rustc_metadata/locator.rs
1//! Finds crate binaries and loads their metadata
2//!
3//! Might I be the first to welcome you to a world of platform differences,
4//! version requirements, dependency graphs, conflicting desires, and fun! This
5//! is the major guts (along with metadata::creader) of the compiler for loading
6//! crates and resolving dependencies. Let's take a tour!
7//!
8//! # The problem
9//!
10//! Each invocation of the compiler is immediately concerned with one primary
11//! problem, to connect a set of crates to resolved crates on the filesystem.
12//! Concretely speaking, the compiler follows roughly these steps to get here:
13//!
14//! 1. Discover a set of `extern crate` statements.
15//! 2. Transform these directives into crate names. If the directive does not
16//! have an explicit name, then the identifier is the name.
17//! 3. For each of these crate names, find a corresponding crate on the
18//! filesystem.
19//!
20//! Sounds easy, right? Let's walk into some of the nuances.
21//!
22//! ## Transitive Dependencies
23//!
24//! Let's say we've got three crates: A, B, and C. A depends on B, and B depends
25//! on C. When we're compiling A, we primarily need to find and locate B, but we
26//! also end up needing to find and locate C as well.
27//!
28//! The reason for this is that any of B's types could be composed of C's types,
29//! any function in B could return a type from C, etc. To be able to guarantee
30//! that we can always type-check/translate any function, we have to have
31//! complete knowledge of the whole ecosystem, not just our immediate
32//! dependencies.
33//!
34//! So now as part of the "find a corresponding crate on the filesystem" step
35//! above, this involves also finding all crates for *all upstream
36//! dependencies*. This includes all dependencies transitively.
37//!
38//! ## Rlibs and Dylibs
39//!
40//! The compiler has two forms of intermediate dependencies. These are dubbed
41//! rlibs and dylibs for the static and dynamic variants, respectively. An rlib
42//! is a rustc-defined file format (currently just an ar archive) while a dylib
43//! is a platform-defined dynamic library. Each library has a metadata somewhere
44//! inside of it.
45//!
46//! A third kind of dependency is an rmeta file. These are metadata files and do
47//! not contain any code, etc. To a first approximation, these are treated in the
48//! same way as rlibs. Where there is both an rlib and an rmeta file, the rlib
49//! gets priority (even if the rmeta file is newer). An rmeta file is only
50//! useful for checking a downstream crate, attempting to link one will cause an
51//! error.
52//!
53//! When translating a crate name to a crate on the filesystem, we all of a
54//! sudden need to take into account both rlibs and dylibs! Linkage later on may
55//! use either one of these files, as each has their pros/cons. The job of crate
56//! loading is to discover what's possible by finding all candidates.
57//!
58//! Most parts of this loading systems keep the dylib/rlib as just separate
59//! variables.
60//!
61//! ## Where to look?
62//!
63//! We can't exactly scan your whole hard drive when looking for dependencies,
64//! so we need to places to look. Currently the compiler will implicitly add the
65//! target lib search path ($prefix/lib/rustlib/$target/lib) to any compilation,
66//! and otherwise all -L flags are added to the search paths.
67//!
68//! ## What criterion to select on?
69//!
70//! This is a pretty tricky area of loading crates. Given a file, how do we know
71//! whether it's the right crate? Currently, the rules look along these lines:
72//!
73//! 1. Does the filename match an rlib/dylib pattern? That is to say, does the
74//! filename have the right prefix/suffix?
75//! 2. Does the filename have the right prefix for the crate name being queried?
76//! This is filtering for files like `libfoo*.rlib` and such. If the crate
77//! we're looking for was originally compiled with -C extra-filename, the
78//! extra filename will be included in this prefix to reduce reading
79//! metadata from crates that would otherwise share our prefix.
80//! 3. Is the file an actual rust library? This is done by loading the metadata
81//! from the library and making sure it's actually there.
82//! 4. Does the name in the metadata agree with the name of the library?
83//! 5. Does the target in the metadata agree with the current target?
84//! 6. Does the SVH match? (more on this later)
85//!
86//! If the file answers `yes` to all these questions, then the file is
87//! considered as being *candidate* for being accepted. It is illegal to have
88//! more than two candidates as the compiler has no method by which to resolve
89//! this conflict. Additionally, rlib/dylib candidates are considered
90//! separately.
91//!
92//! After all this has happened, we have 1 or two files as candidates. These
93//! represent the rlib/dylib file found for a library, and they're returned as
94//! being found.
95//!
96//! ### What about versions?
97//!
98//! A lot of effort has been put forth to remove versioning from the compiler.
99//! There have been forays in the past to have versioning baked in, but it was
100//! largely always deemed insufficient to the point that it was recognized that
101//! it's probably something the compiler shouldn't do anyway due to its
102//! complicated nature and the state of the half-baked solutions.
103//!
104//! With a departure from versioning, the primary criterion for loading crates
105//! is just the name of a crate. If we stopped here, it would imply that you
106//! could never link two crates of the same name from different sources
107//! together, which is clearly a bad state to be in.
108//!
109//! To resolve this problem, we come to the next section!
110//!
111//! # Expert Mode
112//!
113//! A number of flags have been added to the compiler to solve the "version
114//! problem" in the previous section, as well as generally enabling more
115//! powerful usage of the crate loading system of the compiler. The goal of
116//! these flags and options are to enable third-party tools to drive the
117//! compiler with prior knowledge about how the world should look.
118//!
119//! ## The `--extern` flag
120//!
121//! The compiler accepts a flag of this form a number of times:
122//!
123//! ```text
124//! --extern crate-name=path/to/the/crate.rlib
125//! ```
126//!
127//! This flag is basically the following letter to the compiler:
128//!
129//! > Dear rustc,
130//! >
131//! > When you are attempting to load the immediate dependency `crate-name`, I
132//! > would like you to assume that the library is located at
133//! > `path/to/the/crate.rlib`, and look nowhere else. Also, please do not
134//! > assume that the path I specified has the name `crate-name`.
135//!
136//! This flag basically overrides most matching logic except for validating that
137//! the file is indeed a rust library. The same `crate-name` can be specified
138//! twice to specify the rlib/dylib pair.
