rustc_metadata/
locator.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
//! Finds crate binaries and loads their metadata
//!
//! Might I be the first to welcome you to a world of platform differences,
//! version requirements, dependency graphs, conflicting desires, and fun! This
//! is the major guts (along with metadata::creader) of the compiler for loading
//! crates and resolving dependencies. Let's take a tour!
//!
//! # The problem
//!
//! Each invocation of the compiler is immediately concerned with one primary
//! problem, to connect a set of crates to resolved crates on the filesystem.
//! Concretely speaking, the compiler follows roughly these steps to get here:
//!
//! 1. Discover a set of `extern crate` statements.
//! 2. Transform these directives into crate names. If the directive does not
//!    have an explicit name, then the identifier is the name.
//! 3. For each of these crate names, find a corresponding crate on the
//!    filesystem.
//!
//! Sounds easy, right? Let's walk into some of the nuances.
//!
//! ## Transitive Dependencies
//!
//! Let's say we've got three crates: A, B, and C. A depends on B, and B depends
//! on C. When we're compiling A, we primarily need to find and locate B, but we
//! also end up needing to find and locate C as well.
//!
//! The reason for this is that any of B's types could be composed of C's types,
//! any function in B could return a type from C, etc. To be able to guarantee
//! that we can always type-check/translate any function, we have to have
//! complete knowledge of the whole ecosystem, not just our immediate
//! dependencies.
//!
//! So now as part of the "find a corresponding crate on the filesystem" step
//! above, this involves also finding all crates for *all upstream
//! dependencies*. This includes all dependencies transitively.
//!
//! ## Rlibs and Dylibs
//!
//! The compiler has two forms of intermediate dependencies. These are dubbed
//! rlibs and dylibs for the static and dynamic variants, respectively. An rlib
//! is a rustc-defined file format (currently just an ar archive) while a dylib
//! is a platform-defined dynamic library. Each library has a metadata somewhere
//! inside of it.
//!
//! A third kind of dependency is an rmeta file. These are metadata files and do
//! not contain any code, etc. To a first approximation, these are treated in the
//! same way as rlibs. Where there is both an rlib and an rmeta file, the rlib
//! gets priority (even if the rmeta file is newer). An rmeta file is only
//! useful for checking a downstream crate, attempting to link one will cause an
//! error.
//!
//! When translating a crate name to a crate on the filesystem, we all of a
//! sudden need to take into account both rlibs and dylibs! Linkage later on may
//! use either one of these files, as each has their pros/cons. The job of crate
//! loading is to discover what's possible by finding all candidates.
//!
//! Most parts of this loading systems keep the dylib/rlib as just separate
//! variables.
//!
//! ## Where to look?
//!
//! We can't exactly scan your whole hard drive when looking for dependencies,
//! so we need to places to look. Currently the compiler will implicitly add the
//! target lib search path ($prefix/lib/rustlib/$target/lib) to any compilation,
//! and otherwise all -L flags are added to the search paths.
//!
//! ## What criterion to select on?
//!
//! This is a pretty tricky area of loading crates. Given a file, how do we know
//! whether it's the right crate? Currently, the rules look along these lines:
//!
//! 1. Does the filename match an rlib/dylib pattern? That is to say, does the
//!    filename have the right prefix/suffix?
//! 2. Does the filename have the right prefix for the crate name being queried?
//!    This is filtering for files like `libfoo*.rlib` and such. If the crate
//!    we're looking for was originally compiled with -C extra-filename, the
//!    extra filename will be included in this prefix to reduce reading
//!    metadata from crates that would otherwise share our prefix.
//! 3. Is the file an actual rust library? This is done by loading the metadata
//!    from the library and making sure it's actually there.
//! 4. Does the name in the metadata agree with the name of the library?
//! 5. Does the target in the metadata agree with the current target?
//! 6. Does the SVH match? (more on this later)
//!
//! If the file answers `yes` to all these questions, then the file is
//! considered as being *candidate* for being accepted. It is illegal to have
//! more than two candidates as the compiler has no method by which to resolve
//! this conflict. Additionally, rlib/dylib candidates are considered
//! separately.
//!
//! After all this has happened, we have 1 or two files as candidates. These
