DiffActivity, DiffMode};
4use rustc_codegen_ssa::ModuleCodegen;
5use rustc_codegen_ssa::back::write::ModuleConfig;
6use rustc_codegen_ssa::traits::BaseTypeCodegenMethods as _;
7use rustc_errors::FatalError;
8use tracing::{debug, trace};
9
10use crate::back::write::llvm_err;
11use crate::builder::SBuilder;
12use crate::context::SimpleCx;
13use crate::declare::declare_simple_fn;
14use crate::errors::{AutoDiffWithoutEnable, LlvmError};
15use crate::llvm::AttributePlace::Function;
16use crate::llvm::{Metadata, True};
17use crate::value::Value;
18use crate::{CodegenContext, LlvmCodegenBackend, ModuleLlvm, attributes, llvm};
19
20fn get_params(fnc: &Value) -> Vec<&Value> {
21 unsafe {
22 let param_num = llvm::LLVMCountParams(fnc) as usize;
23 let mut fnc_args: Vec<&Value> = vec![];
24 fnc_args.reserve(param_num);
25 llvm::LLVMGetParams(fnc, fnc_args.as_mut_ptr());
26 fnc_args.set_len(param_num);
27 fnc_args
28 }
29}
30
31/// When differentiating `fn_to_diff`, take a `outer_fn` and generate another
32/// function with expected naming and calling conventions[^1] which will be
33/// discovered by the enzyme LLVM pass and its body populated with the differentiated
34/// `fn_to_diff`. `outer_fn` is then modified to have a call to the generated
35/// function and handle the differences between the Rust calling convention and
36/// Enzyme.
37/// [^1]: <https://enzyme.mit.edu/getting_started/CallingConvention/>
38// FIXME(ZuseZ4): `outer_fn` should include upstream safety checks to
39// cover some assumptions of enzyme/autodiff, which could lead to UB otherwise.
40fn generate_enzyme_call<'ll>(
41 cx: &SimpleCx<'ll>,
42 fn_to_diff: &'ll Value,
43 outer_fn: &'ll Value,
44 attrs: AutoDiffAttrs,
45) {
46 let inputs = attrs.input_activity;
47 let output = attrs.ret_activity;
48
49 // We have to pick the name depending on whether we want forward or reverse mode autodiff.
50 let mut ad_name: String = match attrs.mode {
51 DiffMode::Forward => "__enzyme_fwddiff",
52 DiffMode::Reverse => "__enzyme_autodiff",
53 _ => panic!("logic bug in autodiff, unrecognized mode"),
54 }
55 .to_string();
56
57 // add outer_fn name to ad_name to make it unique, in case users apply autodiff to multiple
58 // functions. Unwrap will only panic, if LLVM gave us an invalid string.
59 let name = llvm::get_value_name(outer_fn);
60 let outer_fn_name = std::str::from_utf8(name).unwrap();
61 ad_name.push_str(outer_fn_name);
62
63 // Let us assume the user wrote the following function square:
64 //
65 // ```llvm
66 // define double @square(double %x) {
67 // entry:
68 // %0 = fmul double %x, %x
69 // ret double %0
70 // }
71 // ```
72 //
73 // The user now applies autodiff to the function square, in which case fn_to_diff will be `square`.
74 // Our macro generates the following placeholder code (slightly simplified):
75 //
76 // ```llvm
77 // define double @dsquare(double %x) {
78 // ; placeholder code
79 // return 0.0;
80 // }
81 // ```
82 //
83 // so our `outer_fn` will be `dsquare`. The unsafe code section below now removes the placeholder
84 // code and inserts an autodiff call. We also add a declaration for the __enzyme_autodiff call.
85 // Again, the arguments to all functions are slightly simplified.
86 // ```llvm
87 // declare double @__enzyme_autodiff_square(...)
