rustc_codegen_llvm/builder/
autodiff.rs

1use std::ptr;
2
3use rustc_ast::expand::autodiff_attrs::{AutoDiffAttrs, AutoDiffItem, DiffActivity, DiffMode};
4use rustc_codegen_ssa::ModuleCodegen;
5use rustc_codegen_ssa::back::write::ModuleConfig;
6use rustc_codegen_ssa::traits::BaseTypeCodegenMethods as _;
7use rustc_errors::FatalError;
8use tracing::{debug, trace};
9
10use crate::back::write::llvm_err;
11use crate::builder::SBuilder;
12use crate::context::SimpleCx;
13use crate::declare::declare_simple_fn;
14use crate::errors::{AutoDiffWithoutEnable, LlvmError};
15use crate::llvm::AttributePlace::Function;
16use crate::llvm::{Metadata, True};
17use crate::value::Value;
18use crate::{CodegenContext, LlvmCodegenBackend, ModuleLlvm, attributes, llvm};
19
20fn get_params(fnc: &Value) -> Vec<&Value> {
21    unsafe {
22        let param_num = llvm::LLVMCountParams(fnc) as usize;
23        let mut fnc_args: Vec<&Value> = vec![];
24        fnc_args.reserve(param_num);
25        llvm::LLVMGetParams(fnc, fnc_args.as_mut_ptr());
26        fnc_args.set_len(param_num);
27        fnc_args
28    }
29}
30
31fn match_args_from_caller_to_enzyme<'ll>(
32    cx: &SimpleCx<'ll>,
33    args: &mut Vec<&'ll llvm::Value>,
34    inputs: &[DiffActivity],
35    outer_args: &[&'ll llvm::Value],
36) {
37    debug!("matching autodiff arguments");
38    // We now handle the issue that Rust level arguments not always match the llvm-ir level
39    // arguments. A slice, `&[f32]`, for example, is represented as a pointer and a length on
40    // llvm-ir level. The number of activities matches the number of Rust level arguments, so we
41    // need to match those.
42    // FIXME(ZuseZ4): This logic is a bit more complicated than it should be, can we simplify it
43    // using iterators and peek()?
44    let mut outer_pos: usize = 0;
45    let mut activity_pos = 0;
46
47    let enzyme_const = cx.create_metadata("enzyme_const".to_string()).unwrap();
48    let enzyme_out = cx.create_metadata("enzyme_out".to_string()).unwrap();
49    let enzyme_dup = cx.create_metadata("enzyme_dup".to_string()).unwrap();
50    let enzyme_dupnoneed = cx.create_metadata("enzyme_dupnoneed".to_string()).unwrap();
51
52    while activity_pos < inputs.len() {
53        let diff_activity = inputs[activity_pos as usize];
54        // Duplicated arguments received a shadow argument, into which enzyme will write the
55        // gradient.
56        let (activity, duplicated): (&Metadata, bool) = match diff_activity {
57            DiffActivity::None => panic!("not a valid input activity"),
58            DiffActivity::Const => (enzyme_const, false),
59            DiffActivity::Active => (enzyme_out, false),
60            DiffActivity::ActiveOnly => (enzyme_out, false),
61            DiffActivity::Dual => (enzyme_dup, true),
62            DiffActivity::DualOnly => (enzyme_dupnoneed, true),
63            DiffActivity::Duplicated => (enzyme_dup, true),
64            DiffActivity::DuplicatedOnly => (enzyme_dupnoneed, true),
65            DiffActivity::FakeActivitySize => (enzyme_const, false),
66        };
67        let outer_arg = outer_args[outer_pos];
68        args.push(cx.get_metadata_value(activity));
69        args.push(outer_arg);
70        if duplicated {
71            // We know that duplicated args by construction have a following argument,
72            // so this can not be out of bounds.
73            let next_outer_arg = outer_args[outer_pos + 1];
74            let next_outer_ty = cx.val_ty(next_outer_arg);
75            // FIXME(ZuseZ4): We should add support for Vec here too, but it's less urgent since
76            // vectors behind references (&Vec<T>) are already supported. Users can not pass a
77            // Vec by value for reverse mode, so this would only help forward mode autodiff.
