rustc_trait_selection/error_reporting/traits/
fulfillment_errors.rs

1// ignore-tidy-filelength
2use core::ops::ControlFlow;
3use std::borrow::Cow;
4use std::collections::hash_set;
5use std::path::PathBuf;
6
7use rustc_abi::ExternAbi;
8use rustc_ast::ast::LitKind;
9use rustc_ast::{LitIntType, TraitObjectSyntax};
10use rustc_data_structures::fx::{FxHashMap, FxHashSet};
11use rustc_data_structures::unord::UnordSet;
12use rustc_errors::codes::*;
13use rustc_errors::{
14    Applicability, Diag, ErrorGuaranteed, Level, MultiSpan, StashKey, StringPart, Suggestions,
15    pluralize, struct_span_code_err,
16};
17use rustc_hir::def_id::{DefId, LOCAL_CRATE, LocalDefId};
18use rustc_hir::intravisit::Visitor;
19use rustc_hir::{self as hir, LangItem, Node};
20use rustc_infer::infer::{InferOk, TypeTrace};
21use rustc_infer::traits::ImplSource;
22use rustc_infer::traits::solve::Goal;
23use rustc_middle::traits::SignatureMismatchData;
24use rustc_middle::traits::select::OverflowError;
25use rustc_middle::ty::abstract_const::NotConstEvaluatable;
26use rustc_middle::ty::error::{ExpectedFound, TypeError};
27use rustc_middle::ty::print::{
28    PrintPolyTraitPredicateExt, PrintTraitPredicateExt as _, PrintTraitRefExt as _,
29    with_forced_trimmed_paths,
30};
31use rustc_middle::ty::{
32    self, GenericArgKind, TraitRef, Ty, TyCtxt, TypeFoldable, TypeFolder, TypeSuperFoldable,
33    TypeVisitableExt, Upcast,
34};
35use rustc_middle::{bug, span_bug};
36use rustc_span::{BytePos, DUMMY_SP, STDLIB_STABLE_CRATES, Span, Symbol, sym};
37use tracing::{debug, instrument};
38
39use super::on_unimplemented::{AppendConstMessage, OnUnimplementedNote};
40use super::suggestions::get_explanation_based_on_obligation;
41use super::{
42    ArgKind, CandidateSimilarity, FindExprBySpan, GetSafeTransmuteErrorAndReason, ImplCandidate,
43};
44use crate::error_reporting::TypeErrCtxt;
45use crate::error_reporting::infer::TyCategory;
46use crate::error_reporting::traits::on_unimplemented::OnUnimplementedDirective;
47use crate::error_reporting::traits::report_dyn_incompatibility;
48use crate::errors::{ClosureFnMutLabel, ClosureFnOnceLabel, ClosureKindMismatch, CoroClosureNotFn};
49use crate::infer::{self, InferCtxt, InferCtxtExt as _};
50use crate::traits::query::evaluate_obligation::InferCtxtExt as _;
51use crate::traits::{
52    MismatchedProjectionTypes, NormalizeExt, Obligation, ObligationCause, ObligationCauseCode,
53    ObligationCtxt, PredicateObligation, SelectionContext, SelectionError, elaborate,
54    specialization_graph,
55};
56
57impl<'a, 'tcx> TypeErrCtxt<'a, 'tcx> {
58    /// The `root_obligation` parameter should be the `root_obligation` field
59    /// from a `FulfillmentError`. If no `FulfillmentError` is available,
60    /// then it should be the same as `obligation`.
61    pub fn report_selection_error(
62        &self,
63        mut obligation: PredicateObligation<'tcx>,
64        root_obligation: &PredicateObligation<'tcx>,
65        error: &SelectionError<'tcx>,
66    ) -> ErrorGuaranteed {
67        let tcx = self.tcx;
68        let mut span = obligation.cause.span;
69        let mut long_ty_file = None;
70
71        let mut err = match *error {
72            SelectionError::Unimplemented => {
73                // If this obligation was generated as a result of well-formedness checking, see if we
74                // can get a better error message by performing HIR-based well-formedness checking.
75                if let ObligationCauseCode::WellFormed(Some(wf_loc)) =
76                    root_obligation.cause.code().peel_derives()
77                    && !obligation.predicate.has_non_region_infer()
78                {
79                    if let Some(cause) = self
80                        .tcx
81                        .diagnostic_hir_wf_check((tcx.erase_and_anonymize_regions(obligation.predicate), *wf_loc))
82                    {
83                        obligation.cause = cause.clone();
84                        span = obligation.cause.span;
85                    }
86                }
87
88                if let ObligationCauseCode::CompareImplItem {
89                    impl_item_def_id,
90                    trait_item_def_id,
91                    kind: _,
92                } = *obligation.cause.code()
93                {
94                    debug!("ObligationCauseCode::CompareImplItemObligation");
95                    return self.report_extra_impl_obligation(
96                        span,
97                        impl_item_def_id,
98                        trait_item_def_id,
99                        &format!("`{}`", obligation.predicate),
100                    )
101                    .emit()
102                }
103
104                // Report a const-param specific error
105                if let ObligationCauseCode::ConstParam(ty) = *obligation.cause.code().peel_derives()
106                {
107                    return self.report_const_param_not_wf(ty, &obligation).emit();
108                }
109
110                let bound_predicate = obligation.predicate.kind();
111                match bound_predicate.skip_binder() {
112                    ty::PredicateKind::Clause(ty::ClauseKind::Trait(trait_predicate)) => {
113                        let leaf_trait_predicate =
114                            self.resolve_vars_if_possible(bound_predicate.rebind(trait_predicate));
115
116                        // Let's use the root obligation as the main message, when we care about the
117                        // most general case ("X doesn't implement Pattern<'_>") over the case that
118                        // happened to fail ("char doesn't implement Fn(&mut char)").
119                        //
120                        // We rely on a few heuristics to identify cases where this root
121                        // obligation is more important than the leaf obligation:
122                        let (main_trait_predicate, main_obligation) = if let ty::PredicateKind::Clause(
123                            ty::ClauseKind::Trait(root_pred)
124                        ) = root_obligation.predicate.kind().skip_binder()
125                            && !leaf_trait_predicate.self_ty().skip_binder().has_escaping_bound_vars()
126                            && !root_pred.self_ty().has_escaping_bound_vars()
127                            // The type of the leaf predicate is (roughly) the same as the type
128                            // from the root predicate, as a proxy for "we care about the root"
129                            // FIXME: this doesn't account for trivial derefs, but works as a first
130                            // approximation.
131                            && (
132                                // `T: Trait` && `&&T: OtherTrait`, we want `OtherTrait`
133                                self.can_eq(
134                                    obligation.param_env,
135                                    leaf_trait_predicate.self_ty().skip_binder(),
136                                    root_pred.self_ty().peel_refs(),
137                                )
138                                // `&str: Iterator` && `&str: IntoIterator`, we want `IntoIterator`
139                                || self.can_eq(
140                                    obligation.param_env,
141                                    leaf_trait_predicate.self_ty().skip_binder(),
142                                    root_pred.self_ty(),
143                                )
144                            )
145                            // The leaf trait and the root trait are different, so as to avoid
146                            // talking about `&mut T: Trait` and instead remain talking about
147                            // `T: Trait` instead
148                            && leaf_trait_predicate.def_id() != root_pred.def_id()
149                            // The root trait is not `Unsize`, as to avoid talking about it in
150                            // `tests/ui/coercion/coerce-issue-49593-box-never.rs`.
151                            && !self.tcx.is_lang_item(root_pred.def_id(), LangItem::Unsize)
152                        {
153                            (
154                                self.resolve_vars_if_possible(
155                                    root_obligation.predicate.kind().rebind(root_pred),
156                                ),
157                                root_obligation,
158                            )
159                        } else {
160                            (leaf_trait_predicate, &obligation)
161                        };
162
163                        if let Some(guar) = self.emit_specialized_closure_kind_error(
164                            &obligation,
165                            leaf_trait_predicate,
166                        ) {
167                            return guar;
168                        }
169
170                        if let Err(guar) = leaf_trait_predicate.error_reported()
171                        {
172                            return guar;
173                        }
174                        // Silence redundant errors on binding access that are already
175                        // reported on the binding definition (#56607).
176                        if let Err(guar) = self.fn_arg_obligation(&obligation) {
177                            return guar;
178                        }
179                        let (post_message, pre_message, type_def) = self
180                            .get_parent_trait_ref(obligation.cause.code())
181                            .map(|(t, s)| {
182                                let t = self.tcx.short_string(t, &mut long_ty_file);
183                                (
184                                    format!(" in `{t}`"),
185                                    format!("within `{t}`, "),
186                                    s.map(|s| (format!("within this `{t}`"), s)),
187                                )
188                            })
189                            .unwrap_or_default();
190
191                        let OnUnimplementedNote {
192                            message,
193                            label,
194                            notes,
195                            parent_label,
196                            append_const_msg,
197                        } = self.on_unimplemented_note(main_trait_predicate, main_obligation, &mut long_ty_file);
198
199                        let have_alt_message = message.is_some() || label.is_some();
200                        let is_try_conversion = self.is_try_conversion(span, main_trait_predicate.def_id());
201                        let is_question_mark = matches!(
202                            root_obligation.cause.code().peel_derives(),
203                            ObligationCauseCode::QuestionMark,
204                        ) && !(
205                            self.tcx.is_diagnostic_item(sym::FromResidual, main_trait_predicate.def_id())
206                                || self.tcx.is_lang_item(main_trait_predicate.def_id(), LangItem::Try)
207                        );
208                        let is_unsize =
209                            self.tcx.is_lang_item(leaf_trait_predicate.def_id(), LangItem::Unsize);
210                        let question_mark_message = "the question mark operation (`?`) implicitly \
211                                                     performs a conversion on the error value \
212                                                     using the `From` trait";
213                        let (message, notes, append_const_msg) = if is_try_conversion {
214                            let ty = self.tcx.short_string(
215                                main_trait_predicate.skip_binder().self_ty(),
216                                &mut long_ty_file,
217                            );
218                            // We have a `-> Result<_, E1>` and `gives_E2()?`.
219                            (
220                                Some(format!("`?` couldn't convert the error to `{ty}`")),
221                                vec![question_mark_message.to_owned()],
222                                Some(AppendConstMessage::Default),
223                            )
224                        } else if is_question_mark {
225                            let main_trait_predicate =
226                                self.tcx.short_string(main_trait_predicate, &mut long_ty_file);
227                            // Similar to the case above, but in this case the conversion is for a
228                            // trait object: `-> Result<_, Box<dyn Error>` and `gives_E()?` when
229                            // `E: Error` isn't met.
230                            (
231                                Some(format!(
232                                    "`?` couldn't convert the error: `{main_trait_predicate}` is \
233                                     not satisfied",
234                                )),
235                                vec![question_mark_message.to_owned()],
236                                Some(AppendConstMessage::Default),
237                            )
238                        } else {
239                            (message, notes, append_const_msg)
240                        };
241
242                        let default_err_msg = || self.get_standard_error_message(
243                            main_trait_predicate,
244                            message,
245                            None,
246                            append_const_msg,
247                            post_message,
248                            &mut long_ty_file,
249                        );
250
251                        let (err_msg, safe_transmute_explanation) = if self.tcx.is_lang_item(
252                            main_trait_predicate.def_id(),
253                            LangItem::TransmuteTrait,
254                        ) {
255                            // Recompute the safe transmute reason and use that for the error reporting
256                            match self.get_safe_transmute_error_and_reason(
257                                obligation.clone(),
258                                main_trait_predicate,
259                                span,
260                            ) {
261                                GetSafeTransmuteErrorAndReason::Silent => {
262                                    return self.dcx().span_delayed_bug(
263                                        span, "silent safe transmute error"
264                                    );
265                                }
266                                GetSafeTransmuteErrorAndReason::Default => {
267                                    (default_err_msg(), None)
268                                }
269                                GetSafeTransmuteErrorAndReason::Error {
270                                    err_msg,
271                                    safe_transmute_explanation,
272                                } => (err_msg, safe_transmute_explanation),
273                            }
274                        } else {
275                            (default_err_msg(), None)
276                        };
277
278                        let mut err = struct_span_code_err!(self.dcx(), span, E0277, "{}", err_msg);
279                        *err.long_ty_path() = long_ty_file;
280
281                        let mut suggested = false;
282                        let mut noted_missing_impl = false;
283                        if is_try_conversion || is_question_mark {
284                            (suggested, noted_missing_impl) = self.try_conversion_context(&obligation, main_trait_predicate, &mut err);
285                        }
286
287                        suggested |= self.detect_negative_literal(
288                            &obligation,
289                            main_trait_predicate,
290                            &mut err,
291                        );
292
293                        if let Some(ret_span) = self.return_type_span(&obligation) {
294                            if is_try_conversion {
295                                let ty = self.tcx.short_string(
296                                    main_trait_predicate.skip_binder().self_ty(),
297                                    err.long_ty_path(),
298                                );
299                                err.span_label(
300                                    ret_span,
301                                    format!("expected `{ty}` because of this"),
302                                );
303                            } else if is_question_mark {
304                                let main_trait_predicate =
305                                    self.tcx.short_string(main_trait_predicate, err.long_ty_path());
306                                err.span_label(
307                                    ret_span,
308                                    format!("required `{main_trait_predicate}` because of this"),
309                                );
310                            }
311                        }
312
313                        if tcx.is_lang_item(leaf_trait_predicate.def_id(), LangItem::Tuple) {
314                            self.add_tuple_trait_message(
315                                obligation.cause.code().peel_derives(),
316                                &mut err,
317                            );
318                        }
319
320                        let explanation = get_explanation_based_on_obligation(
321                            self.tcx,
322                            &obligation,
323                            leaf_trait_predicate,
324                            pre_message,
325                            err.long_ty_path(),
326                        );
327
328                        self.check_for_binding_assigned_block_without_tail_expression(
329                            &obligation,
330                            &mut err,
331                            leaf_trait_predicate,
332                        );
333                        self.suggest_add_result_as_return_type(
334                            &obligation,
335                            &mut err,
336                            leaf_trait_predicate,
337                        );
338
339                        if self.suggest_add_reference_to_arg(
340                            &obligation,
341                            &mut err,
342                            leaf_trait_predicate,
343                            have_alt_message,
344                        ) {
345                            self.note_obligation_cause(&mut err, &obligation);
346                            return err.emit();
347                        }
348
349                        let ty_span = match leaf_trait_predicate.self_ty().skip_binder().kind() {
350                            ty::Adt(def, _) if def.did().is_local()
351                                && !self.can_suggest_derive(&obligation, leaf_trait_predicate) => self.tcx.def_span(def.did()),
352                            _ => DUMMY_SP,
353                        };
354                        if let Some(s) = label {
355                            // If it has a custom `#[rustc_on_unimplemented]`
356                            // error message, let's display it as the label!
357                            err.span_label(span, s);
358                            if !matches!(leaf_trait_predicate.skip_binder().self_ty().kind(), ty::Param(_))
359                                // When the self type is a type param We don't need to "the trait
360                                // `std::marker::Sized` is not implemented for `T`" as we will point
361                                // at the type param with a label to suggest constraining it.
362                                && !self.tcx.is_diagnostic_item(sym::FromResidual, leaf_trait_predicate.def_id())
363                                    // Don't say "the trait `FromResidual<Option<Infallible>>` is
364                                    // not implemented for `Result<T, E>`".
365                            {
366                                // We do this just so that the JSON output's `help` position is the
367                                // right one and not `file.rs:1:1`. The render is the same.
368                                if ty_span == DUMMY_SP {
369                                    err.help(explanation);
370                                } else {
371                                    err.span_help(ty_span, explanation);
372                                }
373                            }
374                        } else if let Some(custom_explanation) = safe_transmute_explanation {
375                            err.span_label(span, custom_explanation);
376                        } else if (explanation.len() > self.tcx.sess.diagnostic_width() || ty_span != DUMMY_SP) && !noted_missing_impl {
377                            // Really long types don't look good as span labels, instead move it
378                            // to a `help`.
379                            err.span_label(span, "unsatisfied trait bound");
380
381                            // We do this just so that the JSON output's `help` position is the
382                            // right one and not `file.rs:1:1`. The render is the same.