88 //
89 // define double @dsquare(double %x) {
90 // entry:
91 // %0 = tail call double (...) @__enzyme_autodiff_square(double (double)* nonnull @square, double %x)
92 // ret double %0
93 // }
94 // ```
95 unsafe {
96 // On LLVM-IR, we can luckily declare __enzyme_ functions without specifying the input
97 // arguments. We do however need to declare them with their correct return type.
98 // We already figured the correct return type out in our frontend, when generating the outer_fn,
99 // so we can now just go ahead and use that. FIXME(ZuseZ4): This doesn't handle sret yet.
100 let fn_ty = llvm::LLVMGlobalGetValueType(outer_fn);
101 let ret_ty = llvm::LLVMGetReturnType(fn_ty);
102
103 // LLVM can figure out the input types on it's own, so we take a shortcut here.
104 let enzyme_ty = llvm::LLVMFunctionType(ret_ty, ptr::null(), 0, True);
105
106 //FIXME(ZuseZ4): the CC/Addr/Vis values are best effort guesses, we should look at tests and
107 // think a bit more about what should go here.
108 let cc = llvm::LLVMGetFunctionCallConv(outer_fn);
109 let ad_fn = declare_simple_fn(
110 cx,
111 &ad_name,
112 llvm::CallConv::try_from(cc).expect("invalid callconv"),
113 llvm::UnnamedAddr::No,
114 llvm::Visibility::Default,
115 enzyme_ty,
116 );
117
118 // Otherwise LLVM might inline our temporary code before the enzyme pass has a chance to
119 // do it's work.
120 let attr = llvm::AttributeKind::NoInline.create_attr(cx.llcx);
121 attributes::apply_to_llfn(ad_fn, Function, &[attr]);
122
123 // first, remove all calls from fnc
124 let entry = llvm::LLVMGetFirstBasicBlock(outer_fn);
125 let br = llvm::LLVMRustGetTerminator(entry);
126 llvm::LLVMRustEraseInstFromParent(br);
127
128 let last_inst = llvm::LLVMRustGetLastInstruction(entry).unwrap();
129 let mut builder = SBuilder::build(cx, entry);
130
131 let num_args = llvm::LLVMCountParams(&fn_to_diff);
132 let mut args = Vec::with_capacity(num_args as usize + 1);
133 args.push(fn_to_diff);
134
135 let enzyme_const = cx.create_metadata("enzyme_const".to_string()).unwrap();
136 let enzyme_out = cx.create_metadata("enzyme_out".to_string()).unwrap();
137 let enzyme_dup = cx.create_metadata("enzyme_dup".to_string()).unwrap();
138 let enzyme_dupnoneed = cx.create_metadata("enzyme_dupnoneed".to_string()).unwrap();
139 let enzyme_primal_ret = cx.create_metadata("enzyme_primal_return".to_string()).unwrap();
140
141 match output {
142 DiffActivity::Dual => {
143 args.push(cx.get_metadata_value(enzyme_primal_ret));
144 }
145 DiffActivity::Active => {
146 args.push(cx.get_metadata_value(enzyme_primal_ret));
147 }
148 _ => {}
149 }
150
151 debug!("matching autodiff arguments");
152 // We now handle the issue that Rust level arguments not always match the llvm-ir level
153 // arguments. A slice, `&[f32]`, for example, is represented as a pointer and a length on
154 // llvm-ir level. The number of activities matches the number of Rust level arguments, so we
155 // need to match those.
156 // FIXME(ZuseZ4): This logic is a bit more complicated than it should be, can we simplify it
157 // using iterators and peek()?
158 let mut outer_pos: usize = 0;
159 let mut activity_pos = 0;
160 let outer_args: Vec<&llvm::Value> = get_params(outer_fn);
161 while activity_pos < inputs.len() {
162 let diff_activity = inputs[activity_pos as usize];
163 // Duplicated arguments received a shadow argument, into which enzyme will write the
164 // gradient.
