Skip to main content

rustc_trait_selection/error_reporting/traits/
fulfillment_errors.rs

1// ignore-tidy-filelength
2use core::ops::ControlFlow;
3use std::borrow::Cow;
4use std::collections::hash_set;
5use std::path::PathBuf;
6
7use rustc_abi::ExternAbi;
8use rustc_ast::ast::LitKind;
9use rustc_ast::{LitIntType, TraitObjectSyntax};
10use rustc_data_structures::fx::{FxHashMap, FxHashSet};
11use rustc_data_structures::unord::UnordSet;
12use rustc_errors::codes::*;
13use rustc_errors::{
14    Applicability, Diag, ErrorGuaranteed, Level, MultiSpan, StashKey, StringPart, Suggestions,
15    inline_fluent, pluralize, struct_span_code_err,
16};
17use rustc_hir::def_id::{DefId, LOCAL_CRATE, LocalDefId};
18use rustc_hir::intravisit::Visitor;
19use rustc_hir::{self as hir, LangItem, Node};
20use rustc_infer::infer::{InferOk, TypeTrace};
21use rustc_infer::traits::ImplSource;
22use rustc_infer::traits::solve::Goal;
23use rustc_middle::traits::SignatureMismatchData;
24use rustc_middle::traits::select::OverflowError;
25use rustc_middle::ty::abstract_const::NotConstEvaluatable;
26use rustc_middle::ty::error::{ExpectedFound, TypeError};
27use rustc_middle::ty::print::{
28    PrintPolyTraitPredicateExt, PrintTraitPredicateExt as _, PrintTraitRefExt as _,
29    with_forced_trimmed_paths,
30};
31use rustc_middle::ty::{
32    self, GenericArgKind, TraitRef, Ty, TyCtxt, TypeFoldable, TypeFolder, TypeSuperFoldable,
33    TypeVisitableExt, Upcast,
34};
35use rustc_middle::{bug, span_bug};
36use rustc_span::def_id::CrateNum;
37use rustc_span::{BytePos, DUMMY_SP, STDLIB_STABLE_CRATES, Span, Symbol, sym};
38use tracing::{debug, instrument};
39
40use super::on_unimplemented::{AppendConstMessage, OnUnimplementedNote};
41use super::suggestions::get_explanation_based_on_obligation;
42use super::{
43    ArgKind, CandidateSimilarity, FindExprBySpan, GetSafeTransmuteErrorAndReason, ImplCandidate,
44};
45use crate::error_reporting::TypeErrCtxt;
46use crate::error_reporting::infer::TyCategory;
47use crate::error_reporting::traits::on_unimplemented::OnUnimplementedDirective;
48use crate::error_reporting::traits::report_dyn_incompatibility;
49use crate::errors::{ClosureFnMutLabel, ClosureFnOnceLabel, ClosureKindMismatch, CoroClosureNotFn};
50use crate::infer::{self, InferCtxt, InferCtxtExt as _};
51use crate::traits::query::evaluate_obligation::InferCtxtExt as _;
52use crate::traits::{
53    MismatchedProjectionTypes, NormalizeExt, Obligation, ObligationCause, ObligationCauseCode,
54    ObligationCtxt, PredicateObligation, SelectionContext, SelectionError, elaborate,
55    specialization_graph,
56};
57
58impl<'a, 'tcx> TypeErrCtxt<'a, 'tcx> {
59    /// The `root_obligation` parameter should be the `root_obligation` field
60    /// from a `FulfillmentError`. If no `FulfillmentError` is available,
61    /// then it should be the same as `obligation`.
62    pub fn report_selection_error(
63        &self,
64        mut obligation: PredicateObligation<'tcx>,
65        root_obligation: &PredicateObligation<'tcx>,
66        error: &SelectionError<'tcx>,
67    ) -> ErrorGuaranteed {
68        let tcx = self.tcx;
69        let mut span = obligation.cause.span;
70        let mut long_ty_file = None;
71
72        let mut err = match *error {
73            SelectionError::Unimplemented => {
74                // If this obligation was generated as a result of well-formedness checking, see if we
75                // can get a better error message by performing HIR-based well-formedness checking.
76                if let ObligationCauseCode::WellFormed(Some(wf_loc)) =
77                    root_obligation.cause.code().peel_derives()
78                    && !obligation.predicate.has_non_region_infer()
79                {
80                    if let Some(cause) = self
81                        .tcx
82                        .diagnostic_hir_wf_check((tcx.erase_and_anonymize_regions(obligation.predicate), *wf_loc))
83                    {
84                        obligation.cause = cause.clone();
85                        span = obligation.cause.span;
86                    }
87                }
88
89                if let ObligationCauseCode::CompareImplItem {
90                    impl_item_def_id,
91                    trait_item_def_id,
92                    kind: _,
93                } = *obligation.cause.code()
94                {
95                    {
    use ::tracing::__macro_support::Callsite as _;
    static __CALLSITE: ::tracing::callsite::DefaultCallsite =
        {
            static META: ::tracing::Metadata<'static> =
                {
                    ::tracing_core::metadata::Metadata::new("event compiler/rustc_trait_selection/src/error_reporting/traits/fulfillment_errors.rs:95",
                        "rustc_trait_selection::error_reporting::traits::fulfillment_errors",
                        ::tracing::Level::DEBUG,
                        ::tracing_core::__macro_support::Option::Some("compiler/rustc_trait_selection/src/error_reporting/traits/fulfillment_errors.rs"),
                        ::tracing_core::__macro_support::Option::Some(95u32),
                        ::tracing_core::__macro_support::Option::Some("rustc_trait_selection::error_reporting::traits::fulfillment_errors"),
                        ::tracing_core::field::FieldSet::new(&["message"],
                            ::tracing_core::callsite::Identifier(&__CALLSITE)),
                        ::tracing::metadata::Kind::EVENT)
                };
            ::tracing::callsite::DefaultCallsite::new(&META)
        };
    let enabled =
        ::tracing::Level::DEBUG <= ::tracing::level_filters::STATIC_MAX_LEVEL
                &&
                ::tracing::Level::DEBUG <=
                    ::tracing::level_filters::LevelFilter::current() &&
            {
                let interest = __CALLSITE.interest();
                !interest.is_never() &&
                    ::tracing::__macro_support::__is_enabled(__CALLSITE.metadata(),
                        interest)
            };
    if enabled {
        (|value_set: ::tracing::field::ValueSet|
                    {
                        let meta = __CALLSITE.metadata();
                        ::tracing::Event::dispatch(meta, &value_set);
                        ;
                    })({
                #[allow(unused_imports)]
                use ::tracing::field::{debug, display, Value};
                let mut iter = __CALLSITE.metadata().fields().iter();
                __CALLSITE.metadata().fields().value_set(&[(&::tracing::__macro_support::Iterator::next(&mut iter).expect("FieldSet corrupted (this is a bug)"),
                                    ::tracing::__macro_support::Option::Some(&format_args!("ObligationCauseCode::CompareImplItemObligation")
                                            as &dyn Value))])
            });
    } else { ; }
};debug!("ObligationCauseCode::CompareImplItemObligation");
96                    return self.report_extra_impl_obligation(
97                        span,
98                        impl_item_def_id,
99                        trait_item_def_id,
100                        &::alloc::__export::must_use({
        ::alloc::fmt::format(format_args!("`{0}`", obligation.predicate))
    })format!("`{}`", obligation.predicate),
101                    )
102                    .emit()
103                }
104
105                // Report a const-param specific error
106                if let ObligationCauseCode::ConstParam(ty) = *obligation.cause.code().peel_derives()
107                {
108                    return self.report_const_param_not_wf(ty, &obligation).emit();
109                }
110
111                let bound_predicate = obligation.predicate.kind();
112                match bound_predicate.skip_binder() {
113                    ty::PredicateKind::Clause(ty::ClauseKind::Trait(trait_predicate)) => {
114                        let leaf_trait_predicate =
115                            self.resolve_vars_if_possible(bound_predicate.rebind(trait_predicate));
116
117                        // Let's use the root obligation as the main message, when we care about the
118                        // most general case ("X doesn't implement Pattern<'_>") over the case that
119                        // happened to fail ("char doesn't implement Fn(&mut char)").
120                        //
121                        // We rely on a few heuristics to identify cases where this root
122                        // obligation is more important than the leaf obligation:
123                        let (main_trait_predicate, main_obligation) = if let ty::PredicateKind::Clause(
124                            ty::ClauseKind::Trait(root_pred)
125                        ) = root_obligation.predicate.kind().skip_binder()
126                            && !leaf_trait_predicate.self_ty().skip_binder().has_escaping_bound_vars()
127                            && !root_pred.self_ty().has_escaping_bound_vars()
128                            // The type of the leaf predicate is (roughly) the same as the type
129                            // from the root predicate, as a proxy for "we care about the root"
130                            // FIXME: this doesn't account for trivial derefs, but works as a first
131                            // approximation.
132                            && (
133                                // `T: Trait` && `&&T: OtherTrait`, we want `OtherTrait`
134                                self.can_eq(
135                                    obligation.param_env,
136                                    leaf_trait_predicate.self_ty().skip_binder(),
137                                    root_pred.self_ty().peel_refs(),
138                                )
139                                // `&str: Iterator` && `&str: IntoIterator`, we want `IntoIterator`
140                                || self.can_eq(
141                                    obligation.param_env,
142                                    leaf_trait_predicate.self_ty().skip_binder(),
143                                    root_pred.self_ty(),
144                                )
145                            )
146                            // The leaf trait and the root trait are different, so as to avoid
147                            // talking about `&mut T: Trait` and instead remain talking about
148                            // `T: Trait` instead
149                            && leaf_trait_predicate.def_id() != root_pred.def_id()
150                            // The root trait is not `Unsize`, as to avoid talking about it in
151                            // `tests/ui/coercion/coerce-issue-49593-box-never.rs`.
152                            && !self.tcx.is_lang_item(root_pred.def_id(), LangItem::Unsize)
153                        {
154                            (
155                                self.resolve_vars_if_possible(
156                                    root_obligation.predicate.kind().rebind(root_pred),
157                                ),
158                                root_obligation,
159                            )
160                        } else {
161                            (leaf_trait_predicate, &obligation)
162                        };
163
164                        if let Some(guar) = self.emit_specialized_closure_kind_error(
165                            &obligation,
166                            leaf_trait_predicate,
167                        ) {
168                            return guar;
169                        }
170
171                        if let Err(guar) = leaf_trait_predicate.error_reported()
172                        {
173                            return guar;
174                        }
175                        // Silence redundant errors on binding access that are already
176                        // reported on the binding definition (#56607).
177                        if let Err(guar) = self.fn_arg_obligation(&obligation) {
178                            return guar;
179                        }
180                        let (post_message, pre_message, type_def) = self
181                            .get_parent_trait_ref(obligation.cause.code())
182                            .map(|(t, s)| {
183                                let t = self.tcx.short_string(t, &mut long_ty_file);
184                                (
185                                    ::alloc::__export::must_use({
        ::alloc::fmt::format(format_args!(" in `{0}`", t))
    })format!(" in `{t}`"),
186                                    ::alloc::__export::must_use({
        ::alloc::fmt::format(format_args!("within `{0}`, ", t))
    })format!("within `{t}`, "),
187                                    s.map(|s| (::alloc::__export::must_use({
        ::alloc::fmt::format(format_args!("within this `{0}`", t))
    })format!("within this `{t}`"), s)),
188                                )
189                            })
190                            .unwrap_or_default();
191
192                        let OnUnimplementedNote {
193                            message,
194                            label,
195                            notes,
196                            parent_label,
197                            append_const_msg,
198                        } = self.on_unimplemented_note(main_trait_predicate, main_obligation, &mut long_ty_file);
199
200                        let have_alt_message = message.is_some() || label.is_some();
201                        let is_try_conversion = self.is_try_conversion(span, main_trait_predicate.def_id());
202                        let is_question_mark = #[allow(non_exhaustive_omitted_patterns)] match root_obligation.cause.code().peel_derives()
    {
    ObligationCauseCode::QuestionMark => true,
    _ => false,
}matches!(
203                            root_obligation.cause.code().peel_derives(),
204                            ObligationCauseCode::QuestionMark,
205                        ) && !(
206                            self.tcx.is_diagnostic_item(sym::FromResidual, main_trait_predicate.def_id())
207                                || self.tcx.is_lang_item(main_trait_predicate.def_id(), LangItem::Try)
208                        );
209                        let is_unsize =
210                            self.tcx.is_lang_item(leaf_trait_predicate.def_id(), LangItem::Unsize);
211                        let question_mark_message = "the question mark operation (`?`) implicitly \
212                                                     performs a conversion on the error value \
213                                                     using the `From` trait";
214                        let (message, notes, append_const_msg) = if is_try_conversion {
215                            let ty = self.tcx.short_string(
216                                main_trait_predicate.skip_binder().self_ty(),
217                                &mut long_ty_file,
218                            );
219                            // We have a `-> Result<_, E1>` and `gives_E2()?`.
220                            (
221                                Some(::alloc::__export::must_use({
        ::alloc::fmt::format(format_args!("`?` couldn\'t convert the error to `{0}`",
                ty))
    })format!("`?` couldn't convert the error to `{ty}`")),
222                                <[_]>::into_vec(::alloc::boxed::box_new([question_mark_message.to_owned()]))vec![question_mark_message.to_owned()],
223                                Some(AppendConstMessage::Default),
224                            )
225                        } else if is_question_mark {
226                            let main_trait_predicate =
227                                self.tcx.short_string(main_trait_predicate, &mut long_ty_file);
228                            // Similar to the case above, but in this case the conversion is for a
229                            // trait object: `-> Result<_, Box<dyn Error>` and `gives_E()?` when
230                            // `E: Error` isn't met.
231                            (
232                                Some(::alloc::__export::must_use({
        ::alloc::fmt::format(format_args!("`?` couldn\'t convert the error: `{0}` is not satisfied",
                main_trait_predicate))
    })format!(
233                                    "`?` couldn't convert the error: `{main_trait_predicate}` is \
234                                     not satisfied",
235                                )),
236                                <[_]>::into_vec(::alloc::boxed::box_new([question_mark_message.to_owned()]))vec![question_mark_message.to_owned()],
237                                Some(AppendConstMessage::Default),
238                            )
239                        } else {
240                            (message, notes, append_const_msg)
241                        };
242
243                        let default_err_msg = || self.get_standard_error_message(
244                            main_trait_predicate,
245                            message,
246                            None,
247                            append_const_msg,
248                            post_message,
249                            &mut long_ty_file,
250                        );
251
252                        let (err_msg, safe_transmute_explanation) = if self.tcx.is_lang_item(
253                            main_trait_predicate.def_id(),
254                            LangItem::TransmuteTrait,
255                        ) {
256                            // Recompute the safe transmute reason and use that for the error reporting
257                            match self.get_safe_transmute_error_and_reason(
258                                obligation.clone(),
259                                main_trait_predicate,
260                                span,
261                            ) {
262                                GetSafeTransmuteErrorAndReason::Silent => {
263                                    return self.dcx().span_delayed_bug(
264                                        span, "silent safe transmute error"
265                                    );
266                                }
267                                GetSafeTransmuteErrorAndReason::Default => {
268                                    (default_err_msg(), None)
269                                }
270                                GetSafeTransmuteErrorAndReason::Error {
271                                    err_msg,
272                                    safe_transmute_explanation,
273                                } => (err_msg, safe_transmute_explanation),
274                            }
275                        } else {
276                            (default_err_msg(), None)
277                        };
278
279                        let mut err = {
    self.dcx().struct_span_err(span,
            ::alloc::__export::must_use({
                    ::alloc::fmt::format(format_args!("{0}", err_msg))
                })).with_code(E0277)
}struct_span_code_err!(self.dcx(), span, E0277, "{}", err_msg);
280
281                        let trait_def_id = main_trait_predicate.def_id();
282                        if self.tcx.is_diagnostic_item(sym::From, trait_def_id)
283                            || self.tcx.is_diagnostic_item(sym::TryFrom, trait_def_id)
284                        {
285                            let found_ty = leaf_trait_predicate.skip_binder().trait_ref.args.type_at(1);
286                            let ty = main_trait_predicate.skip_binder().self_ty();
287                            if let Some(cast_ty) = self.find_explicit_cast_type(
288                                obligation.param_env,
289                                found_ty,
290                                ty,
291                            ) {
292                                let found_ty_str = self.tcx.short_string(found_ty, &mut long_ty_file);
293                                let cast_ty_str = self.tcx.short_string(cast_ty, &mut long_ty_file);
294                                err.help(
295                                    ::alloc::__export::must_use({
        ::alloc::fmt::format(format_args!("consider casting the `{0}` value to `{1}`",
                found_ty_str, cast_ty_str))
    })format!(
296                                        "consider casting the `{found_ty_str}` value to `{cast_ty_str}`",
297                                    ),
298                                );
299                            }
300                        }
301
302                        *err.long_ty_path() = long_ty_file;
303
304                        let mut suggested = false;
305                        let mut noted_missing_impl = false;
306                        if is_try_conversion || is_question_mark {
307                            (suggested, noted_missing_impl) = self.try_conversion_context(&obligation, main_trait_predicate, &mut err);
308                        }
309
310                        suggested |= self.detect_negative_literal(
311                            &obligation,
312                            main_trait_predicate,
313                            &mut err,
314                        );
315
316                        if let Some(ret_span) = self.return_type_span(&obligation) {
317                            if is_try_conversion {
318                                let ty = self.tcx.short_string(
319                                    main_trait_predicate.skip_binder().self_ty(),
320                                    err.long_ty_path(),
321                                );
322                                err.span_label(
323                                    ret_span,
324                                    ::alloc::__export::must_use({
        ::alloc::fmt::format(format_args!("expected `{0}` because of this",
                ty))
    })format!("expected `{ty}` because of this"),
325                                );
326                            } else if is_question_mark {
327                                let main_trait_predicate =
328                                    self.tcx.short_string(main_trait_predicate, err.long_ty_path());
329                                err.span_label(
330                                    ret_span,
331                                    ::alloc::__export::must_use({
        ::alloc::fmt::format(format_args!("required `{0}` because of this",
                main_trait_predicate))
    })format!("required `{main_trait_predicate}` because of this"),
332                                );
333                            }
334                        }
335
336                        if tcx.is_lang_item(leaf_trait_predicate.def_id(), LangItem::Tuple) {
337                            self.add_tuple_trait_message(
338                                obligation.cause.code().peel_derives(),
339                                &mut err,
340                            );
341                        }
342
343                        let explanation = get_explanation_based_on_obligation(
344                            self.tcx,
345                            &obligation,
346                            leaf_trait_predicate,
347                            pre_message,
348                            err.long_ty_path(),
349                        );
350
351                        self.check_for_binding_assigned_block_without_tail_expression(
352                            &obligation,
353                            &mut err,
354                            leaf_trait_predicate,
355                        );
356                        self.suggest_add_result_as_return_type(
357                            &obligation,
358                            &mut err,
359                            leaf_trait_predicate,
360                        );
361
362                        if self.suggest_add_reference_to_arg(
363                            &obligation,
364                            &mut err,
365                            leaf_trait_predicate,
366                            have_alt_message,
367                        ) {
368                            self.note_obligation_cause(&mut err, &obligation);
369                            return err.emit();
370                        }
371
372                        let ty_span = match leaf_trait_predicate.self_ty().skip_binder().kind() {
373                            ty::Adt(def, _) if def.did().is_local()
374                                && !self.can_suggest_derive(&obligation, leaf_trait_predicate) => self.tcx.def_span(def.did()),
375                            _ => DUMMY_SP,
376                        };
377                        if let Some(s) = label {
378                            // If it has a custom `#[rustc_on_unimplemented]`
379                            // error message, let's display it as the label!
380                            err.span_label(span, s);
381                            if !#[allow(non_exhaustive_omitted_patterns)] match leaf_trait_predicate.skip_binder().self_ty().kind()
    {
    ty::Param(_) => true,
    _ => false,
}matches!(leaf_trait_predicate.skip_binder().self_ty().kind(), ty::Param(_))
382                                // When the self type is a type param We don't need to "the trait
383                                // `std::marker::Sized` is not implemented for `T`" as we will point
384                                // at the type param with a label to suggest constraining it.
385                                && !self.tcx.is_diagnostic_item(sym::FromResidual, leaf_trait_predicate.def_id())
386                                    // Don't say "the trait `FromResidual<Option<Infallible>>` is
387                                    // not implemented for `Result<T, E>`".
388                            {
389                                // We do this just so that the JSON output's `help` position is the
390                                // right one and not `file.rs:1:1`. The render is the same.
391                                if ty_span == DUMMY_SP {
392                                    err.help(explanation);
393                                } else {
394                                    err.span_help(ty_span, explanation);
395                                }
396                            }
397                        } else if let Some(custom_explanation) = safe_transmute_explanation {
398                            err.span_label(span, custom_explanation);
399                        } else if (explanation.len() > self.tcx.sess.diagnostic_width() || ty_span != DUMMY_SP) && !noted_missing_impl {
400                            // Really long types don't look good as span labels, instead move it
401                            // to a `help`.
402                            err.span_label(span, "unsatisfied trait bound");
403
404                            // We do this just so that the JSON output's `help` position is the
405                            // right one and not `file.rs:1:1`. The render is the same.