139//!
140//! ## Enabling "multiple versions"
141//!
142//! This basically boils down to the ability to specify arbitrary packages to
143//! the compiler. For example, if crate A wanted to use Bv1 and Bv2, then it
144//! would look something like:
145//!
146//! ```compile_fail,E0463
147//! extern crate b1;
148//! extern crate b2;
149//!
150//! fn main() {}
151//! ```
152//!
153//! and the compiler would be invoked as:
154//!
155//! ```text
156//! rustc a.rs --extern b1=path/to/libb1.rlib --extern b2=path/to/libb2.rlib
157//! ```
158//!
159//! In this scenario there are two crates named `b` and the compiler must be
160//! manually driven to be informed where each crate is.
161//!
162//! ## Frobbing symbols
163//!
164//! One of the immediate problems with linking the same library together twice
165//! in the same problem is dealing with duplicate symbols. The primary way to
166//! deal with this in rustc is to add hashes to the end of each symbol.
167//!
168//! In order to force hashes to change between versions of a library, if
169//! desired, the compiler exposes an option `-C metadata=foo`, which is used to
170//! initially seed each symbol hash. The string `foo` is prepended to each
171//! string-to-hash to ensure that symbols change over time.
172//!
173//! ## Loading transitive dependencies
174//!
175//! Dealing with same-named-but-distinct crates is not just a local problem, but
176//! one that also needs to be dealt with for transitive dependencies. Note that
177//! in the letter above `--extern` flags only apply to the *local* set of
178//! dependencies, not the upstream transitive dependencies. Consider this
179//! dependency graph:
180//!
181//! ```text
182//! A.1 A.2
183//! | |
184//! | |
185//! B C
186//! \ /
187//! \ /
188//! D
189//! ```
190//!
191//! In this scenario, when we compile `D`, we need to be able to distinctly
192//! resolve `A.1` and `A.2`, but an `--extern` flag cannot apply to these
193//! transitive dependencies.
194//!
195//! Note that the key idea here is that `B` and `C` are both *already compiled*.
196//! That is, they have already resolved their dependencies. Due to unrelated
197//! technical reasons, when a library is compiled, it is only compatible with
198//! the *exact same* version of the upstream libraries it was compiled against.
199//! We use the "Strict Version Hash" to identify the exact copy of an upstream
200//! library.
201//!
202//! With this knowledge, we know that `B` and `C` will depend on `A` with
203//! different SVH values, so we crawl the normal `-L` paths looking for
204//! `liba*.rlib` and filter based on the contained SVH.
205//!
206//! In the end, this ends up not needing `--extern` to specify upstream
207//! transitive dependencies.
208//!
209//! # Wrapping up
210//!
211//! That's the general overview of loading crates in the compiler, but it's by
212//! no means all of the necessary details. Take a look at the rest of
213//! metadata::locator or metadata::creader for all the juicy details!
214
215use std::borrow::Cow;
216use std::io::{Result as IoResult, Write};
217use std::ops::Deref;
218use std::path::{Path, PathBuf};
219use std::{cmp, fmt};
220
221use rustc_data_structures::fx::{FxHashSet, FxIndexMap, FxIndexSet};
222use rustc_data_structures::memmap::Mmap;
223use rustc_data_structures::owned_slice::{OwnedSlice, slice_owned};
224use rustc_data_structures::svh::Svh;
225use rustc_errors::{DiagArgValue, IntoDiagArg};
226use rustc_fs_util::try_canonicalize;
227use rustc_session::cstore::CrateSource;
228use rustc_session::filesearch::FileSearch;
229use rustc_session::search_paths::PathKind;
230use rustc_session::utils::CanonicalizedPath;
231use rustc_session::{Session, config};
232use rustc_span::{Span, Symbol};
233use rustc_target::spec::{Target, TargetTuple};
234use tempfile::Builder as TempFileBuilder;
235use tracing::{debug, info};
236
237use crate::creader::{Library, MetadataLoader};
238use crate::errors;
239use crate::rmeta::{METADATA_HEADER, MetadataBlob, rustc_version};
240
241#[derive(Clone)]
242pub(crate) struct CrateLocator<'a> {
243 // Immutable per-session configuration.
244 only_needs_metadata: bool,
245 metadata_loader: &'a dyn MetadataLoader,
246 cfg_version: &'static str,
247
248 // Immutable per-search configuration.
249 crate_name: Symbol,
250 exact_paths: Vec<CanonicalizedPath>,
251 pub hash: Option<Svh>,
252 extra_filename: Option<&'a str>,
253 target: &'a Target,
254 tuple: TargetTuple,
255 filesearch: &'a FileSearch,
256 is_proc_macro: bool,
257 path_kind: PathKind,
258}
259
260#[derive(Clone, Debug)]
261pub(crate) struct CratePaths {
262 pub(crate) name: Symbol,
263 source: CrateSource,
264}
265
266impl CratePaths {
267 pub(crate) fn new(name: Symbol, source: CrateSource) -> CratePaths {
268 CratePaths { name, source }
269 }
270}
271
272#[derive(Copy, Clone, Debug, PartialEq)]
273pub(crate) enum CrateFlavor {
274 Rlib,
275 Rmeta,
276 Dylib,
277 SDylib,
278}
279
280impl fmt::Display for CrateFlavor {
281 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
282 f.write_str(match *self {
283 CrateFlavor::Rlib => "rlib",
284 CrateFlavor::Rmeta => "rmeta",
285 CrateFlavor::Dylib => "dylib",
286 CrateFlavor::SDylib => "sdylib",
287 })
288 }
289}
290
291impl IntoDiagArg for CrateFlavor {
292 fn into_diag_arg(self, _: &mut Option<std::path::PathBuf>) -> rustc_errors::DiagArgValue {
293 match self {
294 CrateFlavor::Rlib => DiagArgValue::Str(Cow::Borrowed("rlib")),
295 CrateFlavor::Rmeta => DiagArgValue::Str(Cow::Borrowed("rmeta")),
296 CrateFlavor::Dylib => DiagArgValue::Str(Cow::Borrowed("dylib")),
297 CrateFlavor::SDylib => DiagArgValue::Str(Cow::Borrowed("sdylib")),
298 }
299 }
300}
301
302impl<'a> CrateLocator<'a> {
303 pub(crate) fn new(
304 sess: &'a Session,
305 metadata_loader: &'a dyn MetadataLoader,
306 crate_name: Symbol,
307 is_rlib: bool,
308 hash: Option<Svh>,
309 extra_filename: Option<&'a str>,
310 path_kind: PathKind,
311 ) -> CrateLocator<'a> {
312 let needs_object_code = sess.opts.output_types.should_codegen();
313 // If we're producing an rlib, then we don't need object code.