78            let slice = {
79                if activity_pos + 1 >= inputs.len() {
80                    // If there is no arg following our ptr, it also can't be a slice,
81                    // since that would lead to a ptr, int pair.
82                    false
83                } else {
84                    let next_activity = inputs[activity_pos + 1];
85                    // We analyze the MIR types and add this dummy activity if we visit a slice.
86                    next_activity == DiffActivity::FakeActivitySize
87                }
88            };
89            if slice {
90                // A duplicated slice will have the following two outer_fn arguments:
91                // (..., ptr1, int1, ptr2, int2, ...). We add the following llvm-ir to our __enzyme call:
92                // (..., metadata! enzyme_dup, ptr, ptr, int1, ...).
93                // FIXME(ZuseZ4): We will upstream a safety check later which asserts that
94                // int2 >= int1, which means the shadow vector is large enough to store the gradient.
95                assert!(unsafe {
96                    llvm::LLVMRustGetTypeKind(next_outer_ty) == llvm::TypeKind::Integer
97                });
98                let next_outer_arg2 = outer_args[outer_pos + 2];
99                let next_outer_ty2 = cx.val_ty(next_outer_arg2);
100                assert!(unsafe {
101                    llvm::LLVMRustGetTypeKind(next_outer_ty2) == llvm::TypeKind::Pointer
102                });
103                let next_outer_arg3 = outer_args[outer_pos + 3];
104                let next_outer_ty3 = cx.val_ty(next_outer_arg3);
105                assert!(unsafe {
106                    llvm::LLVMRustGetTypeKind(next_outer_ty3) == llvm::TypeKind::Integer
107                });
108                args.push(next_outer_arg2);
109                args.push(cx.get_metadata_value(enzyme_const));
110                args.push(next_outer_arg);
111                outer_pos += 4;
112                activity_pos += 2;
113            } else {
114                // A duplicated pointer will have the following two outer_fn arguments:
115                // (..., ptr, ptr, ...). We add the following llvm-ir to our __enzyme call:
116                // (..., metadata! enzyme_dup, ptr, ptr, ...).
117                if matches!(diff_activity, DiffActivity::Duplicated | DiffActivity::DuplicatedOnly)
118                {
119                    assert!(
120                        unsafe { llvm::LLVMRustGetTypeKind(next_outer_ty) }
121                            == llvm::TypeKind::Pointer
122                    );
123                }
124                // In the case of Dual we don't have assumptions, e.g. f32 would be valid.
125                args.push(next_outer_arg);
126                outer_pos += 2;
127                activity_pos += 1;
128            }
129        } else {
130            // We do not differentiate with resprect to this argument.
131            // We already added the metadata and argument above, so just increase the counters.
132            outer_pos += 1;
133            activity_pos += 1;
134        }
135    }
136}
137
138/// When differentiating `fn_to_diff`, take a `outer_fn` and generate another
139/// function with expected naming and calling conventions[^1] which will be
140/// discovered by the enzyme LLVM pass and its body populated with the differentiated
141/// `fn_to_diff`. `outer_fn` is then modified to have a call to the generated
142/// function and handle the differences between the Rust calling convention and
143/// Enzyme.
144/// [^1]: <https://enzyme.mit.edu/getting_started/CallingConvention/>
145// FIXME(ZuseZ4): `outer_fn` should include upstream safety checks to
146// cover some assumptions of enzyme/autodiff, which could lead to UB otherwise.
147fn generate_enzyme_call<'ll>(
148    cx: &SimpleCx<'ll>,
149    fn_to_diff: &'ll Value,
150    outer_fn: &'ll Value,
151    attrs: AutoDiffAttrs,
152) {
153    // We have to pick the name depending on whether we want forward or reverse mode autodiff.
154    let mut ad_name: String = match attrs.mode {
155        DiffMode::Forward => "__enzyme_fwddiff",
156        DiffMode::Reverse => "__enzyme_autodiff",
157        _ => panic!("logic bug in autodiff, unrecognized mode"),
158    }
159    .to_string();
160
161    // add outer_fn name to ad_name to make it unique, in case users apply autodiff to multiple
162    // functions. Unwrap will only panic, if LLVM gave us an invalid string.
