rustc_codegen_llvm/builder/autodiff.rs
1use std::ptr;
2
3use rustc_ast::expand::autodiff_attrs::{AutoDiffAttrs, DiffActivity, DiffMode};
4use rustc_ast::expand::typetree::FncTree;
5use rustc_codegen_ssa::common::TypeKind;
6use rustc_codegen_ssa::traits::{BaseTypeCodegenMethods, BuilderMethods};
7use rustc_middle::ty::{Instance, PseudoCanonicalInput, TyCtxt, TypingEnv};
8use rustc_middle::{bug, ty};
9use rustc_target::callconv::PassMode;
10use tracing::debug;
11
12use crate::builder::{Builder, PlaceRef, UNNAMED};
13use crate::context::SimpleCx;
14use crate::declare::declare_simple_fn;
15use crate::llvm;
16use crate::llvm::{Metadata, TRUE, Type};
17use crate::value::Value;
18
19pub(crate) fn adjust_activity_to_abi<'tcx>(
20 tcx: TyCtxt<'tcx>,
21 instance: Instance<'tcx>,
22 typing_env: TypingEnv<'tcx>,
23 da: &mut Vec<DiffActivity>,
24) {
25 let fn_ty = instance.ty(tcx, typing_env);
26
27 if !matches!(fn_ty.kind(), ty::FnDef(..)) {
28 bug!("expected fn def for autodiff, got {:?}", fn_ty);
29 }
30
31 // We don't actually pass the types back into the type system.
32 // All we do is decide how to handle the arguments.
33 let sig = fn_ty.fn_sig(tcx).skip_binder();
34
35 // FIXME(Sa4dUs): pass proper varargs once we have support for differentiating variadic functions
36 let Ok(fn_abi) =
37 tcx.fn_abi_of_instance(typing_env.as_query_input((instance, ty::List::empty())))
38 else {
39 bug!("failed to get fn_abi of instance with empty varargs");
40 };
41
42 let mut new_activities = vec![];
43 let mut new_positions = vec![];
44 let mut del_activities = 0;
45 for (i, ty) in sig.inputs().iter().enumerate() {
46 if let Some(inner_ty) = ty.builtin_deref(true) {
47 if inner_ty.is_slice() {
48 // Now we need to figure out the size of each slice element in memory to allow
49 // safety checks and usability improvements in the backend.
50 let sty = match inner_ty.builtin_index() {
51 Some(sty) => sty,
52 None => {
53 panic!("slice element type unknown");
54 }
55 };
56 let pci = PseudoCanonicalInput {
57 typing_env: TypingEnv::fully_monomorphized(),
58 value: sty,
59 };
60
61 let layout = tcx.layout_of(pci);
62 let elem_size = match layout {
63 Ok(layout) => layout.size,
64 Err(_) => {
65 bug!("autodiff failed to compute slice element size");
66 }
67 };
68 let elem_size: u32 = elem_size.bytes() as u32;
69
70 // We know that the length will be passed as extra arg.
71 if !da.is_empty() {
72 // We are looking at a slice. The length of that slice will become an
73 // extra integer on llvm level. Integers are always const.
74 // However, if the slice get's duplicated, we want to know to later check the
75 // size. So we mark the new size argument as FakeActivitySize.
76 // There is one FakeActivitySize per slice, so for convenience we store the
77 // slice element size in bytes in it. We will use the size in the backend.
78 let activity = match da[i] {
79 DiffActivity::DualOnly
80 | DiffActivity::Dual
81 | DiffActivity::Dualv
82 | DiffActivity::DuplicatedOnly
83 | DiffActivity::Duplicated => {
84 DiffActivity::FakeActivitySize(Some(elem_size))
85 }
86 DiffActivity::Const => DiffActivity::Const,
87 _ => bug!("unexpected activity for ptr/ref"),
88 };
89 new_activities.push(activity);
90 new_positions.push(i + 1);
91 }
92
93 continue;
94 }
95 }
96
97 let pci = PseudoCanonicalInput { typing_env: TypingEnv::fully_monomorphized(), value: *ty };
98
99 let layout = match tcx.layout_of(pci) {
100 Ok(layout) => layout.layout,
101 Err(_) => {
102 bug!("failed to compute layout for type {:?}", ty);
103 }
104 };
105
106 let pass_mode = &fn_abi.args[i].mode;
107
108 // For ZST, just ignore and don't add its activity, as this arg won't be present
109 // in the LLVM passed to Enzyme.