165 let (activity, duplicated): (&Metadata, bool) = match diff_activity {
166 DiffActivity::None => panic!("not a valid input activity"),
167 DiffActivity::Const => (enzyme_const, false),
168 DiffActivity::Active => (enzyme_out, false),
169 DiffActivity::ActiveOnly => (enzyme_out, false),
170 DiffActivity::Dual => (enzyme_dup, true),
171 DiffActivity::DualOnly => (enzyme_dupnoneed, true),
172 DiffActivity::Duplicated => (enzyme_dup, true),
173 DiffActivity::DuplicatedOnly => (enzyme_dupnoneed, true),
174 DiffActivity::FakeActivitySize => (enzyme_const, false),
175 };
176 let outer_arg = outer_args[outer_pos];
177 args.push(cx.get_metadata_value(activity));
178 args.push(outer_arg);
179 if duplicated {
180 // We know that duplicated args by construction have a following argument,
181 // so this can not be out of bounds.
182 let next_outer_arg = outer_args[outer_pos + 1];
183 let next_outer_ty = cx.val_ty(next_outer_arg);
184 // FIXME(ZuseZ4): We should add support for Vec here too, but it's less urgent since
185 // vectors behind references (&Vec<T>) are already supported. Users can not pass a
186 // Vec by value for reverse mode, so this would only help forward mode autodiff.
187 let slice = {
188 if activity_pos + 1 >= inputs.len() {
189 // If there is no arg following our ptr, it also can't be a slice,
190 // since that would lead to a ptr, int pair.
191 false
192 } else {
193 let next_activity = inputs[activity_pos + 1];
194 // We analyze the MIR types and add this dummy activity if we visit a slice.
195 next_activity == DiffActivity::FakeActivitySize
196 }
197 };
198 if slice {
199 // A duplicated slice will have the following two outer_fn arguments:
200 // (..., ptr1, int1, ptr2, int2, ...). We add the following llvm-ir to our __enzyme call:
201 // (..., metadata! enzyme_dup, ptr, ptr, int1, ...).
202 // FIXME(ZuseZ4): We will upstream a safety check later which asserts that
203 // int2 >= int1, which means the shadow vector is large enough to store the gradient.
204 assert!(llvm::LLVMRustGetTypeKind(next_outer_ty) == llvm::TypeKind::Integer);
205 let next_outer_arg2 = outer_args[outer_pos + 2];
206 let next_outer_ty2 = cx.val_ty(next_outer_arg2);
207 assert!(llvm::LLVMRustGetTypeKind(next_outer_ty2) == llvm::TypeKind::Pointer);
208 let next_outer_arg3 = outer_args[outer_pos + 3];
209 let next_outer_ty3 = cx.val_ty(next_outer_arg3);
210 assert!(llvm::LLVMRustGetTypeKind(next_outer_ty3) == llvm::TypeKind::Integer);
211 args.push(next_outer_arg2);
212 args.push(cx.get_metadata_value(enzyme_const));
213 args.push(next_outer_arg);
214 outer_pos += 4;
215 activity_pos += 2;
216 } else {
217 // A duplicated pointer will have the following two outer_fn arguments:
218 // (..., ptr, ptr, ...). We add the following llvm-ir to our __enzyme call:
219 // (..., metadata! enzyme_dup, ptr, ptr, ...).
220 if matches!(
221 diff_activity,
222 DiffActivity::Duplicated | DiffActivity::DuplicatedOnly
223 ) {
224 assert!(
225 llvm::LLVMRustGetTypeKind(next_outer_ty) == llvm::TypeKind::Pointer
226 );
227 }
228 // In the case of Dual we don't have assumptions, e.g. f32 would be valid.
229 args.push(next_outer_arg);
230 outer_pos += 2;
231 activity_pos += 1;
232 }
233 } else {
234 // We do not differentiate with resprect to this argument.
235 // We already added the metadata and argument above, so just increase the counters.