406                            if ty_span == DUMMY_SP {
407                                err.help(explanation);
408                            } else {
409                                err.span_help(ty_span, explanation);
410                            }
411                        } else {
412                            err.span_label(span, explanation);
413                        }
414
415                        if let ObligationCauseCode::Coercion { source, target } =
416                            *obligation.cause.code().peel_derives()
417                        {
418                            if self.tcx.is_lang_item(leaf_trait_predicate.def_id(), LangItem::Sized) {
419                                self.suggest_borrowing_for_object_cast(
420                                    &mut err,
421                                    root_obligation,
422                                    source,
423                                    target,
424                                );
425                            }
426                        }
427
428                        if let Some((msg, span)) = type_def {
429                            err.span_label(span, msg);
430                        }
431                        for note in notes {
432                            // If it has a custom `#[rustc_on_unimplemented]` note, let's display it
433                            err.note(note);
434                        }
435                        if let Some(s) = parent_label {
436                            let body = obligation.cause.body_id;
437                            err.span_label(tcx.def_span(body), s);
438                        }
439
440                        self.suggest_floating_point_literal(&obligation, &mut err, leaf_trait_predicate);
441                        self.suggest_dereferencing_index(&obligation, &mut err, leaf_trait_predicate);
442                        suggested |= self.suggest_dereferences(&obligation, &mut err, leaf_trait_predicate);
443                        suggested |= self.suggest_fn_call(&obligation, &mut err, leaf_trait_predicate);
444                        let impl_candidates = self.find_similar_impl_candidates(leaf_trait_predicate);
445                        suggested = if let &[cand] = &impl_candidates[..] {
446                            let cand = cand.trait_ref;
447                            if let (ty::FnPtr(..), ty::FnDef(..)) =
448                                (cand.self_ty().kind(), main_trait_predicate.self_ty().skip_binder().kind())
449                            {
450                                // Wrap method receivers and `&`-references in parens
451                                let suggestion = if self.tcx.sess.source_map().span_look_ahead(span, ".", Some(50)).is_some() {
452                                    <[_]>::into_vec(::alloc::boxed::box_new([(span.shrink_to_lo(),
                    ::alloc::__export::must_use({
                            ::alloc::fmt::format(format_args!("("))
                        })),
                (span.shrink_to_hi(),
                    ::alloc::__export::must_use({
                            ::alloc::fmt::format(format_args!(" as {0})",
                                    cand.self_ty()))
                        }))]))vec![
453                                        (span.shrink_to_lo(), format!("(")),
454                                        (span.shrink_to_hi(), format!(" as {})", cand.self_ty())),
455                                    ]
456                                } else if let Some(body) = self.tcx.hir_maybe_body_owned_by(obligation.cause.body_id) {
457                                    let mut expr_finder = FindExprBySpan::new(span, self.tcx);
458                                    expr_finder.visit_expr(body.value);
459                                    if let Some(expr) = expr_finder.result &&
460                                        let hir::ExprKind::AddrOf(_, _, expr) = expr.kind {
461                                        <[_]>::into_vec(::alloc::boxed::box_new([(expr.span.shrink_to_lo(),
                    ::alloc::__export::must_use({
                            ::alloc::fmt::format(format_args!("("))
                        })),
                (expr.span.shrink_to_hi(),
                    ::alloc::__export::must_use({
                            ::alloc::fmt::format(format_args!(" as {0})",
                                    cand.self_ty()))
                        }))]))vec![
462                                            (expr.span.shrink_to_lo(), format!("(")),
463                                            (expr.span.shrink_to_hi(), format!(" as {})", cand.self_ty())),
464                                        ]
465                                    } else {
466                                        <[_]>::into_vec(::alloc::boxed::box_new([(span.shrink_to_hi(),
                    ::alloc::__export::must_use({
                            ::alloc::fmt::format(format_args!(" as {0}",
                                    cand.self_ty()))
                        }))]))vec![(span.shrink_to_hi(), format!(" as {}", cand.self_ty()))]
467                                    }
468                                } else {
469                                    <[_]>::into_vec(::alloc::boxed::box_new([(span.shrink_to_hi(),
                    ::alloc::__export::must_use({
                            ::alloc::fmt::format(format_args!(" as {0}",
                                    cand.self_ty()))
                        }))]))vec![(span.shrink_to_hi(), format!(" as {}", cand.self_ty()))]
470                                };
471                                let trait_ = self.tcx.short_string(cand.print_trait_sugared(), err.long_ty_path());
472                                let ty = self.tcx.short_string(cand.self_ty(), err.long_ty_path());
473                                err.multipart_suggestion(
474                                    ::alloc::__export::must_use({
        ::alloc::fmt::format(format_args!("the trait `{0}` is implemented for fn pointer `{1}`, try casting using `as`",
                trait_, ty))
    })format!(
475                                        "the trait `{trait_}` is implemented for fn pointer \
476                                         `{ty}`, try casting using `as`",
477                                    ),
478                                    suggestion,
479                                    Applicability::MaybeIncorrect,
480                                );
481                                true
482                            } else {
483                                false
484                            }
485                        } else {
486                            false
487                        } || suggested;
488                        suggested |=
489                            self.suggest_remove_reference(&obligation, &mut err, leaf_trait_predicate);
490                        suggested |= self.suggest_semicolon_removal(
491                            &obligation,
492                            &mut err,
493                            span,
494                            leaf_trait_predicate,
495                        );
496                        self.note_different_trait_with_same_name(&mut err, &obligation, leaf_trait_predicate);
497                        self.note_adt_version_mismatch(&mut err, leaf_trait_predicate);
498                        self.suggest_remove_await(&obligation, &mut err);
499                        self.suggest_derive(&obligation, &mut err, leaf_trait_predicate);
500
501                        if tcx.is_lang_item(leaf_trait_predicate.def_id(), LangItem::Try) {
502                            self.suggest_await_before_try(
503                                &mut err,
504                                &obligation,
505                                leaf_trait_predicate,
506                                span,
507                            );
508                        }
509
510                        if self.suggest_add_clone_to_arg(&obligation, &mut err, leaf_trait_predicate) {
511                            return err.emit();
512                        }
513
514                        if self.suggest_impl_trait(&mut err, &obligation, leaf_trait_predicate) {
515                            return err.emit();
516                        }
517
518                        if is_unsize {
519                            // If the obligation failed due to a missing implementation of the
520                            // `Unsize` trait, give a pointer to why that might be the case
521                            err.note(
522                                "all implementations of `Unsize` are provided \
523                                automatically by the compiler, see \
524                                <https://doc.rust-lang.org/stable/std/marker/trait.Unsize.html> \
525                                for more information",
526                            );
527                        }
528
529                        let is_fn_trait = tcx.is_fn_trait(leaf_trait_predicate.def_id());
530                        let is_target_feature_fn = if let ty::FnDef(def_id, _) =
531                            *leaf_trait_predicate.skip_binder().self_ty().kind()
532                        {
533                            !self.tcx.codegen_fn_attrs(def_id).target_features.is_empty()
534                        } else {
535                            false
536                        };
537                        if is_fn_trait && is_target_feature_fn {
538                            err.note(
539                                "`#[target_feature]` functions do not implement the `Fn` traits",
540                            );
541                            err.note(
542                                "try casting the function to a `fn` pointer or wrapping it in a closure",
543                            );
544                        }
545
546                        self.try_to_add_help_message(
547                            &root_obligation,
548                            &obligation,
549                            leaf_trait_predicate,
550                            &mut err,
551                            span,
552                            is_fn_trait,
553                            suggested,
554                        );
555
556                        // Changing mutability doesn't make a difference to whether we have
557                        // an `Unsize` impl (Fixes ICE in #71036)
558                        if !is_unsize {
559                            self.suggest_change_mut(&obligation, &mut err, leaf_trait_predicate);
560                        }
561
562                        // If this error is due to `!: Trait` not implemented but `(): Trait` is
563                        // implemented, and fallback has occurred, then it could be due to a
564                        // variable that used to fallback to `()` now falling back to `!`. Issue a
565                        // note informing about the change in behaviour.
566                        if leaf_trait_predicate.skip_binder().self_ty().is_never()
567                            && self.diverging_fallback_has_occurred
568                        {
569                            let predicate = leaf_trait_predicate.map_bound(|trait_pred| {
570                                trait_pred.with_replaced_self_ty(self.tcx, tcx.types.unit)
571                            });
572                            let unit_obligation = obligation.with(tcx, predicate);
573                            if self.predicate_may_hold(&unit_obligation) {
574                                err.note(
575                                    "this error might have been caused by changes to \
576                                    Rust's type-inference algorithm (see issue #148922 \
577                                    <https://github.com/rust-lang/rust/issues/148922> \
578                                    for more information)",
579                                );
580                                err.help("you might have intended to use the type `()` here instead");
581                            }
582                        }
583
584                        self.explain_hrtb_projection(&mut err, leaf_trait_predicate, obligation.param_env, &obligation.cause);
585                        self.suggest_desugaring_async_fn_in_trait(&mut err, main_trait_predicate);
586
587                        // Return early if the trait is Debug or Display and the invocation
588                        // originates within a standard library macro, because the output
589                        // is otherwise overwhelming and unhelpful (see #85844 for an
590                        // example).
591
592                        let in_std_macro =
593                            match obligation.cause.span.ctxt().outer_expn_data().macro_def_id {
594                                Some(macro_def_id) => {
595                                    let crate_name = tcx.crate_name(macro_def_id.krate);
596                                    STDLIB_STABLE_CRATES.contains(&crate_name)
597                                }
598                                None => false,
599                            };
600
601                        if in_std_macro
602                            && #[allow(non_exhaustive_omitted_patterns)] match self.tcx.get_diagnostic_name(leaf_trait_predicate.def_id())
    {
    Some(sym::Debug | sym::Display) => true,
    _ => false,
}matches!(
603                                self.tcx.get_diagnostic_name(leaf_trait_predicate.def_id()),
604                                Some(sym::Debug | sym::Display)
605                            )
606                        {
607                            return err.emit();
608                        }
609
610                        err
611                    }
612
613                    ty::PredicateKind::Clause(ty::ClauseKind::HostEffect(predicate)) => {
614                        self.report_host_effect_error(bound_predicate.rebind(predicate), &obligation, span)
615                    }
616
617                    ty::PredicateKind::Subtype(predicate) => {
618                        // Errors for Subtype predicates show up as
619                        // `FulfillmentErrorCode::SubtypeError`,
620                        // not selection error.
621                        ::rustc_middle::util::bug::span_bug_fmt(span,
    format_args!("subtype requirement gave wrong error: `{0:?}`", predicate))span_bug!(span, "subtype requirement gave wrong error: `{:?}`", predicate)
622                    }
623
624                    ty::PredicateKind::Coerce(predicate) => {
625                        // Errors for Coerce predicates show up as
626                        // `FulfillmentErrorCode::SubtypeError`,
627                        // not selection error.
628                        ::rustc_middle::util::bug::span_bug_fmt(span,
    format_args!("coerce requirement gave wrong error: `{0:?}`", predicate))span_bug!(span, "coerce requirement gave wrong error: `{:?}`", predicate)
629                    }
630
631                    ty::PredicateKind::Clause(ty::ClauseKind::RegionOutlives(..))
632                    | ty::PredicateKind::Clause(ty::ClauseKind::TypeOutlives(..)) => {
633                        ::rustc_middle::util::bug::span_bug_fmt(span,
    format_args!("outlives clauses should not error outside borrowck. obligation: `{0:?}`",
        obligation))span_bug!(
634                            span,
635                            "outlives clauses should not error outside borrowck. obligation: `{:?}`",
636                            obligation
637                        )
638                    }
639
640                    ty::PredicateKind::Clause(ty::ClauseKind::Projection(..)) => {
641                        ::rustc_middle::util::bug::span_bug_fmt(span,
    format_args!("projection clauses should be implied from elsewhere. obligation: `{0:?}`",
        obligation))span_bug!(
642                            span,
643                            "projection clauses should be implied from elsewhere. obligation: `{:?}`",
644                            obligation
645                        )
646                    }
647
648                    ty::PredicateKind::DynCompatible(trait_def_id) => {
649                        let violations = self.tcx.dyn_compatibility_violations(trait_def_id);
650                        let mut err = report_dyn_incompatibility(
651                            self.tcx,
652                            span,
653                            None,
654                            trait_def_id,
655                            violations,
656                        );
657                        if let hir::Node::Item(item) =
658                            self.tcx.hir_node_by_def_id(obligation.cause.body_id)
659                            && let hir::ItemKind::Impl(impl_) = item.kind
660                            && let None = impl_.of_trait
661                            && let hir::TyKind::TraitObject(_, tagged_ptr) = impl_.self_ty.kind
662                            && let TraitObjectSyntax::None = tagged_ptr.tag()
663                            && impl_.self_ty.span.edition().at_least_rust_2021()
664                        {
665                            // Silence the dyn-compatibility error in favor of the missing dyn on
666                            // self type error. #131051.
667                            err.downgrade_to_delayed_bug();
668                        }
669                        err
670                    }
671
672                    ty::PredicateKind::Clause(ty::ClauseKind::WellFormed(ty)) => {
673                        let ty = self.resolve_vars_if_possible(ty);
674                        if self.next_trait_solver() {
675                            if let Err(guar) = ty.error_reported() {
676                                return guar;
677                            }
678
679                            // FIXME: we'll need a better message which takes into account
680                            // which bounds actually failed to hold.
681                            self.dcx().struct_span_err(
682                                span,
683                                ::alloc::__export::must_use({
        ::alloc::fmt::format(format_args!("the type `{0}` is not well-formed",
                ty))
    })format!("the type `{ty}` is not well-formed"),
684                            )
685                        } else {
686                            // WF predicates cannot themselves make
687                            // errors. They can only block due to
688                            // ambiguity; otherwise, they always
689                            // degenerate into other obligations
690                            // (which may fail).
691                            ::rustc_middle::util::bug::span_bug_fmt(span,
    format_args!("WF predicate not satisfied for {0:?}", ty));span_bug!(span, "WF predicate not satisfied for {:?}", ty);
692                        }
693                    }
694
695                    // Errors for `ConstEvaluatable` predicates show up as
696                    // `SelectionError::ConstEvalFailure`,
697                    // not `Unimplemented`.
698                    ty::PredicateKind::Clause(ty::ClauseKind::ConstEvaluatable(..))
699                    // Errors for `ConstEquate` predicates show up as
700                    // `SelectionError::ConstEvalFailure`,
701                    // not `Unimplemented`.
702                    | ty::PredicateKind::ConstEquate { .. }
703                    // Ambiguous predicates should never error
704                    | ty::PredicateKind::Ambiguous
705                    // We never return Err when proving UnstableFeature goal.
706                    | ty::PredicateKind::Clause(ty::ClauseKind::UnstableFeature { .. })
707                    | ty::PredicateKind::NormalizesTo { .. }
708                    | ty::PredicateKind::AliasRelate { .. }
709                    | ty::PredicateKind::Clause(ty::ClauseKind::ConstArgHasType { .. }) => {
710                        ::rustc_middle::util::bug::span_bug_fmt(span,
    format_args!("Unexpected `Predicate` for `SelectionError`: `{0:?}`",
        obligation))span_bug!(
711                            span,
712                            "Unexpected `Predicate` for `SelectionError`: `{:?}`",
713                            obligation
714                        )
715                    }
716                }
717            }
718
719            SelectionError::SignatureMismatch(box SignatureMismatchData {
720                found_trait_ref,
721                expected_trait_ref,
722                terr: terr @ TypeError::CyclicTy(_),
723            }) => self.report_cyclic_signature_error(
724                &obligation,
725                found_trait_ref,
726                expected_trait_ref,
727                terr,
728            ),
729            SelectionError::SignatureMismatch(box SignatureMismatchData {
730                found_trait_ref,
731                expected_trait_ref,
732                terr: _,
733            }) => {
734                match self.report_signature_mismatch_error(
735                    &obligation,
736                    span,
737                    found_trait_ref,
738                    expected_trait_ref,
739                ) {
740                    Ok(err) => err,
741                    Err(guar) => return guar,
742                }
743            }
744
745            SelectionError::OpaqueTypeAutoTraitLeakageUnknown(def_id) => return self.report_opaque_type_auto_trait_leakage(
746                &obligation,
747                def_id,
748            ),
749
750            SelectionError::TraitDynIncompatible(did) => {
751                let violations = self.tcx.dyn_compatibility_violations(did);
752                report_dyn_incompatibility(self.tcx, span, None, did, violations)
753            }
754
755            SelectionError::NotConstEvaluatable(NotConstEvaluatable::MentionsInfer) => {
756                ::rustc_middle::util::bug::bug_fmt(format_args!("MentionsInfer should have been handled in `traits/fulfill.rs` or `traits/select/mod.rs`"))bug!(
757                    "MentionsInfer should have been handled in `traits/fulfill.rs` or `traits/select/mod.rs`"
758                )
759            }
760            SelectionError::NotConstEvaluatable(NotConstEvaluatable::MentionsParam) => {
761                match self.report_not_const_evaluatable_error(&obligation, span) {
762                    Ok(err) => err,
763                    Err(guar) => return guar,
764                }
765            }
766
767            // Already reported in the query.
768            SelectionError::NotConstEvaluatable(NotConstEvaluatable::Error(guar)) |
769            // Already reported.
770            SelectionError::Overflow(OverflowError::Error(guar)) => {
771                self.set_tainted_by_errors(guar);
772                return guar
773            },
774
775            SelectionError::Overflow(_) => {
776                ::rustc_middle::util::bug::bug_fmt(format_args!("overflow should be handled before the `report_selection_error` path"));bug!("overflow should be handled before the `report_selection_error` path");
777            }
778
779            SelectionError::ConstArgHasWrongType { ct, ct_ty, expected_ty } => {
780                let expected_ty_str = self.tcx.short_string(expected_ty, &mut long_ty_file);
781                let ct_str = self.tcx.short_string(ct, &mut long_ty_file);
782                let mut diag = self.dcx().struct_span_err(
783                    span,
784                    ::alloc::__export::must_use({
        ::alloc::fmt::format(format_args!("the constant `{0}` is not of type `{1}`",
                ct_str, expected_ty_str))
    })format!("the constant `{ct_str}` is not of type `{expected_ty_str}`"),
785                );
786                diag.long_ty_path = long_ty_file;
787
788                self.note_type_err(
789                    &mut diag,
790                    &obligation.cause,
791                    None,
792                    None,
793                    TypeError::Sorts(ty::error::ExpectedFound::new(expected_ty, ct_ty)),
794                    false,
795                    None,
796                );
797                diag
798            }
799        };
800
801        self.note_obligation_cause(&mut err, &obligation);
802        err.emit()
803    }
804}
805
806impl<'a, 'tcx> TypeErrCtxt<'a, 'tcx> {
807    pub(super) fn apply_do_not_recommend(
808        &self,
809        obligation: &mut PredicateObligation<'tcx>,
810    ) -> bool {
811        let mut base_cause = obligation.cause.code().clone();
812        let mut applied_do_not_recommend = false;
813        loop {
814            if let ObligationCauseCode::ImplDerived(ref c) = base_cause {
815                if self.tcx.do_not_recommend_impl(c.impl_or_alias_def_id) {
816                    let code = (*c.derived.parent_code).clone();
817                    obligation.cause.map_code(|_| code);
818                    obligation.predicate = c.derived.parent_trait_pred.upcast(self.tcx);
819                    applied_do_not_recommend = true;
820                }
821            }
822            if let Some(parent_cause) = base_cause.parent() {
823                base_cause = parent_cause.clone();
824            } else {
825                break;
826            }
827        }
828
829        applied_do_not_recommend
830    }
831
832    fn report_host_effect_error(
833        &self,
834        predicate: ty::Binder<'tcx, ty::HostEffectPredicate<'tcx>>,
835        main_obligation: &PredicateObligation<'tcx>,
836        span: Span,
837    ) -> Diag<'a> {
838        // FIXME(const_trait_impl): We should recompute the predicate with `[const]`
839        // if it's `const`, and if it holds, explain that this bound only
840        // *conditionally* holds.
841        let trait_ref = predicate.map_bound(|predicate| ty::TraitPredicate {
842            trait_ref: predicate.trait_ref,
843            polarity: ty::PredicatePolarity::Positive,
844        });
845        let mut file = None;
846
847        let err_msg = self.get_standard_error_message(
848            trait_ref,
849            None,
850            Some(predicate.constness()),
851            None,
852            String::new(),
853            &mut file,
854        );
855        let mut diag = {
    self.dcx().struct_span_err(span,
            ::alloc::__export::must_use({
                    ::alloc::fmt::format(format_args!("{0}", err_msg))
                })).with_code(E0277)
}struct_span_code_err!(self.dcx(), span, E0277, "{}", err_msg);
856        *diag.long_ty_path() = file;
857        let obligation = Obligation::new(
858            self.tcx,
859            ObligationCause::dummy(),
860            main_obligation.param_env,
861            trait_ref,
862        );
863        if !self.predicate_may_hold(&obligation) {
864            diag.downgrade_to_delayed_bug();
865        }
866
867        if let Ok(Some(ImplSource::UserDefined(impl_data))) =
868            SelectionContext::new(self).select(&obligation.with(self.tcx, trait_ref.skip_binder()))
869        {
870            let impl_did = impl_data.impl_def_id;
871            let trait_did = trait_ref.def_id();
872            let impl_span = self.tcx.def_span(impl_did);
873            let trait_name = self.tcx.item_name(trait_did);
874
875            if self.tcx.is_const_trait(trait_did) && !self.tcx.is_const_trait_impl(impl_did) {
876                if let Some(impl_did) = impl_did.as_local()
877                    && let item = self.tcx.hir_expect_item(impl_did)
878                    && let hir::ItemKind::Impl(item) = item.kind
879                    && let Some(of_trait) = item.of_trait
880                {
881                    // trait is const, impl is local and not const
882                    diag.span_suggestion_verbose(
883                        of_trait.trait_ref.path.span.shrink_to_lo(),
884                        ::alloc::__export::must_use({
        ::alloc::fmt::format(format_args!("make the `impl` of trait `{0}` `const`",
                trait_name))
    })format!("make the `impl` of trait `{trait_name}` `const`"),
885                        "const ".to_string(),
886                        Applicability::MaybeIncorrect,
887                    );
888                } else {
889                    diag.span_note(
890                        impl_span,
891                        ::alloc::__export::must_use({
        ::alloc::fmt::format(format_args!("trait `{0}` is implemented but not `const`",
                trait_name))
    })format!("trait `{trait_name}` is implemented but not `const`"),
892                    );
893
894                    let (condition_options, format_args) = self.on_unimplemented_components(
895                        trait_ref,
896                        main_obligation,
897                        diag.long_ty_path(),
898                    );
899
900                    if let Ok(Some(command)) = OnUnimplementedDirective::of_item(self.tcx, impl_did)
901                    {
902                        let note = command.evaluate(
903                            self.tcx,
904                            predicate.skip_binder().trait_ref,
905                            &condition_options,
906                            &format_args,
907                        );
908                        let OnUnimplementedNote {
909                            message,
910                            label,
911                            notes,
912                            parent_label,
913                            append_const_msg: _,
914                        } = note;
915
916                        if let Some(message) = message {
917                            diag.primary_message(message);
918                        }
919                        if let Some(label) = label {
920                            diag.span_label(impl_span, label);
921                        }
922                        for note in notes {
923                            diag.note(note);
924                        }
925                        if let Some(parent_label) = parent_label {
926                            diag.span_label(impl_span, parent_label);
927                        }
928                    }
929                }
930            }
931        }
932        diag
933    }
934
935    fn emit_specialized_closure_kind_error(
936        &self,
937        obligation: &PredicateObligation<'tcx>,
938        mut trait_pred: ty::PolyTraitPredicate<'tcx>,
939    ) -> Option<ErrorGuaranteed> {
940        // If we end up on an `AsyncFnKindHelper` goal, try to unwrap the parent
941        // `AsyncFn*` goal.
942        if self.tcx.is_lang_item(trait_pred.def_id(), LangItem::AsyncFnKindHelper) {
943            let mut code = obligation.cause.code();
944            // Unwrap a `FunctionArg` cause, which has been refined from a derived obligation.
945            if let ObligationCauseCode::FunctionArg { parent_code, .. } = code {
946                code = &**parent_code;
947            }
948            // If we have a derived obligation, then the parent will be a `AsyncFn*` goal.