110 // Some targets pass ZST indirectly in the C ABI, in that case, handle it as a normal arg
111 // FIXME(Sa4dUs): Enforce ZST corresponding diff activity be `Const`
112 if *pass_mode == PassMode::Ignore {
113 del_activities += 1;
114 da.remove(i);
115 }
116
117 // If the argument is lowered as a `ScalarPair`, we need to duplicate its activity.
118 // Otherwise, the number of activities won't match the number of LLVM arguments and
119 // this will lead to errors when verifying the Enzyme call.
120 if let rustc_abi::BackendRepr::ScalarPair(_, _) = layout.backend_repr() {
121 new_activities.push(da[i].clone());
122 new_positions.push(i + 1 - del_activities);
123 }
124 }
125 // now add the extra activities coming from slices
126 // Reverse order to not invalidate the indices
127 for _ in 0..new_activities.len() {
128 let pos = new_positions.pop().unwrap();
129 let activity = new_activities.pop().unwrap();
130 da.insert(pos, activity);
131 }
132}
133
134// When we call the `__enzyme_autodiff` or `__enzyme_fwddiff` function, we need to pass all the
135// original inputs, as well as metadata and the additional shadow arguments.
136// This function matches the arguments from the outer function to the inner enzyme call.
137//
138// This function also considers that Rust level arguments not always match the llvm-ir level
139// arguments. A slice, `&[f32]`, for example, is represented as a pointer and a length on
140// llvm-ir level. The number of activities matches the number of Rust level arguments, so we
141// need to match those.
142// FIXME(ZuseZ4): This logic is a bit more complicated than it should be, can we simplify it
143// using iterators and peek()?
144fn match_args_from_caller_to_enzyme<'ll, 'tcx>(
145 cx: &SimpleCx<'ll>,
146 builder: &mut Builder<'_, 'll, 'tcx>,
147 width: u32,
148 args: &mut Vec<&'ll llvm::Value>,
149 inputs: &[DiffActivity],
150 outer_args: &[&'ll llvm::Value],
151) {
152 debug!("matching autodiff arguments");
153 // We now handle the issue that Rust level arguments not always match the llvm-ir level
154 // arguments. A slice, `&[f32]`, for example, is represented as a pointer and a length on
155 // llvm-ir level. The number of activities matches the number of Rust level arguments, so we
156 // need to match those.
157 // FIXME(ZuseZ4): This logic is a bit more complicated than it should be, can we simplify it
158 // using iterators and peek()?
159 let mut outer_pos: usize = 0;
160 let mut activity_pos = 0;
161
162 let enzyme_const = cx.create_metadata(b"enzyme_const");
163 let enzyme_out = cx.create_metadata(b"enzyme_out");
164 let enzyme_dup = cx.create_metadata(b"enzyme_dup");
165 let enzyme_dupv = cx.create_metadata(b"enzyme_dupv");
166 let enzyme_dupnoneed = cx.create_metadata(b"enzyme_dupnoneed");
167 let enzyme_dupnoneedv = cx.create_metadata(b"enzyme_dupnoneedv");
168
169 while activity_pos < inputs.len() {
170 let diff_activity = inputs[activity_pos as usize];
171 // Duplicated arguments received a shadow argument, into which enzyme will write the
172 // gradient.
173 let (activity, duplicated): (&Metadata, bool) = match diff_activity {
174 DiffActivity::None => panic!("not a valid input activity"),
175 DiffActivity::Const => (enzyme_const, false),
176 DiffActivity::Active => (enzyme_out, false),
177 DiffActivity::ActiveOnly => (enzyme_out, false),
178 DiffActivity::Dual => (enzyme_dup, true),
179 DiffActivity::Dualv => (enzyme_dupv, true),
180 DiffActivity::DualOnly => (enzyme_dupnoneed, true),
181 DiffActivity::DualvOnly => (enzyme_dupnoneedv, true),
182 DiffActivity::Duplicated => (enzyme_dup, true),
183 DiffActivity::DuplicatedOnly => (enzyme_dupnoneed, true),
184 DiffActivity::FakeActivitySize(_) => (enzyme_const, false),
185 };
186 let outer_arg = outer_args[outer_pos];
187 args.push(cx.get_metadata_value(activity));
188 if matches!(diff_activity, DiffActivity::Dualv) {
189 let next_outer_arg = outer_args[outer_pos + 1];
190 let elem_bytes_size: u64 = match inputs[activity_pos + 1] {
191 DiffActivity::FakeActivitySize(Some(s)) => s.into(),
192 _ => bug!("incorrect Dualv handling recognized."),
193 };
194 // stride: sizeof(T) * n_elems.
