compiletest/
read2.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
// FIXME: This is a complete copy of `cargo/src/cargo/util/read2.rs`
// Consider unify the read2() in libstd, cargo and this to prevent further code duplication.

#[cfg(test)]
mod tests;

use std::io::{self, Write};
use std::process::{Child, Output};

pub use self::imp::read2;

#[derive(Copy, Clone, Debug)]
pub enum Truncated {
    Yes,
    No,
}

pub fn read2_abbreviated(
    mut child: Child,
    filter_paths_from_len: &[String],
) -> io::Result<(Output, Truncated)> {
    let mut stdout = ProcOutput::new();
    let mut stderr = ProcOutput::new();

    drop(child.stdin.take());
    read2(
        child.stdout.take().unwrap(),
        child.stderr.take().unwrap(),
        &mut |is_stdout, data, _| {
            if is_stdout { &mut stdout } else { &mut stderr }.extend(data, filter_paths_from_len);
            data.clear();
        },
    )?;
    let status = child.wait()?;

    let truncated =
        if stdout.truncated() || stderr.truncated() { Truncated::Yes } else { Truncated::No };
    Ok((Output { status, stdout: stdout.into_bytes(), stderr: stderr.into_bytes() }, truncated))
}

const MAX_OUT_LEN: usize = 512 * 1024;

// Whenever a path is filtered when counting the length of the output, we need to add some
// placeholder length to ensure a compiler emitting only filtered paths doesn't cause a OOM.
//
// 32 was chosen semi-arbitrarily: it was the highest power of two that still allowed the test
// suite to pass at the moment of implementing path filtering.
const FILTERED_PATHS_PLACEHOLDER_LEN: usize = 32;

enum ProcOutput {
    Full { bytes: Vec<u8>, filtered_len: usize },
    Abbreviated { head: Vec<u8>, skipped: usize },
}

impl ProcOutput {
    fn new() -> Self {
        ProcOutput::Full { bytes: Vec::new(), filtered_len: 0 }
    }

    fn truncated(&self) -> bool {
        matches!(self, Self::Abbreviated { .. })
    }

    fn extend(&mut self, data: &[u8], filter_paths_from_len: &[String]) {
        let new_self = match *self {
            ProcOutput::Full { ref mut bytes, ref mut filtered_len } => {
                let old_len = bytes.len();
                bytes.extend_from_slice(data);
                *filtered_len += data.len();

                // We had problems in the past with tests failing only in some environments,
                // due to the length of the base path pushing the output size over the limit.
                //
                // To make those failures deterministic across all environments we ignore known
                // paths when calculating the string length, while still including the full
                // path in the output. This could result in some output being larger than the
                // threshold, but it's better than having nondeterministic failures.
                //
                // The compiler emitting only excluded strings is addressed by adding a
                // placeholder size for each excluded segment, which will eventually reach
                // the configured threshold.
                for path in filter_paths_from_len {
                    let path_bytes = path.as_bytes();
                    // We start matching `path_bytes - 1` into the previously loaded data,
                    // to account for the fact a path_bytes might be included across multiple
                    // `extend` calls. Starting from `- 1` avoids double-counting paths.
                    let matches = (&bytes[(old_len.saturating_sub(path_bytes.len() - 1))..])
                        .windows(path_bytes.len())
                        .filter(|window| window == &path_bytes)
                        .count();
                    *filtered_len -= matches * path_bytes.len();

                    // We can't just remove the length of the filtered path from the output length,
                    // otherwise a compiler emitting only filtered paths would OOM compiletest. Add
                    // a fixed placeholder length for each path to prevent that.
                    *filtered_len += matches * FILTERED_PATHS_PLACEHOLDER_LEN;
                }

                let new_len = bytes.len();
                if (*filtered_len).min(new_len) <= MAX_OUT_LEN {
                    return;
                }

                let mut head = std::mem::take(bytes);
                // Don't truncate if this as a whole line.
                // That should make it less likely that we cut a JSON line in half.
                if head.last() != Some(&b'\n') {
                    head.truncate(MAX_OUT_LEN);
                }
                let skipped = new_len - head.len();
                ProcOutput::Abbreviated { head, skipped }
            }
            ProcOutput::Abbreviated { ref mut skipped, .. } => {
                *skipped += data.len();
                return;
            }
        };
        *self = new_self;
    }

    fn into_bytes(self) -> Vec<u8> {
        match self {
            ProcOutput::Full { bytes, .. } => bytes,
            ProcOutput::Abbreviated { mut head, skipped } => {
                let head_note =
                    format!("<<<<<< TRUNCATED, SHOWING THE FIRST {} BYTES >>>>>>\n\n", head.len());
                head.splice(0..0, head_note.into_bytes());
                write!(&mut head, "\n\n<<<<<< TRUNCATED, DROPPED {} BYTES >>>>>>", skipped)
                    .unwrap();
                head
            }
        }
    }
}

#[cfg(not(any(unix, windows)))]
mod imp {
    use std::io::{self, Read};
    use std::process::{ChildStderr, ChildStdout};

    pub fn read2(
        out_pipe: ChildStdout,
        err_pipe: ChildStderr,
        data: &mut dyn FnMut(bool, &mut Vec<u8>, bool),
    ) -> io::Result<()> {
        let mut buffer = Vec::new();
        out_pipe.read_to_end(&mut buffer)?;
        data(true, &mut buffer, true);
        buffer.clear();
        err_pipe.read_to_end(&mut buffer)?;
        data(false, &mut buffer, true);
        Ok(())
    }
}