949            if let Some((_, Some(parent))) = code.parent_with_predicate() {
950                trait_pred = parent;
951            }
952        }
953
954        let self_ty = trait_pred.self_ty().skip_binder();
955
956        let (expected_kind, trait_prefix) =
957            if let Some(expected_kind) = self.tcx.fn_trait_kind_from_def_id(trait_pred.def_id()) {
958                (expected_kind, "")
959            } else if let Some(expected_kind) =
960                self.tcx.async_fn_trait_kind_from_def_id(trait_pred.def_id())
961            {
962                (expected_kind, "Async")
963            } else {
964                return None;
965            };
966
967        let (closure_def_id, found_args, has_self_borrows) = match *self_ty.kind() {
968            ty::Closure(def_id, args) => {
969                (def_id, args.as_closure().sig().map_bound(|sig| sig.inputs()[0]), false)
970            }
971            ty::CoroutineClosure(def_id, args) => (
972                def_id,
973                args.as_coroutine_closure()
974                    .coroutine_closure_sig()
975                    .map_bound(|sig| sig.tupled_inputs_ty),
976                !args.as_coroutine_closure().tupled_upvars_ty().is_ty_var()
977                    && args.as_coroutine_closure().has_self_borrows(),
978            ),
979            _ => return None,
980        };
981
982        let expected_args = trait_pred.map_bound(|trait_pred| trait_pred.trait_ref.args.type_at(1));
983
984        // Verify that the arguments are compatible. If the signature is
985        // mismatched, then we have a totally different error to report.
986        if self.enter_forall(found_args, |found_args| {
987            self.enter_forall(expected_args, |expected_args| {
988                !self.can_eq(obligation.param_env, expected_args, found_args)
989            })
990        }) {
991            return None;
992        }
993
994        if let Some(found_kind) = self.closure_kind(self_ty)
995            && !found_kind.extends(expected_kind)
996        {
997            let mut err = self.report_closure_error(
998                &obligation,
999                closure_def_id,
1000                found_kind,
1001                expected_kind,
1002                trait_prefix,
1003            );
1004            self.note_obligation_cause(&mut err, &obligation);
1005            return Some(err.emit());
1006        }
1007
1008        // If the closure has captures, then perhaps the reason that the trait
1009        // is unimplemented is because async closures don't implement `Fn`/`FnMut`
1010        // if they have captures.
1011        if has_self_borrows && expected_kind != ty::ClosureKind::FnOnce {
1012            let coro_kind = match self
1013                .tcx
1014                .coroutine_kind(self.tcx.coroutine_for_closure(closure_def_id))
1015                .unwrap()
1016            {
1017                rustc_hir::CoroutineKind::Desugared(desugaring, _) => desugaring.to_string(),
1018                coro => coro.to_string(),
1019            };
1020            let mut err = self.dcx().create_err(CoroClosureNotFn {
1021                span: self.tcx.def_span(closure_def_id),
1022                kind: expected_kind.as_str(),
1023                coro_kind,
1024            });
1025            self.note_obligation_cause(&mut err, &obligation);
1026            return Some(err.emit());
1027        }
1028
1029        None
1030    }
1031
1032    fn fn_arg_obligation(
1033        &self,
1034        obligation: &PredicateObligation<'tcx>,
1035    ) -> Result<(), ErrorGuaranteed> {
1036        if let ObligationCauseCode::FunctionArg { arg_hir_id, .. } = obligation.cause.code()
1037            && let Node::Expr(arg) = self.tcx.hir_node(*arg_hir_id)
1038            && let arg = arg.peel_borrows()
1039            && let hir::ExprKind::Path(hir::QPath::Resolved(
1040                None,
1041                hir::Path { res: hir::def::Res::Local(hir_id), .. },
1042            )) = arg.kind
1043            && let Node::Pat(pat) = self.tcx.hir_node(*hir_id)
1044            && let Some((preds, guar)) = self.reported_trait_errors.borrow().get(&pat.span)
1045            && preds.contains(&obligation.as_goal())
1046        {
1047            return Err(*guar);
1048        }
1049        Ok(())
1050    }
1051
1052    fn detect_negative_literal(
1053        &self,
1054        obligation: &PredicateObligation<'tcx>,
1055        trait_pred: ty::PolyTraitPredicate<'tcx>,
1056        err: &mut Diag<'_>,
1057    ) -> bool {
1058        if let ObligationCauseCode::UnOp { hir_id, .. } = obligation.cause.code()
1059            && let hir::Node::Expr(expr) = self.tcx.hir_node(*hir_id)
1060            && let hir::ExprKind::Unary(hir::UnOp::Neg, inner) = expr.kind
1061            && let hir::ExprKind::Lit(lit) = inner.kind
1062            && let LitKind::Int(_, LitIntType::Unsuffixed) = lit.node
1063        {
1064            err.span_suggestion_verbose(
1065                lit.span.shrink_to_hi(),
1066                "consider specifying an integer type that can be negative",
1067                match trait_pred.skip_binder().self_ty().kind() {
1068                    ty::Uint(ty::UintTy::Usize) => "isize",
1069                    ty::Uint(ty::UintTy::U8) => "i8",
1070                    ty::Uint(ty::UintTy::U16) => "i16",
1071                    ty::Uint(ty::UintTy::U32) => "i32",
1072                    ty::Uint(ty::UintTy::U64) => "i64",
1073                    ty::Uint(ty::UintTy::U128) => "i128",
1074                    _ => "i64",
1075                }
1076                .to_string(),
1077                Applicability::MaybeIncorrect,
1078            );
1079            return true;
1080        }
1081        false
1082    }
1083
1084    /// When the `E` of the resulting `Result<T, E>` in an expression `foo().bar().baz()?`,
1085    /// identify those method chain sub-expressions that could or could not have been annotated
1086    /// with `?`.
1087    fn try_conversion_context(
1088        &self,
1089        obligation: &PredicateObligation<'tcx>,
1090        trait_pred: ty::PolyTraitPredicate<'tcx>,
1091        err: &mut Diag<'_>,
1092    ) -> (bool, bool) {
1093        let span = obligation.cause.span;
1094        /// Look for the (direct) sub-expr of `?`, and return it if it's a `.` method call.
1095        struct FindMethodSubexprOfTry {
1096            search_span: Span,
1097        }
1098        impl<'v> Visitor<'v> for FindMethodSubexprOfTry {
1099            type Result = ControlFlow<&'v hir::Expr<'v>>;
1100            fn visit_expr(&mut self, ex: &'v hir::Expr<'v>) -> Self::Result {
1101                if let hir::ExprKind::Match(expr, _arms, hir::MatchSource::TryDesugar(_)) = ex.kind
1102                    && ex.span.with_lo(ex.span.hi() - BytePos(1)).source_equal(self.search_span)
1103                    && let hir::ExprKind::Call(_, [expr, ..]) = expr.kind
1104                {
1105                    ControlFlow::Break(expr)
1106                } else {
1107                    hir::intravisit::walk_expr(self, ex)
1108                }
1109            }
1110        }
1111        let hir_id = self.tcx.local_def_id_to_hir_id(obligation.cause.body_id);
1112        let Some(body_id) = self.tcx.hir_node(hir_id).body_id() else { return (false, false) };
1113        let ControlFlow::Break(expr) =
1114            (FindMethodSubexprOfTry { search_span: span }).visit_body(self.tcx.hir_body(body_id))
1115        else {
1116            return (false, false);
1117        };
1118        let Some(typeck) = &self.typeck_results else {
1119            return (false, false);
1120        };
1121        let ObligationCauseCode::QuestionMark = obligation.cause.code().peel_derives() else {
1122            return (false, false);
1123        };
1124        let self_ty = trait_pred.skip_binder().self_ty();
1125        let found_ty = trait_pred.skip_binder().trait_ref.args.get(1).and_then(|a| a.as_type());
1126        let noted_missing_impl =
1127            self.note_missing_impl_for_question_mark(err, self_ty, found_ty, trait_pred);
1128
1129        let mut prev_ty = self.resolve_vars_if_possible(
1130            typeck.expr_ty_adjusted_opt(expr).unwrap_or(Ty::new_misc_error(self.tcx)),
1131        );
1132
1133        // We always look at the `E` type, because that's the only one affected by `?`. If the
1134        // incorrect `Result<T, E>` is because of the `T`, we'll get an E0308 on the whole
1135        // expression, after the `?` has "unwrapped" the `T`.
1136        let get_e_type = |prev_ty: Ty<'tcx>| -> Option<Ty<'tcx>> {
1137            let ty::Adt(def, args) = prev_ty.kind() else {
1138                return None;
1139            };
1140            let Some(arg) = args.get(1) else {
1141                return None;
1142            };
1143            if !self.tcx.is_diagnostic_item(sym::Result, def.did()) {
1144                return None;
1145            }
1146            arg.as_type()
1147        };
1148
1149        let mut suggested = false;
1150        let mut chain = ::alloc::vec::Vec::new()vec![];
1151
1152        // The following logic is similar to `point_at_chain`, but that's focused on associated types
1153        let mut expr = expr;
1154        while let hir::ExprKind::MethodCall(path_segment, rcvr_expr, args, span) = expr.kind {
1155            // Point at every method call in the chain with the `Result` type.
1156            // let foo = bar.iter().map(mapper)?;
1157            //               ------ -----------
1158            expr = rcvr_expr;
1159            chain.push((span, prev_ty));
1160
1161            let next_ty = self.resolve_vars_if_possible(
1162                typeck.expr_ty_adjusted_opt(expr).unwrap_or(Ty::new_misc_error(self.tcx)),
1163            );
1164
1165            let is_diagnostic_item = |symbol: Symbol, ty: Ty<'tcx>| {
1166                let ty::Adt(def, _) = ty.kind() else {
1167                    return false;
1168                };
1169                self.tcx.is_diagnostic_item(symbol, def.did())
1170            };
1171            // For each method in the chain, see if this is `Result::map_err` or
1172            // `Option::ok_or_else` and if it is, see if the closure passed to it has an incorrect
1173            // trailing `;`.
1174            if let Some(ty) = get_e_type(prev_ty)
1175                && let Some(found_ty) = found_ty
1176                // Ideally we would instead use `FnCtxt::lookup_method_for_diagnostic` for 100%
1177                // accurate check, but we are in the wrong stage to do that and looking for
1178                // `Result::map_err` by checking the Self type and the path segment is enough.
1179                // sym::ok_or_else
1180                && (
1181                    ( // Result::map_err
1182                        path_segment.ident.name == sym::map_err
1183                            && is_diagnostic_item(sym::Result, next_ty)
1184                    ) || ( // Option::ok_or_else
1185                        path_segment.ident.name == sym::ok_or_else
1186                            && is_diagnostic_item(sym::Option, next_ty)
1187                    )
1188                )
1189                // Found `Result<_, ()>?`
1190                && let ty::Tuple(tys) = found_ty.kind()
1191                && tys.is_empty()
1192                // The current method call returns `Result<_, ()>`
1193                && self.can_eq(obligation.param_env, ty, found_ty)
1194                // There's a single argument in the method call and it is a closure
1195                && let [arg] = args
1196                && let hir::ExprKind::Closure(closure) = arg.kind
1197                // The closure has a block for its body with no tail expression
1198                && let body = self.tcx.hir_body(closure.body)
1199                && let hir::ExprKind::Block(block, _) = body.value.kind
1200                && let None = block.expr
1201                // The last statement is of a type that can be converted to the return error type
1202                && let [.., stmt] = block.stmts
1203                && let hir::StmtKind::Semi(expr) = stmt.kind
1204                && let expr_ty = self.resolve_vars_if_possible(
1205                    typeck.expr_ty_adjusted_opt(expr)
1206                        .unwrap_or(Ty::new_misc_error(self.tcx)),
1207                )
1208                && self
1209                    .infcx
1210                    .type_implements_trait(
1211                        self.tcx.get_diagnostic_item(sym::From).unwrap(),
1212                        [self_ty, expr_ty],
1213                        obligation.param_env,
1214                    )
1215                    .must_apply_modulo_regions()
1216            {
1217                suggested = true;
1218                err.span_suggestion_short(
1219                    stmt.span.with_lo(expr.span.hi()),
1220                    "remove this semicolon",
1221                    String::new(),
1222                    Applicability::MachineApplicable,
1223                );
1224            }
1225
1226            prev_ty = next_ty;
1227
1228            if let hir::ExprKind::Path(hir::QPath::Resolved(None, path)) = expr.kind
1229                && let hir::Path { res: hir::def::Res::Local(hir_id), .. } = path
1230                && let hir::Node::Pat(binding) = self.tcx.hir_node(*hir_id)
1231            {
1232                let parent = self.tcx.parent_hir_node(binding.hir_id);
1233                // We've reached the root of the method call chain...
1234                if let hir::Node::LetStmt(local) = parent
1235                    && let Some(binding_expr) = local.init
1236                {
1237                    // ...and it is a binding. Get the binding creation and continue the chain.
1238                    expr = binding_expr;
1239                }
1240                if let hir::Node::Param(_param) = parent {
1241                    // ...and it is an fn argument.
1242                    break;
1243                }
1244            }
1245        }
1246        // `expr` is now the "root" expression of the method call chain, which can be any
1247        // expression kind, like a method call or a path. If this expression is `Result<T, E>` as
1248        // well, then we also point at it.
1249        prev_ty = self.resolve_vars_if_possible(
1250            typeck.expr_ty_adjusted_opt(expr).unwrap_or(Ty::new_misc_error(self.tcx)),
1251        );
1252        chain.push((expr.span, prev_ty));
1253
1254        let mut prev = None;
1255        let mut iter = chain.into_iter().rev().peekable();
1256        while let Some((span, err_ty)) = iter.next() {
1257            let is_last = iter.peek().is_none();
1258            let err_ty = get_e_type(err_ty);
1259            let err_ty = match (err_ty, prev) {
1260                (Some(err_ty), Some(prev)) if !self.can_eq(obligation.param_env, err_ty, prev) => {
1261                    err_ty
1262                }
1263                (Some(err_ty), None) => err_ty,
1264                _ => {
1265                    prev = err_ty;
1266                    continue;
1267                }
1268            };
1269
1270            let implements_from = self
1271                .infcx
1272                .type_implements_trait(
1273                    self.tcx.get_diagnostic_item(sym::From).unwrap(),
1274                    [self_ty, err_ty],
1275                    obligation.param_env,
1276                )
1277                .must_apply_modulo_regions();
1278
1279            let err_ty_str = self.tcx.short_string(err_ty, err.long_ty_path());
1280            let label = if !implements_from && is_last {
1281                ::alloc::__export::must_use({
        ::alloc::fmt::format(format_args!("this can\'t be annotated with `?` because it has type `Result<_, {0}>`",
                err_ty_str))
    })format!(
1282                    "this can't be annotated with `?` because it has type `Result<_, {err_ty_str}>`"
1283                )
1284            } else {
1285                ::alloc::__export::must_use({
        ::alloc::fmt::format(format_args!("this has type `Result<_, {0}>`",
                err_ty_str))
    })format!("this has type `Result<_, {err_ty_str}>`")
1286            };
1287
1288            if !suggested || !implements_from {
1289                err.span_label(span, label);
1290            }
1291            prev = Some(err_ty);
1292        }
1293        (suggested, noted_missing_impl)
1294    }
1295
1296    fn note_missing_impl_for_question_mark(
1297        &self,
1298        err: &mut Diag<'_>,
1299        self_ty: Ty<'_>,
1300        found_ty: Option<Ty<'_>>,
1301        trait_pred: ty::PolyTraitPredicate<'tcx>,
1302    ) -> bool {
1303        match (self_ty.kind(), found_ty) {
1304            (ty::Adt(def, _), Some(ty))
1305                if let ty::Adt(found, _) = ty.kind()
1306                    && def.did().is_local()
1307                    && found.did().is_local() =>
1308            {
1309                err.span_note(
1310                    self.tcx.def_span(def.did()),
1311                    ::alloc::__export::must_use({
        ::alloc::fmt::format(format_args!("`{0}` needs to implement `From<{1}>`",
                self_ty, ty))
    })format!("`{self_ty}` needs to implement `From<{ty}>`"),
1312                );
1313            }
1314            (ty::Adt(def, _), None) if def.did().is_local() => {
1315                let trait_path = self.tcx.short_string(
1316                    trait_pred.skip_binder().trait_ref.print_only_trait_path(),
1317                    err.long_ty_path(),
1318                );
1319                err.span_note(
1320                    self.tcx.def_span(def.did()),
1321                    ::alloc::__export::must_use({
        ::alloc::fmt::format(format_args!("`{0}` needs to implement `{1}`",
                self_ty, trait_path))
    })format!("`{self_ty}` needs to implement `{trait_path}`"),
1322                );
1323            }
1324            (ty::Adt(def, _), Some(ty)) if def.did().is_local() => {
1325                err.span_note(
1326                    self.tcx.def_span(def.did()),
1327                    ::alloc::__export::must_use({
        ::alloc::fmt::format(format_args!("`{0}` needs to implement `From<{1}>`",
                self_ty, ty))
    })format!("`{self_ty}` needs to implement `From<{ty}>`"),
1328                );
1329            }
1330            (_, Some(ty))
1331                if let ty::Adt(def, _) = ty.kind()
1332                    && def.did().is_local() =>
1333            {
1334                err.span_note(
1335                    self.tcx.def_span(def.did()),
1336                    ::alloc::__export::must_use({
        ::alloc::fmt::format(format_args!("`{0}` needs to implement `Into<{1}>`",
                ty, self_ty))
    })format!("`{ty}` needs to implement `Into<{self_ty}>`"),
1337                );
1338            }
1339            _ => return false,
1340        }
1341        true
1342    }
1343
1344    fn report_const_param_not_wf(
1345        &self,
1346        ty: Ty<'tcx>,
1347        obligation: &PredicateObligation<'tcx>,
1348    ) -> Diag<'a> {
1349        let def_id = obligation.cause.body_id;
1350        let span = self.tcx.ty_span(def_id);
1351
1352        let mut file = None;
1353        let ty_str = self.tcx.short_string(ty, &mut file);
1354        let mut diag = match ty.kind() {
1355            ty::Float(_) => {
1356                {
    self.dcx().struct_span_err(span,
            ::alloc::__export::must_use({
                    ::alloc::fmt::format(format_args!("`{0}` is forbidden as the type of a const generic parameter",
                            ty_str))
                })).with_code(E0741)
}struct_span_code_err!(
1357                    self.dcx(),
1358                    span,
1359                    E0741,
1360                    "`{ty_str}` is forbidden as the type of a const generic parameter",
1361                )
1362            }
1363            ty::FnPtr(..) => {
1364                {
    self.dcx().struct_span_err(span,
            ::alloc::__export::must_use({
                    ::alloc::fmt::format(format_args!("using function pointers as const generic parameters is forbidden"))
                })).with_code(E0741)
}struct_span_code_err!(
1365                    self.dcx(),
1366                    span,
1367                    E0741,
1368                    "using function pointers as const generic parameters is forbidden",
1369                )
1370            }
1371            ty::RawPtr(_, _) => {
1372                {
    self.dcx().struct_span_err(span,
            ::alloc::__export::must_use({
                    ::alloc::fmt::format(format_args!("using raw pointers as const generic parameters is forbidden"))
                })).with_code(E0741)
}struct_span_code_err!(
1373                    self.dcx(),
1374                    span,
1375                    E0741,
1376                    "using raw pointers as const generic parameters is forbidden",
1377                )
1378            }
1379            ty::Adt(def, _) => {
1380                // We should probably see if we're *allowed* to derive `ConstParamTy` on the type...
1381                let mut diag = {
    self.dcx().struct_span_err(span,
            ::alloc::__export::must_use({
                    ::alloc::fmt::format(format_args!("`{0}` must implement `ConstParamTy` to be used as the type of a const generic parameter",
                            ty_str))
                })).with_code(E0741)
}struct_span_code_err!(
1382                    self.dcx(),
1383                    span,
1384                    E0741,
1385                    "`{ty_str}` must implement `ConstParamTy` to be used as the type of a const generic parameter",
1386                );
1387                // Only suggest derive if this isn't a derived obligation,
1388                // and the struct is local.
1389                if let Some(span) = self.tcx.hir_span_if_local(def.did())
1390                    && obligation.cause.code().parent().is_none()
1391                {
1392                    if ty.is_structural_eq_shallow(self.tcx) {
1393                        diag.span_suggestion(
1394                            span.shrink_to_lo(),
1395                            ::alloc::__export::must_use({
        ::alloc::fmt::format(format_args!("add `#[derive(ConstParamTy)]` to the {0}",
                def.descr()))
    })format!("add `#[derive(ConstParamTy)]` to the {}", def.descr()),
1396                            "#[derive(ConstParamTy)]\n",
1397                            Applicability::MachineApplicable,
1398                        );
1399                    } else {
1400                        // FIXME(adt_const_params): We should check there's not already an
1401                        // overlapping `Eq`/`PartialEq` impl.