383                            if ty_span == DUMMY_SP {
384                                err.help(explanation);
385                            } else {
386                                err.span_help(ty_span, explanation);
387                            }
388                        } else {
389                            err.span_label(span, explanation);
390                        }
391
392                        if let ObligationCauseCode::Coercion { source, target } =
393                            *obligation.cause.code().peel_derives()
394                        {
395                            if self.tcx.is_lang_item(leaf_trait_predicate.def_id(), LangItem::Sized) {
396                                self.suggest_borrowing_for_object_cast(
397                                    &mut err,
398                                    root_obligation,
399                                    source,
400                                    target,
401                                );
402                            }
403                        }
404
405                        if let Some((msg, span)) = type_def {
406                            err.span_label(span, msg);
407                        }
408                        for note in notes {
409                            // If it has a custom `#[rustc_on_unimplemented]` note, let's display it
410                            err.note(note);
411                        }
412                        if let Some(s) = parent_label {
413                            let body = obligation.cause.body_id;
414                            err.span_label(tcx.def_span(body), s);
415                        }
416
417                        self.suggest_floating_point_literal(&obligation, &mut err, leaf_trait_predicate);
418                        self.suggest_dereferencing_index(&obligation, &mut err, leaf_trait_predicate);
419                        suggested |= self.suggest_dereferences(&obligation, &mut err, leaf_trait_predicate);
420                        suggested |= self.suggest_fn_call(&obligation, &mut err, leaf_trait_predicate);
421                        let impl_candidates = self.find_similar_impl_candidates(leaf_trait_predicate);
422                        suggested = if let &[cand] = &impl_candidates[..] {
423                            let cand = cand.trait_ref;
424                            if let (ty::FnPtr(..), ty::FnDef(..)) =
425                                (cand.self_ty().kind(), main_trait_predicate.self_ty().skip_binder().kind())
426                            {
427                                // Wrap method receivers and `&`-references in parens
428                                let suggestion = if self.tcx.sess.source_map().span_look_ahead(span, ".", Some(50)).is_some() {
429                                    vec![
430                                        (span.shrink_to_lo(), format!("(")),
431                                        (span.shrink_to_hi(), format!(" as {})", cand.self_ty())),
432                                    ]
433                                } else if let Some(body) = self.tcx.hir_maybe_body_owned_by(obligation.cause.body_id) {
434                                    let mut expr_finder = FindExprBySpan::new(span, self.tcx);
435                                    expr_finder.visit_expr(body.value);
436                                    if let Some(expr) = expr_finder.result &&
437                                        let hir::ExprKind::AddrOf(_, _, expr) = expr.kind {
438                                        vec![
439                                            (expr.span.shrink_to_lo(), format!("(")),
440                                            (expr.span.shrink_to_hi(), format!(" as {})", cand.self_ty())),
441                                        ]
442                                    } else {
443                                        vec![(span.shrink_to_hi(), format!(" as {}", cand.self_ty()))]
444                                    }
445                                } else {
446                                    vec![(span.shrink_to_hi(), format!(" as {}", cand.self_ty()))]
447                                };
448                                let trait_ = self.tcx.short_string(cand.print_trait_sugared(), err.long_ty_path());
449                                let ty = self.tcx.short_string(cand.self_ty(), err.long_ty_path());
450                                err.multipart_suggestion(
451                                    format!(
452                                        "the trait `{trait_}` is implemented for fn pointer \
453                                         `{ty}`, try casting using `as`",
454                                    ),
455                                    suggestion,
456                                    Applicability::MaybeIncorrect,
457                                );
458                                true
459                            } else {
460                                false
461                            }
462                        } else {
463                            false
464                        } || suggested;
465                        suggested |=
466                            self.suggest_remove_reference(&obligation, &mut err, leaf_trait_predicate);
467                        suggested |= self.suggest_semicolon_removal(
468                            &obligation,
469                            &mut err,
470                            span,
471                            leaf_trait_predicate,
472                        );
473                        self.note_different_trait_with_same_name(&mut err, &obligation, leaf_trait_predicate);
474                        self.note_adt_version_mismatch(&mut err, leaf_trait_predicate);
475                        self.suggest_remove_await(&obligation, &mut err);
476                        self.suggest_derive(&obligation, &mut err, leaf_trait_predicate);
477
478                        if tcx.is_lang_item(leaf_trait_predicate.def_id(), LangItem::Try) {
479                            self.suggest_await_before_try(
480                                &mut err,
481                                &obligation,
482                                leaf_trait_predicate,
483                                span,
484                            );
485                        }
486
487                        if self.suggest_add_clone_to_arg(&obligation, &mut err, leaf_trait_predicate) {
488                            return err.emit();
489                        }
490
491                        if self.suggest_impl_trait(&mut err, &obligation, leaf_trait_predicate) {
492                            return err.emit();
493                        }
494
495                        if is_unsize {
496                            // If the obligation failed due to a missing implementation of the
497                            // `Unsize` trait, give a pointer to why that might be the case
498                            err.note(
499                                "all implementations of `Unsize` are provided \
500                                automatically by the compiler, see \
501                                <https://doc.rust-lang.org/stable/std/marker/trait.Unsize.html> \
502                                for more information",
503                            );
504                        }
505
506                        let is_fn_trait = tcx.is_fn_trait(leaf_trait_predicate.def_id());
507                        let is_target_feature_fn = if let ty::FnDef(def_id, _) =
508                            *leaf_trait_predicate.skip_binder().self_ty().kind()
509                        {
510                            !self.tcx.codegen_fn_attrs(def_id).target_features.is_empty()
511                        } else {
512                            false
513                        };
514                        if is_fn_trait && is_target_feature_fn {
515                            err.note(
516                                "`#[target_feature]` functions do not implement the `Fn` traits",
517                            );
518                            err.note(
519                                "try casting the function to a `fn` pointer or wrapping it in a closure",
520                            );
521                        }
522
523                        self.try_to_add_help_message(
524                            &root_obligation,
525                            &obligation,
526                            leaf_trait_predicate,
527                            &mut err,
528                            span,
529                            is_fn_trait,
530                            suggested,
531                        );
532
533                        // Changing mutability doesn't make a difference to whether we have
534                        // an `Unsize` impl (Fixes ICE in #71036)
535                        if !is_unsize {
536                            self.suggest_change_mut(&obligation, &mut err, leaf_trait_predicate);
537                        }
538
539                        // If this error is due to `!: Trait` not implemented but `(): Trait` is
540                        // implemented, and fallback has occurred, then it could be due to a
541                        // variable that used to fallback to `()` now falling back to `!`. Issue a
542                        // note informing about the change in behaviour.
543                        if leaf_trait_predicate.skip_binder().self_ty().is_never()
544                            && self.diverging_fallback_has_occurred
545                        {
546                            let predicate = leaf_trait_predicate.map_bound(|trait_pred| {
547                                trait_pred.with_replaced_self_ty(self.tcx, tcx.types.unit)
548                            });
549                            let unit_obligation = obligation.with(tcx, predicate);
550                            if self.predicate_may_hold(&unit_obligation) {
551                                err.note(
552                                    "this error might have been caused by changes to \
553                                    Rust's type-inference algorithm (see issue #148922 \
554                                    <https://github.com/rust-lang/rust/issues/148922> \
555                                    for more information)",
556                                );
557                                err.help("you might have intended to use the type `()` here instead");
558                            }
559                        }
560
561                        self.explain_hrtb_projection(&mut err, leaf_trait_predicate, obligation.param_env, &obligation.cause);
562                        self.suggest_desugaring_async_fn_in_trait(&mut err, main_trait_predicate);
563
564                        // Return early if the trait is Debug or Display and the invocation
565                        // originates within a standard library macro, because the output
566                        // is otherwise overwhelming and unhelpful (see #85844 for an
567                        // example).
568
569                        let in_std_macro =
570                            match obligation.cause.span.ctxt().outer_expn_data().macro_def_id {
571                                Some(macro_def_id) => {
572                                    let crate_name = tcx.crate_name(macro_def_id.krate);
573                                    STDLIB_STABLE_CRATES.contains(&crate_name)
574                                }
575                                None => false,
576                            };
577
578                        if in_std_macro
579                            && matches!(
580                                self.tcx.get_diagnostic_name(leaf_trait_predicate.def_id()),
581                                Some(sym::Debug | sym::Display)
582                            )
583                        {
584                            return err.emit();
585                        }
586
587                        err
588                    }
589
590                    ty::PredicateKind::Clause(ty::ClauseKind::HostEffect(predicate)) => {
591                        self.report_host_effect_error(bound_predicate.rebind(predicate), &obligation, span)
592                    }
593
594                    ty::PredicateKind::Subtype(predicate) => {
595                        // Errors for Subtype predicates show up as
596                        // `FulfillmentErrorCode::SubtypeError`,
597                        // not selection error.
598                        span_bug!(span, "subtype requirement gave wrong error: `{:?}`", predicate)
599                    }
600
601                    ty::PredicateKind::Coerce(predicate) => {
602                        // Errors for Coerce predicates show up as
603                        // `FulfillmentErrorCode::SubtypeError`,
604                        // not selection error.
605                        span_bug!(span, "coerce requirement gave wrong error: `{:?}`", predicate)
606                    }
607
608                    ty::PredicateKind::Clause(ty::ClauseKind::RegionOutlives(..))
609                    | ty::PredicateKind::Clause(ty::ClauseKind::TypeOutlives(..)) => {
610                        span_bug!(
611                            span,
612                            "outlives clauses should not error outside borrowck. obligation: `{:?}`",
613                            obligation
614                        )
615                    }
616
617                    ty::PredicateKind::Clause(ty::ClauseKind::Projection(..)) => {
618                        span_bug!(
619                            span,
620                            "projection clauses should be implied from elsewhere. obligation: `{:?}`",
621                            obligation
622                        )
623                    }
624
625                    ty::PredicateKind::DynCompatible(trait_def_id) => {
626                        let violations = self.tcx.dyn_compatibility_violations(trait_def_id);
627                        let mut err = report_dyn_incompatibility(
628                            self.tcx,
629                            span,
630                            None,
631                            trait_def_id,
632                            violations,
633                        );
634                        if let hir::Node::Item(item) =
635                            self.tcx.hir_node_by_def_id(obligation.cause.body_id)
636                            && let hir::ItemKind::Impl(impl_) = item.kind
637                            && let None = impl_.of_trait
638                            && let hir::TyKind::TraitObject(_, tagged_ptr) = impl_.self_ty.kind
639                            && let TraitObjectSyntax::None = tagged_ptr.tag()
640                            && impl_.self_ty.span.edition().at_least_rust_2021()
641                        {
642                            // Silence the dyn-compatibility error in favor of the missing dyn on
643                            // self type error. #131051.
644                            err.downgrade_to_delayed_bug();
645                        }
646                        err
647                    }
648
649                    ty::PredicateKind::Clause(ty::ClauseKind::WellFormed(ty)) => {
650                        let ty = self.resolve_vars_if_possible(ty);
651                        if self.next_trait_solver() {
652                            if let Err(guar) = ty.error_reported() {
653                                return guar;
654                            }
655
656                            // FIXME: we'll need a better message which takes into account
657                            // which bounds actually failed to hold.
658                            self.dcx().struct_span_err(
659                                span,
660                                format!("the type `{ty}` is not well-formed"),
661                            )
662                        } else {
663                            // WF predicates cannot themselves make
664                            // errors. They can only block due to
665                            // ambiguity; otherwise, they always
666                            // degenerate into other obligations
667                            // (which may fail).
668                            span_bug!(span, "WF predicate not satisfied for {:?}", ty);
669                        }
670                    }
671
672                    // Errors for `ConstEvaluatable` predicates show up as
673                    // `SelectionError::ConstEvalFailure`,
674                    // not `Unimplemented`.
675                    ty::PredicateKind::Clause(ty::ClauseKind::ConstEvaluatable(..))
676                    // Errors for `ConstEquate` predicates show up as
677                    // `SelectionError::ConstEvalFailure`,
678                    // not `Unimplemented`.
679                    | ty::PredicateKind::ConstEquate { .. }
680                    // Ambiguous predicates should never error
681                    | ty::PredicateKind::Ambiguous
682                    // We never return Err when proving UnstableFeature goal.
683                    | ty::PredicateKind::Clause(ty::ClauseKind::UnstableFeature{ .. })
684                    | ty::PredicateKind::NormalizesTo { .. }
685                    | ty::PredicateKind::AliasRelate { .. }
686                    | ty::PredicateKind::Clause(ty::ClauseKind::ConstArgHasType { .. }) => {
687                        span_bug!(
688                            span,
689                            "Unexpected `Predicate` for `SelectionError`: `{:?}`",
690                            obligation
691                        )
692                    }
693                }
694            }
695
696            SelectionError::SignatureMismatch(box SignatureMismatchData {
697                found_trait_ref,
698                expected_trait_ref,
699                terr: terr @ TypeError::CyclicTy(_),
700            }) => self.report_cyclic_signature_error(
701                &obligation,
702                found_trait_ref,
703                expected_trait_ref,
704                terr,
705            ),
706            SelectionError::SignatureMismatch(box SignatureMismatchData {
707                found_trait_ref,
708                expected_trait_ref,
709                terr: _,
710            }) => {
711                match self.report_signature_mismatch_error(
712                    &obligation,
713                    span,
714                    found_trait_ref,
715                    expected_trait_ref,
716                ) {
717                    Ok(err) => err,
718                    Err(guar) => return guar,
719                }
720            }
721
722            SelectionError::OpaqueTypeAutoTraitLeakageUnknown(def_id) => return self.report_opaque_type_auto_trait_leakage(
723                &obligation,
724                def_id,
725            ),
726
727            SelectionError::TraitDynIncompatible(did) => {
728                let violations = self.tcx.dyn_compatibility_violations(did);
729                report_dyn_incompatibility(self.tcx, span, None, did, violations)
730            }
731
732            SelectionError::NotConstEvaluatable(NotConstEvaluatable::MentionsInfer) => {
733                bug!(
734                    "MentionsInfer should have been handled in `traits/fulfill.rs` or `traits/select/mod.rs`"
735                )
736            }
737            SelectionError::NotConstEvaluatable(NotConstEvaluatable::MentionsParam) => {
738                match self.report_not_const_evaluatable_error(&obligation, span) {
739                    Ok(err) => err,
740                    Err(guar) => return guar,
741                }
742            }
743
744            // Already reported in the query.
745            SelectionError::NotConstEvaluatable(NotConstEvaluatable::Error(guar)) |
746            // Already reported.
747            SelectionError::Overflow(OverflowError::Error(guar)) => {
748                self.set_tainted_by_errors(guar);
749                return guar
750            },
751
752            SelectionError::Overflow(_) => {
753                bug!("overflow should be handled before the `report_selection_error` path");
754            }
755
756            SelectionError::ConstArgHasWrongType { ct, ct_ty, expected_ty } => {
757                let expected_ty_str = self.tcx.short_string(expected_ty, &mut long_ty_file);
758                let ct_str = self.tcx.short_string(ct, &mut long_ty_file);
759                let mut diag = self.dcx().struct_span_err(
760                    span,
761                    format!("the constant `{ct_str}` is not of type `{expected_ty_str}`"),
762                );
763                diag.long_ty_path = long_ty_file;
764
765                self.note_type_err(
766                    &mut diag,
767                    &obligation.cause,
768                    None,
769                    None,
770                    TypeError::Sorts(ty::error::ExpectedFound::new(expected_ty, ct_ty)),
771                    false,
772                    None,
773                );
774                diag
775            }
776        };
777
778        self.note_obligation_cause(&mut err, &obligation);
779        err.emit()
780    }
781}
782
783impl<'a, 'tcx> TypeErrCtxt<'a, 'tcx> {
784    pub(super) fn apply_do_not_recommend(
785        &self,
786        obligation: &mut PredicateObligation<'tcx>,
787    ) -> bool {
788        let mut base_cause = obligation.cause.code().clone();
789        let mut applied_do_not_recommend = false;
790        loop {
791            if let ObligationCauseCode::ImplDerived(ref c) = base_cause {
792                if self.tcx.do_not_recommend_impl(c.impl_or_alias_def_id) {
793                    let code = (*c.derived.parent_code).clone();
794                    obligation.cause.map_code(|_| code);
795                    obligation.predicate = c.derived.parent_trait_pred.upcast(self.tcx);
796                    applied_do_not_recommend = true;
797                }
798            }
799            if let Some(parent_cause) = base_cause.parent() {
800                base_cause = parent_cause.clone();
801            } else {
802                break;
803            }
804        }
805
806        applied_do_not_recommend
807    }
808
809    fn report_host_effect_error(
810        &self,
811        predicate: ty::Binder<'tcx, ty::HostEffectPredicate<'tcx>>,
812        main_obligation: &PredicateObligation<'tcx>,
813        span: Span,
814    ) -> Diag<'a> {
815        // FIXME(const_trait_impl): We should recompute the predicate with `[const]`
816        // if it's `const`, and if it holds, explain that this bound only
817        // *conditionally* holds.
818        let trait_ref = predicate.map_bound(|predicate| ty::TraitPredicate {
819            trait_ref: predicate.trait_ref,
820            polarity: ty::PredicatePolarity::Positive,
821        });
822        let mut file = None;
823
824        let err_msg = self.get_standard_error_message(
825            trait_ref,
826            None,
827            Some(predicate.constness()),
828            None,
829            String::new(),
830            &mut file,
831        );
832        let mut diag = struct_span_code_err!(self.dcx(), span, E0277, "{}", err_msg);
833        *diag.long_ty_path() = file;
834        let obligation = Obligation::new(
835            self.tcx,
836            ObligationCause::dummy(),
837            main_obligation.param_env,
838            trait_ref,
839        );
840        if !self.predicate_may_hold(&obligation) {
841            diag.downgrade_to_delayed_bug();
842        }
843
844        if let Ok(Some(ImplSource::UserDefined(impl_data))) =
845            SelectionContext::new(self).select(&obligation.with(self.tcx, trait_ref.skip_binder()))
846        {
847            let impl_did = impl_data.impl_def_id;
848            let trait_did = trait_ref.def_id();
849            let impl_span = self.tcx.def_span(impl_did);
850            let trait_name = self.tcx.item_name(trait_did);
851
852            if self.tcx.is_const_trait(trait_did) && !self.tcx.is_const_trait_impl(impl_did) {
853                if let Some(impl_did) = impl_did.as_local()
854                    && let item = self.tcx.hir_expect_item(impl_did)
855                    && let hir::ItemKind::Impl(item) = item.kind
856                    && let Some(of_trait) = item.of_trait
857                {
858                    // trait is const, impl is local and not const
859                    diag.span_suggestion_verbose(
860                        of_trait.trait_ref.path.span.shrink_to_lo(),
861                        format!("make the `impl` of trait `{trait_name}` `const`"),
862                        "const ".to_string(),
863                        Applicability::MaybeIncorrect,
864                    );
865                } else {
866                    diag.span_note(
867                        impl_span,
868                        format!("trait `{trait_name}` is implemented but not `const`"),
869                    );
870
871                    let (condition_options, format_args) = self.on_unimplemented_components(
872                        trait_ref,
873                        main_obligation,
874                        diag.long_ty_path(),
875                    );
876
877                    if let Ok(Some(command)) = OnUnimplementedDirective::of_item(self.tcx, impl_did)
878                    {
879                        let note = command.evaluate(
880                            self.tcx,
881                            predicate.skip_binder().trait_ref,
882                            &condition_options,
883                            &format_args,
884                        );
885                        let OnUnimplementedNote {
886                            message,
887                            label,
888                            notes,
889                            parent_label,
890                            append_const_msg: _,
891                        } = note;
892
893                        if let Some(message) = message {
894                            diag.primary_message(message);
895                        }
896                        if let Some(label) = label {
897                            diag.span_label(impl_span, label);
898                        }
899                        for note in notes {
900                            diag.note(note);
901                        }
902                        if let Some(parent_label) = parent_label {
903                            diag.span_label(impl_span, parent_label);
904                        }
905                    }
906                }
907            }
908        }
909        diag
910    }
911
912    fn emit_specialized_closure_kind_error(
913        &self,
914        obligation: &PredicateObligation<'tcx>,
915        mut trait_pred: ty::PolyTraitPredicate<'tcx>,
916    ) -> Option<ErrorGuaranteed> {
917        // If we end up on an `AsyncFnKindHelper` goal, try to unwrap the parent
918        // `AsyncFn*` goal.
