rustc_codegen_llvm/builder/autodiff.rs
1use std::ptr;
2
3use rustc_ast::expand::autodiff_attrs::{AutoDiffAttrs, AutoDiffItem, DiffActivity, DiffMode};
4use rustc_codegen_ssa::ModuleCodegen;
5use rustc_codegen_ssa::back::write::ModuleConfig;
6use rustc_codegen_ssa::traits::BaseTypeCodegenMethods as _;
7use rustc_errors::FatalError;
8use tracing::{debug, trace};
9
10use crate::back::write::llvm_err;
11use crate::builder::SBuilder;
12use crate::context::SimpleCx;
13use crate::declare::declare_simple_fn;
14use crate::errors::{AutoDiffWithoutEnable, LlvmError};
15use crate::llvm::AttributePlace::Function;
16use crate::llvm::{Metadata, True};
17use crate::value::Value;
18use crate::{CodegenContext, LlvmCodegenBackend, ModuleLlvm, attributes, llvm};
19
20fn get_params(fnc: &Value) -> Vec<&Value> {
21 unsafe {
22 let param_num = llvm::LLVMCountParams(fnc) as usize;
23 let mut fnc_args: Vec<&Value> = vec![];
24 fnc_args.reserve(param_num);
25 llvm::LLVMGetParams(fnc, fnc_args.as_mut_ptr());
26 fnc_args.set_len(param_num);
27 fnc_args
28 }
29}
30
31fn match_args_from_caller_to_enzyme<'ll>(
32 cx: &SimpleCx<'ll>,
33 args: &mut Vec<&'ll llvm::Value>,
34 inputs: &[DiffActivity],
35 outer_args: &[&'ll llvm::Value],
36) {
37 debug!("matching autodiff arguments");
38 // We now handle the issue that Rust level arguments not always match the llvm-ir level
39 // arguments. A slice, `&[f32]`, for example, is represented as a pointer and a length on
40 // llvm-ir level. The number of activities matches the number of Rust level arguments, so we
41 // need to match those.
42 // FIXME(ZuseZ4): This logic is a bit more complicated than it should be, can we simplify it
43 // using iterators and peek()?
44 let mut outer_pos: usize = 0;
45 let mut activity_pos = 0;
46
47 let enzyme_const = cx.create_metadata("enzyme_const".to_string()).unwrap();
48 let enzyme_out = cx.create_metadata("enzyme_out".to_string()).unwrap();
49 let enzyme_dup = cx.create_metadata("enzyme_dup".to_string()).unwrap();
50 let enzyme_dupnoneed = cx.create_metadata("enzyme_dupnoneed".to_string()).unwrap();
51
52 while activity_pos < inputs.len() {
53 let diff_activity = inputs[activity_pos as usize];
54 // Duplicated arguments received a shadow argument, into which enzyme will write the
55 // gradient.
56 let (activity, duplicated): (&Metadata, bool) = match diff_activity {
57 DiffActivity::None => panic!("not a valid input activity"),
58 DiffActivity::Const => (enzyme_const, false),
59 DiffActivity::Active => (enzyme_out, false),
60 DiffActivity::ActiveOnly => (enzyme_out, false),
61 DiffActivity::Dual => (enzyme_dup, true),
62 DiffActivity::DualOnly => (enzyme_dupnoneed, true),
63 DiffActivity::Duplicated => (enzyme_dup, true),
64 DiffActivity::DuplicatedOnly => (enzyme_dupnoneed, true),
65 DiffActivity::FakeActivitySize => (enzyme_const, false),
66 };
67 let outer_arg = outer_args[outer_pos];
68 args.push(cx.get_metadata_value(activity));
69 args.push(outer_arg);
70 if duplicated {
71 // We know that duplicated args by construction have a following argument,
72 // so this can not be out of bounds.
73 let next_outer_arg = outer_args[outer_pos + 1];
74 let next_outer_ty = cx.val_ty(next_outer_arg);
75 // FIXME(ZuseZ4): We should add support for Vec here too, but it's less urgent since
76 // vectors behind references (&Vec<T>) are already supported. Users can not pass a
77 // Vec by value for reverse mode, so this would only help forward mode autodiff.