195 // n_elems is the next integer.
196 // Now we multiply `4 * next_outer_arg` to get the stride.
197 let mul = unsafe {
198 llvm::LLVMBuildMul(
199 builder.llbuilder,
200 cx.get_const_int(cx.type_i64(), elem_bytes_size),
201 next_outer_arg,
202 UNNAMED,
203 )
204 };
205 args.push(mul);
206 }
207 args.push(outer_arg);
208 if duplicated {
209 // We know that duplicated args by construction have a following argument,
210 // so this can not be out of bounds.
211 let next_outer_arg = outer_args[outer_pos + 1];
212 let next_outer_ty = cx.val_ty(next_outer_arg);
213 // FIXME(ZuseZ4): We should add support for Vec here too, but it's less urgent since
214 // vectors behind references (&Vec<T>) are already supported. Users can not pass a
215 // Vec by value for reverse mode, so this would only help forward mode autodiff.
216 let slice = {
217 if activity_pos + 1 >= inputs.len() {
218 // If there is no arg following our ptr, it also can't be a slice,
219 // since that would lead to a ptr, int pair.
220 false
221 } else {
222 let next_activity = inputs[activity_pos + 1];
223 // We analyze the MIR types and add this dummy activity if we visit a slice.
224 matches!(next_activity, DiffActivity::FakeActivitySize(_))
225 }
226 };
227 if slice {
228 // A duplicated slice will have the following two outer_fn arguments:
229 // (..., ptr1, int1, ptr2, int2, ...). We add the following llvm-ir to our __enzyme call:
230 // (..., metadata! enzyme_dup, ptr, ptr, int1, ...).
231 // FIXME(ZuseZ4): We will upstream a safety check later which asserts that
232 // int2 >= int1, which means the shadow vector is large enough to store the gradient.
233 assert_eq!(cx.type_kind(next_outer_ty), TypeKind::Integer);
234
235 let iterations =
236 if matches!(diff_activity, DiffActivity::Dualv) { 1 } else { width as usize };
237
238 for i in 0..iterations {
239 let next_outer_arg2 = outer_args[outer_pos + 2 * (i + 1)];
240 let next_outer_ty2 = cx.val_ty(next_outer_arg2);
241 assert_eq!(cx.type_kind(next_outer_ty2), TypeKind::Pointer);
242 let next_outer_arg3 = outer_args[outer_pos + 2 * (i + 1) + 1];
243 let next_outer_ty3 = cx.val_ty(next_outer_arg3);
244 assert_eq!(cx.type_kind(next_outer_ty3), TypeKind::Integer);
245 args.push(next_outer_arg2);
246 }
247 args.push(cx.get_metadata_value(enzyme_const));
248 args.push(next_outer_arg);
249 outer_pos += 2 + 2 * iterations;
250 activity_pos += 2;
251 } else {
252 // A duplicated pointer will have the following two outer_fn arguments:
253 // (..., ptr, ptr, ...). We add the following llvm-ir to our __enzyme call:
254 // (..., metadata! enzyme_dup, ptr, ptr, ...).
255 if matches!(diff_activity, DiffActivity::Duplicated | DiffActivity::DuplicatedOnly)
256 {
257 assert_eq!(cx.type_kind(next_outer_ty), TypeKind::Pointer);
258 }
259 // In the case of Dual we don't have assumptions, e.g. f32 would be valid.
260 args.push(next_outer_arg);
261 outer_pos += 2;
262 activity_pos += 1;
263
264 // Now, if width > 1, we need to account for that
265 for _ in 1..width {
266 let next_outer_arg = outer_args[outer_pos];
267 args.push(next_outer_arg);
268 outer_pos += 1;
269 }
270 }
271 } else {
272 // We do not differentiate with resprect to this argument.
273 // We already added the metadata and argument above, so just increase the counters.
274 outer_pos += 1;
275 activity_pos += 1;
276 }
277 }
278}
279
280/// When differentiating `fn_to_diff`, take a `outer_fn` and generate another
281/// function with expected naming and calling conventions[^1] which will be
282/// discovered by the enzyme LLVM pass and its body populated with the differentiated
283/// `fn_to_diff`. `outer_fn` is then modified to have a call to the generated
284/// function and handle the differences between the Rust calling convention and
285/// Enzyme.