236 outer_pos += 1;
237 activity_pos += 1;
238 }
239 }
240
241 let call = builder.call(enzyme_ty, ad_fn, &args, None);
242
243 // This part is a bit iffy. LLVM requires that a call to an inlineable function has some
244 // metadata attachted to it, but we just created this code oota. Given that the
245 // differentiated function already has partly confusing metadata, and given that this
246 // affects nothing but the auttodiff IR, we take a shortcut and just steal metadata from the
247 // dummy code which we inserted at a higher level.
248 // FIXME(ZuseZ4): Work with Enzyme core devs to clarify what debug metadata issues we have,
249 // and how to best improve it for enzyme core and rust-enzyme.
250 let md_ty = cx.get_md_kind_id("dbg");
251 if llvm::LLVMRustHasMetadata(last_inst, md_ty) {
252 let md = llvm::LLVMRustDIGetInstMetadata(last_inst)
253 .expect("failed to get instruction metadata");
254 let md_todiff = cx.get_metadata_value(md);
255 llvm::LLVMSetMetadata(call, md_ty, md_todiff);
256 } else {
257 // We don't panic, since depending on whether we are in debug or release mode, we might
258 // have no debug info to copy, which would then be ok.
259 trace!("no dbg info");
260 }
261
262 // Now that we copied the metadata, get rid of dummy code.
263 llvm::LLVMRustEraseInstUntilInclusive(entry, last_inst);
264
265 if cx.val_ty(call) == cx.type_void() {
266 builder.ret_void();
267 } else {
268 builder.ret(call);
269 }
270
271 // Let's crash in case that we messed something up above and generated invalid IR.
272 llvm::LLVMRustVerifyFunction(
273 outer_fn,
274 llvm::LLVMRustVerifierFailureAction::LLVMAbortProcessAction,
275 );
276 }
277}
278
279pub(crate) fn differentiate<'ll>(
280 module: &'ll ModuleCodegen<ModuleLlvm>,
281 cgcx: &CodegenContext<LlvmCodegenBackend>,
282 diff_items: Vec<AutoDiffItem>,
283 _config: &ModuleConfig,
284) -> Result<(), FatalError> {
285 for item in &diff_items {
286 trace!("{}", item);
287 }
288
289 let diag_handler = cgcx.create_dcx();
290
291 let cx = SimpleCx::new(module.module_llvm.llmod(), module.module_llvm.llcx, cgcx.pointer_size);
292
293 // First of all, did the user try to use autodiff without using the -Zautodiff=Enable flag?
294 if !diff_items.is_empty()
295 && !cgcx.opts.unstable_opts.autodiff.contains(&rustc_session::config::AutoDiff::Enable)
296 {
297 let dcx = cgcx.create_dcx();
298 return Err(dcx.handle().emit_almost_fatal(AutoDiffWithoutEnable));
299 }
300
301 // Before dumping the module, we want all the TypeTrees to become part of the module.
302 for item in diff_items.iter() {
303 let name = item.source.clone();
304 let fn_def: Option<&llvm::Value> = cx.get_function(&name);
305 let Some(fn_def) = fn_def else {
306 return Err(llvm_err(
307 diag_handler.handle(),
308 LlvmError::PrepareAutoDiff {
309 src: item.source.clone(),
310 target: item.target.clone(),
311 error: "could not find source function".to_owned(),
312 },
313 ));
314 };
315 debug!(?item.target);
316 let fn_target: Option<&llvm::Value> = cx.get_function(&item.target);
317 let Some(fn_target) = fn_target else {
318 return Err(llvm_err(
319 diag_handler.handle(),
320 LlvmError::PrepareAutoDiff {
321 src: item.source.clone(),
322 target: item.target.clone(),
323 error: "could not find target function".to_owned(),
324 },
325 ));
326 };
327
328 generate_enzyme_call(&cx, fn_def, fn_target, item.attrs.clone());
329 }
330
331 // FIXME(ZuseZ4): support SanitizeHWAddress and prevent illegal/unsupported opts
332
333 trace!("done with differentiate()");
334
335 Ok(())
336}