78 let slice = {
79 if activity_pos + 1 >= inputs.len() {
80 // If there is no arg following our ptr, it also can't be a slice,
81 // since that would lead to a ptr, int pair.
82 false
83 } else {
84 let next_activity = inputs[activity_pos + 1];
85 // We analyze the MIR types and add this dummy activity if we visit a slice.
86 next_activity == DiffActivity::FakeActivitySize
87 }
88 };
89 if slice {
90 // A duplicated slice will have the following two outer_fn arguments:
91 // (..., ptr1, int1, ptr2, int2, ...). We add the following llvm-ir to our __enzyme call:
92 // (..., metadata! enzyme_dup, ptr, ptr, int1, ...).
93 // FIXME(ZuseZ4): We will upstream a safety check later which asserts that
94 // int2 >= int1, which means the shadow vector is large enough to store the gradient.
95 assert!(unsafe {
96 llvm::LLVMRustGetTypeKind(next_outer_ty) == llvm::TypeKind::Integer
97 });
98 let next_outer_arg2 = outer_args[outer_pos + 2];
99 let next_outer_ty2 = cx.val_ty(next_outer_arg2);
100 assert!(unsafe {
101 llvm::LLVMRustGetTypeKind(next_outer_ty2) == llvm::TypeKind::Pointer
102 });
103 let next_outer_arg3 = outer_args[outer_pos + 3];
104 let next_outer_ty3 = cx.val_ty(next_outer_arg3);
105 assert!(unsafe {
106 llvm::LLVMRustGetTypeKind(next_outer_ty3) == llvm::TypeKind::Integer
107 });
108 args.push(next_outer_arg2);
109 args.push(cx.get_metadata_value(enzyme_const));
110 args.push(next_outer_arg);
111 outer_pos += 4;
112 activity_pos += 2;
113 } else {
114 // A duplicated pointer will have the following two outer_fn arguments:
115 // (..., ptr, ptr, ...). We add the following llvm-ir to our __enzyme call:
116 // (..., metadata! enzyme_dup, ptr, ptr, ...).
117 if matches!(diff_activity, DiffActivity::Duplicated | DiffActivity::DuplicatedOnly)
118 {
119 assert!(
120 unsafe { llvm::LLVMRustGetTypeKind(next_outer_ty) }
121 == llvm::TypeKind::Pointer
122 );
123 }
124 // In the case of Dual we don't have assumptions, e.g. f32 would be valid.
125 args.push(next_outer_arg);
126 outer_pos += 2;
127 activity_pos += 1;
128 }
129 } else {
130 // We do not differentiate with resprect to this argument.
131 // We already added the metadata and argument above, so just increase the counters.
132 outer_pos += 1;
133 activity_pos += 1;
134 }
135 }
136}
137
138/// When differentiating `fn_to_diff`, take a `outer_fn` and generate another
139/// function with expected naming and calling conventions[^1] which will be
140/// discovered by the enzyme LLVM pass and its body populated with the differentiated
141/// `fn_to_diff`. `outer_fn` is then modified to have a call to the generated
142/// function and handle the differences between the Rust calling convention and
143/// Enzyme.
144/// [^1]: <https://enzyme.mit.edu/getting_started/CallingConvention/>
145// FIXME(ZuseZ4): `outer_fn` should include upstream safety checks to
146// cover some assumptions of enzyme/autodiff, which could lead to UB otherwise.
147fn generate_enzyme_call<'ll>(
148 cx: &SimpleCx<'ll>,
149 fn_to_diff: &'ll Value,
150 outer_fn: &'ll Value,
151 attrs: AutoDiffAttrs,
152) {
153 // We have to pick the name depending on whether we want forward or reverse mode autodiff.
154 let mut ad_name: String = match attrs.mode {
155 DiffMode::Forward => "__enzyme_fwddiff",
156 DiffMode::Reverse => "__enzyme_autodiff",
157 _ => panic!("logic bug in autodiff, unrecognized mode"),
158 }
159 .to_string();
160
161 // add outer_fn name to ad_name to make it unique, in case users apply autodiff to multiple
162 // functions. Unwrap will only panic, if LLVM gave us an invalid string.