//! represent the rlib/dylib file found for a library, and they're returned as
//! being found.
//!
//! ### What about versions?
//!
//! A lot of effort has been put forth to remove versioning from the compiler.
//! There have been forays in the past to have versioning baked in, but it was
//! largely always deemed insufficient to the point that it was recognized that
//! it's probably something the compiler shouldn't do anyway due to its
//! complicated nature and the state of the half-baked solutions.
//!
//! With a departure from versioning, the primary criterion for loading crates
//! is just the name of a crate. If we stopped here, it would imply that you
//! could never link two crates of the same name from different sources
//! together, which is clearly a bad state to be in.
//!
//! To resolve this problem, we come to the next section!
//!
//! # Expert Mode
//!
//! A number of flags have been added to the compiler to solve the "version
//! problem" in the previous section, as well as generally enabling more
//! powerful usage of the crate loading system of the compiler. The goal of
//! these flags and options are to enable third-party tools to drive the
//! compiler with prior knowledge about how the world should look.
//!
//! ## The `--extern` flag
//!
//! The compiler accepts a flag of this form a number of times:
//!
//! ```text
//! --extern crate-name=path/to/the/crate.rlib
//! ```
//!
//! This flag is basically the following letter to the compiler:
//!
//! > Dear rustc,
//! >
//! > When you are attempting to load the immediate dependency `crate-name`, I
//! > would like you to assume that the library is located at
//! > `path/to/the/crate.rlib`, and look nowhere else. Also, please do not
//! > assume that the path I specified has the name `crate-name`.
//!
//! This flag basically overrides most matching logic except for validating that
//! the file is indeed a rust library. The same `crate-name` can be specified
//! twice to specify the rlib/dylib pair.
//!
//! ## Enabling "multiple versions"
//!
//! This basically boils down to the ability to specify arbitrary packages to
//! the compiler. For example, if crate A wanted to use Bv1 and Bv2, then it
//! would look something like:
//!
//! ```compile_fail,E0463
//! extern crate b1;
//! extern crate b2;
//!
//! fn main() {}
//! ```
//!
//! and the compiler would be invoked as:
//!
//! ```text
//! rustc a.rs --extern b1=path/to/libb1.rlib --extern b2=path/to/libb2.rlib
//! ```
//!
//! In this scenario there are two crates named `b` and the compiler must be
//! manually driven to be informed where each crate is.
//!
//! ## Frobbing symbols
//!
//! One of the immediate problems with linking the same library together twice
//! in the same problem is dealing with duplicate symbols. The primary way to
//! deal with this in rustc is to add hashes to the end of each symbol.
//!
//! In order to force hashes to change between versions of a library, if
//! desired, the compiler exposes an option `-C metadata=foo`, which is used to
//! initially seed each symbol hash. The string `foo` is prepended to each
//! string-to-hash to ensure that symbols change over time.
//!
//! ## Loading transitive dependencies
//!
//! Dealing with same-named-but-distinct crates is not just a local problem, but
//! one that also needs to be dealt with for transitive dependencies. Note that
//! in the letter above `--extern` flags only apply to the *local* set of
//! dependencies, not the upstream transitive dependencies. Consider this
//! dependency graph:
//!
//! ```text
//! A.1   A.2
//! |     |
//! |     |
//! B     C
//!  \   /
//!   \ /
//!    D
//! ```
//!
//! In this scenario, when we compile `D`, we need to be able to distinctly
//! resolve `A.1` and `A.2`, but an `--extern` flag cannot apply to these
//! transitive dependencies.
//!
//! Note that the key idea here is that `B` and `C` are both *already compiled*.
//! That is, they have already resolved their dependencies. Due to unrelated
//! technical reasons, when a library is compiled, it is only compatible with
//! the *exact same* version of the upstream libraries it was compiled against.
//! We use the "Strict Version Hash" to identify the exact copy of an upstream
//! library.
//!
//! With this knowledge, we know that `B` and `C` will depend on `A` with
//! different SVH values, so we crawl the normal `-L` paths looking for
//! `liba*.rlib` and filter based on the contained SVH.
//!
//! In the end, this ends up not needing `--extern` to specify upstream
//! transitive dependencies.
//!
//! # Wrapping up
//!
//! That's the general overview of loading crates in the compiler, but it's by
//! no means all of the necessary details. Take a look at the rest of
//! metadata::locator or metadata::creader for all the juicy details!