1402                        diag.span_suggestion(
1403                            span.shrink_to_lo(),
1404                            ::alloc::__export::must_use({
        ::alloc::fmt::format(format_args!("add `#[derive(ConstParamTy, PartialEq, Eq)]` to the {0}",
                def.descr()))
    })format!(
1405                                "add `#[derive(ConstParamTy, PartialEq, Eq)]` to the {}",
1406                                def.descr()
1407                            ),
1408                            "#[derive(ConstParamTy, PartialEq, Eq)]\n",
1409                            Applicability::MachineApplicable,
1410                        );
1411                    }
1412                }
1413                diag
1414            }
1415            _ => {
1416                {
    self.dcx().struct_span_err(span,
            ::alloc::__export::must_use({
                    ::alloc::fmt::format(format_args!("`{0}` can\'t be used as a const parameter type",
                            ty_str))
                })).with_code(E0741)
}struct_span_code_err!(
1417                    self.dcx(),
1418                    span,
1419                    E0741,
1420                    "`{ty_str}` can't be used as a const parameter type",
1421                )
1422            }
1423        };
1424        diag.long_ty_path = file;
1425
1426        let mut code = obligation.cause.code();
1427        let mut pred = obligation.predicate.as_trait_clause();
1428        while let Some((next_code, next_pred)) = code.parent_with_predicate() {
1429            if let Some(pred) = pred {
1430                self.enter_forall(pred, |pred| {
1431                    let ty = self.tcx.short_string(pred.self_ty(), diag.long_ty_path());
1432                    let trait_path = self
1433                        .tcx
1434                        .short_string(pred.print_modifiers_and_trait_path(), diag.long_ty_path());
1435                    diag.note(::alloc::__export::must_use({
        ::alloc::fmt::format(format_args!("`{0}` must implement `{1}`, but it does not",
                ty, trait_path))
    })format!("`{ty}` must implement `{trait_path}`, but it does not"));
1436                })
1437            }
1438            code = next_code;
1439            pred = next_pred;
1440        }
1441
1442        diag
1443    }
1444}
1445
1446impl<'a, 'tcx> TypeErrCtxt<'a, 'tcx> {
1447    fn can_match_trait(
1448        &self,
1449        param_env: ty::ParamEnv<'tcx>,
1450        goal: ty::TraitPredicate<'tcx>,
1451        assumption: ty::PolyTraitPredicate<'tcx>,
1452    ) -> bool {
1453        // Fast path
1454        if goal.polarity != assumption.polarity() {
1455            return false;
1456        }
1457
1458        let trait_assumption = self.instantiate_binder_with_fresh_vars(
1459            DUMMY_SP,
1460            infer::BoundRegionConversionTime::HigherRankedType,
1461            assumption,
1462        );
1463
1464        self.can_eq(param_env, goal.trait_ref, trait_assumption.trait_ref)
1465    }
1466
1467    fn can_match_host_effect(
1468        &self,
1469        param_env: ty::ParamEnv<'tcx>,
1470        goal: ty::HostEffectPredicate<'tcx>,
1471        assumption: ty::Binder<'tcx, ty::HostEffectPredicate<'tcx>>,
1472    ) -> bool {
1473        let assumption = self.instantiate_binder_with_fresh_vars(
1474            DUMMY_SP,
1475            infer::BoundRegionConversionTime::HigherRankedType,
1476            assumption,
1477        );
1478
1479        assumption.constness.satisfies(goal.constness)
1480            && self.can_eq(param_env, goal.trait_ref, assumption.trait_ref)
1481    }
1482
1483    fn as_host_effect_clause(
1484        predicate: ty::Predicate<'tcx>,
1485    ) -> Option<ty::Binder<'tcx, ty::HostEffectPredicate<'tcx>>> {
1486        predicate.as_clause().and_then(|clause| match clause.kind().skip_binder() {
1487            ty::ClauseKind::HostEffect(pred) => Some(clause.kind().rebind(pred)),
1488            _ => None,
1489        })
1490    }
1491
1492    fn can_match_projection(
1493        &self,
1494        param_env: ty::ParamEnv<'tcx>,
1495        goal: ty::ProjectionPredicate<'tcx>,
1496        assumption: ty::PolyProjectionPredicate<'tcx>,
1497    ) -> bool {
1498        let assumption = self.instantiate_binder_with_fresh_vars(
1499            DUMMY_SP,
1500            infer::BoundRegionConversionTime::HigherRankedType,
1501            assumption,
1502        );
1503
1504        self.can_eq(param_env, goal.projection_term, assumption.projection_term)
1505            && self.can_eq(param_env, goal.term, assumption.term)
1506    }
1507
1508    // returns if `cond` not occurring implies that `error` does not occur - i.e., that
1509    // `error` occurring implies that `cond` occurs.
1510    x;#[instrument(level = "debug", skip(self), ret)]
1511    pub(super) fn error_implies(
1512        &self,
1513        cond: Goal<'tcx, ty::Predicate<'tcx>>,
1514        error: Goal<'tcx, ty::Predicate<'tcx>>,
1515    ) -> bool {
1516        if cond == error {
1517            return true;
1518        }
1519
1520        // FIXME: We could be smarter about this, i.e. if cond's param-env is a
1521        // subset of error's param-env. This only matters when binders will carry
1522        // predicates though, and obviously only matters for error reporting.
1523        if cond.param_env != error.param_env {
1524            return false;
1525        }
1526        let param_env = error.param_env;
1527
1528        if let Some(error) = error.predicate.as_trait_clause() {
1529            self.enter_forall(error, |error| {
1530                elaborate(self.tcx, std::iter::once(cond.predicate))
1531                    .filter_map(|implied| implied.as_trait_clause())
1532                    .any(|implied| self.can_match_trait(param_env, error, implied))
1533            })
1534        } else if let Some(error) = Self::as_host_effect_clause(error.predicate) {
1535            self.enter_forall(error, |error| {
1536                elaborate(self.tcx, std::iter::once(cond.predicate))
1537                    .filter_map(Self::as_host_effect_clause)
1538                    .any(|implied| self.can_match_host_effect(param_env, error, implied))
1539            })
1540        } else if let Some(error) = error.predicate.as_projection_clause() {
1541            self.enter_forall(error, |error| {
1542                elaborate(self.tcx, std::iter::once(cond.predicate))
1543                    .filter_map(|implied| implied.as_projection_clause())
1544                    .any(|implied| self.can_match_projection(param_env, error, implied))
1545            })
1546        } else {
1547            false
1548        }
1549    }
1550
1551    #[allow(clippy :: suspicious_else_formatting)]
{
    let __tracing_attr_span;
    let __tracing_attr_guard;
    if ::tracing::Level::DEBUG <= ::tracing::level_filters::STATIC_MAX_LEVEL
                &&
                ::tracing::Level::DEBUG <=
                    ::tracing::level_filters::LevelFilter::current() ||
            { false } {
        __tracing_attr_span =
            {
                use ::tracing::__macro_support::Callsite as _;
                static __CALLSITE: ::tracing::callsite::DefaultCallsite =
                    {
                        static META: ::tracing::Metadata<'static> =
                            {
                                ::tracing_core::metadata::Metadata::new("report_projection_error",
                                    "rustc_trait_selection::error_reporting::traits::fulfillment_errors",
                                    ::tracing::Level::DEBUG,
                                    ::tracing_core::__macro_support::Option::Some("compiler/rustc_trait_selection/src/error_reporting/traits/fulfillment_errors.rs"),
                                    ::tracing_core::__macro_support::Option::Some(1551u32),
                                    ::tracing_core::__macro_support::Option::Some("rustc_trait_selection::error_reporting::traits::fulfillment_errors"),
                                    ::tracing_core::field::FieldSet::new(&[],
                                        ::tracing_core::callsite::Identifier(&__CALLSITE)),
                                    ::tracing::metadata::Kind::SPAN)
                            };
                        ::tracing::callsite::DefaultCallsite::new(&META)
                    };
                let mut interest = ::tracing::subscriber::Interest::never();
                if ::tracing::Level::DEBUG <=
                                    ::tracing::level_filters::STATIC_MAX_LEVEL &&
                                ::tracing::Level::DEBUG <=
                                    ::tracing::level_filters::LevelFilter::current() &&
                            { interest = __CALLSITE.interest(); !interest.is_never() }
                        &&
                        ::tracing::__macro_support::__is_enabled(__CALLSITE.metadata(),
                            interest) {
                    let meta = __CALLSITE.metadata();
                    ::tracing::Span::new(meta,
                        &{ meta.fields().value_set(&[]) })
                } else {
                    let span =
                        ::tracing::__macro_support::__disabled_span(__CALLSITE.metadata());
                    {};
                    span
                }
            };
        __tracing_attr_guard = __tracing_attr_span.enter();
    }

    #[warn(clippy :: suspicious_else_formatting)]
    {

        #[allow(unknown_lints, unreachable_code, clippy ::
        diverging_sub_expression, clippy :: empty_loop, clippy ::
        let_unit_value, clippy :: let_with_type_underscore, clippy ::
        needless_return, clippy :: unreachable)]
        if false {
            let __tracing_attr_fake_return: ErrorGuaranteed = loop {};
            return __tracing_attr_fake_return;
        }
        {
            let predicate =
                self.resolve_vars_if_possible(obligation.predicate);
            if let Err(e) = predicate.error_reported() { return e; }
            self.probe(|_|
                    {
                        let bound_predicate = predicate.kind();
                        let (values, err) =
                            match bound_predicate.skip_binder() {
                                ty::PredicateKind::Clause(ty::ClauseKind::Projection(data))
                                    => {
                                    let ocx = ObligationCtxt::new(self);
                                    let data =
                                        self.instantiate_binder_with_fresh_vars(obligation.cause.span,
                                            infer::BoundRegionConversionTime::HigherRankedType,
                                            bound_predicate.rebind(data));
                                    let unnormalized_term =
                                        data.projection_term.to_term(self.tcx);
                                    let normalized_term =
                                        ocx.normalize(&obligation.cause, obligation.param_env,
                                            unnormalized_term);
                                    let _ = ocx.try_evaluate_obligations();
                                    if let Err(new_err) =
                                            ocx.eq(&obligation.cause, obligation.param_env, data.term,
                                                normalized_term) {
                                        (Some((data.projection_term,
                                                    self.resolve_vars_if_possible(normalized_term), data.term)),
                                            new_err)
                                    } else { (None, error.err) }
                                }
                                ty::PredicateKind::AliasRelate(lhs, rhs, _) => {
                                    let derive_better_type_error =
                                        |alias_term: ty::AliasTerm<'tcx>,
                                            expected_term: ty::Term<'tcx>|
                                            {
                                                let ocx = ObligationCtxt::new(self);
                                                let Ok(normalized_term) =
                                                    ocx.structurally_normalize_term(&ObligationCause::dummy(),
                                                        obligation.param_env,
                                                        alias_term.to_term(self.tcx)) else { return None; };
                                                if let Err(terr) =
                                                        ocx.eq(&ObligationCause::dummy(), obligation.param_env,
                                                            expected_term, normalized_term) {
                                                    Some((terr, self.resolve_vars_if_possible(normalized_term)))
                                                } else { None }
                                            };
                                    if let Some(lhs) = lhs.to_alias_term() &&
                                                let ty::AliasTermKind::ProjectionTy |
                                                    ty::AliasTermKind::ProjectionConst = lhs.kind(self.tcx) &&
                                            let Some((better_type_err, expected_term)) =
                                                derive_better_type_error(lhs, rhs) {
                                        (Some((lhs, self.resolve_vars_if_possible(expected_term),
                                                    rhs)), better_type_err)
                                    } else if let Some(rhs) = rhs.to_alias_term() &&
                                                let ty::AliasTermKind::ProjectionTy |
                                                    ty::AliasTermKind::ProjectionConst = rhs.kind(self.tcx) &&
                                            let Some((better_type_err, expected_term)) =
                                                derive_better_type_error(rhs, lhs) {
                                        (Some((rhs, self.resolve_vars_if_possible(expected_term),
                                                    lhs)), better_type_err)
                                    } else { (None, error.err) }
                                }
                                _ => (None, error.err),
                            };
                        let mut file = None;
                        let (msg, span, closure_span) =
                            values.and_then(|(predicate, normalized_term,
                                            expected_term)|
                                        {
                                            self.maybe_detailed_projection_msg(obligation.cause.span,
                                                predicate, normalized_term, expected_term, &mut file)
                                        }).unwrap_or_else(||
                                    {
                                        ({
                                                let _guard = ForceTrimmedGuard::new();
                                                ::alloc::__export::must_use({
                                                        ::alloc::fmt::format(format_args!("type mismatch resolving `{0}`",
                                                                self.tcx.short_string(self.resolve_vars_if_possible(predicate),
                                                                    &mut file)))
                                                    })
                                            }, obligation.cause.span, None)
                                    });
                        let mut diag =
                            {
                                self.dcx().struct_span_err(span,
                                        ::alloc::__export::must_use({
                                                ::alloc::fmt::format(format_args!("{0}", msg))
                                            })).with_code(E0271)
                            };
                        *diag.long_ty_path() = file;
                        if let Some(span) = closure_span {
                            diag.span_label(span, "this closure");
                            if !span.overlaps(obligation.cause.span) {
                                diag.span_label(obligation.cause.span, "closure used here");
                            }
                        }
                        let secondary_span =
                            self.probe(|_|
                                    {
                                        let ty::PredicateKind::Clause(ty::ClauseKind::Projection(proj)) =
                                            predicate.kind().skip_binder() else { return None; };
                                        let trait_ref =
                                            self.enter_forall_and_leak_universe(predicate.kind().rebind(proj.projection_term.trait_ref(self.tcx)));
                                        let Ok(Some(ImplSource::UserDefined(impl_data))) =
                                            SelectionContext::new(self).select(&obligation.with(self.tcx,
                                                        trait_ref)) else { return None; };
                                        let Ok(node) =
                                            specialization_graph::assoc_def(self.tcx,
                                                impl_data.impl_def_id, proj.def_id()) else { return None; };
                                        if !node.is_final() { return None; }
                                        match self.tcx.hir_get_if_local(node.item.def_id) {
                                            Some(hir::Node::TraitItem(hir::TraitItem {
                                                kind: hir::TraitItemKind::Type(_, Some(ty)), .. }) |
                                                hir::Node::ImplItem(hir::ImplItem {
                                                kind: hir::ImplItemKind::Type(ty), .. })) =>
                                                Some((ty.span,
                                                        {
                                                            let _guard = ForceTrimmedGuard::new();
                                                            Cow::from(::alloc::__export::must_use({
                                                                        ::alloc::fmt::format(format_args!("type mismatch resolving `{0}`",
                                                                                self.tcx.short_string(self.resolve_vars_if_possible(predicate),
                                                                                    diag.long_ty_path())))
                                                                    }))
                                                        }, true)),
                                            _ => None,
                                        }
                                    });
                        self.note_type_err(&mut diag, &obligation.cause,
                            secondary_span,
                            values.map(|(_, normalized_ty, expected_ty)|
                                    {
                                        obligation.param_env.and(infer::ValuePairs::Terms(ExpectedFound::new(expected_ty,
                                                    normalized_ty)))
                                    }), err, false, Some(span));
                        self.note_obligation_cause(&mut diag, obligation);
                        diag.emit()
                    })
        }
    }
}#[instrument(level = "debug", skip_all)]
1552    pub(super) fn report_projection_error(
1553        &self,
1554        obligation: &PredicateObligation<'tcx>,
1555        error: &MismatchedProjectionTypes<'tcx>,
1556    ) -> ErrorGuaranteed {
1557        let predicate = self.resolve_vars_if_possible(obligation.predicate);
1558
1559        if let Err(e) = predicate.error_reported() {
1560            return e;
1561        }
1562
1563        self.probe(|_| {
1564            // try to find the mismatched types to report the error with.
1565            //
1566            // this can fail if the problem was higher-ranked, in which
1567            // cause I have no idea for a good error message.
1568            let bound_predicate = predicate.kind();
1569            let (values, err) = match bound_predicate.skip_binder() {
1570                ty::PredicateKind::Clause(ty::ClauseKind::Projection(data)) => {
1571                    let ocx = ObligationCtxt::new(self);
1572
1573                    let data = self.instantiate_binder_with_fresh_vars(
1574                        obligation.cause.span,
1575                        infer::BoundRegionConversionTime::HigherRankedType,
1576                        bound_predicate.rebind(data),
1577                    );
1578                    let unnormalized_term = data.projection_term.to_term(self.tcx);
1579                    // FIXME(-Znext-solver): For diagnostic purposes, it would be nice
1580                    // to deeply normalize this type.
1581                    let normalized_term =
1582                        ocx.normalize(&obligation.cause, obligation.param_env, unnormalized_term);
1583
1584                    // constrain inference variables a bit more to nested obligations from normalize so
1585                    // we can have more helpful errors.
1586                    //
1587                    // we intentionally drop errors from normalization here,
1588                    // since the normalization is just done to improve the error message.
1589                    let _ = ocx.try_evaluate_obligations();
1590
1591                    if let Err(new_err) =
1592                        ocx.eq(&obligation.cause, obligation.param_env, data.term, normalized_term)
1593                    {
1594                        (
1595                            Some((
1596                                data.projection_term,
1597                                self.resolve_vars_if_possible(normalized_term),
1598                                data.term,
1599                            )),
1600                            new_err,
1601                        )
1602                    } else {
1603                        (None, error.err)
1604                    }
1605                }
1606                ty::PredicateKind::AliasRelate(lhs, rhs, _) => {
1607                    let derive_better_type_error =
1608                        |alias_term: ty::AliasTerm<'tcx>, expected_term: ty::Term<'tcx>| {
1609                            let ocx = ObligationCtxt::new(self);
1610
1611                            let Ok(normalized_term) = ocx.structurally_normalize_term(
1612                                &ObligationCause::dummy(),
1613                                obligation.param_env,
1614                                alias_term.to_term(self.tcx),
1615                            ) else {
1616                                return None;
1617                            };
1618
1619                            if let Err(terr) = ocx.eq(
1620                                &ObligationCause::dummy(),
1621                                obligation.param_env,
1622                                expected_term,
1623                                normalized_term,
1624                            ) {
1625                                Some((terr, self.resolve_vars_if_possible(normalized_term)))
1626                            } else {
1627                                None
1628                            }
1629                        };
1630
1631                    if let Some(lhs) = lhs.to_alias_term()
1632                        && let ty::AliasTermKind::ProjectionTy | ty::AliasTermKind::ProjectionConst = lhs.kind(self.tcx)
1633                        && let Some((better_type_err, expected_term)) =
1634                            derive_better_type_error(lhs, rhs)
1635                    {
1636                        (
1637                            Some((lhs, self.resolve_vars_if_possible(expected_term), rhs)),
1638                            better_type_err,
1639                        )
1640                    } else if let Some(rhs) = rhs.to_alias_term()
1641                        && let ty::AliasTermKind::ProjectionTy | ty::AliasTermKind::ProjectionConst = rhs.kind(self.tcx)
1642                        && let Some((better_type_err, expected_term)) =
1643                            derive_better_type_error(rhs, lhs)
1644                    {
1645                        (
1646                            Some((rhs, self.resolve_vars_if_possible(expected_term), lhs)),
1647                            better_type_err,
1648                        )
1649                    } else {
1650                        (None, error.err)
1651                    }
1652                }
1653                _ => (None, error.err),
1654            };
1655
1656            let mut file = None;
1657            let (msg, span, closure_span) = values
1658                .and_then(|(predicate, normalized_term, expected_term)| {
1659                    self.maybe_detailed_projection_msg(
1660                        obligation.cause.span,
1661                        predicate,
1662                        normalized_term,
1663                        expected_term,
1664                        &mut file,
1665                    )
1666                })
1667                .unwrap_or_else(|| {
1668                    (
1669                        with_forced_trimmed_paths!(format!(
1670                            "type mismatch resolving `{}`",
1671                            self.tcx
1672                                .short_string(self.resolve_vars_if_possible(predicate), &mut file),
1673                        )),
1674                        obligation.cause.span,
1675                        None,
1676                    )
1677                });
1678            let mut diag = struct_span_code_err!(self.dcx(), span, E0271, "{msg}");
1679            *diag.long_ty_path() = file;
1680            if let Some(span) = closure_span {
1681                // Mark the closure decl so that it is seen even if we are pointing at the return
1682                // type or expression.
1683                //
1684                // error[E0271]: expected `{closure@foo.rs:41:16}` to be a closure that returns
1685                //               `Unit3`, but it returns `Unit4`
1686                //   --> $DIR/foo.rs:43:17
1687                //    |
1688                // LL |     let v = Unit2.m(
1689                //    |                   - required by a bound introduced by this call
1690                // ...
1691                // LL |             f: |x| {
1692                //    |                --- /* this span */
1693                // LL |                 drop(x);
1694                // LL |                 Unit4
1695                //    |                 ^^^^^ expected `Unit3`, found `Unit4`
1696                //    |
1697                diag.span_label(span, "this closure");
1698                if !span.overlaps(obligation.cause.span) {
1699                    // Point at the binding corresponding to the closure where it is used.
1700                    diag.span_label(obligation.cause.span, "closure used here");
1701                }
1702            }
1703
1704            let secondary_span = self.probe(|_| {
1705                let ty::PredicateKind::Clause(ty::ClauseKind::Projection(proj)) =
1706                    predicate.kind().skip_binder()
1707                else {
1708                    return None;
1709                };
1710
1711                let trait_ref = self.enter_forall_and_leak_universe(
1712                    predicate.kind().rebind(proj.projection_term.trait_ref(self.tcx)),
1713                );
1714                let Ok(Some(ImplSource::UserDefined(impl_data))) =
1715                    SelectionContext::new(self).select(&obligation.with(self.tcx, trait_ref))
1716                else {
1717                    return None;
1718                };
1719
1720                let Ok(node) =
1721                    specialization_graph::assoc_def(self.tcx, impl_data.impl_def_id, proj.def_id())
1722                else {
1723                    return None;
1724                };
1725
1726                if !node.is_final() {
1727                    return None;
1728                }
1729
1730                match self.tcx.hir_get_if_local(node.item.def_id) {
1731                    Some(
1732                        hir::Node::TraitItem(hir::TraitItem {
1733                            kind: hir::TraitItemKind::Type(_, Some(ty)),
1734                            ..
1735                        })
1736                        | hir::Node::ImplItem(hir::ImplItem {
1737                            kind: hir::ImplItemKind::Type(ty),
1738                            ..