163 let name = llvm::get_value_name(outer_fn);
164 let outer_fn_name = std::str::from_utf8(name).unwrap();
165 ad_name.push_str(outer_fn_name);
166
167 // Let us assume the user wrote the following function square:
168 //
169 // ```llvm
170 // define double @square(double %x) {
171 // entry:
172 // %0 = fmul double %x, %x
173 // ret double %0
174 // }
175 // ```
176 //
177 // The user now applies autodiff to the function square, in which case fn_to_diff will be `square`.
178 // Our macro generates the following placeholder code (slightly simplified):
179 //
180 // ```llvm
181 // define double @dsquare(double %x) {
182 // ; placeholder code
183 // return 0.0;
184 // }
185 // ```
186 //
187 // so our `outer_fn` will be `dsquare`. The unsafe code section below now removes the placeholder
188 // code and inserts an autodiff call. We also add a declaration for the __enzyme_autodiff call.
189 // Again, the arguments to all functions are slightly simplified.
190 // ```llvm
191 // declare double @__enzyme_autodiff_square(...)
192 //
193 // define double @dsquare(double %x) {
194 // entry:
195 // %0 = tail call double (...) @__enzyme_autodiff_square(double (double)* nonnull @square, double %x)
196 // ret double %0
197 // }
198 // ```
199 unsafe {
200 // On LLVM-IR, we can luckily declare __enzyme_ functions without specifying the input
201 // arguments. We do however need to declare them with their correct return type.
202 // We already figured the correct return type out in our frontend, when generating the outer_fn,
203 // so we can now just go ahead and use that. FIXME(ZuseZ4): This doesn't handle sret yet.
204 let fn_ty = llvm::LLVMGlobalGetValueType(outer_fn);
205 let ret_ty = llvm::LLVMGetReturnType(fn_ty);
206
207 // LLVM can figure out the input types on it's own, so we take a shortcut here.
208 let enzyme_ty = llvm::LLVMFunctionType(ret_ty, ptr::null(), 0, True);
209
210 //FIXME(ZuseZ4): the CC/Addr/Vis values are best effort guesses, we should look at tests and
211 // think a bit more about what should go here.
212 let cc = llvm::LLVMGetFunctionCallConv(outer_fn);
213 let ad_fn = declare_simple_fn(
214 cx,
215 &ad_name,
216 llvm::CallConv::try_from(cc).expect("invalid callconv"),
217 llvm::UnnamedAddr::No,
218 llvm::Visibility::Default,
219 enzyme_ty,
220 );
221
222 // Otherwise LLVM might inline our temporary code before the enzyme pass has a chance to
223 // do it's work.
224 let attr = llvm::AttributeKind::NoInline.create_attr(cx.llcx);
225 attributes::apply_to_llfn(ad_fn, Function, &[attr]);
226
227 // first, remove all calls from fnc
228 let entry = llvm::LLVMGetFirstBasicBlock(outer_fn);
229 let br = llvm::LLVMRustGetTerminator(entry);
230 llvm::LLVMRustEraseInstFromParent(br);
231
232 let last_inst = llvm::LLVMRustGetLastInstruction(entry).unwrap();
233 let mut builder = SBuilder::build(cx, entry);
234
235 let num_args = llvm::LLVMCountParams(&fn_to_diff);
236 let mut args = Vec::with_capacity(num_args as usize + 1);
237 args.push(fn_to_diff);
238
239 let enzyme_primal_ret = cx.create_metadata("enzyme_primal_return".to_string()).unwrap();
240 if matches!(attrs.ret_activity, DiffActivity::Dual | DiffActivity::Active) {
241 args.push(cx.get_metadata_value(enzyme_primal_ret));
242 }
243
244 let outer_args: Vec<&llvm::Value> = get_params(outer_fn);
245 match_args_from_caller_to_enzyme(&cx, &mut args, &attrs.input_activity, &outer_args);
246
247 let call = builder.call(enzyme_ty, ad_fn, &args, None);
248
249 // This part is a bit iffy. LLVM requires that a call to an inlineable function has some
250 // metadata attachted to it, but we just created this code oota. Given that the
251 // differentiated function already has partly confusing metadata, and given that this
252 // affects nothing but the auttodiff IR, we take a shortcut and just steal metadata from the
253 // dummy code which we inserted at a higher level.