286/// [^1]: <https://enzyme.mit.edu/getting_started/CallingConvention/>
287// FIXME(ZuseZ4): `outer_fn` should include upstream safety checks to
288// cover some assumptions of enzyme/autodiff, which could lead to UB otherwise.
289pub(crate) fn generate_enzyme_call<'ll, 'tcx>(
290 builder: &mut Builder<'_, 'll, 'tcx>,
291 cx: &SimpleCx<'ll>,
292 fn_to_diff: &'ll Value,
293 outer_name: &str,
294 ret_ty: &'ll Type,
295 fn_args: &[&'ll Value],
296 attrs: AutoDiffAttrs,
297 dest: PlaceRef<'tcx, &'ll Value>,
298 fnc_tree: FncTree,
299) {
300 // We have to pick the name depending on whether we want forward or reverse mode autodiff.
301 let mut ad_name: String = match attrs.mode {
302 DiffMode::Forward => "__enzyme_fwddiff",
303 DiffMode::Reverse => "__enzyme_autodiff",
304 _ => panic!("logic bug in autodiff, unrecognized mode"),
305 }
306 .to_string();
307
308 // add outer_name to ad_name to make it unique, in case users apply autodiff to multiple
309 // functions. Unwrap will only panic, if LLVM gave us an invalid string.
310 ad_name.push_str(outer_name);
311
312 // Let us assume the user wrote the following function square:
313 //
314 // ```llvm
315 // define double @square(double %x) {
316 // entry:
317 // %0 = fmul double %x, %x
318 // ret double %0
319 // }
320 //
321 // define double @dsquare(double %x) {
322 // return 0.0;
323 // }
324 // ```
325 //
326 // so our `outer_fn` will be `dsquare`. The unsafe code section below now removes the placeholder
327 // code and inserts an autodiff call. We also add a declaration for the __enzyme_autodiff call.
328 // Again, the arguments to all functions are slightly simplified.
329 // ```llvm
330 // declare double @__enzyme_autodiff_square(...)
331 //
332 // define double @dsquare(double %x) {
333 // entry:
334 // %0 = tail call double (...) @__enzyme_autodiff_square(double (double)* nonnull @square, double %x)
335 // ret double %0
336 // }
337 // ```
338 let enzyme_ty = unsafe { llvm::LLVMFunctionType(ret_ty, ptr::null(), 0, TRUE) };
339
340 // FIXME(ZuseZ4): the CC/Addr/Vis values are best effort guesses, we should look at tests and
341 // think a bit more about what should go here.
342 let cc = unsafe { llvm::LLVMGetFunctionCallConv(fn_to_diff) };
343 let ad_fn = declare_simple_fn(
344 cx,
345 &ad_name,
346 llvm::CallConv::try_from(cc).expect("invalid callconv"),
347 llvm::UnnamedAddr::No,
348 llvm::Visibility::Default,
349 enzyme_ty,
350 );
351
352 let num_args = llvm::LLVMCountParams(&fn_to_diff);
353 let mut args = Vec::with_capacity(num_args as usize + 1);
354 args.push(fn_to_diff);
355
356 let enzyme_primal_ret = cx.create_metadata(b"enzyme_primal_return");
357 if matches!(attrs.ret_activity, DiffActivity::Dual | DiffActivity::Active) {
358 args.push(cx.get_metadata_value(enzyme_primal_ret));
359 }
360 if attrs.width > 1 {
361 let enzyme_width = cx.create_metadata(b"enzyme_width");
362 args.push(cx.get_metadata_value(enzyme_width));
363 args.push(cx.get_const_int(cx.type_i64(), attrs.width as u64));
364 }
365
366 match_args_from_caller_to_enzyme(
367 &cx,
368 builder,
369 attrs.width,
370 &mut args,
371 &attrs.input_activity,
372 fn_args,
373 );
374
375 if !fnc_tree.args.is_empty() || !fnc_tree.ret.0.is_empty() {
376 crate::typetree::add_tt(cx.llmod, cx.llcx, fn_to_diff, fnc_tree);
377 }
378
379 let call = builder.call(enzyme_ty, None, None, ad_fn, &args, None, None);
380
381 builder.store_to_place(call, dest.val);
382}