1739                        }),
1740                    ) => Some((
1741                        ty.span,
1742                        with_forced_trimmed_paths!(Cow::from(format!(
1743                            "type mismatch resolving `{}`",
1744                            self.tcx.short_string(
1745                                self.resolve_vars_if_possible(predicate),
1746                                diag.long_ty_path()
1747                            ),
1748                        ))),
1749                        true,
1750                    )),
1751                    _ => None,
1752                }
1753            });
1754
1755            self.note_type_err(
1756                &mut diag,
1757                &obligation.cause,
1758                secondary_span,
1759                values.map(|(_, normalized_ty, expected_ty)| {
1760                    obligation.param_env.and(infer::ValuePairs::Terms(ExpectedFound::new(
1761                        expected_ty,
1762                        normalized_ty,
1763                    )))
1764                }),
1765                err,
1766                false,
1767                Some(span),
1768            );
1769            self.note_obligation_cause(&mut diag, obligation);
1770            diag.emit()
1771        })
1772    }
1773
1774    fn maybe_detailed_projection_msg(
1775        &self,
1776        mut span: Span,
1777        projection_term: ty::AliasTerm<'tcx>,
1778        normalized_ty: ty::Term<'tcx>,
1779        expected_ty: ty::Term<'tcx>,
1780        long_ty_path: &mut Option<PathBuf>,
1781    ) -> Option<(String, Span, Option<Span>)> {
1782        let trait_def_id = projection_term.trait_def_id(self.tcx);
1783        let self_ty = projection_term.self_ty();
1784
1785        {
    let _guard = ForceTrimmedGuard::new();
    if self.tcx.is_lang_item(projection_term.def_id, LangItem::FnOnceOutput) {
        let (span, closure_span) =
            if let ty::Closure(def_id, _) = self_ty.kind() {
                let def_span = self.tcx.def_span(def_id);
                if let Some(local_def_id) = def_id.as_local() &&
                                let node = self.tcx.hir_node_by_def_id(local_def_id) &&
                            let Some(fn_decl) = node.fn_decl() &&
                        let Some(id) = node.body_id() {
                    span =
                        match fn_decl.output {
                            hir::FnRetTy::Return(ty) => ty.span,
                            hir::FnRetTy::DefaultReturn(_) => {
                                let body = self.tcx.hir_body(id);
                                match body.value.kind {
                                    hir::ExprKind::Block(hir::Block { expr: Some(expr), .. }, _)
                                        => expr.span,
                                    hir::ExprKind::Block(hir::Block {
                                        expr: None, stmts: [.., last], .. }, _) => last.span,
                                    _ => body.value.span,
                                }
                            }
                        };
                }
                (span, Some(def_span))
            } else { (span, None) };
        let item =
            match self_ty.kind() {
                ty::FnDef(def, _) => self.tcx.item_name(*def).to_string(),
                _ => self.tcx.short_string(self_ty, long_ty_path),
            };
        let expected_ty = self.tcx.short_string(expected_ty, long_ty_path);
        let normalized_ty =
            self.tcx.short_string(normalized_ty, long_ty_path);
        Some((::alloc::__export::must_use({
                        ::alloc::fmt::format(format_args!("expected `{0}` to return `{1}`, but it returns `{2}`",
                                item, expected_ty, normalized_ty))
                    }), span, closure_span))
    } else if self.tcx.is_lang_item(trait_def_id, LangItem::Future) {
        let self_ty = self.tcx.short_string(self_ty, long_ty_path);
        let expected_ty = self.tcx.short_string(expected_ty, long_ty_path);
        let normalized_ty =
            self.tcx.short_string(normalized_ty, long_ty_path);
        Some((::alloc::__export::must_use({
                        ::alloc::fmt::format(format_args!("expected `{0}` to be a future that resolves to `{1}`, but it resolves to `{2}`",
                                self_ty, expected_ty, normalized_ty))
                    }), span, None))
    } else if Some(trait_def_id) ==
            self.tcx.get_diagnostic_item(sym::Iterator) {
        let self_ty = self.tcx.short_string(self_ty, long_ty_path);
        let expected_ty = self.tcx.short_string(expected_ty, long_ty_path);
        let normalized_ty =
            self.tcx.short_string(normalized_ty, long_ty_path);
        Some((::alloc::__export::must_use({
                        ::alloc::fmt::format(format_args!("expected `{0}` to be an iterator that yields `{1}`, but it yields `{2}`",
                                self_ty, expected_ty, normalized_ty))
                    }), span, None))
    } else { None }
}with_forced_trimmed_paths! {
1786            if self.tcx.is_lang_item(projection_term.def_id, LangItem::FnOnceOutput) {
1787                let (span, closure_span) = if let ty::Closure(def_id, _) = self_ty.kind() {
1788                    let def_span = self.tcx.def_span(def_id);
1789                    if let Some(local_def_id) = def_id.as_local()
1790                        && let node = self.tcx.hir_node_by_def_id(local_def_id)
1791                        && let Some(fn_decl) = node.fn_decl()
1792                        && let Some(id) = node.body_id()
1793                    {
1794                        span = match fn_decl.output {
1795                            hir::FnRetTy::Return(ty) => ty.span,
1796                            hir::FnRetTy::DefaultReturn(_) => {
1797                                let body = self.tcx.hir_body(id);
1798                                match body.value.kind {
1799                                    hir::ExprKind::Block(
1800                                        hir::Block { expr: Some(expr), .. },
1801                                        _,
1802                                    ) => expr.span,
1803                                    hir::ExprKind::Block(
1804                                        hir::Block {
1805                                            expr: None, stmts: [.., last], ..
1806                                        },
1807                                        _,
1808                                    ) => last.span,
1809                                    _ => body.value.span,
1810                                }
1811                            }
1812                        };
1813                    }
1814                    (span, Some(def_span))
1815                } else {
1816                    (span, None)
1817                };
1818                let item = match self_ty.kind() {
1819                    ty::FnDef(def, _) => self.tcx.item_name(*def).to_string(),
1820                    _ => self.tcx.short_string(self_ty, long_ty_path),
1821                };
1822                let expected_ty = self.tcx.short_string(expected_ty, long_ty_path);
1823                let normalized_ty = self.tcx.short_string(normalized_ty, long_ty_path);
1824                Some((format!(
1825                    "expected `{item}` to return `{expected_ty}`, but it returns `{normalized_ty}`",
1826                ), span, closure_span))
1827            } else if self.tcx.is_lang_item(trait_def_id, LangItem::Future) {
1828                let self_ty = self.tcx.short_string(self_ty, long_ty_path);
1829                let expected_ty = self.tcx.short_string(expected_ty, long_ty_path);
1830                let normalized_ty = self.tcx.short_string(normalized_ty, long_ty_path);
1831                Some((format!(
1832                    "expected `{self_ty}` to be a future that resolves to `{expected_ty}`, but it \
1833                     resolves to `{normalized_ty}`"
1834                ), span, None))
1835            } else if Some(trait_def_id) == self.tcx.get_diagnostic_item(sym::Iterator) {
1836                let self_ty = self.tcx.short_string(self_ty, long_ty_path);
1837                let expected_ty = self.tcx.short_string(expected_ty, long_ty_path);
1838                let normalized_ty = self.tcx.short_string(normalized_ty, long_ty_path);
1839                Some((format!(
1840                    "expected `{self_ty}` to be an iterator that yields `{expected_ty}`, but it \
1841                     yields `{normalized_ty}`"
1842                ), span, None))
1843            } else {
1844                None
1845            }
1846        }
1847    }
1848
1849    pub fn fuzzy_match_tys(
1850        &self,
1851        mut a: Ty<'tcx>,
1852        mut b: Ty<'tcx>,
1853        ignoring_lifetimes: bool,
1854    ) -> Option<CandidateSimilarity> {
1855        /// returns the fuzzy category of a given type, or None
1856        /// if the type can be equated to any type.
1857        fn type_category(tcx: TyCtxt<'_>, t: Ty<'_>) -> Option<u32> {
1858            match t.kind() {
1859                ty::Bool => Some(0),
1860                ty::Char => Some(1),
1861                ty::Str => Some(2),
1862                ty::Adt(def, _) if tcx.is_lang_item(def.did(), LangItem::String) => Some(2),
1863                ty::Int(..)
1864                | ty::Uint(..)
1865                | ty::Float(..)
1866                | ty::Infer(ty::IntVar(..) | ty::FloatVar(..)) => Some(4),
1867                ty::Ref(..) | ty::RawPtr(..) => Some(5),
1868                ty::Array(..) | ty::Slice(..) => Some(6),
1869                ty::FnDef(..) | ty::FnPtr(..) => Some(7),
1870                ty::Dynamic(..) => Some(8),
1871                ty::Closure(..) => Some(9),
1872                ty::Tuple(..) => Some(10),
1873                ty::Param(..) => Some(11),
1874                ty::Alias(ty::Projection, ..) => Some(12),
1875                ty::Alias(ty::Inherent, ..) => Some(13),
1876                ty::Alias(ty::Opaque, ..) => Some(14),
1877                ty::Alias(ty::Free, ..) => Some(15),
1878                ty::Never => Some(16),
1879                ty::Adt(..) => Some(17),
1880                ty::Coroutine(..) => Some(18),
1881                ty::Foreign(..) => Some(19),
1882                ty::CoroutineWitness(..) => Some(20),
1883                ty::CoroutineClosure(..) => Some(21),
1884                ty::Pat(..) => Some(22),
1885                ty::UnsafeBinder(..) => Some(23),
1886                ty::Placeholder(..) | ty::Bound(..) | ty::Infer(..) | ty::Error(_) => None,
1887            }
1888        }
1889
1890        let strip_references = |mut t: Ty<'tcx>| -> Ty<'tcx> {
1891            loop {
1892                match t.kind() {
1893                    ty::Ref(_, inner, _) | ty::RawPtr(inner, _) => t = *inner,
1894                    _ => break t,
1895                }
1896            }
1897        };
1898
1899        if !ignoring_lifetimes {
1900            a = strip_references(a);
1901            b = strip_references(b);
1902        }
1903
1904        let cat_a = type_category(self.tcx, a)?;
1905        let cat_b = type_category(self.tcx, b)?;
1906        if a == b {
1907            Some(CandidateSimilarity::Exact { ignoring_lifetimes })
1908        } else if cat_a == cat_b {
1909            match (a.kind(), b.kind()) {
1910                (ty::Adt(def_a, _), ty::Adt(def_b, _)) => def_a == def_b,
1911                (ty::Foreign(def_a), ty::Foreign(def_b)) => def_a == def_b,
1912                // Matching on references results in a lot of unhelpful
1913                // suggestions, so let's just not do that for now.
1914                //
1915                // We still upgrade successful matches to `ignoring_lifetimes: true`
1916                // to prioritize that impl.
1917                (ty::Ref(..) | ty::RawPtr(..), ty::Ref(..) | ty::RawPtr(..)) => {
1918                    self.fuzzy_match_tys(a, b, true).is_some()
1919                }
1920                _ => true,
1921            }
1922            .then_some(CandidateSimilarity::Fuzzy { ignoring_lifetimes })
1923        } else if ignoring_lifetimes {
1924            None
1925        } else {
1926            self.fuzzy_match_tys(a, b, true)
1927        }
1928    }
1929
1930    pub(super) fn describe_closure(&self, kind: hir::ClosureKind) -> &'static str {
1931        match kind {
1932            hir::ClosureKind::Closure => "a closure",
1933            hir::ClosureKind::Coroutine(hir::CoroutineKind::Coroutine(_)) => "a coroutine",
1934            hir::ClosureKind::Coroutine(hir::CoroutineKind::Desugared(
1935                hir::CoroutineDesugaring::Async,
1936                hir::CoroutineSource::Block,
1937            )) => "an async block",
1938            hir::ClosureKind::Coroutine(hir::CoroutineKind::Desugared(
1939                hir::CoroutineDesugaring::Async,
1940                hir::CoroutineSource::Fn,
1941            )) => "an async function",
1942            hir::ClosureKind::Coroutine(hir::CoroutineKind::Desugared(
1943                hir::CoroutineDesugaring::Async,
1944                hir::CoroutineSource::Closure,
1945            ))
1946            | hir::ClosureKind::CoroutineClosure(hir::CoroutineDesugaring::Async) => {
1947                "an async closure"
1948            }
1949            hir::ClosureKind::Coroutine(hir::CoroutineKind::Desugared(
1950                hir::CoroutineDesugaring::AsyncGen,
1951                hir::CoroutineSource::Block,
1952            )) => "an async gen block",
1953            hir::ClosureKind::Coroutine(hir::CoroutineKind::Desugared(
1954                hir::CoroutineDesugaring::AsyncGen,
1955                hir::CoroutineSource::Fn,
1956            )) => "an async gen function",
1957            hir::ClosureKind::Coroutine(hir::CoroutineKind::Desugared(
1958                hir::CoroutineDesugaring::AsyncGen,
1959                hir::CoroutineSource::Closure,
1960            ))
1961            | hir::ClosureKind::CoroutineClosure(hir::CoroutineDesugaring::AsyncGen) => {
1962                "an async gen closure"
1963            }
1964            hir::ClosureKind::Coroutine(hir::CoroutineKind::Desugared(
1965                hir::CoroutineDesugaring::Gen,
1966                hir::CoroutineSource::Block,
1967            )) => "a gen block",
1968            hir::ClosureKind::Coroutine(hir::CoroutineKind::Desugared(
1969                hir::CoroutineDesugaring::Gen,
1970                hir::CoroutineSource::Fn,
1971            )) => "a gen function",
1972            hir::ClosureKind::Coroutine(hir::CoroutineKind::Desugared(
1973                hir::CoroutineDesugaring::Gen,
1974                hir::CoroutineSource::Closure,
1975            ))
1976            | hir::ClosureKind::CoroutineClosure(hir::CoroutineDesugaring::Gen) => "a gen closure",
1977        }
1978    }
1979
1980    pub(super) fn find_similar_impl_candidates(
1981        &self,
1982        trait_pred: ty::PolyTraitPredicate<'tcx>,
1983    ) -> Vec<ImplCandidate<'tcx>> {
1984        let mut candidates: Vec<_> = self
1985            .tcx
1986            .all_impls(trait_pred.def_id())
1987            .filter_map(|def_id| {
1988                let imp = self.tcx.impl_trait_header(def_id);
1989                if imp.polarity != ty::ImplPolarity::Positive
1990                    || !self.tcx.is_user_visible_dep(def_id.krate)
1991                {
1992                    return None;
1993                }
1994                let imp = imp.trait_ref.skip_binder();
1995
1996                self.fuzzy_match_tys(trait_pred.skip_binder().self_ty(), imp.self_ty(), false).map(
1997                    |similarity| ImplCandidate { trait_ref: imp, similarity, impl_def_id: def_id },
1998                )
1999            })
2000            .collect();
2001        if candidates.iter().any(|c| #[allow(non_exhaustive_omitted_patterns)] match c.similarity {
    CandidateSimilarity::Exact { .. } => true,
    _ => false,
}matches!(c.similarity, CandidateSimilarity::Exact { .. })) {
2002            // If any of the candidates is a perfect match, we don't want to show all of them.
2003            // This is particularly relevant for the case of numeric types (as they all have the
2004            // same category).
2005            candidates.retain(|c| #[allow(non_exhaustive_omitted_patterns)] match c.similarity {
    CandidateSimilarity::Exact { .. } => true,
    _ => false,
}matches!(c.similarity, CandidateSimilarity::Exact { .. }));
2006        }
2007        candidates
2008    }
2009
2010    pub(super) fn report_similar_impl_candidates(
2011        &self,
2012        impl_candidates: &[ImplCandidate<'tcx>],
2013        trait_pred: ty::PolyTraitPredicate<'tcx>,
2014        body_def_id: LocalDefId,
2015        err: &mut Diag<'_>,
2016        other: bool,
2017        param_env: ty::ParamEnv<'tcx>,
2018    ) -> bool {
2019        let parent_map = self.tcx.visible_parent_map(());
2020        let alternative_candidates = |def_id: DefId| {
2021            let mut impl_candidates: Vec<_> = self
2022                .tcx
2023                .all_impls(def_id)
2024                // ignore `do_not_recommend` items
2025                .filter(|def_id| !self.tcx.do_not_recommend_impl(*def_id))
2026                // Ignore automatically derived impls and `!Trait` impls.
2027                .map(|def_id| (self.tcx.impl_trait_header(def_id), def_id))
2028                .filter_map(|(header, def_id)| {
2029                    (header.polarity == ty::ImplPolarity::Positive
2030                        || self.tcx.is_automatically_derived(def_id))
2031                    .then(|| (header.trait_ref.instantiate_identity(), def_id))
2032                })
2033                .filter(|(trait_ref, _)| {
2034                    let self_ty = trait_ref.self_ty();
2035                    // Avoid mentioning type parameters.
2036                    if let ty::Param(_) = self_ty.kind() {
2037                        false
2038                    }
2039                    // Avoid mentioning types that are private to another crate
2040                    else if let ty::Adt(def, _) = self_ty.peel_refs().kind() {
2041                        // FIXME(compiler-errors): This could be generalized, both to
2042                        // be more granular, and probably look past other `#[fundamental]`
2043                        // types, too.
2044                        let mut did = def.did();
2045                        if self.tcx.visibility(did).is_accessible_from(body_def_id, self.tcx) {
2046                            // don't suggest foreign `#[doc(hidden)]` types
2047                            if !did.is_local() {
2048                                let mut previously_seen_dids: FxHashSet<DefId> = Default::default();
2049                                previously_seen_dids.insert(did);
2050                                while let Some(&parent) = parent_map.get(&did)
2051                                    && let hash_set::Entry::Vacant(v) =
2052                                        previously_seen_dids.entry(parent)
2053                                {
2054                                    if self.tcx.is_doc_hidden(did) {
2055                                        return false;
2056                                    }
2057                                    v.insert();
2058                                    did = parent;
2059                                }
2060                            }
2061                            true
2062                        } else {
2063                            false
2064                        }
2065                    } else {
2066                        true
2067                    }
2068                })
2069                .collect();
2070
2071            impl_candidates.sort_by_key(|(tr, _)| tr.to_string());
2072            impl_candidates.dedup();
2073            impl_candidates
2074        };
2075
2076        if let [single] = &impl_candidates {
2077            // If we have a single implementation, try to unify it with the trait ref
2078            // that failed. This should uncover a better hint for what *is* implemented.
2079            if self.probe(|_| {
2080                let ocx = ObligationCtxt::new(self);
2081
2082                self.enter_forall(trait_pred, |obligation_trait_ref| {
2083                    let impl_args = self.fresh_args_for_item(DUMMY_SP, single.impl_def_id);
2084                    let impl_trait_ref = ocx.normalize(
2085                        &ObligationCause::dummy(),
2086                        param_env,
2087                        ty::EarlyBinder::bind(single.trait_ref).instantiate(self.tcx, impl_args),
2088                    );
2089
2090                    ocx.register_obligations(
2091                        self.tcx
2092                            .predicates_of(single.impl_def_id)
2093                            .instantiate(self.tcx, impl_args)
2094                            .into_iter()
2095                            .map(|(clause, _)| {
2096                                Obligation::new(
2097                                    self.tcx,
2098                                    ObligationCause::dummy(),
2099                                    param_env,
2100                                    clause,
2101                                )
2102                            }),
2103                    );
2104                    if !ocx.try_evaluate_obligations().is_empty() {
2105                        return false;
2106                    }
2107
2108                    let mut terrs = ::alloc::vec::Vec::new()vec![];
2109                    for (obligation_arg, impl_arg) in
2110                        std::iter::zip(obligation_trait_ref.trait_ref.args, impl_trait_ref.args)
2111                    {
2112                        if (obligation_arg, impl_arg).references_error() {
2113                            return false;
2114                        }
2115                        if let Err(terr) =
2116                            ocx.eq(&ObligationCause::dummy(), param_env, impl_arg, obligation_arg)
2117                        {
2118                            terrs.push(terr);
2119                        }
2120                        if !ocx.try_evaluate_obligations().is_empty() {
2121                            return false;
2122                        }
2123                    }
2124
2125                    // Literally nothing unified, just give up.
2126                    if terrs.len() == impl_trait_ref.args.len() {
2127                        return false;
2128                    }
2129
2130                    let impl_trait_ref = self.resolve_vars_if_possible(impl_trait_ref);
2131                    if impl_trait_ref.references_error() {
2132                        return false;
2133                    }
2134
2135                    if let [child, ..] = &err.children[..]
2136                        && child.level == Level::Help
2137                        && let Some(line) = child.messages.get(0)
2138                        && let Some(line) = line.0.as_str()
2139                        && line.starts_with("the trait")
2140                        && line.contains("is not implemented for")
2141                    {
2142                        // HACK(estebank): we remove the pre-existing
2143                        // "the trait `X` is not implemented for" note, which only happens if there
2144                        // was a custom label. We do this because we want that note to always be the
2145                        // first, and making this logic run earlier will get tricky. For now, we
2146                        // instead keep the logic the same and modify the already constructed error
2147                        // to avoid the wording duplication.
2148                        err.children.remove(0);
2149                    }
2150
2151                    let traits = self.cmp_traits(
2152                        obligation_trait_ref.def_id(),
2153                        &obligation_trait_ref.trait_ref.args[1..],
2154                        impl_trait_ref.def_id,
2155                        &impl_trait_ref.args[1..],
2156                    );
2157                    let traits_content = (traits.0.content(), traits.1.content());
2158                    let types = self.cmp(obligation_trait_ref.self_ty(), impl_trait_ref.self_ty());
2159                    let types_content = (types.0.content(), types.1.content());
2160                    let mut msg = <[_]>::into_vec(::alloc::boxed::box_new([StringPart::normal("the trait `")]))vec![StringPart::normal("the trait `")];
2161                    if traits_content.0 == traits_content.1 {
2162                        msg.push(StringPart::normal(
2163                            impl_trait_ref.print_trait_sugared().to_string(),
2164                        ));
2165                    } else {
2166                        msg.extend(traits.0.0);
2167                    }
2168                    msg.extend([
2169                        StringPart::normal("` "),
2170                        StringPart::highlighted("is not"),
2171                        StringPart::normal(" implemented for `"),
2172                    ]);
2173                    if types_content.0 == types_content.1 {
2174                        let ty = self
2175                            .tcx
2176                            .short_string(obligation_trait_ref.self_ty(), err.long_ty_path());
2177                        msg.push(StringPart::normal(ty));
2178                    } else {
2179                        msg.extend(types.0.0);
2180                    }
2181                    msg.push(StringPart::normal("`"));
2182                    if types_content.0 == types_content.1 {
2183                        msg.push(StringPart::normal("\nbut trait `"));
2184                        msg.extend(traits.1.0);
2185                        msg.extend([
2186                            StringPart::normal("` "),
2187                            StringPart::highlighted("is"),
2188                            StringPart::normal(" implemented for it"),
2189                        ]);
2190                    } else if traits_content.0 == traits_content.1 {
2191                        msg.extend([
2192                            StringPart::normal("\nbut it "),
2193                            StringPart::highlighted("is"),
2194                            StringPart::normal(" implemented for `"),
2195                        ]);
2196                        msg.extend(types.1.0);
2197                        msg.push(StringPart::normal("`"));
2198                    } else {
2199                        msg.push(StringPart::normal("\nbut trait `"));
2200                        msg.extend(traits.1.0);
2201                        msg.extend([
2202                            StringPart::normal("` "),
2203                            StringPart::highlighted("is"),
2204                            StringPart::normal(" implemented for `"),
2205                        ]);
2206                        msg.extend(types.1.0);
2207                        msg.push(StringPart::normal("`"));
2208                    }
2209                    err.highlighted_span_help(self.tcx.def_span(single.impl_def_id), msg);
2210
2211                    if let [TypeError::Sorts(exp_found)] = &terrs[..] {
2212                        let exp_found = self.resolve_vars_if_possible(*exp_found);
2213                        let expected =
2214                            self.tcx.short_string(exp_found.expected, err.long_ty_path());
2215                        let found = self.tcx.short_string(exp_found.found, err.long_ty_path());
2216                        err.highlighted_help(<[_]>::into_vec(::alloc::boxed::box_new([StringPart::normal("for that trait implementation, "),
                StringPart::normal("expected `"),
                StringPart::highlighted(expected),
                StringPart::normal("`, found `"),
                StringPart::highlighted(found), StringPart::normal("`")]))vec![
2217                            StringPart::normal("for that trait implementation, "),
2218                            StringPart::normal("expected `"),
2219                            StringPart::highlighted(expected),
2220                            StringPart::normal("`, found `"),
2221                            StringPart::highlighted(found),
2222                            StringPart::normal("`"),
2223                        ]);
2224                        self.suggest_function_pointers_impl(None, &exp_found, err);
2225                    }
2226
2227                    if let ty::Adt(def, _) = trait_pred.self_ty().skip_binder().peel_refs().kind()
2228                        && let crates = self.tcx.duplicate_crate_names(def.did().krate)
2229                        && !crates.is_empty()
2230                    {
2231                        self.note_two_crate_versions(def.did().krate, MultiSpan::new(), err);
2232                        err.help("you can use `cargo tree` to explore your dependency tree");
2233                    }
2234                    true
2235                })
2236            }) {
2237                return true;
2238            }
2239        }
2240
2241        let other = if other { "other " } else { "" };
2242        let report = |mut candidates: Vec<(TraitRef<'tcx>, DefId)>, err: &mut Diag<'_>| {
2243            candidates.retain(|(tr, _)| !tr.references_error());
2244            if candidates.is_empty() {
2245                return false;
2246            }
2247            if let &[(cand, def_id)] = &candidates[..] {
2248                if self.tcx.is_diagnostic_item(sym::FromResidual, cand.def_id)
2249                    && !self.tcx.features().enabled(sym::try_trait_v2)
2250                {
2251                    return false;
2252                }
2253                let (desc, mention_castable) =
2254                    match (cand.self_ty().kind(), trait_pred.self_ty().skip_binder().kind()) {
2255                        (ty::FnPtr(..), ty::FnDef(..)) => {
2256                            (" implemented for fn pointer `", ", cast using `as`")
2257                        }
2258                        (ty::FnPtr(..), _) => (" implemented for fn pointer `", ""),
2259                        _ => (" implemented for `", ""),
2260                    };
2261                let trait_ = self.tcx.short_string(cand.print_trait_sugared(), err.long_ty_path());
2262                let self_ty = self.tcx.short_string(cand.self_ty(), err.long_ty_path());
2263                err.highlighted_span_help(
2264                    self.tcx.def_span(def_id),
2265                    <[_]>::into_vec(::alloc::boxed::box_new([StringPart::normal(::alloc::__export::must_use({
                            ::alloc::fmt::format(format_args!("the trait `{0}` ",
                                    trait_))
                        })), StringPart::highlighted("is"),
                StringPart::normal(desc), StringPart::highlighted(self_ty),
                StringPart::normal("`"),
                StringPart::normal(mention_castable)]))vec![
2266                        StringPart::normal(format!("the trait `{trait_}` ")),
2267                        StringPart::highlighted("is"),
2268                        StringPart::normal(desc),
2269                        StringPart::highlighted(self_ty),
2270                        StringPart::normal("`"),
2271                        StringPart::normal(mention_castable),
2272                    ],
2273                );
2274                return true;
2275            }
2276            let trait_ref = TraitRef::identity(self.tcx, candidates[0].0.def_id);
2277            // Check if the trait is the same in all cases. If so, we'll only show the type.