163    let name = llvm::get_value_name(outer_fn);
164    let outer_fn_name = std::str::from_utf8(name).unwrap();
165    ad_name.push_str(outer_fn_name);
166
167    // Let us assume the user wrote the following function square:
168    //
169    // ```llvm
170    // define double @square(double %x) {
171    // entry:
172    //  %0 = fmul double %x, %x
173    //  ret double %0
174    // }
175    // ```
176    //
177    // The user now applies autodiff to the function square, in which case fn_to_diff will be `square`.
178    // Our macro generates the following placeholder code (slightly simplified):
179    //
180    // ```llvm
181    // define double @dsquare(double %x) {
182    //  ; placeholder code
183    //  return 0.0;
184    // }
185    // ```
186    //
187    // so our `outer_fn` will be `dsquare`. The unsafe code section below now removes the placeholder
188    // code and inserts an autodiff call. We also add a declaration for the __enzyme_autodiff call.
189    // Again, the arguments to all functions are slightly simplified.
190    // ```llvm
191    // declare double @__enzyme_autodiff_square(...)
192    //
193    // define double @dsquare(double %x) {
194    // entry:
195    //   %0 = tail call double (...) @__enzyme_autodiff_square(double (double)* nonnull @square, double %x)
196    //   ret double %0
197    // }
198    // ```
199    unsafe {
200        // On LLVM-IR, we can luckily declare __enzyme_ functions without specifying the input
201        // arguments. We do however need to declare them with their correct return type.
202        // We already figured the correct return type out in our frontend, when generating the outer_fn,
203        // so we can now just go ahead and use that. FIXME(ZuseZ4): This doesn't handle sret yet.
204        let fn_ty = llvm::LLVMGlobalGetValueType(outer_fn);
205        let ret_ty = llvm::LLVMGetReturnType(fn_ty);
206
207        // LLVM can figure out the input types on it's own, so we take a shortcut here.
208        let enzyme_ty = llvm::LLVMFunctionType(ret_ty, ptr::null(), 0, True);
209
210        //FIXME(ZuseZ4): the CC/Addr/Vis values are best effort guesses, we should look at tests and
211        // think a bit more about what should go here.
212        let cc = llvm::LLVMGetFunctionCallConv(outer_fn);
213        let ad_fn = declare_simple_fn(
214            cx,
215            &ad_name,
216            llvm::CallConv::try_from(cc).expect("invalid callconv"),
217            llvm::UnnamedAddr::No,
218            llvm::Visibility::Default,
219            enzyme_ty,
220        );
221
222        // Otherwise LLVM might inline our temporary code before the enzyme pass has a chance to
223        // do it's work.
224        let attr = llvm::AttributeKind::NoInline.create_attr(cx.llcx);
225        attributes::apply_to_llfn(ad_fn, Function, &[attr]);
226
227        // first, remove all calls from fnc
228        let entry = llvm::LLVMGetFirstBasicBlock(outer_fn);
229        let br = llvm::LLVMRustGetTerminator(entry);
230        llvm::LLVMRustEraseInstFromParent(br);
231
232        let last_inst = llvm::LLVMRustGetLastInstruction(entry).unwrap();
233        let mut builder = SBuilder::build(cx, entry);
234
235        let num_args = llvm::LLVMCountParams(&fn_to_diff);
236        let mut args = Vec::with_capacity(num_args as usize + 1);
237        args.push(fn_to_diff);
238
239        let enzyme_primal_ret = cx.create_metadata("enzyme_primal_return".to_string()).unwrap();
240        if matches!(attrs.ret_activity, DiffActivity::Dual | DiffActivity::Active) {
241            args.push(cx.get_metadata_value(enzyme_primal_ret));
242        }
243
244        let outer_args: Vec<&llvm::Value> = get_params(outer_fn);
245        match_args_from_caller_to_enzyme(&cx, &mut args, &attrs.input_activity, &outer_args);
246
247        let call = builder.call(enzyme_ty, ad_fn, &args, None);
248
249        // This part is a bit iffy. LLVM requires that a call to an inlineable function has some
250        // metadata attachted to it, but we just created this code oota. Given that the
251        // differentiated function already has partly confusing metadata, and given that this
252        // affects nothing but the auttodiff IR, we take a shortcut and just steal metadata from the
253        // dummy code which we inserted at a higher level.