use std::borrow::Cow;
use std::io::{Result as IoResult, Write};
use std::ops::Deref;
use std::path::{Path, PathBuf};
use std::{cmp, fmt};

use rustc_data_structures::fx::{FxHashSet, FxIndexMap};
use rustc_data_structures::memmap::Mmap;
use rustc_data_structures::owned_slice::slice_owned;
use rustc_data_structures::svh::Svh;
use rustc_errors::{DiagArgValue, IntoDiagArg};
use rustc_fs_util::try_canonicalize;
use rustc_session::Session;
use rustc_session::cstore::CrateSource;
use rustc_session::filesearch::FileSearch;
use rustc_session::search_paths::PathKind;
use rustc_session::utils::CanonicalizedPath;
use rustc_span::{Span, Symbol};
use rustc_target::spec::{Target, TargetTuple};
use tracing::{debug, info};

use crate::creader::{Library, MetadataLoader};
use crate::errors;
use crate::rmeta::{METADATA_HEADER, MetadataBlob, rustc_version};

#[derive(Clone)]
pub(crate) struct CrateLocator<'a> {
    // Immutable per-session configuration.
    only_needs_metadata: bool,
    sysroot: &'a Path,
    metadata_loader: &'a dyn MetadataLoader,
    cfg_version: &'static str,

    // Immutable per-search configuration.
    crate_name: Symbol,
    exact_paths: Vec<CanonicalizedPath>,
    pub hash: Option<Svh>,
    extra_filename: Option<&'a str>,
    pub target: &'a Target,
    pub tuple: TargetTuple,
    pub filesearch: &'a FileSearch,
    pub is_proc_macro: bool,

    pub path_kind: PathKind,
    // Mutable in-progress state or output.
    crate_rejections: CrateRejections,
}

#[derive(Clone)]
pub(crate) struct CratePaths {
    name: Symbol,
    source: CrateSource,
}

impl CratePaths {
    pub(crate) fn new(name: Symbol, source: CrateSource) -> CratePaths {
        CratePaths { name, source }
    }
}

#[derive(Copy, Clone, PartialEq)]
pub(crate) enum CrateFlavor {
    Rlib,
    Rmeta,
    Dylib,
}

impl fmt::Display for CrateFlavor {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.write_str(match *self {
            CrateFlavor::Rlib => "rlib",
            CrateFlavor::Rmeta => "rmeta",
            CrateFlavor::Dylib => "dylib",
        })
    }
}

impl IntoDiagArg for CrateFlavor {
    fn into_diag_arg(self) -> rustc_errors::DiagArgValue {
        match self {
            CrateFlavor::Rlib => DiagArgValue::Str(Cow::Borrowed("rlib")),
            CrateFlavor::Rmeta => DiagArgValue::Str(Cow::Borrowed("rmeta")),
            CrateFlavor::Dylib => DiagArgValue::Str(Cow::Borrowed("dylib")),
        }
    }
}

impl<'a> CrateLocator<'a> {
    pub(crate) fn new(
        sess: &'a Session,
        metadata_loader: &'a dyn MetadataLoader,
        crate_name: Symbol,
        is_rlib: bool,
        hash: Option<Svh>,
        extra_filename: Option<&'a str>,
        path_kind: PathKind,
    ) -> CrateLocator<'a> {
        let needs_object_code = sess.opts.output_types.should_codegen();
        // If we're producing an rlib, then we don't need object code.
        // Or, if we're not producing object code, then we don't need it either
        // (e.g., if we're a cdylib but emitting just metadata).
        let only_needs_metadata = is_rlib || !needs_object_code;