2278            let mut traits: Vec<_> =
2279                candidates.iter().map(|(c, _)| c.print_only_trait_path().to_string()).collect();
2280            traits.sort();
2281            traits.dedup();
2282            // FIXME: this could use a better heuristic, like just checking
2283            // that args[1..] is the same.
2284            let all_traits_equal = traits.len() == 1;
2285
2286            let end = if candidates.len() <= 9 || self.tcx.sess.opts.verbose {
2287                candidates.len()
2288            } else {
2289                8
2290            };
2291            if candidates.len() < 5 {
2292                let spans: Vec<_> =
2293                    candidates.iter().map(|(_, def_id)| self.tcx.def_span(def_id)).collect();
2294                let mut span: MultiSpan = spans.into();
2295                for (c, def_id) in &candidates {
2296                    let msg = if all_traits_equal {
2297                        ::alloc::__export::must_use({
        ::alloc::fmt::format(format_args!("`{0}`",
                self.tcx.short_string(c.self_ty(), err.long_ty_path())))
    })format!("`{}`", self.tcx.short_string(c.self_ty(), err.long_ty_path()))
2298                    } else {
2299                        ::alloc::__export::must_use({
        ::alloc::fmt::format(format_args!("`{0}` implements `{1}`",
                self.tcx.short_string(c.self_ty(), err.long_ty_path()),
                self.tcx.short_string(c.print_only_trait_path(),
                    err.long_ty_path())))
    })format!(
2300                            "`{}` implements `{}`",
2301                            self.tcx.short_string(c.self_ty(), err.long_ty_path()),
2302                            self.tcx.short_string(c.print_only_trait_path(), err.long_ty_path()),
2303                        )
2304                    };
2305                    span.push_span_label(self.tcx.def_span(def_id), msg);
2306                }
2307                err.span_help(
2308                    span,
2309                    ::alloc::__export::must_use({
        ::alloc::fmt::format(format_args!("the following {1}types implement trait `{0}`",
                trait_ref.print_trait_sugared(), other))
    })format!(
2310                        "the following {other}types implement trait `{}`",
2311                        trait_ref.print_trait_sugared(),
2312                    ),
2313                );
2314            } else {
2315                let candidate_names: Vec<String> = candidates
2316                    .iter()
2317                    .map(|(c, _)| {
2318                        if all_traits_equal {
2319                            ::alloc::__export::must_use({
        ::alloc::fmt::format(format_args!("\n  {0}",
                self.tcx.short_string(c.self_ty(), err.long_ty_path())))
    })format!(
2320                                "\n  {}",
2321                                self.tcx.short_string(c.self_ty(), err.long_ty_path())
2322                            )
2323                        } else {
2324                            ::alloc::__export::must_use({
        ::alloc::fmt::format(format_args!("\n  `{0}` implements `{1}`",
                self.tcx.short_string(c.self_ty(), err.long_ty_path()),
                self.tcx.short_string(c.print_only_trait_path(),
                    err.long_ty_path())))
    })format!(
2325                                "\n  `{}` implements `{}`",
2326                                self.tcx.short_string(c.self_ty(), err.long_ty_path()),
2327                                self.tcx
2328                                    .short_string(c.print_only_trait_path(), err.long_ty_path()),
2329                            )
2330                        }
2331                    })
2332                    .collect();
2333                err.help(::alloc::__export::must_use({
        ::alloc::fmt::format(format_args!("the following {3}types implement trait `{0}`:{1}{2}",
                trait_ref.print_trait_sugared(),
                candidate_names[..end].join(""),
                if candidates.len() > 9 && !self.tcx.sess.opts.verbose {
                    ::alloc::__export::must_use({
                            ::alloc::fmt::format(format_args!("\nand {0} others",
                                    candidates.len() - 8))
                        })
                } else { String::new() }, other))
    })format!(
2334                    "the following {other}types implement trait `{}`:{}{}",
2335                    trait_ref.print_trait_sugared(),
2336                    candidate_names[..end].join(""),
2337                    if candidates.len() > 9 && !self.tcx.sess.opts.verbose {
2338                        format!("\nand {} others", candidates.len() - 8)
2339                    } else {
2340                        String::new()
2341                    }
2342                ));
2343            }
2344
2345            if let ty::Adt(def, _) = trait_pred.self_ty().skip_binder().peel_refs().kind()
2346                && let crates = self.tcx.duplicate_crate_names(def.did().krate)
2347                && !crates.is_empty()
2348            {
2349                self.note_two_crate_versions(def.did().krate, MultiSpan::new(), err);
2350                err.help("you can use `cargo tree` to explore your dependency tree");
2351            }
2352            true
2353        };
2354
2355        // we filter before checking if `impl_candidates` is empty
2356        // to get the fallback solution if we filtered out any impls
2357        let impl_candidates = impl_candidates
2358            .into_iter()
2359            .cloned()
2360            .filter(|cand| !self.tcx.do_not_recommend_impl(cand.impl_def_id))
2361            .collect::<Vec<_>>();
2362
2363        let def_id = trait_pred.def_id();
2364        if impl_candidates.is_empty() {
2365            if self.tcx.trait_is_auto(def_id)
2366                || self.tcx.lang_items().iter().any(|(_, id)| id == def_id)
2367                || self.tcx.get_diagnostic_name(def_id).is_some()
2368            {
2369                // Mentioning implementers of `Copy`, `Debug` and friends is not useful.
2370                return false;
2371            }
2372            return report(alternative_candidates(def_id), err);
2373        }
2374
2375        // Sort impl candidates so that ordering is consistent for UI tests.
2376        // because the ordering of `impl_candidates` may not be deterministic:
2377        // https://github.com/rust-lang/rust/pull/57475#issuecomment-455519507
2378        //
2379        // Prefer more similar candidates first, then sort lexicographically
2380        // by their normalized string representation.
2381        let mut impl_candidates: Vec<_> = impl_candidates
2382            .iter()
2383            .cloned()
2384            .filter(|cand| !cand.trait_ref.references_error())
2385            .map(|mut cand| {
2386                // Normalize the trait ref in its *own* param-env so
2387                // that consts are folded and any trivial projections
2388                // are normalized.
2389                cand.trait_ref = self
2390                    .tcx
2391                    .try_normalize_erasing_regions(
2392                        ty::TypingEnv::non_body_analysis(self.tcx, cand.impl_def_id),
2393                        cand.trait_ref,
2394                    )
2395                    .unwrap_or(cand.trait_ref);
2396                cand
2397            })
2398            .collect();
2399        impl_candidates.sort_by_key(|cand| {
2400            // When suggesting array types, sort them by the length of the array, not lexicographically (#135098)
2401            let len = if let GenericArgKind::Type(ty) = cand.trait_ref.args[0].kind()
2402                && let ty::Array(_, len) = ty.kind()
2403            {
2404                // Deprioritize suggestions for parameterized arrays.
2405                len.try_to_target_usize(self.tcx).unwrap_or(u64::MAX)
2406            } else {
2407                0
2408            };
2409
2410            (cand.similarity, len, cand.trait_ref.to_string())
2411        });
2412        let mut impl_candidates: Vec<_> =
2413            impl_candidates.into_iter().map(|cand| (cand.trait_ref, cand.impl_def_id)).collect();
2414        impl_candidates.dedup();
2415
2416        report(impl_candidates, err)
2417    }
2418
2419    fn report_similar_impl_candidates_for_root_obligation(
2420        &self,
2421        obligation: &PredicateObligation<'tcx>,
2422        trait_predicate: ty::Binder<'tcx, ty::TraitPredicate<'tcx>>,
2423        body_def_id: LocalDefId,
2424        err: &mut Diag<'_>,
2425    ) {
2426        // This is *almost* equivalent to
2427        // `obligation.cause.code().peel_derives()`, but it gives us the
2428        // trait predicate for that corresponding root obligation. This
2429        // lets us get a derived obligation from a type parameter, like
2430        // when calling `string.strip_suffix(p)` where `p` is *not* an
2431        // implementer of `Pattern<'_>`.
2432        let mut code = obligation.cause.code();
2433        let mut trait_pred = trait_predicate;
2434        let mut peeled = false;
2435        while let Some((parent_code, parent_trait_pred)) = code.parent_with_predicate() {
2436            code = parent_code;
2437            if let Some(parent_trait_pred) = parent_trait_pred {
2438                trait_pred = parent_trait_pred;
2439                peeled = true;
2440            }
2441        }
2442        let def_id = trait_pred.def_id();
2443        // Mention *all* the `impl`s for the *top most* obligation, the
2444        // user might have meant to use one of them, if any found. We skip
2445        // auto-traits or fundamental traits that might not be exactly what
2446        // the user might expect to be presented with. Instead this is
2447        // useful for less general traits.
2448        if peeled && !self.tcx.trait_is_auto(def_id) && self.tcx.as_lang_item(def_id).is_none() {
2449            let impl_candidates = self.find_similar_impl_candidates(trait_pred);
2450            self.report_similar_impl_candidates(
2451                &impl_candidates,
2452                trait_pred,
2453                body_def_id,
2454                err,
2455                true,
2456                obligation.param_env,
2457            );
2458        }
2459    }
2460
2461    /// Gets the parent trait chain start
2462    fn get_parent_trait_ref(
2463        &self,
2464        code: &ObligationCauseCode<'tcx>,
2465    ) -> Option<(Ty<'tcx>, Option<Span>)> {
2466        match code {
2467            ObligationCauseCode::BuiltinDerived(data) => {
2468                let parent_trait_ref = self.resolve_vars_if_possible(data.parent_trait_pred);
2469                match self.get_parent_trait_ref(&data.parent_code) {
2470                    Some(t) => Some(t),
2471                    None => {
2472                        let ty = parent_trait_ref.skip_binder().self_ty();
2473                        let span = TyCategory::from_ty(self.tcx, ty)
2474                            .map(|(_, def_id)| self.tcx.def_span(def_id));
2475                        Some((ty, span))
2476                    }
2477                }
2478            }
2479            ObligationCauseCode::FunctionArg { parent_code, .. } => {
2480                self.get_parent_trait_ref(parent_code)
2481            }
2482            _ => None,
2483        }
2484    }
2485
2486    fn check_same_trait_different_version(
2487        &self,
2488        err: &mut Diag<'_>,
2489        trait_pred: ty::PolyTraitPredicate<'tcx>,
2490    ) -> bool {
2491        let get_trait_impls = |trait_def_id| {
2492            let mut trait_impls = ::alloc::vec::Vec::new()vec![];
2493            self.tcx.for_each_relevant_impl(
2494                trait_def_id,
2495                trait_pred.skip_binder().self_ty(),
2496                |impl_def_id| {
2497                    let impl_trait_header = self.tcx.impl_trait_header(impl_def_id);
2498                    trait_impls
2499                        .push(self.tcx.def_span(impl_trait_header.trait_ref.skip_binder().def_id));
2500                },
2501            );
2502            trait_impls
2503        };
2504        self.check_same_definition_different_crate(
2505            err,
2506            trait_pred.def_id(),
2507            self.tcx.visible_traits(),
2508            get_trait_impls,
2509            "trait",
2510        )
2511    }
2512
2513    pub fn note_two_crate_versions(
2514        &self,
2515        krate: CrateNum,
2516        sp: impl Into<MultiSpan>,
2517        err: &mut Diag<'_>,
2518    ) {
2519        let crate_name = self.tcx.crate_name(krate);
2520        let crate_msg = ::alloc::__export::must_use({
        ::alloc::fmt::format(format_args!("there are multiple different versions of crate `{0}` in the dependency graph",
                crate_name))
    })format!(
2521            "there are multiple different versions of crate `{crate_name}` in the dependency graph"
2522        );
2523        err.span_note(sp, crate_msg);
2524    }
2525
2526    fn note_adt_version_mismatch(
2527        &self,
2528        err: &mut Diag<'_>,
2529        trait_pred: ty::PolyTraitPredicate<'tcx>,
2530    ) {
2531        let ty::Adt(impl_self_def, _) = trait_pred.self_ty().skip_binder().peel_refs().kind()
2532        else {
2533            return;
2534        };
2535
2536        let impl_self_did = impl_self_def.did();
2537
2538        // We only want to warn about different versions of a dependency.
2539        // If no dependency is involved, bail.
2540        if impl_self_did.krate == LOCAL_CRATE {
2541            return;
2542        }
2543
2544        let impl_self_path = self.comparable_path(impl_self_did);
2545        let impl_self_crate_name = self.tcx.crate_name(impl_self_did.krate);
2546        let similar_items: UnordSet<_> = self
2547            .tcx
2548            .visible_parent_map(())
2549            .items()
2550            .filter_map(|(&item, _)| {
2551                // If we found ourselves, ignore.
2552                if impl_self_did == item {
2553                    return None;
2554                }
2555                // We only want to warn about different versions of a dependency.
2556                // Ignore items from our own crate.
2557                if item.krate == LOCAL_CRATE {
2558                    return None;
2559                }
2560                // We want to warn about different versions of a dependency.
2561                // So make sure the crate names are the same.
2562                if impl_self_crate_name != self.tcx.crate_name(item.krate) {
2563                    return None;
2564                }
2565                // Filter out e.g. constructors that often have the same path
2566                // str as the relevant ADT.
2567                if !self.tcx.def_kind(item).is_adt() {
2568                    return None;
2569                }
2570                let path = self.comparable_path(item);
2571                // We don't know if our item or the one we found is the re-exported one.
2572                // Check both cases.
2573                let is_similar = path.ends_with(&impl_self_path) || impl_self_path.ends_with(&path);
2574                is_similar.then_some((item, path))
2575            })
2576            .collect();
2577
2578        let mut similar_items =
2579            similar_items.into_items().into_sorted_stable_ord_by_key(|(_, path)| path);
2580        similar_items.dedup();
2581
2582        for (similar_item, _) in similar_items {
2583            err.span_help(self.tcx.def_span(similar_item), "item with same name found");
2584            self.note_two_crate_versions(similar_item.krate, MultiSpan::new(), err);
2585        }
2586    }
2587
2588    fn check_same_name_different_path(
2589        &self,
2590        err: &mut Diag<'_>,
2591        obligation: &PredicateObligation<'tcx>,
2592        trait_pred: ty::PolyTraitPredicate<'tcx>,
2593    ) -> bool {
2594        let mut suggested = false;
2595        let trait_def_id = trait_pred.def_id();
2596        let trait_has_same_params = |other_trait_def_id: DefId| -> bool {
2597            let trait_generics = self.tcx.generics_of(trait_def_id);
2598            let other_trait_generics = self.tcx.generics_of(other_trait_def_id);
2599
2600            if trait_generics.count() != other_trait_generics.count() {
2601                return false;
2602            }
2603            trait_generics.own_params.iter().zip(other_trait_generics.own_params.iter()).all(
2604                |(a, b)| match (&a.kind, &b.kind) {
2605                    (ty::GenericParamDefKind::Lifetime, ty::GenericParamDefKind::Lifetime)
2606                    | (
2607                        ty::GenericParamDefKind::Type { .. },
2608                        ty::GenericParamDefKind::Type { .. },
2609                    )
2610                    | (
2611                        ty::GenericParamDefKind::Const { .. },
2612                        ty::GenericParamDefKind::Const { .. },
2613                    ) => true,
2614                    _ => false,
2615                },
2616            )
2617        };
2618        let trait_name = self.tcx.item_name(trait_def_id);
2619        if let Some(other_trait_def_id) = self.tcx.all_traits_including_private().find(|def_id| {
2620            trait_def_id != *def_id
2621                && trait_name == self.tcx.item_name(def_id)
2622                && trait_has_same_params(*def_id)
2623                && self.predicate_must_hold_modulo_regions(&Obligation::new(
2624                    self.tcx,
2625                    obligation.cause.clone(),
2626                    obligation.param_env,
2627                    trait_pred.map_bound(|tr| ty::TraitPredicate {
2628                        trait_ref: ty::TraitRef::new(self.tcx, *def_id, tr.trait_ref.args),
2629                        ..tr
2630                    }),
2631                ))
2632        }) {
2633            err.note(::alloc::__export::must_use({
        ::alloc::fmt::format(format_args!("`{0}` implements similarly named trait `{1}`, but not `{2}`",
                trait_pred.self_ty(),
                self.tcx.def_path_str(other_trait_def_id),
                trait_pred.print_modifiers_and_trait_path()))
    })format!(
2634                "`{}` implements similarly named trait `{}`, but not `{}`",
2635                trait_pred.self_ty(),
2636                self.tcx.def_path_str(other_trait_def_id),
2637                trait_pred.print_modifiers_and_trait_path()
2638            ));
2639            suggested = true;
2640        }
2641        suggested
2642    }
2643
2644    /// If the `Self` type of the unsatisfied trait `trait_ref` implements a trait
2645    /// with the same path as `trait_ref`, a help message about a multiple different
2646    /// versions of the same crate is added to `err`. Otherwise if it implements another
2647    /// trait with the same name, a note message about a similarly named trait is added to `err`.
2648    pub fn note_different_trait_with_same_name(
2649        &self,
2650        err: &mut Diag<'_>,
2651        obligation: &PredicateObligation<'tcx>,
2652        trait_pred: ty::PolyTraitPredicate<'tcx>,
2653    ) -> bool {
2654        if self.check_same_trait_different_version(err, trait_pred) {
2655            return true;
2656        }
2657        self.check_same_name_different_path(err, obligation, trait_pred)
2658    }
2659
2660    /// Add a `::` prefix when comparing paths so that paths with just one item
2661    /// like "Foo" does not equal the end of "OtherFoo".
2662    fn comparable_path(&self, did: DefId) -> String {
2663        ::alloc::__export::must_use({
        ::alloc::fmt::format(format_args!("::{0}",
                self.tcx.def_path_str(did)))
    })format!("::{}", self.tcx.def_path_str(did))
2664    }
2665
2666    /// Creates a `PredicateObligation` with `new_self_ty` replacing the existing type in the
2667    /// `trait_ref`.
2668    ///
2669    /// For this to work, `new_self_ty` must have no escaping bound variables.
2670    pub(super) fn mk_trait_obligation_with_new_self_ty(
2671        &self,
2672        param_env: ty::ParamEnv<'tcx>,
2673        trait_ref_and_ty: ty::Binder<'tcx, (ty::TraitPredicate<'tcx>, Ty<'tcx>)>,
2674    ) -> PredicateObligation<'tcx> {
2675        let trait_pred = trait_ref_and_ty
2676            .map_bound(|(tr, new_self_ty)| tr.with_replaced_self_ty(self.tcx, new_self_ty));
2677
2678        Obligation::new(self.tcx, ObligationCause::dummy(), param_env, trait_pred)
2679    }
2680
2681    /// Returns `true` if the trait predicate may apply for *some* assignment
2682    /// to the type parameters.
2683    fn predicate_can_apply(
2684        &self,
2685        param_env: ty::ParamEnv<'tcx>,
2686        pred: ty::PolyTraitPredicate<'tcx>,
2687    ) -> bool {
2688        struct ParamToVarFolder<'a, 'tcx> {
2689            infcx: &'a InferCtxt<'tcx>,
2690            var_map: FxHashMap<Ty<'tcx>, Ty<'tcx>>,
2691        }
2692
2693        impl<'a, 'tcx> TypeFolder<TyCtxt<'tcx>> for ParamToVarFolder<'a, 'tcx> {
2694            fn cx(&self) -> TyCtxt<'tcx> {
2695                self.infcx.tcx
2696            }
2697
2698            fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
2699                if let ty::Param(_) = *ty.kind() {
2700                    let infcx = self.infcx;
2701                    *self.var_map.entry(ty).or_insert_with(|| infcx.next_ty_var(DUMMY_SP))
2702                } else {
2703                    ty.super_fold_with(self)
2704                }
2705            }
2706        }
2707
2708        self.probe(|_| {
2709            let cleaned_pred =
2710                pred.fold_with(&mut ParamToVarFolder { infcx: self, var_map: Default::default() });
2711
2712            let InferOk { value: cleaned_pred, .. } =
2713                self.infcx.at(&ObligationCause::dummy(), param_env).normalize(cleaned_pred);
2714
2715            let obligation =
2716                Obligation::new(self.tcx, ObligationCause::dummy(), param_env, cleaned_pred);
2717
2718            self.predicate_may_hold(&obligation)
2719        })
2720    }
2721
2722    pub fn note_obligation_cause(
2723        &self,
2724        err: &mut Diag<'_>,
2725        obligation: &PredicateObligation<'tcx>,
2726    ) {
2727        // First, attempt to add note to this error with an async-await-specific
2728        // message, and fall back to regular note otherwise.