919        if self.tcx.is_lang_item(trait_pred.def_id(), LangItem::AsyncFnKindHelper) {
920            let mut code = obligation.cause.code();
921            // Unwrap a `FunctionArg` cause, which has been refined from a derived obligation.
922            if let ObligationCauseCode::FunctionArg { parent_code, .. } = code {
923                code = &**parent_code;
924            }
925            // If we have a derived obligation, then the parent will be a `AsyncFn*` goal.
926            if let Some((_, Some(parent))) = code.parent_with_predicate() {
927                trait_pred = parent;
928            }
929        }
930
931        let self_ty = trait_pred.self_ty().skip_binder();
932
933        let (expected_kind, trait_prefix) =
934            if let Some(expected_kind) = self.tcx.fn_trait_kind_from_def_id(trait_pred.def_id()) {
935                (expected_kind, "")
936            } else if let Some(expected_kind) =
937                self.tcx.async_fn_trait_kind_from_def_id(trait_pred.def_id())
938            {
939                (expected_kind, "Async")
940            } else {
941                return None;
942            };
943
944        let (closure_def_id, found_args, has_self_borrows) = match *self_ty.kind() {
945            ty::Closure(def_id, args) => {
946                (def_id, args.as_closure().sig().map_bound(|sig| sig.inputs()[0]), false)
947            }
948            ty::CoroutineClosure(def_id, args) => (
949                def_id,
950                args.as_coroutine_closure()
951                    .coroutine_closure_sig()
952                    .map_bound(|sig| sig.tupled_inputs_ty),
953                !args.as_coroutine_closure().tupled_upvars_ty().is_ty_var()
954                    && args.as_coroutine_closure().has_self_borrows(),
955            ),
956            _ => return None,
957        };
958
959        let expected_args = trait_pred.map_bound(|trait_pred| trait_pred.trait_ref.args.type_at(1));
960
961        // Verify that the arguments are compatible. If the signature is
962        // mismatched, then we have a totally different error to report.
963        if self.enter_forall(found_args, |found_args| {
964            self.enter_forall(expected_args, |expected_args| {
965                !self.can_eq(obligation.param_env, expected_args, found_args)
966            })
967        }) {
968            return None;
969        }
970
971        if let Some(found_kind) = self.closure_kind(self_ty)
972            && !found_kind.extends(expected_kind)
973        {
974            let mut err = self.report_closure_error(
975                &obligation,
976                closure_def_id,
977                found_kind,
978                expected_kind,
979                trait_prefix,
980            );
981            self.note_obligation_cause(&mut err, &obligation);
982            return Some(err.emit());
983        }
984
985        // If the closure has captures, then perhaps the reason that the trait
986        // is unimplemented is because async closures don't implement `Fn`/`FnMut`
987        // if they have captures.
988        if has_self_borrows && expected_kind != ty::ClosureKind::FnOnce {
989            let coro_kind = match self
990                .tcx
991                .coroutine_kind(self.tcx.coroutine_for_closure(closure_def_id))
992                .unwrap()
993            {
994                rustc_hir::CoroutineKind::Desugared(desugaring, _) => desugaring.to_string(),
995                coro => coro.to_string(),
996            };
997            let mut err = self.dcx().create_err(CoroClosureNotFn {
998                span: self.tcx.def_span(closure_def_id),
999                kind: expected_kind.as_str(),
1000                coro_kind,
1001            });
1002            self.note_obligation_cause(&mut err, &obligation);
1003            return Some(err.emit());
1004        }
1005
1006        None
1007    }
1008
1009    fn fn_arg_obligation(
1010        &self,
1011        obligation: &PredicateObligation<'tcx>,
1012    ) -> Result<(), ErrorGuaranteed> {
1013        if let ObligationCauseCode::FunctionArg { arg_hir_id, .. } = obligation.cause.code()
1014            && let Node::Expr(arg) = self.tcx.hir_node(*arg_hir_id)
1015            && let arg = arg.peel_borrows()
1016            && let hir::ExprKind::Path(hir::QPath::Resolved(
1017                None,
1018                hir::Path { res: hir::def::Res::Local(hir_id), .. },
1019            )) = arg.kind
1020            && let Node::Pat(pat) = self.tcx.hir_node(*hir_id)
1021            && let Some((preds, guar)) = self.reported_trait_errors.borrow().get(&pat.span)
1022            && preds.contains(&obligation.as_goal())
1023        {
1024            return Err(*guar);
1025        }
1026        Ok(())
1027    }
1028
1029    fn detect_negative_literal(
1030        &self,
1031        obligation: &PredicateObligation<'tcx>,
1032        trait_pred: ty::PolyTraitPredicate<'tcx>,
1033        err: &mut Diag<'_>,
1034    ) -> bool {
1035        if let ObligationCauseCode::UnOp { hir_id, .. } = obligation.cause.code()
1036            && let hir::Node::Expr(expr) = self.tcx.hir_node(*hir_id)
1037            && let hir::ExprKind::Unary(hir::UnOp::Neg, inner) = expr.kind
1038            && let hir::ExprKind::Lit(lit) = inner.kind
1039            && let LitKind::Int(_, LitIntType::Unsuffixed) = lit.node
1040        {
1041            err.span_suggestion_verbose(
1042                lit.span.shrink_to_hi(),
1043                "consider specifying an integer type that can be negative",
1044                match trait_pred.skip_binder().self_ty().kind() {
1045                    ty::Uint(ty::UintTy::Usize) => "isize",
1046                    ty::Uint(ty::UintTy::U8) => "i8",
1047                    ty::Uint(ty::UintTy::U16) => "i16",
1048                    ty::Uint(ty::UintTy::U32) => "i32",
1049                    ty::Uint(ty::UintTy::U64) => "i64",
1050                    ty::Uint(ty::UintTy::U128) => "i128",
1051                    _ => "i64",
1052                }
1053                .to_string(),
1054                Applicability::MaybeIncorrect,
1055            );
1056            return true;
1057        }
1058        false
1059    }
1060
1061    /// When the `E` of the resulting `Result<T, E>` in an expression `foo().bar().baz()?`,
1062    /// identify those method chain sub-expressions that could or could not have been annotated
1063    /// with `?`.
1064    fn try_conversion_context(
1065        &self,
1066        obligation: &PredicateObligation<'tcx>,
1067        trait_pred: ty::PolyTraitPredicate<'tcx>,
1068        err: &mut Diag<'_>,
1069    ) -> (bool, bool) {
1070        let span = obligation.cause.span;
1071        /// Look for the (direct) sub-expr of `?`, and return it if it's a `.` method call.
1072        struct FindMethodSubexprOfTry {
1073            search_span: Span,
1074        }
1075        impl<'v> Visitor<'v> for FindMethodSubexprOfTry {
1076            type Result = ControlFlow<&'v hir::Expr<'v>>;
1077            fn visit_expr(&mut self, ex: &'v hir::Expr<'v>) -> Self::Result {
1078                if let hir::ExprKind::Match(expr, _arms, hir::MatchSource::TryDesugar(_)) = ex.kind
1079                    && ex.span.with_lo(ex.span.hi() - BytePos(1)).source_equal(self.search_span)
1080                    && let hir::ExprKind::Call(_, [expr, ..]) = expr.kind
1081                {
1082                    ControlFlow::Break(expr)
1083                } else {
1084                    hir::intravisit::walk_expr(self, ex)
1085                }
1086            }
1087        }
1088        let hir_id = self.tcx.local_def_id_to_hir_id(obligation.cause.body_id);
1089        let Some(body_id) = self.tcx.hir_node(hir_id).body_id() else { return (false, false) };
1090        let ControlFlow::Break(expr) =
1091            (FindMethodSubexprOfTry { search_span: span }).visit_body(self.tcx.hir_body(body_id))
1092        else {
1093            return (false, false);
1094        };
1095        let Some(typeck) = &self.typeck_results else {
1096            return (false, false);
1097        };
1098        let ObligationCauseCode::QuestionMark = obligation.cause.code().peel_derives() else {
1099            return (false, false);
1100        };
1101        let self_ty = trait_pred.skip_binder().self_ty();
1102        let found_ty = trait_pred.skip_binder().trait_ref.args.get(1).and_then(|a| a.as_type());
1103        let noted_missing_impl =
1104            self.note_missing_impl_for_question_mark(err, self_ty, found_ty, trait_pred);
1105
1106        let mut prev_ty = self.resolve_vars_if_possible(
1107            typeck.expr_ty_adjusted_opt(expr).unwrap_or(Ty::new_misc_error(self.tcx)),
1108        );
1109
1110        // We always look at the `E` type, because that's the only one affected by `?`. If the
1111        // incorrect `Result<T, E>` is because of the `T`, we'll get an E0308 on the whole
1112        // expression, after the `?` has "unwrapped" the `T`.
1113        let get_e_type = |prev_ty: Ty<'tcx>| -> Option<Ty<'tcx>> {
1114            let ty::Adt(def, args) = prev_ty.kind() else {
1115                return None;
1116            };
1117            let Some(arg) = args.get(1) else {
1118                return None;
1119            };
1120            if !self.tcx.is_diagnostic_item(sym::Result, def.did()) {
1121                return None;
1122            }
1123            arg.as_type()
1124        };
1125
1126        let mut suggested = false;
1127        let mut chain = vec![];
1128
1129        // The following logic is similar to `point_at_chain`, but that's focused on associated types
1130        let mut expr = expr;
1131        while let hir::ExprKind::MethodCall(path_segment, rcvr_expr, args, span) = expr.kind {
1132            // Point at every method call in the chain with the `Result` type.
1133            // let foo = bar.iter().map(mapper)?;
1134            //               ------ -----------
1135            expr = rcvr_expr;
1136            chain.push((span, prev_ty));
1137
1138            let next_ty = self.resolve_vars_if_possible(
1139                typeck.expr_ty_adjusted_opt(expr).unwrap_or(Ty::new_misc_error(self.tcx)),
1140            );
1141
1142            let is_diagnostic_item = |symbol: Symbol, ty: Ty<'tcx>| {
1143                let ty::Adt(def, _) = ty.kind() else {
1144                    return false;
1145                };
1146                self.tcx.is_diagnostic_item(symbol, def.did())
1147            };
1148            // For each method in the chain, see if this is `Result::map_err` or
1149            // `Option::ok_or_else` and if it is, see if the closure passed to it has an incorrect
1150            // trailing `;`.
1151            if let Some(ty) = get_e_type(prev_ty)
1152                && let Some(found_ty) = found_ty
1153                // Ideally we would instead use `FnCtxt::lookup_method_for_diagnostic` for 100%
1154                // accurate check, but we are in the wrong stage to do that and looking for
1155                // `Result::map_err` by checking the Self type and the path segment is enough.
1156                // sym::ok_or_else
1157                && (
1158                    ( // Result::map_err
1159                        path_segment.ident.name == sym::map_err
1160                            && is_diagnostic_item(sym::Result, next_ty)
1161                    ) || ( // Option::ok_or_else
1162                        path_segment.ident.name == sym::ok_or_else
1163                            && is_diagnostic_item(sym::Option, next_ty)
1164                    )
1165                )
1166                // Found `Result<_, ()>?`
1167                && let ty::Tuple(tys) = found_ty.kind()
1168                && tys.is_empty()
1169                // The current method call returns `Result<_, ()>`
1170                && self.can_eq(obligation.param_env, ty, found_ty)
1171                // There's a single argument in the method call and it is a closure
1172                && let [arg] = args
1173                && let hir::ExprKind::Closure(closure) = arg.kind
1174                // The closure has a block for its body with no tail expression
1175                && let body = self.tcx.hir_body(closure.body)
1176                && let hir::ExprKind::Block(block, _) = body.value.kind
1177                && let None = block.expr
1178                // The last statement is of a type that can be converted to the return error type
1179                && let [.., stmt] = block.stmts
1180                && let hir::StmtKind::Semi(expr) = stmt.kind
1181                && let expr_ty = self.resolve_vars_if_possible(
1182                    typeck.expr_ty_adjusted_opt(expr)
1183                        .unwrap_or(Ty::new_misc_error(self.tcx)),
1184                )
1185                && self
1186                    .infcx
1187                    .type_implements_trait(
1188                        self.tcx.get_diagnostic_item(sym::From).unwrap(),
1189                        [self_ty, expr_ty],
1190                        obligation.param_env,
1191                    )
1192                    .must_apply_modulo_regions()
1193            {
1194                suggested = true;
1195                err.span_suggestion_short(
1196                    stmt.span.with_lo(expr.span.hi()),
1197                    "remove this semicolon",
1198                    String::new(),
1199                    Applicability::MachineApplicable,
1200                );
1201            }
1202
1203            prev_ty = next_ty;
1204
1205            if let hir::ExprKind::Path(hir::QPath::Resolved(None, path)) = expr.kind
1206                && let hir::Path { res: hir::def::Res::Local(hir_id), .. } = path
1207                && let hir::Node::Pat(binding) = self.tcx.hir_node(*hir_id)
1208            {
1209                let parent = self.tcx.parent_hir_node(binding.hir_id);
1210                // We've reached the root of the method call chain...
1211                if let hir::Node::LetStmt(local) = parent
1212                    && let Some(binding_expr) = local.init
1213                {
1214                    // ...and it is a binding. Get the binding creation and continue the chain.
1215                    expr = binding_expr;
1216                }
1217                if let hir::Node::Param(_param) = parent {
1218                    // ...and it is an fn argument.
1219                    break;
1220                }
1221            }
1222        }
1223        // `expr` is now the "root" expression of the method call chain, which can be any
1224        // expression kind, like a method call or a path. If this expression is `Result<T, E>` as
1225        // well, then we also point at it.
1226        prev_ty = self.resolve_vars_if_possible(
1227            typeck.expr_ty_adjusted_opt(expr).unwrap_or(Ty::new_misc_error(self.tcx)),
1228        );
1229        chain.push((expr.span, prev_ty));
1230
1231        let mut prev = None;
1232        for (span, err_ty) in chain.into_iter().rev() {
1233            let err_ty = get_e_type(err_ty);
1234            let err_ty = match (err_ty, prev) {
1235                (Some(err_ty), Some(prev)) if !self.can_eq(obligation.param_env, err_ty, prev) => {
1236                    err_ty
1237                }
1238                (Some(err_ty), None) => err_ty,
1239                _ => {
1240                    prev = err_ty;
1241                    continue;
1242                }
1243            };
1244            if self
1245                .infcx
1246                .type_implements_trait(
1247                    self.tcx.get_diagnostic_item(sym::From).unwrap(),
1248                    [self_ty, err_ty],
1249                    obligation.param_env,
1250                )
1251                .must_apply_modulo_regions()
1252            {
1253                if !suggested {
1254                    let err_ty = self.tcx.short_string(err_ty, err.long_ty_path());
1255                    err.span_label(span, format!("this has type `Result<_, {err_ty}>`"));
1256                }
1257            } else {
1258                let err_ty = self.tcx.short_string(err_ty, err.long_ty_path());
1259                err.span_label(
1260                    span,
1261                    format!(
1262                        "this can't be annotated with `?` because it has type `Result<_, {err_ty}>`",
1263                    ),
1264                );
1265            }
1266            prev = Some(err_ty);
1267        }
1268        (suggested, noted_missing_impl)
1269    }
1270
1271    fn note_missing_impl_for_question_mark(
1272        &self,
1273        err: &mut Diag<'_>,
1274        self_ty: Ty<'_>,
1275        found_ty: Option<Ty<'_>>,
1276        trait_pred: ty::PolyTraitPredicate<'tcx>,
1277    ) -> bool {
1278        match (self_ty.kind(), found_ty) {
1279            (ty::Adt(def, _), Some(ty))
1280                if let ty::Adt(found, _) = ty.kind()
1281                    && def.did().is_local()
1282                    && found.did().is_local() =>
1283            {
1284                err.span_note(
1285                    self.tcx.def_span(def.did()),
1286                    format!("`{self_ty}` needs to implement `From<{ty}>`"),
1287                );
1288                err.span_note(
1289                    self.tcx.def_span(found.did()),
1290                    format!("alternatively, `{ty}` needs to implement `Into<{self_ty}>`"),
1291                );
1292            }
1293            (ty::Adt(def, _), None) if def.did().is_local() => {
1294                let trait_path = self.tcx.short_string(
1295                    trait_pred.skip_binder().trait_ref.print_only_trait_path(),
1296                    err.long_ty_path(),
1297                );
1298                err.span_note(
1299                    self.tcx.def_span(def.did()),
1300                    format!("`{self_ty}` needs to implement `{trait_path}`"),
1301                );
1302            }
1303            (ty::Adt(def, _), Some(ty)) if def.did().is_local() => {
1304                err.span_note(
1305                    self.tcx.def_span(def.did()),
1306                    format!("`{self_ty}` needs to implement `From<{ty}>`"),
1307                );
1308            }
1309            (_, Some(ty))
1310                if let ty::Adt(def, _) = ty.kind()
1311                    && def.did().is_local() =>
1312            {
1313                err.span_note(
1314                    self.tcx.def_span(def.did()),
1315                    format!("`{ty}` needs to implement `Into<{self_ty}>`"),
1316                );
1317            }
1318            _ => return false,
1319        }
1320        true
1321    }
1322
1323    fn report_const_param_not_wf(
1324        &self,
1325        ty: Ty<'tcx>,
1326        obligation: &PredicateObligation<'tcx>,
1327    ) -> Diag<'a> {
1328        let def_id = obligation.cause.body_id;
1329        let span = self.tcx.ty_span(def_id);
1330
1331        let mut file = None;
1332        let ty_str = self.tcx.short_string(ty, &mut file);
1333        let mut diag = match ty.kind() {
1334            ty::Float(_) => {
1335                struct_span_code_err!(
1336                    self.dcx(),
1337                    span,
1338                    E0741,
1339                    "`{ty_str}` is forbidden as the type of a const generic parameter",
1340                )
1341            }
1342            ty::FnPtr(..) => {
1343                struct_span_code_err!(
1344                    self.dcx(),
1345                    span,
1346                    E0741,
1347                    "using function pointers as const generic parameters is forbidden",
1348                )
1349            }
1350            ty::RawPtr(_, _) => {
1351                struct_span_code_err!(
1352                    self.dcx(),
1353                    span,
1354                    E0741,
1355                    "using raw pointers as const generic parameters is forbidden",
1356                )
1357            }
1358            ty::Adt(def, _) => {
1359                // We should probably see if we're *allowed* to derive `ConstParamTy` on the type...