314 // Or, if we're not producing object code, then we don't need it either
315 // (e.g., if we're a cdylib but emitting just metadata).
316 let only_needs_metadata = is_rlib || !needs_object_code;
317
318 CrateLocator {
319 only_needs_metadata,
320 metadata_loader,
321 cfg_version: sess.cfg_version,
322 crate_name,
323 exact_paths: if hash.is_none() {
324 sess.opts
325 .externs
326 .get(crate_name.as_str())
327 .into_iter()
328 .filter_map(|entry| entry.files())
329 .flatten()
330 .cloned()
331 .collect()
332 } else {
333 // SVH being specified means this is a transitive dependency,
334 // so `--extern` options do not apply.
335 Vec::new()
336 },
337 hash,
338 extra_filename,
339 target: &sess.target,
340 tuple: sess.opts.target_triple.clone(),
341 filesearch: sess.target_filesearch(),
342 path_kind,
343 is_proc_macro: false,
344 }
345 }
346
347 pub(crate) fn for_proc_macro(&mut self, sess: &'a Session, path_kind: PathKind) {
348 self.is_proc_macro = true;
349 self.target = &sess.host;
350 self.tuple = TargetTuple::from_tuple(config::host_tuple());
351 self.filesearch = sess.host_filesearch();
352 self.path_kind = path_kind;
353 }
354
355 pub(crate) fn for_target_proc_macro(&mut self, sess: &'a Session, path_kind: PathKind) {
356 self.is_proc_macro = true;
357 self.target = &sess.target;
358 self.tuple = sess.opts.target_triple.clone();
359 self.filesearch = sess.target_filesearch();
360 self.path_kind = path_kind;
361 }
362
363 pub(crate) fn maybe_load_library_crate(
364 &self,
365 crate_rejections: &mut CrateRejections,
366 ) -> Result<Option<Library>, CrateError> {
367 if !self.exact_paths.is_empty() {
368 return self.find_commandline_library(crate_rejections);
369 }
370 let mut seen_paths = FxHashSet::default();
371 if let Some(extra_filename) = self.extra_filename
372 && let library @ Some(_) =
373 self.find_library_crate(crate_rejections, extra_filename, &mut seen_paths)?
374 {
375 return Ok(library);
376 }
377 self.find_library_crate(crate_rejections, "", &mut seen_paths)
378 }
379
380 fn find_library_crate(
381 &self,
382 crate_rejections: &mut CrateRejections,
383 extra_prefix: &str,
384 seen_paths: &mut FxHashSet<PathBuf>,
385 ) -> Result<Option<Library>, CrateError> {
386 let rmeta_prefix = &format!("lib{}{}", self.crate_name, extra_prefix);
387 let rlib_prefix = rmeta_prefix;
388 let dylib_prefix =
389 &format!("{}{}{}", self.target.dll_prefix, self.crate_name, extra_prefix);
390 let staticlib_prefix =
391 &format!("{}{}{}", self.target.staticlib_prefix, self.crate_name, extra_prefix);
392 let interface_prefix = rmeta_prefix;
393
394 let rmeta_suffix = ".rmeta";
395 let rlib_suffix = ".rlib";
396 let dylib_suffix = &self.target.dll_suffix;
397 let staticlib_suffix = &self.target.staticlib_suffix;
398 let interface_suffix = ".rs";
399
400 let mut candidates: FxIndexMap<
401 _,
402 (FxIndexSet<_>, FxIndexSet<_>, FxIndexSet<_>, FxIndexSet<_>),
403 > = Default::default();
404
405 // First, find all possible candidate rlibs and dylibs purely based on
406 // the name of the files themselves. We're trying to match against an
407 // exact crate name and a possibly an exact hash.
408 //
409 // During this step, we can filter all found libraries based on the
410 // name and id found in the crate id (we ignore the path portion for
411 // filename matching), as well as the exact hash (if specified). If we
412 // end up having many candidates, we must look at the metadata to
413 // perform exact matches against hashes/crate ids. Note that opening up
414 // the metadata is where we do an exact match against the full contents
415 // of the crate id (path/name/id).
416 //
417 // The goal of this step is to look at as little metadata as possible.
418 // Unfortunately, the prefix-based matching sometimes is over-eager.
419 // E.g. if `rlib_suffix` is `libstd` it'll match the file
420 // `libstd_detect-8d6701fb958915ad.rlib` (incorrect) as well as
421 // `libstd-f3ab5b1dea981f17.rlib` (correct). But this is hard to avoid
422 // given that `extra_filename` comes from the `-C extra-filename`
423 // option and thus can be anything, and the incorrect match will be
424 // handled safely in `extract_one`.
425 for search_path in self.filesearch.search_paths(self.path_kind) {
426 debug!("searching {}", search_path.dir.display());
427 let spf = &search_path.files;
428
429 let mut should_check_staticlibs = true;
430 for (prefix, suffix, kind) in [
431 (rlib_prefix.as_str(), rlib_suffix, CrateFlavor::Rlib),
432 (rmeta_prefix.as_str(), rmeta_suffix, CrateFlavor::Rmeta),
433 (dylib_prefix, dylib_suffix, CrateFlavor::Dylib),
434 (interface_prefix, interface_suffix, CrateFlavor::SDylib),
435 ] {
436 if prefix == staticlib_prefix && suffix == staticlib_suffix {
437 should_check_staticlibs = false;
438 }
439 if let Some(matches) = spf.query(prefix, suffix) {
440 for (hash, spf) in matches {
441 info!("lib candidate: {}", spf.path.display());
442
443 let (rlibs, rmetas, dylibs, interfaces) =
444 candidates.entry(hash).or_default();
445 {
446 // As a performance optimisation we canonicalize the path and skip
447 // ones we've already seen. This allows us to ignore crates
448 // we know are exactual equal to ones we've already found.