        CrateLocator {
            only_needs_metadata,
            sysroot: &sess.sysroot,
            metadata_loader,
            cfg_version: sess.cfg_version,
            crate_name,
            exact_paths: if hash.is_none() {
                sess.opts
                    .externs
                    .get(crate_name.as_str())
                    .into_iter()
                    .filter_map(|entry| entry.files())
                    .flatten()
                    .cloned()
                    .collect()
            } else {
                // SVH being specified means this is a transitive dependency,
                // so `--extern` options do not apply.
                Vec::new()
            },
            hash,
            extra_filename,
            target: &sess.target,
            tuple: sess.opts.target_triple.clone(),
            filesearch: sess.target_filesearch(),
            path_kind,
            is_proc_macro: false,
            crate_rejections: CrateRejections::default(),
        }
    }

    pub(crate) fn reset(&mut self) {
        self.crate_rejections.via_hash.clear();
        self.crate_rejections.via_triple.clear();
        self.crate_rejections.via_kind.clear();
        self.crate_rejections.via_version.clear();
        self.crate_rejections.via_filename.clear();
        self.crate_rejections.via_invalid.clear();
    }

    pub(crate) fn maybe_load_library_crate(&mut self) -> Result<Option<Library>, CrateError> {
        if !self.exact_paths.is_empty() {
            return self.find_commandline_library();
        }
        let mut seen_paths = FxHashSet::default();
        if let Some(extra_filename) = self.extra_filename {
            if let library @ Some(_) = self.find_library_crate(extra_filename, &mut seen_paths)? {
                return Ok(library);
            }
        }
        self.find_library_crate("", &mut seen_paths)
    }

    fn find_library_crate(
        &mut self,
        extra_prefix: &str,
        seen_paths: &mut FxHashSet<PathBuf>,
    ) -> Result<Option<Library>, CrateError> {
        let rmeta_prefix = &format!("lib{}{}", self.crate_name, extra_prefix);
        let rlib_prefix = rmeta_prefix;
        let dylib_prefix =
            &format!("{}{}{}", self.target.dll_prefix, self.crate_name, extra_prefix);
        let staticlib_prefix =
            &format!("{}{}{}", self.target.staticlib_prefix, self.crate_name, extra_prefix);

        let rmeta_suffix = ".rmeta";
        let rlib_suffix = ".rlib";
        let dylib_suffix = &self.target.dll_suffix;
        let staticlib_suffix = &self.target.staticlib_suffix;

        let mut candidates: FxIndexMap<_, (FxIndexMap<_, _>, FxIndexMap<_, _>, FxIndexMap<_, _>)> =
            Default::default();

        // First, find all possible candidate rlibs and dylibs purely based on
        // the name of the files themselves. We're trying to match against an
        // exact crate name and a possibly an exact hash.
        //
        // During this step, we can filter all found libraries based on the
        // name and id found in the crate id (we ignore the path portion for
        // filename matching), as well as the exact hash (if specified). If we
        // end up having many candidates, we must look at the metadata to
        // perform exact matches against hashes/crate ids. Note that opening up
        // the metadata is where we do an exact match against the full contents
        // of the crate id (path/name/id).
        //
        // The goal of this step is to look at as little metadata as possible.
        // Unfortunately, the prefix-based matching sometimes is over-eager.
        // E.g. if `rlib_suffix` is `libstd` it'll match the file
        // `libstd_detect-8d6701fb958915ad.rlib` (incorrect) as well as
        // `libstd-f3ab5b1dea981f17.rlib` (correct). But this is hard to avoid
        // given that `extra_filename` comes from the `-C extra-filename`
        // option and thus can be anything, and the incorrect match will be
        // handled safely in `extract_one`.
        for search_path in self.filesearch.search_paths(self.path_kind) {
            debug!("searching {}", search_path.dir.display());
            let spf = &search_path.files;