#[cfg(unix)]
mod imp {
    use std::io::prelude::*;
    use std::os::unix::prelude::*;
    use std::process::{ChildStderr, ChildStdout};
    use std::{io, mem};

    pub fn read2(
        mut out_pipe: ChildStdout,
        mut err_pipe: ChildStderr,
        data: &mut dyn FnMut(bool, &mut Vec<u8>, bool),
    ) -> io::Result<()> {
        unsafe {
            libc::fcntl(out_pipe.as_raw_fd(), libc::F_SETFL, libc::O_NONBLOCK);
            libc::fcntl(err_pipe.as_raw_fd(), libc::F_SETFL, libc::O_NONBLOCK);
        }

        let mut out_done = false;
        let mut err_done = false;
        let mut out = Vec::new();
        let mut err = Vec::new();

        let mut fds: [libc::pollfd; 2] = unsafe { mem::zeroed() };
        fds[0].fd = out_pipe.as_raw_fd();
        fds[0].events = libc::POLLIN;
        fds[1].fd = err_pipe.as_raw_fd();
        fds[1].events = libc::POLLIN;
        let mut nfds = 2;
        let mut errfd = 1;

        while nfds > 0 {
            // wait for either pipe to become readable using `select`
            let r = unsafe { libc::poll(fds.as_mut_ptr(), nfds, -1) };
            if r == -1 {
                let err = io::Error::last_os_error();
                if err.kind() == io::ErrorKind::Interrupted {
                    continue;
                }
                return Err(err);
            }

            // Read as much as we can from each pipe, ignoring EWOULDBLOCK or
            // EAGAIN. If we hit EOF, then this will happen because the underlying
            // reader will return Ok(0), in which case we'll see `Ok` ourselves. In
            // this case we flip the other fd back into blocking mode and read
            // whatever's leftover on that file descriptor.
            let handle = |res: io::Result<_>| match res {
                Ok(_) => Ok(true),
                Err(e) => {
                    if e.kind() == io::ErrorKind::WouldBlock {
                        Ok(false)
                    } else {
                        Err(e)
                    }
                }
            };
            if !err_done && fds[errfd].revents != 0 && handle(err_pipe.read_to_end(&mut err))? {
                err_done = true;
                nfds -= 1;
            }
            data(false, &mut err, err_done);
            if !out_done && fds[0].revents != 0 && handle(out_pipe.read_to_end(&mut out))? {
                out_done = true;
                fds[0].fd = err_pipe.as_raw_fd();
                errfd = 0;
                nfds -= 1;
            }
            data(true, &mut out, out_done);
        }
        Ok(())
    }
}

#[cfg(windows)]
mod imp {
    use std::os::windows::prelude::*;
    use std::process::{ChildStderr, ChildStdout};
    use std::{io, slice};

    use miow::Overlapped;
    use miow::iocp::{CompletionPort, CompletionStatus};
    use miow::pipe::NamedPipe;
    use windows::Win32::Foundation::ERROR_BROKEN_PIPE;

    struct Pipe<'a> {
        dst: &'a mut Vec<u8>,
        overlapped: Overlapped,
        pipe: NamedPipe,
        done: bool,
    }

    pub fn read2(
        out_pipe: ChildStdout,
        err_pipe: ChildStderr,
        data: &mut dyn FnMut(bool, &mut Vec<u8>, bool),
    ) -> io::Result<()> {
        let mut out = Vec::new();
        let mut err = Vec::new();

        let port = CompletionPort::new(1)?;
        port.add_handle(0, &out_pipe)?;
        port.add_handle(1, &err_pipe)?;

        unsafe {
            let mut out_pipe = Pipe::new(out_pipe, &mut out);
            let mut err_pipe = Pipe::new(err_pipe, &mut err);

            out_pipe.read()?;
            err_pipe.read()?;

            let mut status = [CompletionStatus::zero(), CompletionStatus::zero()];

            while !out_pipe.done || !err_pipe.done {
                for status in port.get_many(&mut status, None)? {
                    if status.token() == 0 {
                        out_pipe.complete(status);
                        data(true, out_pipe.dst, out_pipe.done);
                        out_pipe.read()?;
                    } else {
                        err_pipe.complete(status);
                        data(false, err_pipe.dst, err_pipe.done);
                        err_pipe.read()?;
                    }
                }
            }

            Ok(())
        }
    }

    impl<'a> Pipe<'a> {
        unsafe fn new<P: IntoRawHandle>(p: P, dst: &'a mut Vec<u8>) -> Pipe<'a> {
            Pipe {
                dst,
                pipe: NamedPipe::from_raw_handle(p.into_raw_handle()),
                overlapped: Overlapped::zero(),
                done: false,
            }
        }

        unsafe fn read(&mut self) -> io::Result<()> {
            let dst = slice_to_end(self.dst);
            match self.pipe.read_overlapped(dst, self.overlapped.raw()) {
                Ok(_) => Ok(()),
                Err(e) => {
                    if e.raw_os_error() == Some(ERROR_BROKEN_PIPE.0 as i32) {
                        self.done = true;
                        Ok(())
                    } else {
                        Err(e)
                    }
                }
            }
        }

        unsafe fn complete(&mut self, status: &CompletionStatus) {
            let prev = self.dst.len();
            self.dst.set_len(prev + status.bytes_transferred() as usize);
            if status.bytes_transferred() == 0 {
                self.done = true;
            }
        }
    }

    unsafe fn slice_to_end(v: &mut Vec<u8>) -> &mut [u8] {
        if v.capacity() == 0 {
            v.reserve(16);
        }
        if v.capacity() == v.len() {
            v.reserve(1);
        }
        slice::from_raw_parts_mut(v.as_mut_ptr().offset(v.len() as isize), v.capacity() - v.len())
    }
}