1360                let mut diag = struct_span_code_err!(
1361                    self.dcx(),
1362                    span,
1363                    E0741,
1364                    "`{ty_str}` must implement `ConstParamTy` to be used as the type of a const generic parameter",
1365                );
1366                // Only suggest derive if this isn't a derived obligation,
1367                // and the struct is local.
1368                if let Some(span) = self.tcx.hir_span_if_local(def.did())
1369                    && obligation.cause.code().parent().is_none()
1370                {
1371                    if ty.is_structural_eq_shallow(self.tcx) {
1372                        diag.span_suggestion(
1373                            span.shrink_to_lo(),
1374                            format!("add `#[derive(ConstParamTy)]` to the {}", def.descr()),
1375                            "#[derive(ConstParamTy)]\n",
1376                            Applicability::MachineApplicable,
1377                        );
1378                    } else {
1379                        // FIXME(adt_const_params): We should check there's not already an
1380                        // overlapping `Eq`/`PartialEq` impl.
1381                        diag.span_suggestion(
1382                            span.shrink_to_lo(),
1383                            format!(
1384                                "add `#[derive(ConstParamTy, PartialEq, Eq)]` to the {}",
1385                                def.descr()
1386                            ),
1387                            "#[derive(ConstParamTy, PartialEq, Eq)]\n",
1388                            Applicability::MachineApplicable,
1389                        );
1390                    }
1391                }
1392                diag
1393            }
1394            _ => {
1395                struct_span_code_err!(
1396                    self.dcx(),
1397                    span,
1398                    E0741,
1399                    "`{ty_str}` can't be used as a const parameter type",
1400                )
1401            }
1402        };
1403        diag.long_ty_path = file;
1404
1405        let mut code = obligation.cause.code();
1406        let mut pred = obligation.predicate.as_trait_clause();
1407        while let Some((next_code, next_pred)) = code.parent_with_predicate() {
1408            if let Some(pred) = pred {
1409                self.enter_forall(pred, |pred| {
1410                    let ty = self.tcx.short_string(pred.self_ty(), diag.long_ty_path());
1411                    let trait_path = self
1412                        .tcx
1413                        .short_string(pred.print_modifiers_and_trait_path(), diag.long_ty_path());
1414                    diag.note(format!("`{ty}` must implement `{trait_path}`, but it does not"));
1415                })
1416            }
1417            code = next_code;
1418            pred = next_pred;
1419        }
1420
1421        diag
1422    }
1423}
1424
1425impl<'a, 'tcx> TypeErrCtxt<'a, 'tcx> {
1426    fn can_match_trait(
1427        &self,
1428        param_env: ty::ParamEnv<'tcx>,
1429        goal: ty::TraitPredicate<'tcx>,
1430        assumption: ty::PolyTraitPredicate<'tcx>,
1431    ) -> bool {
1432        // Fast path
1433        if goal.polarity != assumption.polarity() {
1434            return false;
1435        }
1436
1437        let trait_assumption = self.instantiate_binder_with_fresh_vars(
1438            DUMMY_SP,
1439            infer::BoundRegionConversionTime::HigherRankedType,
1440            assumption,
1441        );
1442
1443        self.can_eq(param_env, goal.trait_ref, trait_assumption.trait_ref)
1444    }
1445
1446    fn can_match_projection(
1447        &self,
1448        param_env: ty::ParamEnv<'tcx>,
1449        goal: ty::ProjectionPredicate<'tcx>,
1450        assumption: ty::PolyProjectionPredicate<'tcx>,
1451    ) -> bool {
1452        let assumption = self.instantiate_binder_with_fresh_vars(
1453            DUMMY_SP,
1454            infer::BoundRegionConversionTime::HigherRankedType,
1455            assumption,
1456        );
1457
1458        self.can_eq(param_env, goal.projection_term, assumption.projection_term)
1459            && self.can_eq(param_env, goal.term, assumption.term)
1460    }
1461
1462    // returns if `cond` not occurring implies that `error` does not occur - i.e., that
1463    // `error` occurring implies that `cond` occurs.
1464    #[instrument(level = "debug", skip(self), ret)]
1465    pub(super) fn error_implies(
1466        &self,
1467        cond: Goal<'tcx, ty::Predicate<'tcx>>,
1468        error: Goal<'tcx, ty::Predicate<'tcx>>,
1469    ) -> bool {
1470        if cond == error {
1471            return true;
1472        }
1473
1474        // FIXME: We could be smarter about this, i.e. if cond's param-env is a
1475        // subset of error's param-env. This only matters when binders will carry
1476        // predicates though, and obviously only matters for error reporting.
1477        if cond.param_env != error.param_env {
1478            return false;
1479        }
1480        let param_env = error.param_env;
1481
1482        if let Some(error) = error.predicate.as_trait_clause() {
1483            self.enter_forall(error, |error| {
1484                elaborate(self.tcx, std::iter::once(cond.predicate))
1485                    .filter_map(|implied| implied.as_trait_clause())
1486                    .any(|implied| self.can_match_trait(param_env, error, implied))
1487            })
1488        } else if let Some(error) = error.predicate.as_projection_clause() {
1489            self.enter_forall(error, |error| {
1490                elaborate(self.tcx, std::iter::once(cond.predicate))
1491                    .filter_map(|implied| implied.as_projection_clause())
1492                    .any(|implied| self.can_match_projection(param_env, error, implied))
1493            })
1494        } else {
1495            false
1496        }
1497    }
1498
1499    #[instrument(level = "debug", skip_all)]
1500    pub(super) fn report_projection_error(
1501        &self,
1502        obligation: &PredicateObligation<'tcx>,
1503        error: &MismatchedProjectionTypes<'tcx>,
1504    ) -> ErrorGuaranteed {
1505        let predicate = self.resolve_vars_if_possible(obligation.predicate);
1506
1507        if let Err(e) = predicate.error_reported() {
1508            return e;
1509        }
1510
1511        self.probe(|_| {
1512            // try to find the mismatched types to report the error with.
1513            //
1514            // this can fail if the problem was higher-ranked, in which
1515            // cause I have no idea for a good error message.
1516            let bound_predicate = predicate.kind();
1517            let (values, err) = match bound_predicate.skip_binder() {
1518                ty::PredicateKind::Clause(ty::ClauseKind::Projection(data)) => {
1519                    let ocx = ObligationCtxt::new(self);
1520
1521                    let data = self.instantiate_binder_with_fresh_vars(
1522                        obligation.cause.span,
1523                        infer::BoundRegionConversionTime::HigherRankedType,
1524                        bound_predicate.rebind(data),
1525                    );
1526                    let unnormalized_term = data.projection_term.to_term(self.tcx);
1527                    // FIXME(-Znext-solver): For diagnostic purposes, it would be nice
1528                    // to deeply normalize this type.
1529                    let normalized_term =
1530                        ocx.normalize(&obligation.cause, obligation.param_env, unnormalized_term);
1531
1532                    // constrain inference variables a bit more to nested obligations from normalize so
1533                    // we can have more helpful errors.
1534                    //
1535                    // we intentionally drop errors from normalization here,
1536                    // since the normalization is just done to improve the error message.
1537                    let _ = ocx.try_evaluate_obligations();
1538
1539                    if let Err(new_err) =
1540                        ocx.eq(&obligation.cause, obligation.param_env, data.term, normalized_term)
1541                    {
1542                        (
1543                            Some((
1544                                data.projection_term,
1545                                self.resolve_vars_if_possible(normalized_term),
1546                                data.term,
1547                            )),
1548                            new_err,
1549                        )
1550                    } else {
1551                        (None, error.err)
1552                    }
1553                }
1554                ty::PredicateKind::AliasRelate(lhs, rhs, _) => {
1555                    let derive_better_type_error =
1556                        |alias_term: ty::AliasTerm<'tcx>, expected_term: ty::Term<'tcx>| {
1557                            let ocx = ObligationCtxt::new(self);
1558
1559                            let Ok(normalized_term) = ocx.structurally_normalize_term(
1560                                &ObligationCause::dummy(),
1561                                obligation.param_env,
1562                                alias_term.to_term(self.tcx),
1563                            ) else {
1564                                return None;
1565                            };
1566
1567                            if let Err(terr) = ocx.eq(
1568                                &ObligationCause::dummy(),
1569                                obligation.param_env,
1570                                expected_term,
1571                                normalized_term,
1572                            ) {
1573                                Some((terr, self.resolve_vars_if_possible(normalized_term)))
1574                            } else {
1575                                None
1576                            }
1577                        };
1578
1579                    if let Some(lhs) = lhs.to_alias_term()
1580                        && let Some((better_type_err, expected_term)) =
1581                            derive_better_type_error(lhs, rhs)
1582                    {
1583                        (
1584                            Some((lhs, self.resolve_vars_if_possible(expected_term), rhs)),
1585                            better_type_err,
1586                        )
1587                    } else if let Some(rhs) = rhs.to_alias_term()
1588                        && let Some((better_type_err, expected_term)) =
1589                            derive_better_type_error(rhs, lhs)
1590                    {
1591                        (
1592                            Some((rhs, self.resolve_vars_if_possible(expected_term), lhs)),
1593                            better_type_err,
1594                        )
1595                    } else {
1596                        (None, error.err)
1597                    }
1598                }
1599                _ => (None, error.err),
1600            };
1601
1602            let mut file = None;
1603            let (msg, span, closure_span) = values
1604                .and_then(|(predicate, normalized_term, expected_term)| {
1605                    self.maybe_detailed_projection_msg(
1606                        obligation.cause.span,
1607                        predicate,
1608                        normalized_term,
1609                        expected_term,
1610                        &mut file,
1611                    )
1612                })
1613                .unwrap_or_else(|| {
1614                    (
1615                        with_forced_trimmed_paths!(format!(
1616                            "type mismatch resolving `{}`",
1617                            self.tcx
1618                                .short_string(self.resolve_vars_if_possible(predicate), &mut file),
1619                        )),
1620                        obligation.cause.span,
1621                        None,
1622                    )
1623                });
1624            let mut diag = struct_span_code_err!(self.dcx(), span, E0271, "{msg}");
1625            *diag.long_ty_path() = file;
1626            if let Some(span) = closure_span {
1627                // Mark the closure decl so that it is seen even if we are pointing at the return
1628                // type or expression.
1629                //
1630                // error[E0271]: expected `{closure@foo.rs:41:16}` to be a closure that returns
1631                //               `Unit3`, but it returns `Unit4`
1632                //   --> $DIR/foo.rs:43:17
1633                //    |
1634                // LL |     let v = Unit2.m(
1635                //    |                   - required by a bound introduced by this call
1636                // ...
1637                // LL |             f: |x| {
1638                //    |                --- /* this span */
1639                // LL |                 drop(x);
1640                // LL |                 Unit4
1641                //    |                 ^^^^^ expected `Unit3`, found `Unit4`
1642                //    |
1643                diag.span_label(span, "this closure");
1644                if !span.overlaps(obligation.cause.span) {
1645                    // Point at the binding corresponding to the closure where it is used.
1646                    diag.span_label(obligation.cause.span, "closure used here");
1647                }
1648            }
1649
1650            let secondary_span = self.probe(|_| {
1651                let ty::PredicateKind::Clause(ty::ClauseKind::Projection(proj)) =
1652                    predicate.kind().skip_binder()
1653                else {
1654                    return None;
1655                };
1656
1657                let trait_ref = self.enter_forall_and_leak_universe(
1658                    predicate.kind().rebind(proj.projection_term.trait_ref(self.tcx)),
1659                );
1660                let Ok(Some(ImplSource::UserDefined(impl_data))) =
1661                    SelectionContext::new(self).select(&obligation.with(self.tcx, trait_ref))
1662                else {
1663                    return None;
1664                };
1665
1666                let Ok(node) =
1667                    specialization_graph::assoc_def(self.tcx, impl_data.impl_def_id, proj.def_id())
1668                else {
1669                    return None;
1670                };
1671
1672                if !node.is_final() {
1673                    return None;
1674                }
1675
1676                match self.tcx.hir_get_if_local(node.item.def_id) {
1677                    Some(
1678                        hir::Node::TraitItem(hir::TraitItem {
1679                            kind: hir::TraitItemKind::Type(_, Some(ty)),
1680                            ..
1681                        })
1682                        | hir::Node::ImplItem(hir::ImplItem {
1683                            kind: hir::ImplItemKind::Type(ty),
1684                            ..
1685                        }),
1686                    ) => Some((
1687                        ty.span,
1688                        with_forced_trimmed_paths!(Cow::from(format!(
1689                            "type mismatch resolving `{}`",
1690                            self.tcx.short_string(
1691                                self.resolve_vars_if_possible(predicate),
1692                                diag.long_ty_path()
1693                            ),
1694                        ))),
1695                        true,
1696                    )),
1697                    _ => None,
1698                }
1699            });
1700
1701            self.note_type_err(
1702                &mut diag,
1703                &obligation.cause,
1704                secondary_span,
1705                values.map(|(_, normalized_ty, expected_ty)| {
1706                    obligation.param_env.and(infer::ValuePairs::Terms(ExpectedFound::new(
1707                        expected_ty,
1708                        normalized_ty,
1709                    )))
1710                }),
1711                err,
1712                false,
1713                Some(span),
1714            );
1715            self.note_obligation_cause(&mut diag, obligation);
1716            diag.emit()
1717        })
1718    }
1719
1720    fn maybe_detailed_projection_msg(
1721        &self,
1722        mut span: Span,
1723        projection_term: ty::AliasTerm<'tcx>,
1724        normalized_ty: ty::Term<'tcx>,
1725        expected_ty: ty::Term<'tcx>,
1726        long_ty_path: &mut Option<PathBuf>,
1727    ) -> Option<(String, Span, Option<Span>)> {
1728        let trait_def_id = projection_term.trait_def_id(self.tcx);
1729        let self_ty = projection_term.self_ty();
1730
1731        with_forced_trimmed_paths! {
1732            if self.tcx.is_lang_item(projection_term.def_id, LangItem::FnOnceOutput) {
1733                let (span, closure_span) = if let ty::Closure(def_id, _) = self_ty.kind() {
1734                    let def_span = self.tcx.def_span(def_id);
1735                    if let Some(local_def_id) = def_id.as_local()
1736                        && let node = self.tcx.hir_node_by_def_id(local_def_id)
1737                        && let Some(fn_decl) = node.fn_decl()
1738                        && let Some(id) = node.body_id()
1739                    {
1740                        span = match fn_decl.output {
1741                            hir::FnRetTy::Return(ty) => ty.span,
1742                            hir::FnRetTy::DefaultReturn(_) => {
1743                                let body = self.tcx.hir_body(id);
1744                                match body.value.kind {
1745                                    hir::ExprKind::Block(
1746                                        hir::Block { expr: Some(expr), .. },
1747                                        _,
1748                                    ) => expr.span,
1749                                    hir::ExprKind::Block(
1750                                        hir::Block {
1751                                            expr: None, stmts: [.., last], ..
1752                                        },
1753                                        _,
1754                                    ) => last.span,
1755                                    _ => body.value.span,
1756                                }
1757                            }
1758                        };
1759                    }
1760                    (span, Some(def_span))
1761                } else {
1762                    (span, None)
1763                };
1764                let item = match self_ty.kind() {
1765                    ty::FnDef(def, _) => self.tcx.item_name(*def).to_string(),
1766                    _ => self.tcx.short_string(self_ty, long_ty_path),
1767                };
1768                let expected_ty = self.tcx.short_string(expected_ty, long_ty_path);
1769                let normalized_ty = self.tcx.short_string(normalized_ty, long_ty_path);
1770                Some((format!(
1771                    "expected `{item}` to return `{expected_ty}`, but it returns `{normalized_ty}`",
1772                ), span, closure_span))
1773            } else if self.tcx.is_lang_item(trait_def_id, LangItem::Future) {
1774                let self_ty = self.tcx.short_string(self_ty, long_ty_path);
1775                let expected_ty = self.tcx.short_string(expected_ty, long_ty_path);
1776                let normalized_ty = self.tcx.short_string(normalized_ty, long_ty_path);
1777                Some((format!(
1778                    "expected `{self_ty}` to be a future that resolves to `{expected_ty}`, but it \
1779                     resolves to `{normalized_ty}`"
1780                ), span, None))
1781            } else if Some(trait_def_id) == self.tcx.get_diagnostic_item(sym::Iterator) {
1782                let self_ty = self.tcx.short_string(self_ty, long_ty_path);
1783                let expected_ty = self.tcx.short_string(expected_ty, long_ty_path);
1784                let normalized_ty = self.tcx.short_string(normalized_ty, long_ty_path);
1785                Some((format!(
1786                    "expected `{self_ty}` to be an iterator that yields `{expected_ty}`, but it \
1787                     yields `{normalized_ty}`"
1788                ), span, None))
1789            } else {
1790                None
1791            }
1792        }
1793    }
1794
1795    pub fn fuzzy_match_tys(
1796        &self,
1797        mut a: Ty<'tcx>,
1798        mut b: Ty<'tcx>,
1799        ignoring_lifetimes: bool,
1800    ) -> Option<CandidateSimilarity> {
1801        /// returns the fuzzy category of a given type, or None
1802        /// if the type can be equated to any type.
1803        fn type_category(tcx: TyCtxt<'_>, t: Ty<'_>) -> Option<u32> {
1804            match t.kind() {
1805                ty::Bool => Some(0),
1806                ty::Char => Some(1),
1807                ty::Str => Some(2),
1808                ty::Adt(def, _) if tcx.is_lang_item(def.did(), LangItem::String) => Some(2),
1809                ty::Int(..)