            let mut should_check_staticlibs = true;
            for (prefix, suffix, kind) in [
                (rlib_prefix.as_str(), rlib_suffix, CrateFlavor::Rlib),
                (rmeta_prefix.as_str(), rmeta_suffix, CrateFlavor::Rmeta),
                (dylib_prefix, dylib_suffix, CrateFlavor::Dylib),
            ] {
                if prefix == staticlib_prefix && suffix == staticlib_suffix {
                    should_check_staticlibs = false;
                }
                if let Some(matches) = spf.query(prefix, suffix) {
                    for (hash, spf) in matches {
                        info!("lib candidate: {}", spf.path.display());

                        let (rlibs, rmetas, dylibs) =
                            candidates.entry(hash.to_string()).or_default();
                        let path =
                            try_canonicalize(&spf.path).unwrap_or_else(|_| spf.path.to_path_buf());
                        if seen_paths.contains(&path) {
                            continue;
                        };
                        seen_paths.insert(path.clone());
                        match kind {
                            CrateFlavor::Rlib => rlibs.insert(path, search_path.kind),
                            CrateFlavor::Rmeta => rmetas.insert(path, search_path.kind),
                            CrateFlavor::Dylib => dylibs.insert(path, search_path.kind),
                        };
                    }
                }
            }
            if let Some(static_matches) = should_check_staticlibs
                .then(|| spf.query(staticlib_prefix, staticlib_suffix))
                .flatten()
            {
                for (_, spf) in static_matches {
                    self.crate_rejections.via_kind.push(CrateMismatch {
                        path: spf.path.to_path_buf(),
                        got: "static".to_string(),
                    });
                }
            }
        }

        // We have now collected all known libraries into a set of candidates
        // keyed of the filename hash listed. For each filename, we also have a
        // list of rlibs/dylibs that apply. Here, we map each of these lists
        // (per hash), to a Library candidate for returning.
        //
        // A Library candidate is created if the metadata for the set of
        // libraries corresponds to the crate id and hash criteria that this
        // search is being performed for.
        let mut libraries = FxIndexMap::default();
        for (_hash, (rlibs, rmetas, dylibs)) in candidates {
            if let Some((svh, lib)) = self.extract_lib(rlibs, rmetas, dylibs)? {
                libraries.insert(svh, lib);
            }
        }

        // Having now translated all relevant found hashes into libraries, see
        // what we've got and figure out if we found multiple candidates for
        // libraries or not.
        match libraries.len() {
            0 => Ok(None),
            1 => Ok(Some(libraries.into_iter().next().unwrap().1)),
            _ => {
                let mut libraries: Vec<_> = libraries.into_values().collect();

                libraries.sort_by_cached_key(|lib| lib.source.paths().next().unwrap().clone());
                let candidates = libraries
                    .iter()
                    .map(|lib| lib.source.paths().next().unwrap().clone())
                    .collect::<Vec<_>>();

                Err(CrateError::MultipleCandidates(
                    self.crate_name,
                    // these are the same for all candidates
                    get_flavor_from_path(candidates.first().unwrap()),
                    candidates,
                ))
            }
        }
    }

    fn extract_lib(
        &mut self,
        rlibs: FxIndexMap<PathBuf, PathKind>,
        rmetas: FxIndexMap<PathBuf, PathKind>,
        dylibs: FxIndexMap<PathBuf, PathKind>,
    ) -> Result<Option<(Svh, Library)>, CrateError> {
        let mut slot = None;
        // Order here matters, rmeta should come first.
        //
        // Make sure there's at most one rlib and at most one dylib.
        //
        // See comment in `extract_one` below.
        let source = CrateSource {
            rmeta: self.extract_one(rmetas, CrateFlavor::Rmeta, &mut slot)?,
            rlib: self.extract_one(rlibs, CrateFlavor::Rlib, &mut slot)?,
            dylib: self.extract_one(dylibs, CrateFlavor::Dylib, &mut slot)?,
        };
        Ok(slot.map(|(svh, metadata, _)| (svh, Library { source, metadata })))
    }