2729        if !self.maybe_note_obligation_cause_for_async_await(err, obligation) {
2730            self.note_obligation_cause_code(
2731                obligation.cause.body_id,
2732                err,
2733                obligation.predicate,
2734                obligation.param_env,
2735                obligation.cause.code(),
2736                &mut ::alloc::vec::Vec::new()vec![],
2737                &mut Default::default(),
2738            );
2739            self.suggest_swapping_lhs_and_rhs(
2740                err,
2741                obligation.predicate,
2742                obligation.param_env,
2743                obligation.cause.code(),
2744            );
2745            self.suggest_unsized_bound_if_applicable(err, obligation);
2746            if let Some(span) = err.span.primary_span()
2747                && let Some(mut diag) =
2748                    self.dcx().steal_non_err(span, StashKey::AssociatedTypeSuggestion)
2749                && let Suggestions::Enabled(ref mut s1) = err.suggestions
2750                && let Suggestions::Enabled(ref mut s2) = diag.suggestions
2751            {
2752                s1.append(s2);
2753                diag.cancel()
2754            }
2755        }
2756    }
2757
2758    pub(super) fn is_recursive_obligation(
2759        &self,
2760        obligated_types: &mut Vec<Ty<'tcx>>,
2761        cause_code: &ObligationCauseCode<'tcx>,
2762    ) -> bool {
2763        if let ObligationCauseCode::BuiltinDerived(data) = cause_code {
2764            let parent_trait_ref = self.resolve_vars_if_possible(data.parent_trait_pred);
2765            let self_ty = parent_trait_ref.skip_binder().self_ty();
2766            if obligated_types.iter().any(|ot| ot == &self_ty) {
2767                return true;
2768            }
2769            if let ty::Adt(def, args) = self_ty.kind()
2770                && let [arg] = &args[..]
2771                && let ty::GenericArgKind::Type(ty) = arg.kind()
2772                && let ty::Adt(inner_def, _) = ty.kind()
2773                && inner_def == def
2774            {
2775                return true;
2776            }
2777        }
2778        false
2779    }
2780
2781    fn get_standard_error_message(
2782        &self,
2783        trait_predicate: ty::PolyTraitPredicate<'tcx>,
2784        message: Option<String>,
2785        predicate_constness: Option<ty::BoundConstness>,
2786        append_const_msg: Option<AppendConstMessage>,
2787        post_message: String,
2788        long_ty_path: &mut Option<PathBuf>,
2789    ) -> String {
2790        message
2791            .and_then(|cannot_do_this| {
2792                match (predicate_constness, append_const_msg) {
2793                    // do nothing if predicate is not const
2794                    (None, _) => Some(cannot_do_this),
2795                    // suggested using default post message
2796                    (
2797                        Some(ty::BoundConstness::Const | ty::BoundConstness::Maybe),
2798                        Some(AppendConstMessage::Default),
2799                    ) => Some(::alloc::__export::must_use({
        ::alloc::fmt::format(format_args!("{0} in const contexts",
                cannot_do_this))
    })format!("{cannot_do_this} in const contexts")),
2800                    // overridden post message
2801                    (
2802                        Some(ty::BoundConstness::Const | ty::BoundConstness::Maybe),
2803                        Some(AppendConstMessage::Custom(custom_msg, _)),
2804                    ) => Some(::alloc::__export::must_use({
        ::alloc::fmt::format(format_args!("{0}{1}", cannot_do_this,
                custom_msg))
    })format!("{cannot_do_this}{custom_msg}")),
2805                    // fallback to generic message
2806                    (Some(ty::BoundConstness::Const | ty::BoundConstness::Maybe), None) => None,
2807                }
2808            })
2809            .unwrap_or_else(|| {
2810                ::alloc::__export::must_use({
        ::alloc::fmt::format(format_args!("the trait bound `{0}` is not satisfied{1}",
                self.tcx.short_string(trait_predicate.print_with_bound_constness(predicate_constness),
                    long_ty_path), post_message))
    })format!(
2811                    "the trait bound `{}` is not satisfied{post_message}",
2812                    self.tcx.short_string(
2813                        trait_predicate.print_with_bound_constness(predicate_constness),
2814                        long_ty_path,
2815                    ),
2816                )
2817            })
2818    }
2819
2820    fn get_safe_transmute_error_and_reason(
2821        &self,
2822        obligation: PredicateObligation<'tcx>,
2823        trait_pred: ty::PolyTraitPredicate<'tcx>,
2824        span: Span,
2825    ) -> GetSafeTransmuteErrorAndReason {
2826        use rustc_transmute::Answer;
2827        self.probe(|_| {
2828            // We don't assemble a transmutability candidate for types that are generic
2829            // and we should have ambiguity for types that still have non-region infer.
2830            if obligation.predicate.has_non_region_param() || obligation.has_non_region_infer() {
2831                return GetSafeTransmuteErrorAndReason::Default;
2832            }
2833
2834            // Erase regions because layout code doesn't particularly care about regions.
2835            let trait_pred = self.tcx.erase_and_anonymize_regions(
2836                self.tcx.instantiate_bound_regions_with_erased(trait_pred),
2837            );
2838
2839            let ocx = ObligationCtxt::new(self);
2840            let Ok(assume) = ocx.structurally_normalize_const(
2841                &obligation.cause,
2842                obligation.param_env,
2843                trait_pred.trait_ref.args.const_at(2),
2844            ) else {
2845                self.dcx().span_delayed_bug(
2846                    span,
2847                    "Unable to construct rustc_transmute::Assume where it was previously possible",
2848                );
2849                return GetSafeTransmuteErrorAndReason::Silent;
2850            };
2851
2852            let Some(assume) = rustc_transmute::Assume::from_const(self.infcx.tcx, assume) else {
2853                self.dcx().span_delayed_bug(
2854                    span,
2855                    "Unable to construct rustc_transmute::Assume where it was previously possible",
2856                );
2857                return GetSafeTransmuteErrorAndReason::Silent;
2858            };
2859
2860            let dst = trait_pred.trait_ref.args.type_at(0);
2861            let src = trait_pred.trait_ref.args.type_at(1);
2862            let err_msg = ::alloc::__export::must_use({
        ::alloc::fmt::format(format_args!("`{0}` cannot be safely transmuted into `{1}`",
                src, dst))
    })format!("`{src}` cannot be safely transmuted into `{dst}`");
2863
2864            match rustc_transmute::TransmuteTypeEnv::new(self.infcx.tcx)
2865                .is_transmutable(src, dst, assume)
2866            {
2867                Answer::No(reason) => {
2868                    let safe_transmute_explanation = match reason {
2869                        rustc_transmute::Reason::SrcIsNotYetSupported => {
2870                            ::alloc::__export::must_use({
        ::alloc::fmt::format(format_args!("analyzing the transmutability of `{0}` is not yet supported",
                src))
    })format!("analyzing the transmutability of `{src}` is not yet supported")
2871                        }
2872                        rustc_transmute::Reason::DstIsNotYetSupported => {
2873                            ::alloc::__export::must_use({
        ::alloc::fmt::format(format_args!("analyzing the transmutability of `{0}` is not yet supported",
                dst))
    })format!("analyzing the transmutability of `{dst}` is not yet supported")
2874                        }
2875                        rustc_transmute::Reason::DstIsBitIncompatible => {
2876                            ::alloc::__export::must_use({
        ::alloc::fmt::format(format_args!("at least one value of `{0}` isn\'t a bit-valid value of `{1}`",
                src, dst))
    })format!(
2877                                "at least one value of `{src}` isn't a bit-valid value of `{dst}`"
2878                            )
2879                        }
2880                        rustc_transmute::Reason::DstUninhabited => {
2881                            ::alloc::__export::must_use({
        ::alloc::fmt::format(format_args!("`{0}` is uninhabited", dst))
    })format!("`{dst}` is uninhabited")
2882                        }
2883                        rustc_transmute::Reason::DstMayHaveSafetyInvariants => {
2884                            ::alloc::__export::must_use({
        ::alloc::fmt::format(format_args!("`{0}` may carry safety invariants",
                dst))
    })format!("`{dst}` may carry safety invariants")
2885                        }
2886                        rustc_transmute::Reason::DstIsTooBig => {
2887                            ::alloc::__export::must_use({
        ::alloc::fmt::format(format_args!("the size of `{0}` is smaller than the size of `{1}`",
                src, dst))
    })format!("the size of `{src}` is smaller than the size of `{dst}`")
2888                        }
2889                        rustc_transmute::Reason::DstRefIsTooBig {
2890                            src,
2891                            src_size,
2892                            dst,
2893                            dst_size,
2894                        } => {
2895                            ::alloc::__export::must_use({
        ::alloc::fmt::format(format_args!("the size of `{0}` ({1} bytes) is smaller than that of `{2}` ({3} bytes)",
                src, src_size, dst, dst_size))
    })format!(
2896                                "the size of `{src}` ({src_size} bytes) \
2897                        is smaller than that of `{dst}` ({dst_size} bytes)"
2898                            )
2899                        }
2900                        rustc_transmute::Reason::SrcSizeOverflow => {
2901                            ::alloc::__export::must_use({
        ::alloc::fmt::format(format_args!("values of the type `{0}` are too big for the target architecture",
                src))
    })format!(
2902                                "values of the type `{src}` are too big for the target architecture"
2903                            )
2904                        }
2905                        rustc_transmute::Reason::DstSizeOverflow => {
2906                            ::alloc::__export::must_use({
        ::alloc::fmt::format(format_args!("values of the type `{0}` are too big for the target architecture",
                dst))
    })format!(
2907                                "values of the type `{dst}` are too big for the target architecture"
2908                            )
2909                        }
2910                        rustc_transmute::Reason::DstHasStricterAlignment {
2911                            src_min_align,
2912                            dst_min_align,
2913                        } => {
2914                            ::alloc::__export::must_use({
        ::alloc::fmt::format(format_args!("the minimum alignment of `{0}` ({1}) should be greater than that of `{2}` ({3})",
                src, src_min_align, dst, dst_min_align))
    })format!(
2915                                "the minimum alignment of `{src}` ({src_min_align}) should be \
2916                                 greater than that of `{dst}` ({dst_min_align})"
2917                            )
2918                        }
2919                        rustc_transmute::Reason::DstIsMoreUnique => {
2920                            ::alloc::__export::must_use({
        ::alloc::fmt::format(format_args!("`{0}` is a shared reference, but `{1}` is a unique reference",
                src, dst))
    })format!(
2921                                "`{src}` is a shared reference, but `{dst}` is a unique reference"
2922                            )
2923                        }
2924                        // Already reported by rustc
2925                        rustc_transmute::Reason::TypeError => {
2926                            return GetSafeTransmuteErrorAndReason::Silent;
2927                        }
2928                        rustc_transmute::Reason::SrcLayoutUnknown => {
2929                            ::alloc::__export::must_use({
        ::alloc::fmt::format(format_args!("`{0}` has an unknown layout", src))
    })format!("`{src}` has an unknown layout")
2930                        }
2931                        rustc_transmute::Reason::DstLayoutUnknown => {
2932                            ::alloc::__export::must_use({
        ::alloc::fmt::format(format_args!("`{0}` has an unknown layout", dst))
    })format!("`{dst}` has an unknown layout")
2933                        }
2934                    };
2935                    GetSafeTransmuteErrorAndReason::Error {
2936                        err_msg,
2937                        safe_transmute_explanation: Some(safe_transmute_explanation),
2938                    }
2939                }
2940                // Should never get a Yes at this point! We already ran it before, and did not get a Yes.
2941                Answer::Yes => ::rustc_middle::util::bug::span_bug_fmt(span,
    format_args!("Inconsistent rustc_transmute::is_transmutable(...) result, got Yes"))span_bug!(
2942                    span,
2943                    "Inconsistent rustc_transmute::is_transmutable(...) result, got Yes",
2944                ),
2945                // Reached when a different obligation (namely `Freeze`) causes the
2946                // transmutability analysis to fail. In this case, silence the
2947                // transmutability error message in favor of that more specific
2948                // error.
2949                Answer::If(_) => GetSafeTransmuteErrorAndReason::Error {
2950                    err_msg,
2951                    safe_transmute_explanation: None,
2952                },
2953            }
2954        })
2955    }
2956
2957    /// If `found_ty` is a reference that can be explicitly cast to another reference type for which
2958    /// a `From` / `TryFrom` impl exists for `self_ty`, return that type.
2959    fn find_explicit_cast_type(
2960        &self,
2961        param_env: ty::ParamEnv<'tcx>,
2962        found_ty: Ty<'tcx>,
2963        self_ty: Ty<'tcx>,
2964    ) -> Option<Ty<'tcx>> {
2965        let ty::Ref(region, inner_ty, mutbl) = *found_ty.kind() else {
2966            return None;
2967        };
2968
2969        let mut derefs = (self.autoderef_steps)(inner_ty).into_iter();
2970        derefs.next(); // skip the first one, which is inner_ty itself
2971        let deref_target = derefs.into_iter().next()?.0;
2972
2973        let cast_ty = Ty::new_ref(self.tcx, region, deref_target, mutbl);
2974
2975        let Some(from_def_id) = self.tcx.get_diagnostic_item(sym::From) else {
2976            return None;
2977        };
2978        let Some(try_from_def_id) = self.tcx.get_diagnostic_item(sym::TryFrom) else {
2979            return None;
2980        };
2981
2982        if self.has_impl_for_type(
2983            param_env,
2984            ty::TraitRef::new(
2985                self.tcx,
2986                from_def_id,
2987                self.tcx.mk_args(&[self_ty.into(), cast_ty.into()]),
2988            ),
2989        ) {
2990            Some(cast_ty)
2991        } else if self.has_impl_for_type(
2992            param_env,
2993            ty::TraitRef::new(
2994                self.tcx,
2995                try_from_def_id,
2996                self.tcx.mk_args(&[self_ty.into(), cast_ty.into()]),
2997            ),
2998        ) {
2999            Some(cast_ty)
3000        } else {
3001            None
3002        }
3003    }
3004
3005    fn has_impl_for_type(
3006        &self,
3007        param_env: ty::ParamEnv<'tcx>,
3008        trait_ref: ty::TraitRef<'tcx>,
3009    ) -> bool {
3010        let obligation = Obligation::new(
3011            self.tcx,
3012            ObligationCause::dummy(),
3013            param_env,
3014            ty::TraitPredicate { trait_ref, polarity: ty::PredicatePolarity::Positive },
3015        );
3016
3017        self.predicate_must_hold_modulo_regions(&obligation)
3018    }
3019
3020    fn add_tuple_trait_message(
3021        &self,
3022        obligation_cause_code: &ObligationCauseCode<'tcx>,
3023        err: &mut Diag<'_>,
3024    ) {
3025        match obligation_cause_code {
3026            ObligationCauseCode::RustCall => {
3027                err.primary_message("functions with the \"rust-call\" ABI must take a single non-self tuple argument");
3028            }
3029            ObligationCauseCode::WhereClause(def_id, _) if self.tcx.is_fn_trait(*def_id) => {
3030                err.code(E0059);
3031                err.primary_message(::alloc::__export::must_use({
        ::alloc::fmt::format(format_args!("type parameter to bare `{0}` trait must be a tuple",
                self.tcx.def_path_str(*def_id)))
    })format!(
3032                    "type parameter to bare `{}` trait must be a tuple",
3033                    self.tcx.def_path_str(*def_id)
3034                ));
3035            }
3036            _ => {}
3037        }
3038    }
3039
3040    fn try_to_add_help_message(
3041        &self,
3042        root_obligation: &PredicateObligation<'tcx>,
3043        obligation: &PredicateObligation<'tcx>,
3044        trait_predicate: ty::PolyTraitPredicate<'tcx>,
3045        err: &mut Diag<'_>,
3046        span: Span,
3047        is_fn_trait: bool,
3048        suggested: bool,
3049    ) {
3050        let body_def_id = obligation.cause.body_id;
3051        let span = if let ObligationCauseCode::BinOp { rhs_span, .. } = obligation.cause.code() {
3052            *rhs_span
3053        } else {
3054            span
3055        };
3056
3057        // Try to report a help message
3058        let trait_def_id = trait_predicate.def_id();
3059        if is_fn_trait
3060            && let Ok((implemented_kind, params)) = self.type_implements_fn_trait(
3061                obligation.param_env,
3062                trait_predicate.self_ty(),
3063                trait_predicate.skip_binder().polarity,
3064            )
3065        {
3066            self.add_help_message_for_fn_trait(trait_predicate, err, implemented_kind, params);
3067        } else if !trait_predicate.has_non_region_infer()
3068            && self.predicate_can_apply(obligation.param_env, trait_predicate)
3069        {
3070            // If a where-clause may be useful, remind the
3071            // user that they can add it.
3072            //
3073            // don't display an on-unimplemented note, as
3074            // these notes will often be of the form
3075            //     "the type `T` can't be frobnicated"
3076            // which is somewhat confusing.
3077            self.suggest_restricting_param_bound(
3078                err,
3079                trait_predicate,
3080                None,
3081                obligation.cause.body_id,
3082            );
3083        } else if trait_def_id.is_local()
3084            && self.tcx.trait_impls_of(trait_def_id).is_empty()
3085            && !self.tcx.trait_is_auto(trait_def_id)
3086            && !self.tcx.trait_is_alias(trait_def_id)
3087            && trait_predicate.polarity() == ty::PredicatePolarity::Positive
3088        {
3089            err.span_help(
3090                self.tcx.def_span(trait_def_id),
3091                rustc_errors::DiagMessage::Inline(std::borrow::Cow::Borrowed("this trait has no implementations, consider adding one"))inline_fluent!("this trait has no implementations, consider adding one"),
3092            );
3093        } else if !suggested && trait_predicate.polarity() == ty::PredicatePolarity::Positive {
3094            // Can't show anything else useful, try to find similar impls.
3095            let impl_candidates = self.find_similar_impl_candidates(trait_predicate);
3096            if !self.report_similar_impl_candidates(
3097                &impl_candidates,
3098                trait_predicate,
3099                body_def_id,
3100                err,
3101                true,
3102                obligation.param_env,
3103            ) {
3104                self.report_similar_impl_candidates_for_root_obligation(
3105                    obligation,
3106                    trait_predicate,
3107                    body_def_id,
3108                    err,
3109                );
3110            }
3111
3112            self.suggest_convert_to_slice(
3113                err,
3114                obligation,
3115                trait_predicate,
3116                impl_candidates.as_slice(),
3117                span,
3118            );
3119
3120            self.suggest_tuple_wrapping(err, root_obligation, obligation);
3121        }
3122    }
3123
3124    fn add_help_message_for_fn_trait(
3125        &self,
3126        trait_pred: ty::PolyTraitPredicate<'tcx>,
3127        err: &mut Diag<'_>,
3128        implemented_kind: ty::ClosureKind,
3129        params: ty::Binder<'tcx, Ty<'tcx>>,
3130    ) {
3131        // If the type implements `Fn`, `FnMut`, or `FnOnce`, suppress the following
3132        // suggestion to add trait bounds for the type, since we only typically implement
3133        // these traits once.
3134
3135        // Note if the `FnMut` or `FnOnce` is less general than the trait we're trying
3136        // to implement.
3137        let selected_kind = self
3138            .tcx
3139            .fn_trait_kind_from_def_id(trait_pred.def_id())
3140            .expect("expected to map DefId to ClosureKind");
3141        if !implemented_kind.extends(selected_kind) {
3142            err.note(::alloc::__export::must_use({
        ::alloc::fmt::format(format_args!("`{0}` implements `{1}`, but it must implement `{2}`, which is more general",
                trait_pred.skip_binder().self_ty(), implemented_kind,
                selected_kind))
    })format!(
3143                "`{}` implements `{}`, but it must implement `{}`, which is more general",
3144                trait_pred.skip_binder().self_ty(),
3145                implemented_kind,
3146                selected_kind
3147            ));
3148        }
3149
3150        // Note any argument mismatches
3151        let ty::Tuple(given) = *params.skip_binder().kind() else {
3152            return;
3153        };
3154
3155        let expected_ty = trait_pred.skip_binder().trait_ref.args.type_at(1);
3156        let ty::Tuple(expected) = *expected_ty.kind() else {
3157            return;
3158        };
3159
3160        if expected.len() != given.len() {
3161            // Note number of types that were expected and given
3162            err.note(::alloc::__export::must_use({
        ::alloc::fmt::format(format_args!("expected a closure taking {0} argument{1}, but one taking {2} argument{3} was given",
                given.len(), if given.len() == 1 { "" } else { "s" },
                expected.len(), if expected.len() == 1 { "" } else { "s" }))
    })format!(
3163                "expected a closure taking {} argument{}, but one taking {} argument{} was given",
3164                given.len(),
3165                pluralize!(given.len()),
3166                expected.len(),
3167                pluralize!(expected.len()),
3168            ));
3169            return;
3170        }
3171
3172        let given_ty = Ty::new_fn_ptr(
3173            self.tcx,
3174            params.rebind(self.tcx.mk_fn_sig(
3175                given,
3176                self.tcx.types.unit,
3177                false,
3178                hir::Safety::Safe,
3179                ExternAbi::Rust,
3180            )),
3181        );
3182        let expected_ty = Ty::new_fn_ptr(
3183            self.tcx,
3184            trait_pred.rebind(self.tcx.mk_fn_sig(
3185                expected,
3186                self.tcx.types.unit,
3187                false,
3188                hir::Safety::Safe,
3189                ExternAbi::Rust,
3190            )),
3191        );
3192
3193        if !self.same_type_modulo_infer(given_ty, expected_ty) {
3194            // Print type mismatch
3195            let (expected_args, given_args) = self.cmp(expected_ty, given_ty);
3196            err.note_expected_found(
3197                "a closure with signature",
3198                expected_args,
3199                "a closure with signature",
3200                given_args,
3201            );
3202        }
3203    }
3204
3205    fn report_closure_error(
3206        &self,
3207        obligation: &PredicateObligation<'tcx>,
3208        closure_def_id: DefId,
3209        found_kind: ty::ClosureKind,
3210        kind: ty::ClosureKind,
3211        trait_prefix: &'static str,
3212    ) -> Diag<'a> {
3213        let closure_span = self.tcx.def_span(closure_def_id);
3214
3215        let mut err = ClosureKindMismatch {
3216            closure_span,
3217            expected: kind,
3218            found: found_kind,
3219            cause_span: obligation.cause.span,
3220            trait_prefix,
3221            fn_once_label: None,
3222            fn_mut_label: None,
3223        };
3224
3225        // Additional context information explaining why the closure only implements
3226        // a particular trait.