254        // FIXME(ZuseZ4): Work with Enzyme core devs to clarify what debug metadata issues we have,
255        // and how to best improve it for enzyme core and rust-enzyme.
256        let md_ty = cx.get_md_kind_id("dbg");
257        if llvm::LLVMRustHasMetadata(last_inst, md_ty) {
258            let md = llvm::LLVMRustDIGetInstMetadata(last_inst)
259                .expect("failed to get instruction metadata");
260            let md_todiff = cx.get_metadata_value(md);
261            llvm::LLVMSetMetadata(call, md_ty, md_todiff);
262        } else {
263            // We don't panic, since depending on whether we are in debug or release mode, we might
264            // have no debug info to copy, which would then be ok.
265            trace!("no dbg info");
266        }
267
268        // Now that we copied the metadata, get rid of dummy code.
269        llvm::LLVMRustEraseInstUntilInclusive(entry, last_inst);
270
271        if cx.val_ty(call) == cx.type_void() {
272            builder.ret_void();
273        } else {
274            builder.ret(call);
275        }
276
277        // Let's crash in case that we messed something up above and generated invalid IR.
278        llvm::LLVMRustVerifyFunction(
279            outer_fn,
280            llvm::LLVMRustVerifierFailureAction::LLVMAbortProcessAction,
281        );
282    }
283}
284
285pub(crate) fn differentiate<'ll>(
286    module: &'ll ModuleCodegen<ModuleLlvm>,
287    cgcx: &CodegenContext<LlvmCodegenBackend>,
288    diff_items: Vec<AutoDiffItem>,
289    _config: &ModuleConfig,
290) -> Result<(), FatalError> {
291    for item in &diff_items {
292        trace!("{}", item);
293    }
294
295    let diag_handler = cgcx.create_dcx();
296
297    let cx = SimpleCx::new(module.module_llvm.llmod(), module.module_llvm.llcx, cgcx.pointer_size);
298
299    // First of all, did the user try to use autodiff without using the -Zautodiff=Enable flag?
300    if !diff_items.is_empty()
301        && !cgcx.opts.unstable_opts.autodiff.contains(&rustc_session::config::AutoDiff::Enable)
302    {
303        let dcx = cgcx.create_dcx();
304        return Err(dcx.handle().emit_almost_fatal(AutoDiffWithoutEnable));
305    }
306
307    // Before dumping the module, we want all the TypeTrees to become part of the module.
308    for item in diff_items.iter() {
309        let name = item.source.clone();
310        let fn_def: Option<&llvm::Value> = cx.get_function(&name);
311        let Some(fn_def) = fn_def else {
312            return Err(llvm_err(
313                diag_handler.handle(),
314                LlvmError::PrepareAutoDiff {
315                    src: item.source.clone(),
316                    target: item.target.clone(),
317                    error: "could not find source function".to_owned(),
318                },
319            ));
320        };
321        debug!(?item.target);
322        let fn_target: Option<&llvm::Value> = cx.get_function(&item.target);
323        let Some(fn_target) = fn_target else {
324            return Err(llvm_err(
325                diag_handler.handle(),
326                LlvmError::PrepareAutoDiff {
327                    src: item.source.clone(),
328                    target: item.target.clone(),
329                    error: "could not find target function".to_owned(),
330                },
331            ));
332        };
333
334        generate_enzyme_call(&cx, fn_def, fn_target, item.attrs.clone());
335    }
336
337    // FIXME(ZuseZ4): support SanitizeHWAddress and prevent illegal/unsupported opts
338
339    trace!("done with differentiate()");
340
341    Ok(())
342}