449 // Going to the same crate through different symlinks does not change the result.
450 let path = try_canonicalize(&spf.path)
451 .unwrap_or_else(|_| spf.path.to_path_buf());
452 if seen_paths.contains(&path) {
453 continue;
454 };
455 seen_paths.insert(path);
456 }
457 // Use the original path (potentially with unresolved symlinks),
458 // filesystem code should not care, but this is nicer for diagnostics.
459 let path = spf.path.to_path_buf();
460 match kind {
461 CrateFlavor::Rlib => rlibs.insert(path),
462 CrateFlavor::Rmeta => rmetas.insert(path),
463 CrateFlavor::Dylib => dylibs.insert(path),
464 CrateFlavor::SDylib => interfaces.insert(path),
465 };
466 }
467 }
468 }
469 if let Some(static_matches) = should_check_staticlibs
470 .then(|| spf.query(staticlib_prefix, staticlib_suffix))
471 .flatten()
472 {
473 for (_, spf) in static_matches {
474 crate_rejections.via_kind.push(CrateMismatch {
475 path: spf.path.to_path_buf(),
476 got: "static".to_string(),
477 });
478 }
479 }
480 }
481
482 // We have now collected all known libraries into a set of candidates
483 // keyed of the filename hash listed. For each filename, we also have a
484 // list of rlibs/dylibs that apply. Here, we map each of these lists
485 // (per hash), to a Library candidate for returning.
486 //
487 // A Library candidate is created if the metadata for the set of
488 // libraries corresponds to the crate id and hash criteria that this
489 // search is being performed for.
490 let mut libraries = FxIndexMap::default();
491 for (_hash, (rlibs, rmetas, dylibs, interfaces)) in candidates {
492 if let Some((svh, lib)) =
493 self.extract_lib(crate_rejections, rlibs, rmetas, dylibs, interfaces)?
494 {
495 libraries.insert(svh, lib);
496 }
497 }
498
499 // Having now translated all relevant found hashes into libraries, see
500 // what we've got and figure out if we found multiple candidates for
501 // libraries or not.
502 match libraries.len() {
503 0 => Ok(None),
504 1 => Ok(Some(libraries.into_iter().next().unwrap().1)),
505 _ => {
506 let mut candidates: Vec<PathBuf> = libraries
507 .into_values()
508 .map(|lib| lib.source.paths().next().unwrap().clone())
509 .collect();
510 candidates.sort();
511
512 Err(CrateError::MultipleCandidates(
513 self.crate_name,
514 // these are the same for all candidates
515 get_flavor_from_path(candidates.first().unwrap()),
516 candidates,
517 ))
518 }
519 }
520 }
521
522 fn extract_lib(
523 &self,
524 crate_rejections: &mut CrateRejections,
525 rlibs: FxIndexSet<PathBuf>,
526 rmetas: FxIndexSet<PathBuf>,
527 dylibs: FxIndexSet<PathBuf>,
528 interfaces: FxIndexSet<PathBuf>,
529 ) -> Result<Option<(Svh, Library)>, CrateError> {
530 let mut slot = None;
531 // Order here matters, rmeta should come first.
532 //
533 // Make sure there's at most one rlib and at most one dylib.
534 //
535 // See comment in `extract_one` below.
536 let rmeta = self.extract_one(crate_rejections, rmetas, CrateFlavor::Rmeta, &mut slot)?;
537 let rlib = self.extract_one(crate_rejections, rlibs, CrateFlavor::Rlib, &mut slot)?;
538 let sdylib_interface =
539 self.extract_one(crate_rejections, interfaces, CrateFlavor::SDylib, &mut slot)?;
540 let dylib = self.extract_one(crate_rejections, dylibs, CrateFlavor::Dylib, &mut slot)?;
541
542 if sdylib_interface.is_some() && dylib.is_none() {
543 return Err(CrateError::FullMetadataNotFound(self.crate_name, CrateFlavor::SDylib));
544 }
545
546 let source = CrateSource { rmeta, rlib, dylib, sdylib_interface };
547 Ok(slot.map(|(svh, metadata, _, _)| (svh, Library { source, metadata })))
548 }
549
550 fn needs_crate_flavor(&self, flavor: CrateFlavor) -> bool {
551 if flavor == CrateFlavor::Dylib && self.is_proc_macro {
552 return true;
553 }
554
555 if self.only_needs_metadata {
556 flavor == CrateFlavor::Rmeta
557 } else {
558 // we need all flavors (perhaps not true, but what we do for now)
559 true
560 }
561 }
562
563 // Attempts to extract *one* library from the set `m`. If the set has no
564 // elements, `None` is returned. If the set has more than one element, then
565 // the errors and notes are emitted about the set of libraries.
566 //
567 // With only one library in the set, this function will extract it, and then
568 // read the metadata from it if `*slot` is `None`. If the metadata couldn't
569 // be read, it is assumed that the file isn't a valid rust library (no
570 // errors are emitted).
571 //
572 // The `PathBuf` in `slot` will only be used for diagnostic purposes.
573 fn extract_one(
574 &self,
575 crate_rejections: &mut CrateRejections,
576 m: FxIndexSet<PathBuf>,
577 flavor: CrateFlavor,
578 slot: &mut Option<(Svh, MetadataBlob, PathBuf, CrateFlavor)>,
579 ) -> Result<Option<PathBuf>, CrateError> {
580 // If we are producing an rlib, and we've already loaded metadata, then
581 // we should not attempt to discover further crate sources (unless we're
582 // locating a proc macro; exact logic is in needs_crate_flavor). This means
583 // that under -Zbinary-dep-depinfo we will not emit a dependency edge on
584 // the *unused* rlib, and by returning `None` here immediately we
585 // guarantee that we do indeed not use it.
586 //
587 // See also #68149 which provides more detail on why emitting the
588 // dependency on the rlib is a bad thing.