    fn needs_crate_flavor(&self, flavor: CrateFlavor) -> bool {
        if flavor == CrateFlavor::Dylib && self.is_proc_macro {
            return true;
        }

        if self.only_needs_metadata {
            flavor == CrateFlavor::Rmeta
        } else {
            // we need all flavors (perhaps not true, but what we do for now)
            true
        }
    }

    // Attempts to extract *one* library from the set `m`. If the set has no
    // elements, `None` is returned. If the set has more than one element, then
    // the errors and notes are emitted about the set of libraries.
    //
    // With only one library in the set, this function will extract it, and then
    // read the metadata from it if `*slot` is `None`. If the metadata couldn't
    // be read, it is assumed that the file isn't a valid rust library (no
    // errors are emitted).
    //
    // The `PathBuf` in `slot` will only be used for diagnostic purposes.
    fn extract_one(
        &mut self,
        m: FxIndexMap<PathBuf, PathKind>,
        flavor: CrateFlavor,
        slot: &mut Option<(Svh, MetadataBlob, PathBuf)>,
    ) -> Result<Option<(PathBuf, PathKind)>, CrateError> {
        // If we are producing an rlib, and we've already loaded metadata, then
        // we should not attempt to discover further crate sources (unless we're
        // locating a proc macro; exact logic is in needs_crate_flavor). This means
        // that under -Zbinary-dep-depinfo we will not emit a dependency edge on
        // the *unused* rlib, and by returning `None` here immediately we
        // guarantee that we do indeed not use it.
        //
        // See also #68149 which provides more detail on why emitting the
        // dependency on the rlib is a bad thing.
        if slot.is_some() {
            if m.is_empty() || !self.needs_crate_flavor(flavor) {
                return Ok(None);
            }
        }

        let mut ret: Option<(PathBuf, PathKind)> = None;
        let mut err_data: Option<Vec<PathBuf>> = None;
        for (lib, kind) in m {
            info!("{} reading metadata from: {}", flavor, lib.display());
            if flavor == CrateFlavor::Rmeta && lib.metadata().is_ok_and(|m| m.len() == 0) {
                // Empty files will cause get_metadata_section to fail. Rmeta
                // files can be empty, for example with binaries (which can
                // often appear with `cargo check` when checking a library as
                // a unittest). We don't want to emit a user-visible warning
                // in this case as it is not a real problem.
                debug!("skipping empty file");
                continue;
            }
            let (hash, metadata) = match get_metadata_section(
                self.target,
                flavor,
                &lib,
                self.metadata_loader,
                self.cfg_version,
            ) {
                Ok(blob) => {
                    if let Some(h) = self.crate_matches(&blob, &lib) {
                        (h, blob)
                    } else {
                        info!("metadata mismatch");
                        continue;
                    }
                }
                Err(MetadataError::VersionMismatch { expected_version, found_version }) => {
                    // The file was present and created by the same compiler version, but we
                    // couldn't load it for some reason. Give a hard error instead of silently
                    // ignoring it, but only if we would have given an error anyway.
                    info!(
                        "Rejecting via version: expected {} got {}",
                        expected_version, found_version
                    );
                    self.crate_rejections
                        .via_version
                        .push(CrateMismatch { path: lib, got: found_version });
                    continue;
                }
                Err(MetadataError::LoadFailure(err)) => {
                    info!("no metadata found: {}", err);
                    // The file was present and created by the same compiler version, but we
                    // couldn't load it for some reason. Give a hard error instead of silently
                    // ignoring it, but only if we would have given an error anyway.
                    self.crate_rejections.via_invalid.push(CrateMismatch { path: lib, got: err });
                    continue;
                }
                Err(err @ MetadataError::NotPresent(_)) => {
                    info!("no metadata found: {}", err);
                    continue;
                }
            };
            // If we see multiple hashes, emit an error about duplicate candidates.
            if slot.as_ref().is_some_and(|s| s.0 != hash) {
                if let Some(candidates) = err_data {
                    return Err(CrateError::MultipleCandidates(
                        self.crate_name,
                        flavor,
                        candidates,
                    ));
                }
                err_data = Some(vec![slot.take().unwrap().2]);
            }
            if let Some(candidates) = &mut err_data {
                candidates.push(lib);
                continue;
            }