1810                | ty::Uint(..)
1811                | ty::Float(..)
1812                | ty::Infer(ty::IntVar(..) | ty::FloatVar(..)) => Some(4),
1813                ty::Ref(..) | ty::RawPtr(..) => Some(5),
1814                ty::Array(..) | ty::Slice(..) => Some(6),
1815                ty::FnDef(..) | ty::FnPtr(..) => Some(7),
1816                ty::Dynamic(..) => Some(8),
1817                ty::Closure(..) => Some(9),
1818                ty::Tuple(..) => Some(10),
1819                ty::Param(..) => Some(11),
1820                ty::Alias(ty::Projection, ..) => Some(12),
1821                ty::Alias(ty::Inherent, ..) => Some(13),
1822                ty::Alias(ty::Opaque, ..) => Some(14),
1823                ty::Alias(ty::Free, ..) => Some(15),
1824                ty::Never => Some(16),
1825                ty::Adt(..) => Some(17),
1826                ty::Coroutine(..) => Some(18),
1827                ty::Foreign(..) => Some(19),
1828                ty::CoroutineWitness(..) => Some(20),
1829                ty::CoroutineClosure(..) => Some(21),
1830                ty::Pat(..) => Some(22),
1831                ty::UnsafeBinder(..) => Some(23),
1832                ty::Placeholder(..) | ty::Bound(..) | ty::Infer(..) | ty::Error(_) => None,
1833            }
1834        }
1835
1836        let strip_references = |mut t: Ty<'tcx>| -> Ty<'tcx> {
1837            loop {
1838                match t.kind() {
1839                    ty::Ref(_, inner, _) | ty::RawPtr(inner, _) => t = *inner,
1840                    _ => break t,
1841                }
1842            }
1843        };
1844
1845        if !ignoring_lifetimes {
1846            a = strip_references(a);
1847            b = strip_references(b);
1848        }
1849
1850        let cat_a = type_category(self.tcx, a)?;
1851        let cat_b = type_category(self.tcx, b)?;
1852        if a == b {
1853            Some(CandidateSimilarity::Exact { ignoring_lifetimes })
1854        } else if cat_a == cat_b {
1855            match (a.kind(), b.kind()) {
1856                (ty::Adt(def_a, _), ty::Adt(def_b, _)) => def_a == def_b,
1857                (ty::Foreign(def_a), ty::Foreign(def_b)) => def_a == def_b,
1858                // Matching on references results in a lot of unhelpful
1859                // suggestions, so let's just not do that for now.
1860                //
1861                // We still upgrade successful matches to `ignoring_lifetimes: true`
1862                // to prioritize that impl.
1863                (ty::Ref(..) | ty::RawPtr(..), ty::Ref(..) | ty::RawPtr(..)) => {
1864                    self.fuzzy_match_tys(a, b, true).is_some()
1865                }
1866                _ => true,
1867            }
1868            .then_some(CandidateSimilarity::Fuzzy { ignoring_lifetimes })
1869        } else if ignoring_lifetimes {
1870            None
1871        } else {
1872            self.fuzzy_match_tys(a, b, true)
1873        }
1874    }
1875
1876    pub(super) fn describe_closure(&self, kind: hir::ClosureKind) -> &'static str {
1877        match kind {
1878            hir::ClosureKind::Closure => "a closure",
1879            hir::ClosureKind::Coroutine(hir::CoroutineKind::Coroutine(_)) => "a coroutine",
1880            hir::ClosureKind::Coroutine(hir::CoroutineKind::Desugared(
1881                hir::CoroutineDesugaring::Async,
1882                hir::CoroutineSource::Block,
1883            )) => "an async block",
1884            hir::ClosureKind::Coroutine(hir::CoroutineKind::Desugared(
1885                hir::CoroutineDesugaring::Async,
1886                hir::CoroutineSource::Fn,
1887            )) => "an async function",
1888            hir::ClosureKind::Coroutine(hir::CoroutineKind::Desugared(
1889                hir::CoroutineDesugaring::Async,
1890                hir::CoroutineSource::Closure,
1891            ))
1892            | hir::ClosureKind::CoroutineClosure(hir::CoroutineDesugaring::Async) => {
1893                "an async closure"
1894            }
1895            hir::ClosureKind::Coroutine(hir::CoroutineKind::Desugared(
1896                hir::CoroutineDesugaring::AsyncGen,
1897                hir::CoroutineSource::Block,
1898            )) => "an async gen block",
1899            hir::ClosureKind::Coroutine(hir::CoroutineKind::Desugared(
1900                hir::CoroutineDesugaring::AsyncGen,
1901                hir::CoroutineSource::Fn,
1902            )) => "an async gen function",
1903            hir::ClosureKind::Coroutine(hir::CoroutineKind::Desugared(
1904                hir::CoroutineDesugaring::AsyncGen,
1905                hir::CoroutineSource::Closure,
1906            ))
1907            | hir::ClosureKind::CoroutineClosure(hir::CoroutineDesugaring::AsyncGen) => {
1908                "an async gen closure"
1909            }
1910            hir::ClosureKind::Coroutine(hir::CoroutineKind::Desugared(
1911                hir::CoroutineDesugaring::Gen,
1912                hir::CoroutineSource::Block,
1913            )) => "a gen block",
1914            hir::ClosureKind::Coroutine(hir::CoroutineKind::Desugared(
1915                hir::CoroutineDesugaring::Gen,
1916                hir::CoroutineSource::Fn,
1917            )) => "a gen function",
1918            hir::ClosureKind::Coroutine(hir::CoroutineKind::Desugared(
1919                hir::CoroutineDesugaring::Gen,
1920                hir::CoroutineSource::Closure,
1921            ))
1922            | hir::ClosureKind::CoroutineClosure(hir::CoroutineDesugaring::Gen) => "a gen closure",
1923        }
1924    }
1925
1926    pub(super) fn find_similar_impl_candidates(
1927        &self,
1928        trait_pred: ty::PolyTraitPredicate<'tcx>,
1929    ) -> Vec<ImplCandidate<'tcx>> {
1930        let mut candidates: Vec<_> = self
1931            .tcx
1932            .all_impls(trait_pred.def_id())
1933            .filter_map(|def_id| {
1934                let imp = self.tcx.impl_trait_header(def_id);
1935                if imp.polarity != ty::ImplPolarity::Positive
1936                    || !self.tcx.is_user_visible_dep(def_id.krate)
1937                {
1938                    return None;
1939                }
1940                let imp = imp.trait_ref.skip_binder();
1941
1942                self.fuzzy_match_tys(trait_pred.skip_binder().self_ty(), imp.self_ty(), false).map(
1943                    |similarity| ImplCandidate { trait_ref: imp, similarity, impl_def_id: def_id },
1944                )
1945            })
1946            .collect();
1947        if candidates.iter().any(|c| matches!(c.similarity, CandidateSimilarity::Exact { .. })) {
1948            // If any of the candidates is a perfect match, we don't want to show all of them.
1949            // This is particularly relevant for the case of numeric types (as they all have the
1950            // same category).
1951            candidates.retain(|c| matches!(c.similarity, CandidateSimilarity::Exact { .. }));
1952        }
1953        candidates
1954    }
1955
1956    pub(super) fn report_similar_impl_candidates(
1957        &self,
1958        impl_candidates: &[ImplCandidate<'tcx>],
1959        trait_pred: ty::PolyTraitPredicate<'tcx>,
1960        body_def_id: LocalDefId,
1961        err: &mut Diag<'_>,
1962        other: bool,
1963        param_env: ty::ParamEnv<'tcx>,
1964    ) -> bool {
1965        let parent_map = self.tcx.visible_parent_map(());
1966        let alternative_candidates = |def_id: DefId| {
1967            let mut impl_candidates: Vec<_> = self
1968                .tcx
1969                .all_impls(def_id)
1970                // ignore `do_not_recommend` items
1971                .filter(|def_id| !self.tcx.do_not_recommend_impl(*def_id))
1972                // Ignore automatically derived impls and `!Trait` impls.
1973                .map(|def_id| (self.tcx.impl_trait_header(def_id), def_id))
1974                .filter_map(|(header, def_id)| {
1975                    (header.polarity == ty::ImplPolarity::Positive
1976                        || self.tcx.is_automatically_derived(def_id))
1977                    .then(|| (header.trait_ref.instantiate_identity(), def_id))
1978                })
1979                .filter(|(trait_ref, _)| {
1980                    let self_ty = trait_ref.self_ty();
1981                    // Avoid mentioning type parameters.
1982                    if let ty::Param(_) = self_ty.kind() {
1983                        false
1984                    }
1985                    // Avoid mentioning types that are private to another crate
1986                    else if let ty::Adt(def, _) = self_ty.peel_refs().kind() {
1987                        // FIXME(compiler-errors): This could be generalized, both to
1988                        // be more granular, and probably look past other `#[fundamental]`
1989                        // types, too.
1990                        let mut did = def.did();
1991                        if self.tcx.visibility(did).is_accessible_from(body_def_id, self.tcx) {
1992                            // don't suggest foreign `#[doc(hidden)]` types
1993                            if !did.is_local() {
1994                                let mut previously_seen_dids: FxHashSet<DefId> = Default::default();
1995                                previously_seen_dids.insert(did);
1996                                while let Some(&parent) = parent_map.get(&did)
1997                                    && let hash_set::Entry::Vacant(v) =
1998                                        previously_seen_dids.entry(parent)
1999                                {
2000                                    if self.tcx.is_doc_hidden(did) {
2001                                        return false;
2002                                    }
2003                                    v.insert();
2004                                    did = parent;
2005                                }
2006                            }
2007                            true
2008                        } else {
2009                            false
2010                        }
2011                    } else {
2012                        true
2013                    }
2014                })
2015                .collect();
2016
2017            impl_candidates.sort_by_key(|(tr, _)| tr.to_string());
2018            impl_candidates.dedup();
2019            impl_candidates
2020        };
2021
2022        if let [single] = &impl_candidates {
2023            // If we have a single implementation, try to unify it with the trait ref
2024            // that failed. This should uncover a better hint for what *is* implemented.
2025            if self.probe(|_| {
2026                let ocx = ObligationCtxt::new(self);
2027
2028                self.enter_forall(trait_pred, |obligation_trait_ref| {
2029                    let impl_args = self.fresh_args_for_item(DUMMY_SP, single.impl_def_id);
2030                    let impl_trait_ref = ocx.normalize(
2031                        &ObligationCause::dummy(),
2032                        param_env,
2033                        ty::EarlyBinder::bind(single.trait_ref).instantiate(self.tcx, impl_args),
2034                    );
2035
2036                    ocx.register_obligations(
2037                        self.tcx
2038                            .predicates_of(single.impl_def_id)
2039                            .instantiate(self.tcx, impl_args)
2040                            .into_iter()
2041                            .map(|(clause, _)| {
2042                                Obligation::new(
2043                                    self.tcx,
2044                                    ObligationCause::dummy(),
2045                                    param_env,
2046                                    clause,
2047                                )
2048                            }),
2049                    );
2050                    if !ocx.try_evaluate_obligations().is_empty() {
2051                        return false;
2052                    }
2053
2054                    let mut terrs = vec![];
2055                    for (obligation_arg, impl_arg) in
2056                        std::iter::zip(obligation_trait_ref.trait_ref.args, impl_trait_ref.args)
2057                    {
2058                        if (obligation_arg, impl_arg).references_error() {
2059                            return false;
2060                        }
2061                        if let Err(terr) =
2062                            ocx.eq(&ObligationCause::dummy(), param_env, impl_arg, obligation_arg)
2063                        {
2064                            terrs.push(terr);
2065                        }
2066                        if !ocx.try_evaluate_obligations().is_empty() {
2067                            return false;
2068                        }
2069                    }
2070
2071                    // Literally nothing unified, just give up.
2072                    if terrs.len() == impl_trait_ref.args.len() {
2073                        return false;
2074                    }
2075
2076                    let impl_trait_ref = self.resolve_vars_if_possible(impl_trait_ref);
2077                    if impl_trait_ref.references_error() {
2078                        return false;
2079                    }
2080
2081                    if let [child, ..] = &err.children[..]
2082                        && child.level == Level::Help
2083                        && let Some(line) = child.messages.get(0)
2084                        && let Some(line) = line.0.as_str()
2085                        && line.starts_with("the trait")
2086                        && line.contains("is not implemented for")
2087                    {
2088                        // HACK(estebank): we remove the pre-existing
2089                        // "the trait `X` is not implemented for" note, which only happens if there
2090                        // was a custom label. We do this because we want that note to always be the
2091                        // first, and making this logic run earlier will get tricky. For now, we
2092                        // instead keep the logic the same and modify the already constructed error
2093                        // to avoid the wording duplication.
2094                        err.children.remove(0);
2095                    }
2096
2097                    let traits = self.cmp_traits(
2098                        obligation_trait_ref.def_id(),
2099                        &obligation_trait_ref.trait_ref.args[1..],
2100                        impl_trait_ref.def_id,
2101                        &impl_trait_ref.args[1..],
2102                    );
2103                    let traits_content = (traits.0.content(), traits.1.content());
2104                    let types = self.cmp(obligation_trait_ref.self_ty(), impl_trait_ref.self_ty());
2105                    let types_content = (types.0.content(), types.1.content());
2106                    let mut msg = vec![StringPart::normal("the trait `")];
2107                    if traits_content.0 == traits_content.1 {
2108                        msg.push(StringPart::normal(
2109                            impl_trait_ref.print_trait_sugared().to_string(),
2110                        ));
2111                    } else {
2112                        msg.extend(traits.0.0);
2113                    }
2114                    msg.extend([
2115                        StringPart::normal("` "),
2116                        StringPart::highlighted("is not"),
2117                        StringPart::normal(" implemented for `"),
2118                    ]);
2119                    if types_content.0 == types_content.1 {
2120                        let ty = self
2121                            .tcx
2122                            .short_string(obligation_trait_ref.self_ty(), err.long_ty_path());
2123                        msg.push(StringPart::normal(ty));
2124                    } else {
2125                        msg.extend(types.0.0);
2126                    }
2127                    msg.push(StringPart::normal("`"));
2128                    if types_content.0 == types_content.1 {
2129                        msg.push(StringPart::normal("\nbut trait `"));
2130                        msg.extend(traits.1.0);
2131                        msg.extend([
2132                            StringPart::normal("` "),
2133                            StringPart::highlighted("is"),
2134                            StringPart::normal(" implemented for it"),
2135                        ]);
2136                    } else if traits_content.0 == traits_content.1 {
2137                        msg.extend([
2138                            StringPart::normal("\nbut it "),
2139                            StringPart::highlighted("is"),
2140                            StringPart::normal(" implemented for `"),
2141                        ]);
2142                        msg.extend(types.1.0);
2143                        msg.push(StringPart::normal("`"));
2144                    } else {
2145                        msg.push(StringPart::normal("\nbut trait `"));
2146                        msg.extend(traits.1.0);
2147                        msg.extend([
2148                            StringPart::normal("` "),
2149                            StringPart::highlighted("is"),
2150                            StringPart::normal(" implemented for `"),
2151                        ]);
2152                        msg.extend(types.1.0);
2153                        msg.push(StringPart::normal("`"));
2154                    }
2155                    err.highlighted_span_help(self.tcx.def_span(single.impl_def_id), msg);
2156
2157                    if let [TypeError::Sorts(exp_found)] = &terrs[..] {
2158                        let exp_found = self.resolve_vars_if_possible(*exp_found);
2159                        let expected =
2160                            self.tcx.short_string(exp_found.expected, err.long_ty_path());
2161                        let found = self.tcx.short_string(exp_found.found, err.long_ty_path());
2162                        err.highlighted_help(vec![
2163                            StringPart::normal("for that trait implementation, "),
2164                            StringPart::normal("expected `"),
2165                            StringPart::highlighted(expected),
2166                            StringPart::normal("`, found `"),
2167                            StringPart::highlighted(found),
2168                            StringPart::normal("`"),
2169                        ]);
2170                        self.suggest_function_pointers_impl(None, &exp_found, err);
2171                    }
2172
2173                    true
2174                })
2175            }) {
2176                return true;
2177            }
2178        }
2179
2180        let other = if other { "other " } else { "" };
2181        let report = |mut candidates: Vec<(TraitRef<'tcx>, DefId)>, err: &mut Diag<'_>| {
2182            candidates.retain(|(tr, _)| !tr.references_error());
2183            if candidates.is_empty() {
2184                return false;
2185            }
2186            if let &[(cand, def_id)] = &candidates[..] {
2187                if self.tcx.is_diagnostic_item(sym::FromResidual, cand.def_id)
2188                    && !self.tcx.features().enabled(sym::try_trait_v2)
2189                {
2190                    return false;
2191                }
2192                let (desc, mention_castable) =
2193                    match (cand.self_ty().kind(), trait_pred.self_ty().skip_binder().kind()) {
2194                        (ty::FnPtr(..), ty::FnDef(..)) => {
2195                            (" implemented for fn pointer `", ", cast using `as`")
2196                        }
2197                        (ty::FnPtr(..), _) => (" implemented for fn pointer `", ""),
2198                        _ => (" implemented for `", ""),
2199                    };
2200                let trait_ = self.tcx.short_string(cand.print_trait_sugared(), err.long_ty_path());
2201                let self_ty = self.tcx.short_string(cand.self_ty(), err.long_ty_path());
2202                err.highlighted_span_help(
2203                    self.tcx.def_span(def_id),
2204                    vec![
2205                        StringPart::normal(format!("the trait `{trait_}` ",)),
2206                        StringPart::highlighted("is"),
2207                        StringPart::normal(desc),
2208                        StringPart::highlighted(self_ty),
2209                        StringPart::normal("`"),
2210                        StringPart::normal(mention_castable),
2211                    ],
2212                );
2213                return true;
2214            }
2215            let trait_ref = TraitRef::identity(self.tcx, candidates[0].0.def_id);
2216            // Check if the trait is the same in all cases. If so, we'll only show the type.