254 // FIXME(ZuseZ4): Work with Enzyme core devs to clarify what debug metadata issues we have,
255 // and how to best improve it for enzyme core and rust-enzyme.
256 let md_ty = cx.get_md_kind_id("dbg");
257 if llvm::LLVMRustHasMetadata(last_inst, md_ty) {
258 let md = llvm::LLVMRustDIGetInstMetadata(last_inst)
259 .expect("failed to get instruction metadata");
260 let md_todiff = cx.get_metadata_value(md);
261 llvm::LLVMSetMetadata(call, md_ty, md_todiff);
262 } else {
263 // We don't panic, since depending on whether we are in debug or release mode, we might
264 // have no debug info to copy, which would then be ok.
265 trace!("no dbg info");
266 }
267
268 // Now that we copied the metadata, get rid of dummy code.
269 llvm::LLVMRustEraseInstUntilInclusive(entry, last_inst);
270
271 if cx.val_ty(call) == cx.type_void() {
272 builder.ret_void();
273 } else {
274 builder.ret(call);
275 }
276
277 // Let's crash in case that we messed something up above and generated invalid IR.
278 llvm::LLVMRustVerifyFunction(
279 outer_fn,
280 llvm::LLVMRustVerifierFailureAction::LLVMAbortProcessAction,
281 );
282 }
283}
284
285pub(crate) fn differentiate<'ll>(
286 module: &'ll ModuleCodegen<ModuleLlvm>,
287 cgcx: &CodegenContext<LlvmCodegenBackend>,
288 diff_items: Vec<AutoDiffItem>,
289 _config: &ModuleConfig,
290) -> Result<(), FatalError> {
291 for item in &diff_items {
292 trace!("{}", item);
293 }
294
295 let diag_handler = cgcx.create_dcx();
296
297 let cx = SimpleCx::new(module.module_llvm.llmod(), module.module_llvm.llcx, cgcx.pointer_size);
298
299 // First of all, did the user try to use autodiff without using the -Zautodiff=Enable flag?
300 if !diff_items.is_empty()
301 && !cgcx.opts.unstable_opts.autodiff.contains(&rustc_session::config::AutoDiff::Enable)
302 {
303 let dcx = cgcx.create_dcx();
304 return Err(dcx.handle().emit_almost_fatal(AutoDiffWithoutEnable));
305 }
306
307 // Before dumping the module, we want all the TypeTrees to become part of the module.
308 for item in diff_items.iter() {
309 let name = item.source.clone();
310 let fn_def: Option<&llvm::Value> = cx.get_function(&name);
311 let Some(fn_def) = fn_def else {
312 return Err(llvm_err(
313 diag_handler.handle(),
314 LlvmError::PrepareAutoDiff {
315 src: item.source.clone(),
316 target: item.target.clone(),
317 error: "could not find source function".to_owned(),
318 },
319 ));
320 };
321 debug!(?item.target);
322 let fn_target: Option<&llvm::Value> = cx.get_function(&item.target);
323 let Some(fn_target) = fn_target else {
324 return Err(llvm_err(
325 diag_handler.handle(),
326 LlvmError::PrepareAutoDiff {
327 src: item.source.clone(),
328 target: item.target.clone(),
329 error: "could not find target function".to_owned(),
330 },
331 ));
332 };
333
334 generate_enzyme_call(&cx, fn_def, fn_target, item.attrs.clone());
335 }
336
337 // FIXME(ZuseZ4): support SanitizeHWAddress and prevent illegal/unsupported opts
338
339 trace!("done with differentiate()");
340
341 Ok(())
342}