589 if slot.is_some() {
590 if m.is_empty() || !self.needs_crate_flavor(flavor) {
591 return Ok(None);
592 }
593 }
594
595 let mut ret: Option<PathBuf> = None;
596 let mut err_data: Option<Vec<PathBuf>> = None;
597 for lib in m {
598 info!("{} reading metadata from: {}", flavor, lib.display());
599 if flavor == CrateFlavor::Rmeta && lib.metadata().is_ok_and(|m| m.len() == 0) {
600 // Empty files will cause get_metadata_section to fail. Rmeta
601 // files can be empty, for example with binaries (which can
602 // often appear with `cargo check` when checking a library as
603 // a unittest). We don't want to emit a user-visible warning
604 // in this case as it is not a real problem.
605 debug!("skipping empty file");
606 continue;
607 }
608 let (hash, metadata) = match get_metadata_section(
609 self.target,
610 flavor,
611 &lib,
612 self.metadata_loader,
613 self.cfg_version,
614 Some(self.crate_name),
615 ) {
616 Ok(blob) => {
617 if let Some(h) = self.crate_matches(crate_rejections, &blob, &lib) {
618 (h, blob)
619 } else {
620 info!("metadata mismatch");
621 continue;
622 }
623 }
624 Err(MetadataError::VersionMismatch { expected_version, found_version }) => {
625 // The file was present and created by the same compiler version, but we
626 // couldn't load it for some reason. Give a hard error instead of silently
627 // ignoring it, but only if we would have given an error anyway.
628 info!(
629 "Rejecting via version: expected {} got {}",
630 expected_version, found_version
631 );
632 crate_rejections
633 .via_version
634 .push(CrateMismatch { path: lib, got: found_version });
635 continue;
636 }
637 Err(MetadataError::LoadFailure(err)) => {
638 info!("no metadata found: {}", err);
639 // Metadata was loaded from interface file earlier.
640 if let Some((.., CrateFlavor::SDylib)) = slot {
641 ret = Some(lib);
642 continue;
643 }
644 // The file was present and created by the same compiler version, but we
645 // couldn't load it for some reason. Give a hard error instead of silently
646 // ignoring it, but only if we would have given an error anyway.
647 crate_rejections.via_invalid.push(CrateMismatch { path: lib, got: err });
648 continue;
649 }
650 Err(err @ MetadataError::NotPresent(_)) => {
651 info!("no metadata found: {}", err);
652 continue;
653 }
654 };
655 // If we see multiple hashes, emit an error about duplicate candidates.
656 if slot.as_ref().is_some_and(|s| s.0 != hash) {
657 if let Some(candidates) = err_data {
658 return Err(CrateError::MultipleCandidates(
659 self.crate_name,
660 flavor,
661 candidates,
662 ));
663 }
664 err_data = Some(vec![slot.take().unwrap().2]);
665 }
666 if let Some(candidates) = &mut err_data {
667 candidates.push(lib);
668 continue;
669 }
670
671 // We error eagerly here. If we're locating a rlib, then in theory the full metadata
672 // could still be in a (later resolved) dylib. In practice, if the rlib and dylib
673 // were produced in a way where one has full metadata and the other hasn't, it would
674 // mean that they were compiled using different compiler flags and probably also have
675 // a different SVH value.
676 if metadata.get_header().is_stub {
677 // `is_stub` should never be true for .rmeta files.
678 assert_ne!(flavor, CrateFlavor::Rmeta);
679
680 // Because rmeta files are resolved before rlib/dylib files, if this is a stub and
681 // we haven't found a slot already, it means that the full metadata is missing.
682 if slot.is_none() {
683 return Err(CrateError::FullMetadataNotFound(self.crate_name, flavor));
684 }
685 } else {
686 *slot = Some((hash, metadata, lib.clone(), flavor));
687 }
688 ret = Some(lib);
689 }
690
691 if let Some(candidates) = err_data {
692 Err(CrateError::MultipleCandidates(self.crate_name, flavor, candidates))
693 } else {
694 Ok(ret)
695 }
696 }
697
698 fn crate_matches(
699 &self,
700 crate_rejections: &mut CrateRejections,
701 metadata: &MetadataBlob,
702 libpath: &Path,
703 ) -> Option<Svh> {
704 let header = metadata.get_header();
705 if header.is_proc_macro_crate != self.is_proc_macro {
706 info!(
707 "Rejecting via proc macro: expected {} got {}",
708 self.is_proc_macro, header.is_proc_macro_crate,
709 );
710 return None;
711 }
712
713 if self.exact_paths.is_empty() && self.crate_name != header.name {
714 info!("Rejecting via crate name");
715 return None;
716 }
717
718 if header.triple != self.tuple {
719 info!("Rejecting via crate triple: expected {} got {}", self.tuple, header.triple);
720 crate_rejections.via_triple.push(CrateMismatch {
721 path: libpath.to_path_buf(),
722 got: header.triple.to_string(),
723 });
724 return None;
725 }
726
727 let hash = header.hash;
728 if let Some(expected_hash) = self.hash {
729 if hash != expected_hash {
730 info!("Rejecting via hash: expected {} got {}", expected_hash, hash);
731 crate_rejections
732 .via_hash
733 .push(CrateMismatch { path: libpath.to_path_buf(), got: hash.to_string() });
734 return None;
735 }
736 }
737
738 Some(hash)
739 }
740
741 fn find_commandline_library(
742 &self,
743 crate_rejections: &mut CrateRejections,
744 ) -> Result<Option<Library>, CrateError> {
745 // First, filter out all libraries that look suspicious. We only accept
746 // files which actually exist that have the correct naming scheme for
747 // rlibs/dylibs.
748 let mut rlibs = FxIndexSet::default();
749 let mut rmetas = FxIndexSet::default();
750 let mut dylibs = FxIndexSet::default();
751 let mut sdylib_interfaces = FxIndexSet::default();
752 for loc in &self.exact_paths {
753 let loc_canon = loc.canonicalized();
754 let loc_orig = loc.original();
755 if !loc_canon.exists() {
756 return Err(CrateError::ExternLocationNotExist(self.crate_name, loc_orig.clone()));
757 }
758 if !loc_orig.is_file() {
759 return Err(CrateError::ExternLocationNotFile(self.crate_name, loc_orig.clone()));
760 }
761 // Note to take care and match against the non-canonicalized name:
762 // some systems save build artifacts into content-addressed stores
763 // that do not preserve extensions, and then link to them using
764 // e.g. symbolic links. If we canonicalize too early, we resolve
765 // the symlink, the file type is lost and we might treat rlibs and
766 // rmetas as dylibs.