2217            let mut traits: Vec<_> =
2218                candidates.iter().map(|(c, _)| c.print_only_trait_path().to_string()).collect();
2219            traits.sort();
2220            traits.dedup();
2221            // FIXME: this could use a better heuristic, like just checking
2222            // that args[1..] is the same.
2223            let all_traits_equal = traits.len() == 1;
2224
2225            let end = if candidates.len() <= 9 || self.tcx.sess.opts.verbose {
2226                candidates.len()
2227            } else {
2228                8
2229            };
2230            if candidates.len() < 5 {
2231                let spans: Vec<_> =
2232                    candidates.iter().map(|(_, def_id)| self.tcx.def_span(def_id)).collect();
2233                let mut span: MultiSpan = spans.into();
2234                for (c, def_id) in &candidates {
2235                    let msg = if all_traits_equal {
2236                        format!("`{}`", self.tcx.short_string(c.self_ty(), err.long_ty_path()))
2237                    } else {
2238                        format!(
2239                            "`{}` implements `{}`",
2240                            self.tcx.short_string(c.self_ty(), err.long_ty_path()),
2241                            self.tcx.short_string(c.print_only_trait_path(), err.long_ty_path()),
2242                        )
2243                    };
2244                    span.push_span_label(self.tcx.def_span(def_id), msg);
2245                }
2246                err.span_help(
2247                    span,
2248                    format!(
2249                        "the following {other}types implement trait `{}`",
2250                        trait_ref.print_trait_sugared(),
2251                    ),
2252                );
2253            } else {
2254                let candidate_names: Vec<String> = candidates
2255                    .iter()
2256                    .map(|(c, _)| {
2257                        if all_traits_equal {
2258                            format!(
2259                                "\n  {}",
2260                                self.tcx.short_string(c.self_ty(), err.long_ty_path())
2261                            )
2262                        } else {
2263                            format!(
2264                                "\n  `{}` implements `{}`",
2265                                self.tcx.short_string(c.self_ty(), err.long_ty_path()),
2266                                self.tcx
2267                                    .short_string(c.print_only_trait_path(), err.long_ty_path()),
2268                            )
2269                        }
2270                    })
2271                    .collect();
2272                err.help(format!(
2273                    "the following {other}types implement trait `{}`:{}{}",
2274                    trait_ref.print_trait_sugared(),
2275                    candidate_names[..end].join(""),
2276                    if candidates.len() > 9 && !self.tcx.sess.opts.verbose {
2277                        format!("\nand {} others", candidates.len() - 8)
2278                    } else {
2279                        String::new()
2280                    }
2281                ));
2282            }
2283            true
2284        };
2285
2286        // we filter before checking if `impl_candidates` is empty
2287        // to get the fallback solution if we filtered out any impls
2288        let impl_candidates = impl_candidates
2289            .into_iter()
2290            .cloned()
2291            .filter(|cand| !self.tcx.do_not_recommend_impl(cand.impl_def_id))
2292            .collect::<Vec<_>>();
2293
2294        let def_id = trait_pred.def_id();
2295        if impl_candidates.is_empty() {
2296            if self.tcx.trait_is_auto(def_id)
2297                || self.tcx.lang_items().iter().any(|(_, id)| id == def_id)
2298                || self.tcx.get_diagnostic_name(def_id).is_some()
2299            {
2300                // Mentioning implementers of `Copy`, `Debug` and friends is not useful.
2301                return false;
2302            }
2303            return report(alternative_candidates(def_id), err);
2304        }
2305
2306        // Sort impl candidates so that ordering is consistent for UI tests.
2307        // because the ordering of `impl_candidates` may not be deterministic:
2308        // https://github.com/rust-lang/rust/pull/57475#issuecomment-455519507
2309        //
2310        // Prefer more similar candidates first, then sort lexicographically
2311        // by their normalized string representation.
2312        let mut impl_candidates: Vec<_> = impl_candidates
2313            .iter()
2314            .cloned()
2315            .filter(|cand| !cand.trait_ref.references_error())
2316            .map(|mut cand| {
2317                // Normalize the trait ref in its *own* param-env so
2318                // that consts are folded and any trivial projections
2319                // are normalized.
2320                cand.trait_ref = self
2321                    .tcx
2322                    .try_normalize_erasing_regions(
2323                        ty::TypingEnv::non_body_analysis(self.tcx, cand.impl_def_id),
2324                        cand.trait_ref,
2325                    )
2326                    .unwrap_or(cand.trait_ref);
2327                cand
2328            })
2329            .collect();
2330        impl_candidates.sort_by_key(|cand| {
2331            // When suggesting array types, sort them by the length of the array, not lexicographically (#135098)
2332            let len = if let GenericArgKind::Type(ty) = cand.trait_ref.args[0].kind()
2333                && let ty::Array(_, len) = ty.kind()
2334            {
2335                // Deprioritize suggestions for parameterized arrays.
2336                len.try_to_target_usize(self.tcx).unwrap_or(u64::MAX)
2337            } else {
2338                0
2339            };
2340
2341            (cand.similarity, len, cand.trait_ref.to_string())
2342        });
2343        let mut impl_candidates: Vec<_> =
2344            impl_candidates.into_iter().map(|cand| (cand.trait_ref, cand.impl_def_id)).collect();
2345        impl_candidates.dedup();
2346
2347        report(impl_candidates, err)
2348    }
2349
2350    fn report_similar_impl_candidates_for_root_obligation(
2351        &self,
2352        obligation: &PredicateObligation<'tcx>,
2353        trait_predicate: ty::Binder<'tcx, ty::TraitPredicate<'tcx>>,
2354        body_def_id: LocalDefId,
2355        err: &mut Diag<'_>,
2356    ) {
2357        // This is *almost* equivalent to
2358        // `obligation.cause.code().peel_derives()`, but it gives us the
2359        // trait predicate for that corresponding root obligation. This
2360        // lets us get a derived obligation from a type parameter, like
2361        // when calling `string.strip_suffix(p)` where `p` is *not* an
2362        // implementer of `Pattern<'_>`.
2363        let mut code = obligation.cause.code();
2364        let mut trait_pred = trait_predicate;
2365        let mut peeled = false;
2366        while let Some((parent_code, parent_trait_pred)) = code.parent_with_predicate() {
2367            code = parent_code;
2368            if let Some(parent_trait_pred) = parent_trait_pred {
2369                trait_pred = parent_trait_pred;
2370                peeled = true;
2371            }
2372        }
2373        let def_id = trait_pred.def_id();
2374        // Mention *all* the `impl`s for the *top most* obligation, the
2375        // user might have meant to use one of them, if any found. We skip
2376        // auto-traits or fundamental traits that might not be exactly what
2377        // the user might expect to be presented with. Instead this is
2378        // useful for less general traits.
2379        if peeled && !self.tcx.trait_is_auto(def_id) && self.tcx.as_lang_item(def_id).is_none() {
2380            let impl_candidates = self.find_similar_impl_candidates(trait_pred);
2381            self.report_similar_impl_candidates(
2382                &impl_candidates,
2383                trait_pred,
2384                body_def_id,
2385                err,
2386                true,
2387                obligation.param_env,
2388            );
2389        }
2390    }
2391
2392    /// Gets the parent trait chain start
2393    fn get_parent_trait_ref(
2394        &self,
2395        code: &ObligationCauseCode<'tcx>,
2396    ) -> Option<(Ty<'tcx>, Option<Span>)> {
2397        match code {
2398            ObligationCauseCode::BuiltinDerived(data) => {
2399                let parent_trait_ref = self.resolve_vars_if_possible(data.parent_trait_pred);
2400                match self.get_parent_trait_ref(&data.parent_code) {
2401                    Some(t) => Some(t),
2402                    None => {
2403                        let ty = parent_trait_ref.skip_binder().self_ty();
2404                        let span = TyCategory::from_ty(self.tcx, ty)
2405                            .map(|(_, def_id)| self.tcx.def_span(def_id));
2406                        Some((ty, span))
2407                    }
2408                }
2409            }
2410            ObligationCauseCode::FunctionArg { parent_code, .. } => {
2411                self.get_parent_trait_ref(parent_code)
2412            }
2413            _ => None,
2414        }
2415    }
2416
2417    fn check_same_trait_different_version(
2418        &self,
2419        err: &mut Diag<'_>,
2420        trait_pred: ty::PolyTraitPredicate<'tcx>,
2421    ) -> bool {
2422        let get_trait_impls = |trait_def_id| {
2423            let mut trait_impls = vec![];
2424            self.tcx.for_each_relevant_impl(
2425                trait_def_id,
2426                trait_pred.skip_binder().self_ty(),
2427                |impl_def_id| {
2428                    let impl_trait_header = self.tcx.impl_trait_header(impl_def_id);
2429                    trait_impls
2430                        .push(self.tcx.def_span(impl_trait_header.trait_ref.skip_binder().def_id));
2431                },
2432            );
2433            trait_impls
2434        };
2435        self.check_same_definition_different_crate(
2436            err,
2437            trait_pred.def_id(),
2438            self.tcx.visible_traits(),
2439            get_trait_impls,
2440            "trait",
2441        )
2442    }
2443
2444    pub fn note_two_crate_versions(
2445        &self,
2446        did: DefId,
2447        sp: impl Into<MultiSpan>,
2448        err: &mut Diag<'_>,
2449    ) {
2450        let crate_name = self.tcx.crate_name(did.krate);
2451        let crate_msg = format!(
2452            "there are multiple different versions of crate `{crate_name}` in the dependency graph"
2453        );
2454        err.span_note(sp, crate_msg);
2455    }
2456
2457    fn note_adt_version_mismatch(
2458        &self,
2459        err: &mut Diag<'_>,
2460        trait_pred: ty::PolyTraitPredicate<'tcx>,
2461    ) {
2462        let ty::Adt(impl_self_def, _) = trait_pred.self_ty().skip_binder().peel_refs().kind()
2463        else {
2464            return;
2465        };
2466
2467        let impl_self_did = impl_self_def.did();
2468
2469        // We only want to warn about different versions of a dependency.
2470        // If no dependency is involved, bail.
2471        if impl_self_did.krate == LOCAL_CRATE {
2472            return;
2473        }
2474
2475        let impl_self_path = self.comparable_path(impl_self_did);
2476        let impl_self_crate_name = self.tcx.crate_name(impl_self_did.krate);
2477        let similar_items: UnordSet<_> = self
2478            .tcx
2479            .visible_parent_map(())
2480            .items()
2481            .filter_map(|(&item, _)| {
2482                // If we found ourselves, ignore.
2483                if impl_self_did == item {
2484                    return None;
2485                }
2486                // We only want to warn about different versions of a dependency.
2487                // Ignore items from our own crate.
2488                if item.krate == LOCAL_CRATE {
2489                    return None;
2490                }
2491                // We want to warn about different versions of a dependency.
2492                // So make sure the crate names are the same.
2493                if impl_self_crate_name != self.tcx.crate_name(item.krate) {
2494                    return None;
2495                }
2496                // Filter out e.g. constructors that often have the same path
2497                // str as the relevant ADT.
2498                if !self.tcx.def_kind(item).is_adt() {
2499                    return None;
2500                }
2501                let path = self.comparable_path(item);
2502                // We don't know if our item or the one we found is the re-exported one.
2503                // Check both cases.
2504                let is_similar = path.ends_with(&impl_self_path) || impl_self_path.ends_with(&path);
2505                is_similar.then_some((item, path))
2506            })
2507            .collect();
2508
2509        let mut similar_items =
2510            similar_items.into_items().into_sorted_stable_ord_by_key(|(_, path)| path);
2511        similar_items.dedup();
2512
2513        for (similar_item, _) in similar_items {
2514            err.span_help(self.tcx.def_span(similar_item), "item with same name found");
2515            self.note_two_crate_versions(similar_item, MultiSpan::new(), err);
2516        }
2517    }
2518
2519    fn check_same_name_different_path(
2520        &self,
2521        err: &mut Diag<'_>,
2522        obligation: &PredicateObligation<'tcx>,
2523        trait_pred: ty::PolyTraitPredicate<'tcx>,
2524    ) -> bool {
2525        let mut suggested = false;
2526        let trait_def_id = trait_pred.def_id();
2527        let trait_has_same_params = |other_trait_def_id: DefId| -> bool {
2528            let trait_generics = self.tcx.generics_of(trait_def_id);
2529            let other_trait_generics = self.tcx.generics_of(other_trait_def_id);
2530
2531            if trait_generics.count() != other_trait_generics.count() {
2532                return false;
2533            }
2534            trait_generics.own_params.iter().zip(other_trait_generics.own_params.iter()).all(
2535                |(a, b)| match (&a.kind, &b.kind) {
2536                    (ty::GenericParamDefKind::Lifetime, ty::GenericParamDefKind::Lifetime)
2537                    | (
2538                        ty::GenericParamDefKind::Type { .. },
2539                        ty::GenericParamDefKind::Type { .. },
2540                    )
2541                    | (
2542                        ty::GenericParamDefKind::Const { .. },
2543                        ty::GenericParamDefKind::Const { .. },
2544                    ) => true,
2545                    _ => false,
2546                },
2547            )
2548        };
2549        let trait_name = self.tcx.item_name(trait_def_id);
2550        if let Some(other_trait_def_id) = self.tcx.all_traits_including_private().find(|def_id| {
2551            trait_def_id != *def_id
2552                && trait_name == self.tcx.item_name(def_id)
2553                && trait_has_same_params(*def_id)
2554                && self.predicate_must_hold_modulo_regions(&Obligation::new(
2555                    self.tcx,
2556                    obligation.cause.clone(),
2557                    obligation.param_env,
2558                    trait_pred.map_bound(|tr| ty::TraitPredicate {
2559                        trait_ref: ty::TraitRef::new(self.tcx, *def_id, tr.trait_ref.args),
2560                        ..tr
2561                    }),
2562                ))
2563        }) {
2564            err.note(format!(
2565                "`{}` implements similarly named trait `{}`, but not `{}`",
2566                trait_pred.self_ty(),
2567                self.tcx.def_path_str(other_trait_def_id),
2568                trait_pred.print_modifiers_and_trait_path()
2569            ));
2570            suggested = true;
2571        }
2572        suggested
2573    }
2574
2575    /// If the `Self` type of the unsatisfied trait `trait_ref` implements a trait
2576    /// with the same path as `trait_ref`, a help message about a multiple different
2577    /// versions of the same crate is added to `err`. Otherwise if it implements another
2578    /// trait with the same name, a note message about a similarly named trait is added to `err`.
2579    pub fn note_different_trait_with_same_name(
2580        &self,
2581        err: &mut Diag<'_>,
2582        obligation: &PredicateObligation<'tcx>,
2583        trait_pred: ty::PolyTraitPredicate<'tcx>,
2584    ) -> bool {
2585        if self.check_same_trait_different_version(err, trait_pred) {
2586            return true;
2587        }
2588        self.check_same_name_different_path(err, obligation, trait_pred)
2589    }
2590
2591    /// Add a `::` prefix when comparing paths so that paths with just one item
2592    /// like "Foo" does not equal the end of "OtherFoo".
2593    fn comparable_path(&self, did: DefId) -> String {
2594        format!("::{}", self.tcx.def_path_str(did))
2595    }
2596
2597    /// Creates a `PredicateObligation` with `new_self_ty` replacing the existing type in the
2598    /// `trait_ref`.
2599    ///
2600    /// For this to work, `new_self_ty` must have no escaping bound variables.
2601    pub(super) fn mk_trait_obligation_with_new_self_ty(
2602        &self,
2603        param_env: ty::ParamEnv<'tcx>,
2604        trait_ref_and_ty: ty::Binder<'tcx, (ty::TraitPredicate<'tcx>, Ty<'tcx>)>,
2605    ) -> PredicateObligation<'tcx> {
2606        let trait_pred = trait_ref_and_ty
2607            .map_bound(|(tr, new_self_ty)| tr.with_replaced_self_ty(self.tcx, new_self_ty));
2608
2609        Obligation::new(self.tcx, ObligationCause::dummy(), param_env, trait_pred)
2610    }
2611
2612    /// Returns `true` if the trait predicate may apply for *some* assignment
2613    /// to the type parameters.
2614    fn predicate_can_apply(
2615        &self,
2616        param_env: ty::ParamEnv<'tcx>,
2617        pred: ty::PolyTraitPredicate<'tcx>,
2618    ) -> bool {
2619        struct ParamToVarFolder<'a, 'tcx> {
2620            infcx: &'a InferCtxt<'tcx>,
2621            var_map: FxHashMap<Ty<'tcx>, Ty<'tcx>>,
2622        }
2623
2624        impl<'a, 'tcx> TypeFolder<TyCtxt<'tcx>> for ParamToVarFolder<'a, 'tcx> {
2625            fn cx(&self) -> TyCtxt<'tcx> {
2626                self.infcx.tcx
2627            }
2628
2629            fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
2630                if let ty::Param(_) = *ty.kind() {
2631                    let infcx = self.infcx;
2632                    *self.var_map.entry(ty).or_insert_with(|| infcx.next_ty_var(DUMMY_SP))
2633                } else {
2634                    ty.super_fold_with(self)
2635                }
2636            }
2637        }
2638
2639        self.probe(|_| {
2640            let cleaned_pred =
2641                pred.fold_with(&mut ParamToVarFolder { infcx: self, var_map: Default::default() });
2642
2643            let InferOk { value: cleaned_pred, .. } =
2644                self.infcx.at(&ObligationCause::dummy(), param_env).normalize(cleaned_pred);
2645
2646            let obligation =
2647                Obligation::new(self.tcx, ObligationCause::dummy(), param_env, cleaned_pred);
2648
2649            self.predicate_may_hold(&obligation)
2650        })
2651    }
2652
2653    pub fn note_obligation_cause(
2654        &self,
2655        err: &mut Diag<'_>,
2656        obligation: &PredicateObligation<'tcx>,
2657    ) {
2658        // First, attempt to add note to this error with an async-await-specific
2659        // message, and fall back to regular note otherwise.