3227        if let Some(typeck_results) = &self.typeck_results {
3228            let hir_id = self.tcx.local_def_id_to_hir_id(closure_def_id.expect_local());
3229            match (found_kind, typeck_results.closure_kind_origins().get(hir_id)) {
3230                (ty::ClosureKind::FnOnce, Some((span, place))) => {
3231                    err.fn_once_label = Some(ClosureFnOnceLabel {
3232                        span: *span,
3233                        place: ty::place_to_string_for_capture(self.tcx, place),
3234                    })
3235                }
3236                (ty::ClosureKind::FnMut, Some((span, place))) => {
3237                    err.fn_mut_label = Some(ClosureFnMutLabel {
3238                        span: *span,
3239                        place: ty::place_to_string_for_capture(self.tcx, place),
3240                    })
3241                }
3242                _ => {}
3243            }
3244        }
3245
3246        self.dcx().create_err(err)
3247    }
3248
3249    fn report_cyclic_signature_error(
3250        &self,
3251        obligation: &PredicateObligation<'tcx>,
3252        found_trait_ref: ty::TraitRef<'tcx>,
3253        expected_trait_ref: ty::TraitRef<'tcx>,
3254        terr: TypeError<'tcx>,
3255    ) -> Diag<'a> {
3256        let self_ty = found_trait_ref.self_ty();
3257        let (cause, terr) = if let ty::Closure(def_id, _) = self_ty.kind() {
3258            (
3259                ObligationCause::dummy_with_span(self.tcx.def_span(def_id)),
3260                TypeError::CyclicTy(self_ty),
3261            )
3262        } else {
3263            (obligation.cause.clone(), terr)
3264        };
3265        self.report_and_explain_type_error(
3266            TypeTrace::trait_refs(&cause, expected_trait_ref, found_trait_ref),
3267            obligation.param_env,
3268            terr,
3269        )
3270    }
3271
3272    fn report_opaque_type_auto_trait_leakage(
3273        &self,
3274        obligation: &PredicateObligation<'tcx>,
3275        def_id: DefId,
3276    ) -> ErrorGuaranteed {
3277        let name = match self.tcx.local_opaque_ty_origin(def_id.expect_local()) {
3278            hir::OpaqueTyOrigin::FnReturn { .. } | hir::OpaqueTyOrigin::AsyncFn { .. } => {
3279                "opaque type".to_string()
3280            }
3281            hir::OpaqueTyOrigin::TyAlias { .. } => {
3282                ::alloc::__export::must_use({
        ::alloc::fmt::format(format_args!("`{0}`",
                self.tcx.def_path_debug_str(def_id)))
    })format!("`{}`", self.tcx.def_path_debug_str(def_id))
3283            }
3284        };
3285        let mut err = self.dcx().struct_span_err(
3286            obligation.cause.span,
3287            ::alloc::__export::must_use({
        ::alloc::fmt::format(format_args!("cannot check whether the hidden type of {0} satisfies auto traits",
                name))
    })format!("cannot check whether the hidden type of {name} satisfies auto traits"),
3288        );
3289
3290        err.note(
3291            "fetching the hidden types of an opaque inside of the defining scope is not supported. \
3292            You can try moving the opaque type and the item that actually registers a hidden type into a new submodule",
3293        );
3294        err.span_note(self.tcx.def_span(def_id), "opaque type is declared here");
3295
3296        self.note_obligation_cause(&mut err, &obligation);
3297        self.dcx().try_steal_replace_and_emit_err(self.tcx.def_span(def_id), StashKey::Cycle, err)
3298    }
3299
3300    fn report_signature_mismatch_error(
3301        &self,
3302        obligation: &PredicateObligation<'tcx>,
3303        span: Span,
3304        found_trait_ref: ty::TraitRef<'tcx>,
3305        expected_trait_ref: ty::TraitRef<'tcx>,
3306    ) -> Result<Diag<'a>, ErrorGuaranteed> {
3307        let found_trait_ref = self.resolve_vars_if_possible(found_trait_ref);
3308        let expected_trait_ref = self.resolve_vars_if_possible(expected_trait_ref);
3309
3310        expected_trait_ref.self_ty().error_reported()?;
3311        let found_trait_ty = found_trait_ref.self_ty();
3312
3313        let found_did = match *found_trait_ty.kind() {
3314            ty::Closure(did, _) | ty::FnDef(did, _) | ty::Coroutine(did, ..) => Some(did),
3315            _ => None,
3316        };
3317
3318        let found_node = found_did.and_then(|did| self.tcx.hir_get_if_local(did));
3319        let found_span = found_did.and_then(|did| self.tcx.hir_span_if_local(did));
3320
3321        if !self.reported_signature_mismatch.borrow_mut().insert((span, found_span)) {
3322            // We check closures twice, with obligations flowing in different directions,
3323            // but we want to complain about them only once.
3324            return Err(self.dcx().span_delayed_bug(span, "already_reported"));
3325        }
3326
3327        let mut not_tupled = false;
3328
3329        let found = match found_trait_ref.args.type_at(1).kind() {
3330            ty::Tuple(tys) => ::alloc::vec::from_elem(ArgKind::empty(), tys.len())vec![ArgKind::empty(); tys.len()],
3331            _ => {
3332                not_tupled = true;
3333                <[_]>::into_vec(::alloc::boxed::box_new([ArgKind::empty()]))vec![ArgKind::empty()]
3334            }
3335        };
3336
3337        let expected_ty = expected_trait_ref.args.type_at(1);
3338        let expected = match expected_ty.kind() {
3339            ty::Tuple(tys) => {
3340                tys.iter().map(|t| ArgKind::from_expected_ty(t, Some(span))).collect()
3341            }
3342            _ => {
3343                not_tupled = true;
3344                <[_]>::into_vec(::alloc::boxed::box_new([ArgKind::Arg("_".to_owned(),
                    expected_ty.to_string())]))vec![ArgKind::Arg("_".to_owned(), expected_ty.to_string())]
3345            }
3346        };
3347
3348        // If this is a `Fn` family trait and either the expected or found
3349        // is not tupled, then fall back to just a regular mismatch error.
3350        // This shouldn't be common unless manually implementing one of the
3351        // traits manually, but don't make it more confusing when it does
3352        // happen.
3353        if !self.tcx.is_lang_item(expected_trait_ref.def_id, LangItem::Coroutine) && not_tupled {
3354            return Ok(self.report_and_explain_type_error(
3355                TypeTrace::trait_refs(&obligation.cause, expected_trait_ref, found_trait_ref),
3356                obligation.param_env,
3357                ty::error::TypeError::Mismatch,
3358            ));
3359        }
3360        if found.len() != expected.len() {
3361            let (closure_span, closure_arg_span, found) = found_did
3362                .and_then(|did| {
3363                    let node = self.tcx.hir_get_if_local(did)?;
3364                    let (found_span, closure_arg_span, found) = self.get_fn_like_arguments(node)?;
3365                    Some((Some(found_span), closure_arg_span, found))
3366                })
3367                .unwrap_or((found_span, None, found));
3368
3369            // If the coroutine take a single () as its argument,
3370            // the trait argument would found the coroutine take 0 arguments,
3371            // but get_fn_like_arguments would give 1 argument.
3372            // This would result in "Expected to take 1 argument, but it takes 1 argument".
3373            // Check again to avoid this.
3374            if found.len() != expected.len() {
3375                return Ok(self.report_arg_count_mismatch(
3376                    span,
3377                    closure_span,
3378                    expected,
3379                    found,
3380                    found_trait_ty.is_closure(),
3381                    closure_arg_span,
3382                ));
3383            }
3384        }
3385        Ok(self.report_closure_arg_mismatch(
3386            span,
3387            found_span,
3388            found_trait_ref,
3389            expected_trait_ref,
3390            obligation.cause.code(),
3391            found_node,
3392            obligation.param_env,
3393        ))
3394    }
3395
3396    /// Given some node representing a fn-like thing in the HIR map,
3397    /// returns a span and `ArgKind` information that describes the
3398    /// arguments it expects. This can be supplied to
3399    /// `report_arg_count_mismatch`.
3400    pub fn get_fn_like_arguments(
3401        &self,
3402        node: Node<'_>,
3403    ) -> Option<(Span, Option<Span>, Vec<ArgKind>)> {
3404        let sm = self.tcx.sess.source_map();
3405        Some(match node {
3406            Node::Expr(&hir::Expr {
3407                kind: hir::ExprKind::Closure(&hir::Closure { body, fn_decl_span, fn_arg_span, .. }),
3408                ..
3409            }) => (
3410                fn_decl_span,
3411                fn_arg_span,
3412                self.tcx
3413                    .hir_body(body)
3414                    .params
3415                    .iter()
3416                    .map(|arg| {
3417                        if let hir::Pat { kind: hir::PatKind::Tuple(args, _), span, .. } = *arg.pat
3418                        {
3419                            Some(ArgKind::Tuple(
3420                                Some(span),
3421                                args.iter()
3422                                    .map(|pat| {
3423                                        sm.span_to_snippet(pat.span)
3424                                            .ok()
3425                                            .map(|snippet| (snippet, "_".to_owned()))
3426                                    })
3427                                    .collect::<Option<Vec<_>>>()?,
3428                            ))
3429                        } else {
3430                            let name = sm.span_to_snippet(arg.pat.span).ok()?;
3431                            Some(ArgKind::Arg(name, "_".to_owned()))
3432                        }
3433                    })
3434                    .collect::<Option<Vec<ArgKind>>>()?,
3435            ),
3436            Node::Item(&hir::Item { kind: hir::ItemKind::Fn { ref sig, .. }, .. })
3437            | Node::ImplItem(&hir::ImplItem { kind: hir::ImplItemKind::Fn(ref sig, _), .. })
3438            | Node::TraitItem(&hir::TraitItem {
3439                kind: hir::TraitItemKind::Fn(ref sig, _), ..
3440            })
3441            | Node::ForeignItem(&hir::ForeignItem {
3442                kind: hir::ForeignItemKind::Fn(ref sig, _, _),
3443                ..
3444            }) => (
3445                sig.span,
3446                None,
3447                sig.decl
3448                    .inputs
3449                    .iter()
3450                    .map(|arg| match arg.kind {
3451                        hir::TyKind::Tup(tys) => ArgKind::Tuple(
3452                            Some(arg.span),
3453                            ::alloc::vec::from_elem(("_".to_owned(), "_".to_owned()), tys.len())vec![("_".to_owned(), "_".to_owned()); tys.len()],
3454                        ),
3455                        _ => ArgKind::empty(),
3456                    })
3457                    .collect::<Vec<ArgKind>>(),
3458            ),
3459            Node::Ctor(variant_data) => {
3460                let span = variant_data.ctor_hir_id().map_or(DUMMY_SP, |id| self.tcx.hir_span(id));
3461                (span, None, ::alloc::vec::from_elem(ArgKind::empty(), variant_data.fields().len())vec![ArgKind::empty(); variant_data.fields().len()])
3462            }
3463            _ => {
    ::core::panicking::panic_fmt(format_args!("non-FnLike node found: {0:?}",
            node));
}panic!("non-FnLike node found: {node:?}"),
3464        })
3465    }
3466
3467    /// Reports an error when the number of arguments needed by a
3468    /// trait match doesn't match the number that the expression
3469    /// provides.
3470    pub fn report_arg_count_mismatch(
3471        &self,
3472        span: Span,
3473        found_span: Option<Span>,
3474        expected_args: Vec<ArgKind>,
3475        found_args: Vec<ArgKind>,
3476        is_closure: bool,
3477        closure_arg_span: Option<Span>,
3478    ) -> Diag<'a> {
3479        let kind = if is_closure { "closure" } else { "function" };
3480
3481        let args_str = |arguments: &[ArgKind], other: &[ArgKind]| {
3482            let arg_length = arguments.len();
3483            let distinct = #[allow(non_exhaustive_omitted_patterns)] match other {
    &[ArgKind::Tuple(..)] => true,
    _ => false,
}matches!(other, &[ArgKind::Tuple(..)]);
3484            match (arg_length, arguments.get(0)) {
3485                (1, Some(ArgKind::Tuple(_, fields))) => {
3486                    ::alloc::__export::must_use({
        ::alloc::fmt::format(format_args!("a single {0}-tuple as argument",
                fields.len()))
    })format!("a single {}-tuple as argument", fields.len())
3487                }
3488                _ => ::alloc::__export::must_use({
        ::alloc::fmt::format(format_args!("{0} {1}argument{2}", arg_length,
                if distinct && arg_length > 1 { "distinct " } else { "" },
                if arg_length == 1 { "" } else { "s" }))
    })format!(
3489                    "{} {}argument{}",
3490                    arg_length,
3491                    if distinct && arg_length > 1 { "distinct " } else { "" },
3492                    pluralize!(arg_length)
3493                ),
3494            }
3495        };
3496
3497        let expected_str = args_str(&expected_args, &found_args);
3498        let found_str = args_str(&found_args, &expected_args);
3499
3500        let mut err = {
    self.dcx().struct_span_err(span,
            ::alloc::__export::must_use({
                    ::alloc::fmt::format(format_args!("{0} is expected to take {1}, but it takes {2}",
                            kind, expected_str, found_str))
                })).with_code(E0593)
}struct_span_code_err!(
3501            self.dcx(),
3502            span,
3503            E0593,
3504            "{} is expected to take {}, but it takes {}",
3505            kind,
3506            expected_str,
3507            found_str,
3508        );
3509
3510        err.span_label(span, ::alloc::__export::must_use({
        ::alloc::fmt::format(format_args!("expected {0} that takes {1}", kind,
                expected_str))
    })format!("expected {kind} that takes {expected_str}"));
3511
3512        if let Some(found_span) = found_span {
3513            err.span_label(found_span, ::alloc::__export::must_use({
        ::alloc::fmt::format(format_args!("takes {0}", found_str))
    })format!("takes {found_str}"));
3514
3515            // Suggest to take and ignore the arguments with expected_args_length `_`s if
3516            // found arguments is empty (assume the user just wants to ignore args in this case).
3517            // For example, if `expected_args_length` is 2, suggest `|_, _|`.
3518            if found_args.is_empty() && is_closure {
3519                let underscores = ::alloc::vec::from_elem("_", expected_args.len())vec!["_"; expected_args.len()].join(", ");
3520                err.span_suggestion_verbose(
3521                    closure_arg_span.unwrap_or(found_span),
3522                    ::alloc::__export::must_use({
        ::alloc::fmt::format(format_args!("consider changing the closure to take and ignore the expected argument{0}",
                if expected_args.len() == 1 { "" } else { "s" }))
    })format!(
3523                        "consider changing the closure to take and ignore the expected argument{}",
3524                        pluralize!(expected_args.len())
3525                    ),
3526                    ::alloc::__export::must_use({
        ::alloc::fmt::format(format_args!("|{0}|", underscores))
    })format!("|{underscores}|"),
3527                    Applicability::MachineApplicable,
3528                );
3529            }
3530
3531            if let &[ArgKind::Tuple(_, ref fields)] = &found_args[..] {
3532                if fields.len() == expected_args.len() {
3533                    let sugg = fields
3534                        .iter()
3535                        .map(|(name, _)| name.to_owned())
3536                        .collect::<Vec<String>>()
3537                        .join(", ");
3538                    err.span_suggestion_verbose(
3539                        found_span,
3540                        "change the closure to take multiple arguments instead of a single tuple",
3541                        ::alloc::__export::must_use({
        ::alloc::fmt::format(format_args!("|{0}|", sugg))
    })format!("|{sugg}|"),
3542                        Applicability::MachineApplicable,
3543                    );
3544                }
3545            }
3546            if let &[ArgKind::Tuple(_, ref fields)] = &expected_args[..]
3547                && fields.len() == found_args.len()
3548                && is_closure
3549            {
3550                let sugg = ::alloc::__export::must_use({
        ::alloc::fmt::format(format_args!("|({0}){1}|",
                found_args.iter().map(|arg|
                                match arg {
                                    ArgKind::Arg(name, _) => name.to_owned(),
                                    _ => "_".to_owned(),
                                }).collect::<Vec<String>>().join(", "),
                if found_args.iter().any(|arg|
                            match arg { ArgKind::Arg(_, ty) => ty != "_", _ => false, })
                    {
                    ::alloc::__export::must_use({
                            ::alloc::fmt::format(format_args!(": ({0})",
                                    fields.iter().map(|(_, ty)|
                                                    ty.to_owned()).collect::<Vec<String>>().join(", ")))
                        })
                } else { String::new() }))
    })format!(
3551                    "|({}){}|",
3552                    found_args
3553                        .iter()
3554                        .map(|arg| match arg {
3555                            ArgKind::Arg(name, _) => name.to_owned(),
3556                            _ => "_".to_owned(),
3557                        })
3558                        .collect::<Vec<String>>()
3559                        .join(", "),
3560                    // add type annotations if available
3561                    if found_args.iter().any(|arg| match arg {
3562                        ArgKind::Arg(_, ty) => ty != "_",
3563                        _ => false,
3564                    }) {
3565                        format!(
3566                            ": ({})",
3567                            fields
3568                                .iter()
3569                                .map(|(_, ty)| ty.to_owned())
3570                                .collect::<Vec<String>>()
3571                                .join(", ")
3572                        )
3573                    } else {
3574                        String::new()
3575                    },
3576                );
3577                err.span_suggestion_verbose(
3578                    found_span,
3579                    "change the closure to accept a tuple instead of individual arguments",
3580                    sugg,
3581                    Applicability::MachineApplicable,
3582                );
3583            }
3584        }
3585
3586        err
3587    }
3588
3589    /// Checks if the type implements one of `Fn`, `FnMut`, or `FnOnce`
3590    /// in that order, and returns the generic type corresponding to the
3591    /// argument of that trait (corresponding to the closure arguments).
3592    pub fn type_implements_fn_trait(
3593        &self,
3594        param_env: ty::ParamEnv<'tcx>,
3595        ty: ty::Binder<'tcx, Ty<'tcx>>,
3596        polarity: ty::PredicatePolarity,
3597    ) -> Result<(ty::ClosureKind, ty::Binder<'tcx, Ty<'tcx>>), ()> {
3598        self.commit_if_ok(|_| {
3599            for trait_def_id in [
3600                self.tcx.lang_items().fn_trait(),
3601                self.tcx.lang_items().fn_mut_trait(),
3602                self.tcx.lang_items().fn_once_trait(),
3603            ] {
3604                let Some(trait_def_id) = trait_def_id else { continue };
3605                // Make a fresh inference variable so we can determine what the generic parameters
3606                // of the trait are.
3607                let var = self.next_ty_var(DUMMY_SP);
3608                // FIXME(const_trait_impl)
3609                let trait_ref = ty::TraitRef::new(self.tcx, trait_def_id, [ty.skip_binder(), var]);
3610                let obligation = Obligation::new(
3611                    self.tcx,
3612                    ObligationCause::dummy(),
3613                    param_env,
3614                    ty.rebind(ty::TraitPredicate { trait_ref, polarity }),
3615                );
3616                let ocx = ObligationCtxt::new(self);
3617                ocx.register_obligation(obligation);
3618                if ocx.evaluate_obligations_error_on_ambiguity().is_empty() {
3619                    return Ok((
3620                        self.tcx
3621                            .fn_trait_kind_from_def_id(trait_def_id)
3622                            .expect("expected to map DefId to ClosureKind"),
3623                        ty.rebind(self.resolve_vars_if_possible(var)),
3624                    ));
3625                }
3626            }
3627
3628            Err(())
3629        })
3630    }
3631
3632    fn report_not_const_evaluatable_error(
3633        &self,
3634        obligation: &PredicateObligation<'tcx>,
3635        span: Span,
3636    ) -> Result<Diag<'a>, ErrorGuaranteed> {
3637        if !self.tcx.features().generic_const_exprs()
3638            && !self.tcx.features().min_generic_const_args()
3639        {
3640            let guar = self
3641                .dcx()
3642                .struct_span_err(span, "constant expression depends on a generic parameter")
3643                // FIXME(const_generics): we should suggest to the user how they can resolve this
3644                // issue. However, this is currently not actually possible
3645                // (see https://github.com/rust-lang/rust/issues/66962#issuecomment-575907083).
3646                //
3647                // Note that with `feature(generic_const_exprs)` this case should not
3648                // be reachable.
3649                .with_note("this may fail depending on what value the parameter takes")
3650                .emit();
3651            return Err(guar);
3652        }
3653
3654        match obligation.predicate.kind().skip_binder() {
3655            ty::PredicateKind::Clause(ty::ClauseKind::ConstEvaluatable(ct)) => match ct.kind() {
3656                ty::ConstKind::Unevaluated(uv) => {
3657                    let mut err =
3658                        self.dcx().struct_span_err(span, "unconstrained generic constant");
3659                    let const_span = self.tcx.def_span(uv.def);
3660
3661                    let const_ty = self.tcx.type_of(uv.def).instantiate(self.tcx, uv.args);
3662                    let cast = if const_ty != self.tcx.types.usize { " as usize" } else { "" };
3663                    let msg = "try adding a `where` bound";
3664                    match self.tcx.sess.source_map().span_to_snippet(const_span) {
3665                        Ok(snippet) => {
3666                            let code = ::alloc::__export::must_use({
        ::alloc::fmt::format(format_args!("[(); {0}{1}]:", snippet, cast))
    })format!("[(); {snippet}{cast}]:");
3667                            let def_id = if let ObligationCauseCode::CompareImplItem {
3668                                trait_item_def_id,
3669                                ..
3670                            } = obligation.cause.code()
3671                            {
3672                                trait_item_def_id.as_local()
3673                            } else {
3674                                Some(obligation.cause.body_id)
3675                            };
3676                            if let Some(def_id) = def_id
3677                                && let Some(generics) = self.tcx.hir_get_generics(def_id)
3678                            {
3679                                err.span_suggestion_verbose(
3680                                    generics.tail_span_for_predicate_suggestion(),
3681                                    msg,
3682                                    ::alloc::__export::must_use({
        ::alloc::fmt::format(format_args!("{0} {1}",
                generics.add_where_or_trailing_comma(), code))
    })format!("{} {code}", generics.add_where_or_trailing_comma()),
3683                                    Applicability::MaybeIncorrect,
3684                                );
3685                            } else {
3686                                err.help(::alloc::__export::must_use({
        ::alloc::fmt::format(format_args!("{0}: where {1}", msg, code))
    })format!("{msg}: where {code}"));
3687                            };
3688                        }
3689                        _ => {
3690                            err.help(msg);
3691                        }
3692                    };
3693                    Ok(err)
3694                }
3695                ty::ConstKind::Expr(_) => {
3696                    let err = self
3697                        .dcx()
3698                        .struct_span_err(span, ::alloc::__export::must_use({
        ::alloc::fmt::format(format_args!("unconstrained generic constant `{0}`",
                ct))
    })format!("unconstrained generic constant `{ct}`"));
3699                    Ok(err)
3700                }
3701                _ => {
3702                    ::rustc_middle::util::bug::bug_fmt(format_args!("const evaluatable failed for non-unevaluated const `{0:?}`",
        ct));bug!("const evaluatable failed for non-unevaluated const `{ct:?}`");
3703                }
3704            },
3705            _ => {
3706                ::rustc_middle::util::bug::span_bug_fmt(span,
    format_args!("unexpected non-ConstEvaluatable predicate, this should not be reachable"))span_bug!(
3707                    span,
3708                    "unexpected non-ConstEvaluatable predicate, this should not be reachable"
3709                )
3710            }
3711        }
3712    }
3713}