767 let Some(file) = loc_orig.file_name().and_then(|s| s.to_str()) else {
768 return Err(CrateError::ExternLocationNotFile(self.crate_name, loc_orig.clone()));
769 };
770 if file.starts_with("lib") {
771 if file.ends_with(".rlib") {
772 rlibs.insert(loc_canon.clone());
773 continue;
774 }
775 if file.ends_with(".rmeta") {
776 rmetas.insert(loc_canon.clone());
777 continue;
778 }
779 if file.ends_with(".rs") {
780 sdylib_interfaces.insert(loc_canon.clone());
781 }
782 }
783 let dll_prefix = self.target.dll_prefix.as_ref();
784 let dll_suffix = self.target.dll_suffix.as_ref();
785 if file.starts_with(dll_prefix) && file.ends_with(dll_suffix) {
786 dylibs.insert(loc_canon.clone());
787 continue;
788 }
789 crate_rejections
790 .via_filename
791 .push(CrateMismatch { path: loc_orig.clone(), got: String::new() });
792 }
793
794 // Extract the dylib/rlib/rmeta triple.
795 self.extract_lib(crate_rejections, rlibs, rmetas, dylibs, sdylib_interfaces)
796 .map(|opt| opt.map(|(_, lib)| lib))
797 }
798
799 pub(crate) fn into_error(
800 self,
801 crate_rejections: CrateRejections,
802 dep_root: Option<CratePaths>,
803 ) -> CrateError {
804 CrateError::LocatorCombined(Box::new(CombinedLocatorError {
805 crate_name: self.crate_name,
806 dep_root,
807 triple: self.tuple,
808 dll_prefix: self.target.dll_prefix.to_string(),
809 dll_suffix: self.target.dll_suffix.to_string(),
810 crate_rejections,
811 }))
812 }
813}
814
815fn get_metadata_section<'p>(
816 target: &Target,
817 flavor: CrateFlavor,
818 filename: &'p Path,
819 loader: &dyn MetadataLoader,
820 cfg_version: &'static str,
821 crate_name: Option<Symbol>,
822) -> Result<MetadataBlob, MetadataError<'p>> {
823 if !filename.exists() {
824 return Err(MetadataError::NotPresent(filename));
825 }
826 let raw_bytes = match flavor {
827 CrateFlavor::Rlib => {
828 loader.get_rlib_metadata(target, filename).map_err(MetadataError::LoadFailure)?
829 }
830 CrateFlavor::SDylib => {
831 let compiler = std::env::current_exe().map_err(|_err| {
832 MetadataError::LoadFailure(
833 "couldn't obtain current compiler binary when loading sdylib interface"
834 .to_string(),
835 )
836 })?;
837
838 let tmp_path = match TempFileBuilder::new().prefix("rustc").tempdir() {
839 Ok(tmp_path) => tmp_path,
840 Err(error) => {
841 return Err(MetadataError::LoadFailure(format!(
842 "couldn't create a temp dir: {}",
843 error
844 )));
845 }
846 };
847
848 let crate_name = crate_name.unwrap();
849 debug!("compiling {}", filename.display());
850 // FIXME: This will need to be done either within the current compiler session or
851 // as a separate compiler session in the same process.
852 let res = std::process::Command::new(compiler)
853 .arg(&filename)
854 .arg("--emit=metadata")
855 .arg(format!("--crate-name={}", crate_name))
856 .arg(format!("--out-dir={}", tmp_path.path().display()))
857 .arg("-Zbuild-sdylib-interface")
858 .output()
859 .map_err(|err| {
860 MetadataError::LoadFailure(format!("couldn't compile interface: {}", err))
861 })?;
862
863 if !res.status.success() {
864 return Err(MetadataError::LoadFailure(format!(
865 "couldn't compile interface: {}",
866 std::str::from_utf8(&res.stderr).unwrap_or_default()
867 )));
868 }
869
870 // Load interface metadata instead of crate metadata.
871 let interface_metadata_name = format!("lib{}.rmeta", crate_name);
872 let rmeta_file = tmp_path.path().join(interface_metadata_name);
873 debug!("loading interface metadata from {}", rmeta_file.display());
874 let rmeta = get_rmeta_metadata_section(&rmeta_file)?;
875 let _ = std::fs::remove_file(rmeta_file);
876
877 rmeta
878 }
879 CrateFlavor::Dylib => {
880 let buf =
881 loader.get_dylib_metadata(target, filename).map_err(MetadataError::LoadFailure)?;
882 let header_len = METADATA_HEADER.len();
883 // header + u64 length of data
884 let data_start = header_len + 8;
885
886 debug!("checking {} bytes of metadata-version stamp", header_len);
887 let header = &buf[..cmp::min(header_len, buf.len())];
888 if header != METADATA_HEADER {
889 return Err(MetadataError::LoadFailure(format!(
890 "invalid metadata version found: {}",
891 filename.display()
892 )));
893 }
894
895 // Length of the metadata - this allows linkers to pad the section if they want
896 let Ok(len_bytes) =
897 <[u8; 8]>::try_from(&buf[header_len..cmp::min(data_start, buf.len())])
898 else {
899 return Err(MetadataError::LoadFailure(
900 "invalid metadata length found".to_string(),
901 ));
902 };
903 let metadata_len = u64::from_le_bytes(len_bytes) as usize;
904
905 // Header is okay -> inflate the actual metadata
906 buf.slice(|buf| &buf[data_start..(data_start + metadata_len)])
907 }
908 CrateFlavor::Rmeta => get_rmeta_metadata_section(filename)?,
909 };
910 let Ok(blob) = MetadataBlob::new(raw_bytes) else {
911 return Err(MetadataError::LoadFailure(format!(
912 "corrupt metadata encountered in {}",
913 filename.display()
914 )));
915 };
916 match blob.check_compatibility(cfg_version) {
917 Ok(()) => {
918 debug!("metadata blob read okay");
919 Ok(blob)
920 }
921 Err(None) => Err(MetadataError::LoadFailure(format!(
922 "invalid metadata version found: {}",
923 filename.display()
924 ))),
925 Err(Some(found_version)) => {
926 return Err(MetadataError::VersionMismatch {
927 expected_version: rustc_version(cfg_version),
928 found_version,
929 });
930 }
931 }
932}
933
934fn get_rmeta_metadata_section<'a, 'p>(filename: &'p Path) -> Result<OwnedSlice, MetadataError<'a>> {
935 // mmap the file, because only a small fraction of it is read.