2660        if !self.maybe_note_obligation_cause_for_async_await(err, obligation) {
2661            self.note_obligation_cause_code(
2662                obligation.cause.body_id,
2663                err,
2664                obligation.predicate,
2665                obligation.param_env,
2666                obligation.cause.code(),
2667                &mut vec![],
2668                &mut Default::default(),
2669            );
2670            self.suggest_swapping_lhs_and_rhs(
2671                err,
2672                obligation.predicate,
2673                obligation.param_env,
2674                obligation.cause.code(),
2675            );
2676            self.suggest_unsized_bound_if_applicable(err, obligation);
2677            if let Some(span) = err.span.primary_span()
2678                && let Some(mut diag) =
2679                    self.dcx().steal_non_err(span, StashKey::AssociatedTypeSuggestion)
2680                && let Suggestions::Enabled(ref mut s1) = err.suggestions
2681                && let Suggestions::Enabled(ref mut s2) = diag.suggestions
2682            {
2683                s1.append(s2);
2684                diag.cancel()
2685            }
2686        }
2687    }
2688
2689    pub(super) fn is_recursive_obligation(
2690        &self,
2691        obligated_types: &mut Vec<Ty<'tcx>>,
2692        cause_code: &ObligationCauseCode<'tcx>,
2693    ) -> bool {
2694        if let ObligationCauseCode::BuiltinDerived(data) = cause_code {
2695            let parent_trait_ref = self.resolve_vars_if_possible(data.parent_trait_pred);
2696            let self_ty = parent_trait_ref.skip_binder().self_ty();
2697            if obligated_types.iter().any(|ot| ot == &self_ty) {
2698                return true;
2699            }
2700            if let ty::Adt(def, args) = self_ty.kind()
2701                && let [arg] = &args[..]
2702                && let ty::GenericArgKind::Type(ty) = arg.kind()
2703                && let ty::Adt(inner_def, _) = ty.kind()
2704                && inner_def == def
2705            {
2706                return true;
2707            }
2708        }
2709        false
2710    }
2711
2712    fn get_standard_error_message(
2713        &self,
2714        trait_predicate: ty::PolyTraitPredicate<'tcx>,
2715        message: Option<String>,
2716        predicate_constness: Option<ty::BoundConstness>,
2717        append_const_msg: Option<AppendConstMessage>,
2718        post_message: String,
2719        long_ty_path: &mut Option<PathBuf>,
2720    ) -> String {
2721        message
2722            .and_then(|cannot_do_this| {
2723                match (predicate_constness, append_const_msg) {
2724                    // do nothing if predicate is not const
2725                    (None, _) => Some(cannot_do_this),
2726                    // suggested using default post message
2727                    (
2728                        Some(ty::BoundConstness::Const | ty::BoundConstness::Maybe),
2729                        Some(AppendConstMessage::Default),
2730                    ) => Some(format!("{cannot_do_this} in const contexts")),
2731                    // overridden post message
2732                    (
2733                        Some(ty::BoundConstness::Const | ty::BoundConstness::Maybe),
2734                        Some(AppendConstMessage::Custom(custom_msg, _)),
2735                    ) => Some(format!("{cannot_do_this}{custom_msg}")),
2736                    // fallback to generic message
2737                    (Some(ty::BoundConstness::Const | ty::BoundConstness::Maybe), None) => None,
2738                }
2739            })
2740            .unwrap_or_else(|| {
2741                format!(
2742                    "the trait bound `{}` is not satisfied{post_message}",
2743                    self.tcx.short_string(
2744                        trait_predicate.print_with_bound_constness(predicate_constness),
2745                        long_ty_path,
2746                    ),
2747                )
2748            })
2749    }
2750
2751    fn get_safe_transmute_error_and_reason(
2752        &self,
2753        obligation: PredicateObligation<'tcx>,
2754        trait_pred: ty::PolyTraitPredicate<'tcx>,
2755        span: Span,
2756    ) -> GetSafeTransmuteErrorAndReason {
2757        use rustc_transmute::Answer;
2758        self.probe(|_| {
2759            // We don't assemble a transmutability candidate for types that are generic
2760            // and we should have ambiguity for types that still have non-region infer.
2761            if obligation.predicate.has_non_region_param() || obligation.has_non_region_infer() {
2762                return GetSafeTransmuteErrorAndReason::Default;
2763            }
2764
2765            // Erase regions because layout code doesn't particularly care about regions.
2766            let trait_pred = self.tcx.erase_and_anonymize_regions(
2767                self.tcx.instantiate_bound_regions_with_erased(trait_pred),
2768            );
2769
2770            let src_and_dst = rustc_transmute::Types {
2771                dst: trait_pred.trait_ref.args.type_at(0),
2772                src: trait_pred.trait_ref.args.type_at(1),
2773            };
2774
2775            let ocx = ObligationCtxt::new(self);
2776            let Ok(assume) = ocx.structurally_normalize_const(
2777                &obligation.cause,
2778                obligation.param_env,
2779                trait_pred.trait_ref.args.const_at(2),
2780            ) else {
2781                self.dcx().span_delayed_bug(
2782                    span,
2783                    "Unable to construct rustc_transmute::Assume where it was previously possible",
2784                );
2785                return GetSafeTransmuteErrorAndReason::Silent;
2786            };
2787
2788            let Some(assume) = rustc_transmute::Assume::from_const(self.infcx.tcx, assume) else {
2789                self.dcx().span_delayed_bug(
2790                    span,
2791                    "Unable to construct rustc_transmute::Assume where it was previously possible",
2792                );
2793                return GetSafeTransmuteErrorAndReason::Silent;
2794            };
2795
2796            let dst = trait_pred.trait_ref.args.type_at(0);
2797            let src = trait_pred.trait_ref.args.type_at(1);
2798            let err_msg = format!("`{src}` cannot be safely transmuted into `{dst}`");
2799
2800            match rustc_transmute::TransmuteTypeEnv::new(self.infcx.tcx)
2801                .is_transmutable(src_and_dst, assume)
2802            {
2803                Answer::No(reason) => {
2804                    let safe_transmute_explanation = match reason {
2805                        rustc_transmute::Reason::SrcIsNotYetSupported => {
2806                            format!("analyzing the transmutability of `{src}` is not yet supported")
2807                        }
2808                        rustc_transmute::Reason::DstIsNotYetSupported => {
2809                            format!("analyzing the transmutability of `{dst}` is not yet supported")
2810                        }
2811                        rustc_transmute::Reason::DstIsBitIncompatible => {
2812                            format!(
2813                                "at least one value of `{src}` isn't a bit-valid value of `{dst}`"
2814                            )
2815                        }
2816                        rustc_transmute::Reason::DstUninhabited => {
2817                            format!("`{dst}` is uninhabited")
2818                        }
2819                        rustc_transmute::Reason::DstMayHaveSafetyInvariants => {
2820                            format!("`{dst}` may carry safety invariants")
2821                        }
2822                        rustc_transmute::Reason::DstIsTooBig => {
2823                            format!("the size of `{src}` is smaller than the size of `{dst}`")
2824                        }
2825                        rustc_transmute::Reason::DstRefIsTooBig {
2826                            src,
2827                            src_size,
2828                            dst,
2829                            dst_size,
2830                        } => {
2831                            format!(
2832                                "the size of `{src}` ({src_size} bytes) \
2833                        is smaller than that of `{dst}` ({dst_size} bytes)"
2834                            )
2835                        }
2836                        rustc_transmute::Reason::SrcSizeOverflow => {
2837                            format!(
2838                                "values of the type `{src}` are too big for the target architecture"
2839                            )
2840                        }
2841                        rustc_transmute::Reason::DstSizeOverflow => {
2842                            format!(
2843                                "values of the type `{dst}` are too big for the target architecture"
2844                            )
2845                        }
2846                        rustc_transmute::Reason::DstHasStricterAlignment {
2847                            src_min_align,
2848                            dst_min_align,
2849                        } => {
2850                            format!(
2851                                "the minimum alignment of `{src}` ({src_min_align}) should be \
2852                                 greater than that of `{dst}` ({dst_min_align})"
2853                            )
2854                        }
2855                        rustc_transmute::Reason::DstIsMoreUnique => {
2856                            format!(
2857                                "`{src}` is a shared reference, but `{dst}` is a unique reference"
2858                            )
2859                        }
2860                        // Already reported by rustc
2861                        rustc_transmute::Reason::TypeError => {
2862                            return GetSafeTransmuteErrorAndReason::Silent;
2863                        }
2864                        rustc_transmute::Reason::SrcLayoutUnknown => {
2865                            format!("`{src}` has an unknown layout")
2866                        }
2867                        rustc_transmute::Reason::DstLayoutUnknown => {
2868                            format!("`{dst}` has an unknown layout")
2869                        }
2870                    };
2871                    GetSafeTransmuteErrorAndReason::Error {
2872                        err_msg,
2873                        safe_transmute_explanation: Some(safe_transmute_explanation),
2874                    }
2875                }
2876                // Should never get a Yes at this point! We already ran it before, and did not get a Yes.
2877                Answer::Yes => span_bug!(
2878                    span,
2879                    "Inconsistent rustc_transmute::is_transmutable(...) result, got Yes",
2880                ),
2881                // Reached when a different obligation (namely `Freeze`) causes the
2882                // transmutability analysis to fail. In this case, silence the
2883                // transmutability error message in favor of that more specific
2884                // error.
2885                Answer::If(_) => GetSafeTransmuteErrorAndReason::Error {
2886                    err_msg,
2887                    safe_transmute_explanation: None,
2888                },
2889            }
2890        })
2891    }
2892
2893    fn add_tuple_trait_message(
2894        &self,
2895        obligation_cause_code: &ObligationCauseCode<'tcx>,
2896        err: &mut Diag<'_>,
2897    ) {
2898        match obligation_cause_code {
2899            ObligationCauseCode::RustCall => {
2900                err.primary_message("functions with the \"rust-call\" ABI must take a single non-self tuple argument");
2901            }
2902            ObligationCauseCode::WhereClause(def_id, _) if self.tcx.is_fn_trait(*def_id) => {
2903                err.code(E0059);
2904                err.primary_message(format!(
2905                    "type parameter to bare `{}` trait must be a tuple",
2906                    self.tcx.def_path_str(*def_id)
2907                ));
2908            }
2909            _ => {}
2910        }
2911    }
2912
2913    fn try_to_add_help_message(
2914        &self,
2915        root_obligation: &PredicateObligation<'tcx>,
2916        obligation: &PredicateObligation<'tcx>,
2917        trait_predicate: ty::PolyTraitPredicate<'tcx>,
2918        err: &mut Diag<'_>,
2919        span: Span,
2920        is_fn_trait: bool,
2921        suggested: bool,
2922    ) {
2923        let body_def_id = obligation.cause.body_id;
2924        let span = if let ObligationCauseCode::BinOp { rhs_span, .. } = obligation.cause.code() {
2925            *rhs_span
2926        } else {
2927            span
2928        };
2929
2930        // Try to report a help message
2931        let trait_def_id = trait_predicate.def_id();
2932        if is_fn_trait
2933            && let Ok((implemented_kind, params)) = self.type_implements_fn_trait(
2934                obligation.param_env,
2935                trait_predicate.self_ty(),
2936                trait_predicate.skip_binder().polarity,
2937            )
2938        {
2939            self.add_help_message_for_fn_trait(trait_predicate, err, implemented_kind, params);
2940        } else if !trait_predicate.has_non_region_infer()
2941            && self.predicate_can_apply(obligation.param_env, trait_predicate)
2942        {
2943            // If a where-clause may be useful, remind the
2944            // user that they can add it.
2945            //
2946            // don't display an on-unimplemented note, as
2947            // these notes will often be of the form
2948            //     "the type `T` can't be frobnicated"
2949            // which is somewhat confusing.
2950            self.suggest_restricting_param_bound(
2951                err,
2952                trait_predicate,
2953                None,
2954                obligation.cause.body_id,
2955            );
2956        } else if trait_def_id.is_local()
2957            && self.tcx.trait_impls_of(trait_def_id).is_empty()
2958            && !self.tcx.trait_is_auto(trait_def_id)
2959            && !self.tcx.trait_is_alias(trait_def_id)
2960            && trait_predicate.polarity() == ty::PredicatePolarity::Positive
2961        {
2962            err.span_help(
2963                self.tcx.def_span(trait_def_id),
2964                crate::fluent_generated::trait_selection_trait_has_no_impls,
2965            );
2966        } else if !suggested && trait_predicate.polarity() == ty::PredicatePolarity::Positive {
2967            // Can't show anything else useful, try to find similar impls.
2968            let impl_candidates = self.find_similar_impl_candidates(trait_predicate);
2969            if !self.report_similar_impl_candidates(
2970                &impl_candidates,
2971                trait_predicate,
2972                body_def_id,
2973                err,
2974                true,
2975                obligation.param_env,
2976            ) {
2977                self.report_similar_impl_candidates_for_root_obligation(
2978                    obligation,
2979                    trait_predicate,
2980                    body_def_id,
2981                    err,
2982                );
2983            }
2984
2985            self.suggest_convert_to_slice(
2986                err,
2987                obligation,
2988                trait_predicate,
2989                impl_candidates.as_slice(),
2990                span,
2991            );
2992
2993            self.suggest_tuple_wrapping(err, root_obligation, obligation);
2994        }
2995    }
2996
2997    fn add_help_message_for_fn_trait(
2998        &self,
2999        trait_pred: ty::PolyTraitPredicate<'tcx>,
3000        err: &mut Diag<'_>,
3001        implemented_kind: ty::ClosureKind,
3002        params: ty::Binder<'tcx, Ty<'tcx>>,
3003    ) {
3004        // If the type implements `Fn`, `FnMut`, or `FnOnce`, suppress the following
3005        // suggestion to add trait bounds for the type, since we only typically implement
3006        // these traits once.
3007
3008        // Note if the `FnMut` or `FnOnce` is less general than the trait we're trying
3009        // to implement.
3010        let selected_kind = self
3011            .tcx
3012            .fn_trait_kind_from_def_id(trait_pred.def_id())
3013            .expect("expected to map DefId to ClosureKind");
3014        if !implemented_kind.extends(selected_kind) {
3015            err.note(format!(
3016                "`{}` implements `{}`, but it must implement `{}`, which is more general",
3017                trait_pred.skip_binder().self_ty(),
3018                implemented_kind,
3019                selected_kind
3020            ));
3021        }
3022
3023        // Note any argument mismatches
3024        let ty::Tuple(given) = *params.skip_binder().kind() else {
3025            return;
3026        };
3027
3028        let expected_ty = trait_pred.skip_binder().trait_ref.args.type_at(1);
3029        let ty::Tuple(expected) = *expected_ty.kind() else {
3030            return;
3031        };
3032
3033        if expected.len() != given.len() {
3034            // Note number of types that were expected and given
3035            err.note(format!(
3036                "expected a closure taking {} argument{}, but one taking {} argument{} was given",
3037                given.len(),
3038                pluralize!(given.len()),
3039                expected.len(),
3040                pluralize!(expected.len()),
3041            ));
3042            return;
3043        }
3044
3045        let given_ty = Ty::new_fn_ptr(
3046            self.tcx,
3047            params.rebind(self.tcx.mk_fn_sig(
3048                given,
3049                self.tcx.types.unit,
3050                false,
3051                hir::Safety::Safe,
3052                ExternAbi::Rust,
3053            )),
3054        );
3055        let expected_ty = Ty::new_fn_ptr(
3056            self.tcx,
3057            trait_pred.rebind(self.tcx.mk_fn_sig(
3058                expected,
3059                self.tcx.types.unit,
3060                false,
3061                hir::Safety::Safe,
3062                ExternAbi::Rust,
3063            )),
3064        );
3065
3066        if !self.same_type_modulo_infer(given_ty, expected_ty) {
3067            // Print type mismatch
3068            let (expected_args, given_args) = self.cmp(expected_ty, given_ty);
3069            err.note_expected_found(
3070                "a closure with signature",
3071                expected_args,
3072                "a closure with signature",
3073                given_args,
3074            );
3075        }
3076    }
3077
3078    fn report_closure_error(
3079        &self,
3080        obligation: &PredicateObligation<'tcx>,
3081        closure_def_id: DefId,
3082        found_kind: ty::ClosureKind,
3083        kind: ty::ClosureKind,
3084        trait_prefix: &'static str,
3085    ) -> Diag<'a> {
3086        let closure_span = self.tcx.def_span(closure_def_id);
3087
3088        let mut err = ClosureKindMismatch {
3089            closure_span,
3090            expected: kind,
3091            found: found_kind,
3092            cause_span: obligation.cause.span,
3093            trait_prefix,
3094            fn_once_label: None,
3095            fn_mut_label: None,
3096        };
3097
3098        // Additional context information explaining why the closure only implements
3099        // a particular trait.