936 let file = std::fs::File::open(filename).map_err(|_| {
937 MetadataError::LoadFailure(format!(
938 "failed to open rmeta metadata: '{}'",
939 filename.display()
940 ))
941 })?;
942 let mmap = unsafe { Mmap::map(file) };
943 let mmap = mmap.map_err(|_| {
944 MetadataError::LoadFailure(format!(
945 "failed to mmap rmeta metadata: '{}'",
946 filename.display()
947 ))
948 })?;
949
950 Ok(slice_owned(mmap, Deref::deref))
951}
952
953/// A diagnostic function for dumping crate metadata to an output stream.
954pub fn list_file_metadata(
955 target: &Target,
956 path: &Path,
957 metadata_loader: &dyn MetadataLoader,
958 out: &mut dyn Write,
959 ls_kinds: &[String],
960 cfg_version: &'static str,
961) -> IoResult<()> {
962 let flavor = get_flavor_from_path(path);
963 match get_metadata_section(target, flavor, path, metadata_loader, cfg_version, None) {
964 Ok(metadata) => metadata.list_crate_metadata(out, ls_kinds),
965 Err(msg) => write!(out, "{msg}\n"),
966 }
967}
968
969fn get_flavor_from_path(path: &Path) -> CrateFlavor {
970 let filename = path.file_name().unwrap().to_str().unwrap();
971
972 if filename.ends_with(".rlib") {
973 CrateFlavor::Rlib
974 } else if filename.ends_with(".rmeta") {
975 CrateFlavor::Rmeta
976 } else {
977 CrateFlavor::Dylib
978 }
979}
980
981// ------------------------------------------ Error reporting -------------------------------------
982
983#[derive(Clone, Debug)]
984struct CrateMismatch {
985 path: PathBuf,
986 got: String,
987}
988
989#[derive(Clone, Debug, Default)]
990pub(crate) struct CrateRejections {
991 via_hash: Vec<CrateMismatch>,
992 via_triple: Vec<CrateMismatch>,
993 via_kind: Vec<CrateMismatch>,
994 via_version: Vec<CrateMismatch>,
995 via_filename: Vec<CrateMismatch>,
996 via_invalid: Vec<CrateMismatch>,
997}
998
999/// Candidate rejection reasons collected during crate search.
1000/// If no candidate is accepted, then these reasons are presented to the user,
1001/// otherwise they are ignored.
1002#[derive(Debug)]
1003pub(crate) struct CombinedLocatorError {
1004 crate_name: Symbol,
1005 dep_root: Option<CratePaths>,
1006 triple: TargetTuple,
1007 dll_prefix: String,
1008 dll_suffix: String,
1009 crate_rejections: CrateRejections,
1010}
1011
1012#[derive(Debug)]
1013pub(crate) enum CrateError {
1014 NonAsciiName(Symbol),
1015 ExternLocationNotExist(Symbol, PathBuf),
1016 ExternLocationNotFile(Symbol, PathBuf),
1017 MultipleCandidates(Symbol, CrateFlavor, Vec<PathBuf>),
1018 FullMetadataNotFound(Symbol, CrateFlavor),
1019 SymbolConflictsCurrent(Symbol),
1020 StableCrateIdCollision(Symbol, Symbol),
1021 DlOpen(String, String),
1022 DlSym(String, String),
1023 LocatorCombined(Box<CombinedLocatorError>),
1024 NotFound(Symbol),
1025}
1026
1027enum MetadataError<'a> {
1028 /// The file was missing.
1029 NotPresent(&'a Path),
1030 /// The file was present and invalid.
1031 LoadFailure(String),
1032 /// The file was present, but compiled with a different rustc version.