3100        if let Some(typeck_results) = &self.typeck_results {
3101            let hir_id = self.tcx.local_def_id_to_hir_id(closure_def_id.expect_local());
3102            match (found_kind, typeck_results.closure_kind_origins().get(hir_id)) {
3103                (ty::ClosureKind::FnOnce, Some((span, place))) => {
3104                    err.fn_once_label = Some(ClosureFnOnceLabel {
3105                        span: *span,
3106                        place: ty::place_to_string_for_capture(self.tcx, place),
3107                    })
3108                }
3109                (ty::ClosureKind::FnMut, Some((span, place))) => {
3110                    err.fn_mut_label = Some(ClosureFnMutLabel {
3111                        span: *span,
3112                        place: ty::place_to_string_for_capture(self.tcx, place),
3113                    })
3114                }
3115                _ => {}
3116            }
3117        }
3118
3119        self.dcx().create_err(err)
3120    }
3121
3122    fn report_cyclic_signature_error(
3123        &self,
3124        obligation: &PredicateObligation<'tcx>,
3125        found_trait_ref: ty::TraitRef<'tcx>,
3126        expected_trait_ref: ty::TraitRef<'tcx>,
3127        terr: TypeError<'tcx>,
3128    ) -> Diag<'a> {
3129        let self_ty = found_trait_ref.self_ty();
3130        let (cause, terr) = if let ty::Closure(def_id, _) = self_ty.kind() {
3131            (
3132                ObligationCause::dummy_with_span(self.tcx.def_span(def_id)),
3133                TypeError::CyclicTy(self_ty),
3134            )
3135        } else {
3136            (obligation.cause.clone(), terr)
3137        };
3138        self.report_and_explain_type_error(
3139            TypeTrace::trait_refs(&cause, expected_trait_ref, found_trait_ref),
3140            obligation.param_env,
3141            terr,
3142        )
3143    }
3144
3145    fn report_opaque_type_auto_trait_leakage(
3146        &self,
3147        obligation: &PredicateObligation<'tcx>,
3148        def_id: DefId,
3149    ) -> ErrorGuaranteed {
3150        let name = match self.tcx.local_opaque_ty_origin(def_id.expect_local()) {
3151            hir::OpaqueTyOrigin::FnReturn { .. } | hir::OpaqueTyOrigin::AsyncFn { .. } => {
3152                "opaque type".to_string()
3153            }
3154            hir::OpaqueTyOrigin::TyAlias { .. } => {
3155                format!("`{}`", self.tcx.def_path_debug_str(def_id))
3156            }
3157        };
3158        let mut err = self.dcx().struct_span_err(
3159            obligation.cause.span,
3160            format!("cannot check whether the hidden type of {name} satisfies auto traits"),
3161        );
3162
3163        err.note(
3164            "fetching the hidden types of an opaque inside of the defining scope is not supported. \
3165            You can try moving the opaque type and the item that actually registers a hidden type into a new submodule",
3166        );
3167        err.span_note(self.tcx.def_span(def_id), "opaque type is declared here");
3168
3169        self.note_obligation_cause(&mut err, &obligation);
3170        self.dcx().try_steal_replace_and_emit_err(self.tcx.def_span(def_id), StashKey::Cycle, err)
3171    }
3172
3173    fn report_signature_mismatch_error(
3174        &self,
3175        obligation: &PredicateObligation<'tcx>,
3176        span: Span,
3177        found_trait_ref: ty::TraitRef<'tcx>,
3178        expected_trait_ref: ty::TraitRef<'tcx>,
3179    ) -> Result<Diag<'a>, ErrorGuaranteed> {
3180        let found_trait_ref = self.resolve_vars_if_possible(found_trait_ref);
3181        let expected_trait_ref = self.resolve_vars_if_possible(expected_trait_ref);
3182
3183        expected_trait_ref.self_ty().error_reported()?;
3184        let found_trait_ty = found_trait_ref.self_ty();
3185
3186        let found_did = match *found_trait_ty.kind() {
3187            ty::Closure(did, _) | ty::FnDef(did, _) | ty::Coroutine(did, ..) => Some(did),
3188            _ => None,
3189        };
3190
3191        let found_node = found_did.and_then(|did| self.tcx.hir_get_if_local(did));
3192        let found_span = found_did.and_then(|did| self.tcx.hir_span_if_local(did));
3193
3194        if !self.reported_signature_mismatch.borrow_mut().insert((span, found_span)) {
3195            // We check closures twice, with obligations flowing in different directions,
3196            // but we want to complain about them only once.
3197            return Err(self.dcx().span_delayed_bug(span, "already_reported"));
3198        }
3199
3200        let mut not_tupled = false;
3201
3202        let found = match found_trait_ref.args.type_at(1).kind() {
3203            ty::Tuple(tys) => vec![ArgKind::empty(); tys.len()],
3204            _ => {
3205                not_tupled = true;
3206                vec![ArgKind::empty()]
3207            }
3208        };
3209
3210        let expected_ty = expected_trait_ref.args.type_at(1);
3211        let expected = match expected_ty.kind() {
3212            ty::Tuple(tys) => {
3213                tys.iter().map(|t| ArgKind::from_expected_ty(t, Some(span))).collect()
3214            }
3215            _ => {
3216                not_tupled = true;
3217                vec![ArgKind::Arg("_".to_owned(), expected_ty.to_string())]
3218            }
3219        };
3220
3221        // If this is a `Fn` family trait and either the expected or found
3222        // is not tupled, then fall back to just a regular mismatch error.
3223        // This shouldn't be common unless manually implementing one of the
3224        // traits manually, but don't make it more confusing when it does
3225        // happen.
3226        if !self.tcx.is_lang_item(expected_trait_ref.def_id, LangItem::Coroutine) && not_tupled {
3227            return Ok(self.report_and_explain_type_error(
3228                TypeTrace::trait_refs(&obligation.cause, expected_trait_ref, found_trait_ref),
3229                obligation.param_env,
3230                ty::error::TypeError::Mismatch,
3231            ));
3232        }
3233        if found.len() != expected.len() {
3234            let (closure_span, closure_arg_span, found) = found_did
3235                .and_then(|did| {
3236                    let node = self.tcx.hir_get_if_local(did)?;
3237                    let (found_span, closure_arg_span, found) = self.get_fn_like_arguments(node)?;
3238                    Some((Some(found_span), closure_arg_span, found))
3239                })
3240                .unwrap_or((found_span, None, found));
3241
3242            // If the coroutine take a single () as its argument,
3243            // the trait argument would found the coroutine take 0 arguments,
3244            // but get_fn_like_arguments would give 1 argument.
3245            // This would result in "Expected to take 1 argument, but it takes 1 argument".
3246            // Check again to avoid this.
3247            if found.len() != expected.len() {
3248                return Ok(self.report_arg_count_mismatch(
3249                    span,
3250                    closure_span,
3251                    expected,
3252                    found,
3253                    found_trait_ty.is_closure(),
3254                    closure_arg_span,
3255                ));
3256            }
3257        }
3258        Ok(self.report_closure_arg_mismatch(
3259            span,
3260            found_span,
3261            found_trait_ref,
3262            expected_trait_ref,
3263            obligation.cause.code(),
3264            found_node,
3265            obligation.param_env,
3266        ))
3267    }
3268
3269    /// Given some node representing a fn-like thing in the HIR map,
3270    /// returns a span and `ArgKind` information that describes the
3271    /// arguments it expects. This can be supplied to
3272    /// `report_arg_count_mismatch`.
3273    pub fn get_fn_like_arguments(
3274        &self,
3275        node: Node<'_>,
3276    ) -> Option<(Span, Option<Span>, Vec<ArgKind>)> {
3277        let sm = self.tcx.sess.source_map();
3278        Some(match node {
3279            Node::Expr(&hir::Expr {
3280                kind: hir::ExprKind::Closure(&hir::Closure { body, fn_decl_span, fn_arg_span, .. }),
3281                ..
3282            }) => (
3283                fn_decl_span,
3284                fn_arg_span,
3285                self.tcx
3286                    .hir_body(body)
3287                    .params
3288                    .iter()
3289                    .map(|arg| {
3290                        if let hir::Pat { kind: hir::PatKind::Tuple(args, _), span, .. } = *arg.pat
3291                        {
3292                            Some(ArgKind::Tuple(
3293                                Some(span),
3294                                args.iter()
3295                                    .map(|pat| {
3296                                        sm.span_to_snippet(pat.span)
3297                                            .ok()
3298                                            .map(|snippet| (snippet, "_".to_owned()))
3299                                    })
3300                                    .collect::<Option<Vec<_>>>()?,
3301                            ))
3302                        } else {
3303                            let name = sm.span_to_snippet(arg.pat.span).ok()?;
3304                            Some(ArgKind::Arg(name, "_".to_owned()))
3305                        }
3306                    })
3307                    .collect::<Option<Vec<ArgKind>>>()?,
3308            ),
3309            Node::Item(&hir::Item { kind: hir::ItemKind::Fn { ref sig, .. }, .. })
3310            | Node::ImplItem(&hir::ImplItem { kind: hir::ImplItemKind::Fn(ref sig, _), .. })
3311            | Node::TraitItem(&hir::TraitItem {
3312                kind: hir::TraitItemKind::Fn(ref sig, _), ..
3313            })
3314            | Node::ForeignItem(&hir::ForeignItem {
3315                kind: hir::ForeignItemKind::Fn(ref sig, _, _),
3316                ..
3317            }) => (
3318                sig.span,
3319                None,
3320                sig.decl
3321                    .inputs
3322                    .iter()
3323                    .map(|arg| match arg.kind {
3324                        hir::TyKind::Tup(tys) => ArgKind::Tuple(
3325                            Some(arg.span),
3326                            vec![("_".to_owned(), "_".to_owned()); tys.len()],
3327                        ),
3328                        _ => ArgKind::empty(),
3329                    })
3330                    .collect::<Vec<ArgKind>>(),
3331            ),
3332            Node::Ctor(variant_data) => {
3333                let span = variant_data.ctor_hir_id().map_or(DUMMY_SP, |id| self.tcx.hir_span(id));
3334                (span, None, vec![ArgKind::empty(); variant_data.fields().len()])
3335            }
3336            _ => panic!("non-FnLike node found: {node:?}"),
3337        })
3338    }
3339
3340    /// Reports an error when the number of arguments needed by a
3341    /// trait match doesn't match the number that the expression
3342    /// provides.
3343    pub fn report_arg_count_mismatch(
3344        &self,
3345        span: Span,
3346        found_span: Option<Span>,
3347        expected_args: Vec<ArgKind>,
3348        found_args: Vec<ArgKind>,
3349        is_closure: bool,
3350        closure_arg_span: Option<Span>,
3351    ) -> Diag<'a> {
3352        let kind = if is_closure { "closure" } else { "function" };
3353
3354        let args_str = |arguments: &[ArgKind], other: &[ArgKind]| {
3355            let arg_length = arguments.len();
3356            let distinct = matches!(other, &[ArgKind::Tuple(..)]);
3357            match (arg_length, arguments.get(0)) {
3358                (1, Some(ArgKind::Tuple(_, fields))) => {
3359                    format!("a single {}-tuple as argument", fields.len())
3360                }
3361                _ => format!(
3362                    "{} {}argument{}",
3363                    arg_length,
3364                    if distinct && arg_length > 1 { "distinct " } else { "" },
3365                    pluralize!(arg_length)
3366                ),
3367            }
3368        };
3369
3370        let expected_str = args_str(&expected_args, &found_args);
3371        let found_str = args_str(&found_args, &expected_args);
3372
3373        let mut err = struct_span_code_err!(
3374            self.dcx(),
3375            span,
3376            E0593,
3377            "{} is expected to take {}, but it takes {}",
3378            kind,
3379            expected_str,
3380            found_str,
3381        );
3382
3383        err.span_label(span, format!("expected {kind} that takes {expected_str}"));
3384
3385        if let Some(found_span) = found_span {
3386            err.span_label(found_span, format!("takes {found_str}"));
3387
3388            // Suggest to take and ignore the arguments with expected_args_length `_`s if
3389            // found arguments is empty (assume the user just wants to ignore args in this case).
3390            // For example, if `expected_args_length` is 2, suggest `|_, _|`.
3391            if found_args.is_empty() && is_closure {
3392                let underscores = vec!["_"; expected_args.len()].join(", ");
3393                err.span_suggestion_verbose(
3394                    closure_arg_span.unwrap_or(found_span),
3395                    format!(
3396                        "consider changing the closure to take and ignore the expected argument{}",
3397                        pluralize!(expected_args.len())
3398                    ),
3399                    format!("|{underscores}|"),
3400                    Applicability::MachineApplicable,
3401                );
3402            }
3403
3404            if let &[ArgKind::Tuple(_, ref fields)] = &found_args[..] {
3405                if fields.len() == expected_args.len() {
3406                    let sugg = fields
3407                        .iter()
3408                        .map(|(name, _)| name.to_owned())
3409                        .collect::<Vec<String>>()
3410                        .join(", ");
3411                    err.span_suggestion_verbose(
3412                        found_span,
3413                        "change the closure to take multiple arguments instead of a single tuple",
3414                        format!("|{sugg}|"),
3415                        Applicability::MachineApplicable,
3416                    );
3417                }
3418            }
3419            if let &[ArgKind::Tuple(_, ref fields)] = &expected_args[..]
3420                && fields.len() == found_args.len()
3421                && is_closure
3422            {
3423                let sugg = format!(
3424                    "|({}){}|",
3425                    found_args
3426                        .iter()
3427                        .map(|arg| match arg {
3428                            ArgKind::Arg(name, _) => name.to_owned(),
3429                            _ => "_".to_owned(),
3430                        })
3431                        .collect::<Vec<String>>()
3432                        .join(", "),
3433                    // add type annotations if available
3434                    if found_args.iter().any(|arg| match arg {
3435                        ArgKind::Arg(_, ty) => ty != "_",
3436                        _ => false,
3437                    }) {
3438                        format!(
3439                            ": ({})",
3440                            fields
3441                                .iter()
3442                                .map(|(_, ty)| ty.to_owned())
3443                                .collect::<Vec<String>>()
3444                                .join(", ")
3445                        )
3446                    } else {
3447                        String::new()
3448                    },
3449                );
3450                err.span_suggestion_verbose(
3451                    found_span,
3452                    "change the closure to accept a tuple instead of individual arguments",
3453                    sugg,
3454                    Applicability::MachineApplicable,
3455                );
3456            }
3457        }
3458
3459        err
3460    }
3461
3462    /// Checks if the type implements one of `Fn`, `FnMut`, or `FnOnce`
3463    /// in that order, and returns the generic type corresponding to the
3464    /// argument of that trait (corresponding to the closure arguments).
3465    pub fn type_implements_fn_trait(
3466        &self,
3467        param_env: ty::ParamEnv<'tcx>,
3468        ty: ty::Binder<'tcx, Ty<'tcx>>,
3469        polarity: ty::PredicatePolarity,
3470    ) -> Result<(ty::ClosureKind, ty::Binder<'tcx, Ty<'tcx>>), ()> {
3471        self.commit_if_ok(|_| {
3472            for trait_def_id in [
3473                self.tcx.lang_items().fn_trait(),
3474                self.tcx.lang_items().fn_mut_trait(),
3475                self.tcx.lang_items().fn_once_trait(),
3476            ] {
3477                let Some(trait_def_id) = trait_def_id else { continue };
3478                // Make a fresh inference variable so we can determine what the generic parameters
3479                // of the trait are.
3480                let var = self.next_ty_var(DUMMY_SP);
3481                // FIXME(const_trait_impl)
3482                let trait_ref = ty::TraitRef::new(self.tcx, trait_def_id, [ty.skip_binder(), var]);
3483                let obligation = Obligation::new(
3484                    self.tcx,
3485                    ObligationCause::dummy(),
3486                    param_env,
3487                    ty.rebind(ty::TraitPredicate { trait_ref, polarity }),
3488                );
3489                let ocx = ObligationCtxt::new(self);
3490                ocx.register_obligation(obligation);
3491                if ocx.evaluate_obligations_error_on_ambiguity().is_empty() {
3492                    return Ok((
3493                        self.tcx
3494                            .fn_trait_kind_from_def_id(trait_def_id)
3495                            .expect("expected to map DefId to ClosureKind"),
3496                        ty.rebind(self.resolve_vars_if_possible(var)),
3497                    ));
3498                }
3499            }
3500
3501            Err(())
3502        })
3503    }
3504
3505    fn report_not_const_evaluatable_error(
3506        &self,
3507        obligation: &PredicateObligation<'tcx>,
3508        span: Span,
3509    ) -> Result<Diag<'a>, ErrorGuaranteed> {
3510        if !self.tcx.features().generic_const_exprs()
3511            && !self.tcx.features().min_generic_const_args()
3512        {
3513            let guar = self
3514                .dcx()
3515                .struct_span_err(span, "constant expression depends on a generic parameter")
3516                // FIXME(const_generics): we should suggest to the user how they can resolve this
3517                // issue. However, this is currently not actually possible
3518                // (see https://github.com/rust-lang/rust/issues/66962#issuecomment-575907083).
3519                //
3520                // Note that with `feature(generic_const_exprs)` this case should not
3521                // be reachable.
3522                .with_note("this may fail depending on what value the parameter takes")
3523                .emit();
3524            return Err(guar);
3525        }
3526
3527        match obligation.predicate.kind().skip_binder() {
3528            ty::PredicateKind::Clause(ty::ClauseKind::ConstEvaluatable(ct)) => match ct.kind() {
3529                ty::ConstKind::Unevaluated(uv) => {
3530                    let mut err =
3531                        self.dcx().struct_span_err(span, "unconstrained generic constant");
3532                    let const_span = self.tcx.def_span(uv.def);
3533
3534                    let const_ty = self.tcx.type_of(uv.def).instantiate(self.tcx, uv.args);
3535                    let cast = if const_ty != self.tcx.types.usize { " as usize" } else { "" };
3536                    let msg = "try adding a `where` bound";
3537                    match self.tcx.sess.source_map().span_to_snippet(const_span) {
3538                        Ok(snippet) => {
3539                            let code = format!("[(); {snippet}{cast}]:");
3540                            let def_id = if let ObligationCauseCode::CompareImplItem {
3541                                trait_item_def_id,
3542                                ..
3543                            } = obligation.cause.code()
3544                            {
3545                                trait_item_def_id.as_local()
3546                            } else {
3547                                Some(obligation.cause.body_id)
3548                            };
3549                            if let Some(def_id) = def_id
3550                                && let Some(generics) = self.tcx.hir_get_generics(def_id)
3551                            {
3552                                err.span_suggestion_verbose(
3553                                    generics.tail_span_for_predicate_suggestion(),
3554                                    msg,
3555                                    format!("{} {code}", generics.add_where_or_trailing_comma()),
3556                                    Applicability::MaybeIncorrect,
3557                                );
3558                            } else {
3559                                err.help(format!("{msg}: where {code}"));
3560                            };
3561                        }
3562                        _ => {
3563                            err.help(msg);
3564                        }
3565                    };
3566                    Ok(err)
3567                }
3568                ty::ConstKind::Expr(_) => {
3569                    let err = self
3570                        .dcx()
3571                        .struct_span_err(span, format!("unconstrained generic constant `{ct}`"));
3572                    Ok(err)
3573                }
3574                _ => {
3575                    bug!("const evaluatable failed for non-unevaluated const `{ct:?}`");
3576                }
3577            },
3578            _ => {
3579                span_bug!(
3580                    span,
3581                    "unexpected non-ConstEvaluatable predicate, this should not be reachable"
3582                )
3583            }
3584        }
3585    }
3586}