1033 VersionMismatch { expected_version: String, found_version: String },
1034}
1035
1036impl fmt::Display for MetadataError<'_> {
1037 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1038 match self {
1039 MetadataError::NotPresent(filename) => {
1040 f.write_str(&format!("no such file: '{}'", filename.display()))
1041 }
1042 MetadataError::LoadFailure(msg) => f.write_str(msg),
1043 MetadataError::VersionMismatch { expected_version, found_version } => {
1044 f.write_str(&format!(
1045 "rustc version mismatch. expected {}, found {}",
1046 expected_version, found_version,
1047 ))
1048 }
1049 }
1050 }
1051}
1052
1053impl CrateError {
1054 pub(crate) fn report(self, sess: &Session, span: Span, missing_core: bool) {
1055 let dcx = sess.dcx();
1056 match self {
1057 CrateError::NonAsciiName(crate_name) => {
1058 dcx.emit_err(errors::NonAsciiName { span, crate_name });
1059 }
1060 CrateError::ExternLocationNotExist(crate_name, loc) => {
1061 dcx.emit_err(errors::ExternLocationNotExist { span, crate_name, location: &loc });
1062 }
1063 CrateError::ExternLocationNotFile(crate_name, loc) => {
1064 dcx.emit_err(errors::ExternLocationNotFile { span, crate_name, location: &loc });
1065 }
1066 CrateError::MultipleCandidates(crate_name, flavor, candidates) => {
1067 dcx.emit_err(errors::MultipleCandidates { span, crate_name, flavor, candidates });
1068 }
1069 CrateError::FullMetadataNotFound(crate_name, flavor) => {
1070 dcx.emit_err(errors::FullMetadataNotFound { span, crate_name, flavor });
1071 }
1072 CrateError::SymbolConflictsCurrent(root_name) => {
1073 dcx.emit_err(errors::SymbolConflictsCurrent { span, crate_name: root_name });
1074 }
1075 CrateError::StableCrateIdCollision(crate_name0, crate_name1) => {
1076 dcx.emit_err(errors::StableCrateIdCollision { span, crate_name0, crate_name1 });
1077 }
1078 CrateError::DlOpen(path, err) | CrateError::DlSym(path, err) => {
1079 dcx.emit_err(errors::DlError { span, path, err });
1080 }
1081 CrateError::LocatorCombined(locator) => {
1082 let crate_name = locator.crate_name;
1083 let add_info = match &locator.dep_root {
1084 None => String::new(),
1085 Some(r) => format!(" which `{}` depends on", r.name),
1086 };
1087 if !locator.crate_rejections.via_filename.is_empty() {
1088 let mismatches = locator.crate_rejections.via_filename.iter();
1089 for CrateMismatch { path, .. } in mismatches {
1090 dcx.emit_err(errors::CrateLocationUnknownType { span, path, crate_name });
1091 dcx.emit_err(errors::LibFilenameForm {
1092 span,
1093 dll_prefix: &locator.dll_prefix,
1094 dll_suffix: &locator.dll_suffix,
1095 });
1096 }
1097 }
1098 let mut found_crates = String::new();
1099 if !locator.crate_rejections.via_hash.is_empty() {
1100 let mismatches = locator.crate_rejections.via_hash.iter();
1101 for CrateMismatch { path, .. } in mismatches {
1102 found_crates.push_str(&format!(
1103 "\ncrate `{}`: {}",
1104 crate_name,
1105 path.display()
1106 ));
1107 }
1108 if let Some(r) = locator.dep_root {
1109 for path in r.source.paths() {
1110 found_crates.push_str(&format!(
1111 "\ncrate `{}`: {}",
1112 r.name,
1113 path.display()
1114 ));
1115 }
1116 }
1117 dcx.emit_err(errors::NewerCrateVersion {
1118 span,
1119 crate_name,
1120 add_info,
1121 found_crates,
1122 });
1123 } else if !locator.crate_rejections.via_triple.is_empty() {
1124 let mismatches = locator.crate_rejections.via_triple.iter();
1125 for CrateMismatch { path, got } in mismatches {
1126 found_crates.push_str(&format!(
1127 "\ncrate `{}`, target triple {}: {}",
1128 crate_name,
1129 got,
1130 path.display(),
1131 ));
1132 }
1133 dcx.emit_err(errors::NoCrateWithTriple {
1134 span,
1135 crate_name,
1136 locator_triple: locator.triple.tuple(),
1137 add_info,
1138 found_crates,
1139 });
1140 } else if !locator.crate_rejections.via_kind.is_empty() {
1141 let mismatches = locator.crate_rejections.via_kind.iter();
1142 for CrateMismatch { path, .. } in mismatches {
1143 found_crates.push_str(&format!(
1144 "\ncrate `{}`: {}",
1145 crate_name,
1146 path.display()
1147 ));
1148 }
1149 dcx.emit_err(errors::FoundStaticlib {
1150 span,
1151 crate_name,
1152 add_info,
1153 found_crates,
1154 });
1155 } else if !locator.crate_rejections.via_version.is_empty() {
1156 let mismatches = locator.crate_rejections.via_version.iter();
1157 for CrateMismatch { path, got } in mismatches {
1158 found_crates.push_str(&format!(
1159 "\ncrate `{}` compiled by {}: {}",
1160 crate_name,
1161 got,
1162 path.display(),
1163 ));
1164 }
1165 dcx.emit_err(errors::IncompatibleRustc {
1166 span,
1167 crate_name,
1168 add_info,
1169 found_crates,
1170 rustc_version: rustc_version(sess.cfg_version),
1171 });
1172 } else if !locator.crate_rejections.via_invalid.is_empty() {
1173 let mut crate_rejections = Vec::new();
1174 for CrateMismatch { path: _, got } in locator.crate_rejections.via_invalid {
1175 crate_rejections.push(got);
1176 }
1177 dcx.emit_err(errors::InvalidMetadataFiles {
1178 span,
1179 crate_name,
1180 add_info,
1181 crate_rejections,
1182 });
1183 } else {
1184 let error = errors::CannotFindCrate {
1185 span,
1186 crate_name,
1187 add_info,
1188 missing_core,
1189 current_crate: sess
1190 .opts
1191 .crate_name
1192 .clone()
1193 .unwrap_or_else(|| "<unknown>".to_string()),
1194 is_nightly_build: sess.is_nightly_build(),
1195 profiler_runtime: Symbol::intern(&sess.opts.unstable_opts.profiler_runtime),
1196 locator_triple: locator.triple,
1197 is_ui_testing: sess.opts.unstable_opts.ui_testing,
1198 is_tier_3: sess.target.metadata.tier == Some(3),
1199 };
1200 // The diagnostic for missing core is very good, but it is followed by a lot of
1201 // other diagnostics that do not add information.
1202 if missing_core {
1203 dcx.emit_fatal(error);
1204 } else {
1205 dcx.emit_err(error);
1206 }
1207 }
1208 }
1209 CrateError::NotFound(crate_name) => {
1210 let error = errors::CannotFindCrate {
1211 span,
1212 crate_name,
1213 add_info: String::new(),
1214 missing_core,
1215 current_crate: sess
1216 .opts
1217 .crate_name
1218 .clone()
1219 .unwrap_or_else(|| "<unknown>".to_string()),
1220 is_nightly_build: sess.is_nightly_build(),
1221 profiler_runtime: Symbol::intern(&sess.opts.unstable_opts.profiler_runtime),
1222 locator_triple: sess.opts.target_triple.clone(),
1223 is_ui_testing: sess.opts.unstable_opts.ui_testing,
1224 is_tier_3: sess.target.metadata.tier == Some(3),
1225 };
1226 // The diagnostic for missing core is very good, but it is followed by a lot of
1227 // other diagnostics that do not add information.
1228 if missing_core {
1229 dcx.emit_fatal(error);
1230 } else {
1231 dcx.emit_err(error);
1232 }
1233 }
1234 }
1235 }
1236}