            // Ok so at this point we've determined that `(lib, kind)` above is
            // a candidate crate to load, and that `slot` is either none (this
            // is the first crate of its kind) or if some the previous path has
            // the exact same hash (e.g., it's the exact same crate).
            //
            // In principle these two candidate crates are exactly the same so
            // we can choose either of them to link. As a stupidly gross hack,
            // however, we favor crate in the sysroot.
            //
            // You can find more info in rust-lang/rust#39518 and various linked
            // issues, but the general gist is that during testing libstd the
            // compilers has two candidates to choose from: one in the sysroot
            // and one in the deps folder. These two crates are the exact same
            // crate but if the compiler chooses the one in the deps folder
            // it'll cause spurious errors on Windows.
            //
            // As a result, we favor the sysroot crate here. Note that the
            // candidates are all canonicalized, so we canonicalize the sysroot
            // as well.
            if let Some((prev, _)) = &ret {
                let sysroot = self.sysroot;
                let sysroot = try_canonicalize(sysroot).unwrap_or_else(|_| sysroot.to_path_buf());
                if prev.starts_with(&sysroot) {
                    continue;
                }
            }
            *slot = Some((hash, metadata, lib.clone()));
            ret = Some((lib, kind));
        }

        if let Some(candidates) = err_data {
            Err(CrateError::MultipleCandidates(self.crate_name, flavor, candidates))
        } else {
            Ok(ret)
        }
    }

    fn crate_matches(&mut self, metadata: &MetadataBlob, libpath: &Path) -> Option<Svh> {
        let header = metadata.get_header();
        if header.is_proc_macro_crate != self.is_proc_macro {
            info!(
                "Rejecting via proc macro: expected {} got {}",
                self.is_proc_macro, header.is_proc_macro_crate,
            );
            return None;
        }

        if self.exact_paths.is_empty() && self.crate_name != header.name {
            info!("Rejecting via crate name");
            return None;
        }

        if header.triple != self.tuple {
            info!("Rejecting via crate triple: expected {} got {}", self.tuple, header.triple);
            self.crate_rejections.via_triple.push(CrateMismatch {
                path: libpath.to_path_buf(),
                got: header.triple.to_string(),
            });
            return None;
        }

        let hash = header.hash;
        if let Some(expected_hash) = self.hash {
            if hash != expected_hash {
                info!("Rejecting via hash: expected {} got {}", expected_hash, hash);
                self.crate_rejections
                    .via_hash
                    .push(CrateMismatch { path: libpath.to_path_buf(), got: hash.to_string() });
                return None;
            }
        }

        Some(hash)
    }

    fn find_commandline_library(&mut self) -> Result<Option<Library>, CrateError> {
        // First, filter out all libraries that look suspicious. We only accept
        // files which actually exist that have the correct naming scheme for
        // rlibs/dylibs.
        let mut rlibs = FxIndexMap::default();
        let mut rmetas = FxIndexMap::default();
        let mut dylibs = FxIndexMap::default();
        for loc in &self.exact_paths {
            let loc_canon = loc.canonicalized();
            let loc_orig = loc.original();
            if !loc_canon.exists() {
                return Err(CrateError::ExternLocationNotExist(self.crate_name, loc_orig.clone()));
            }
            if !loc_orig.is_file() {
                return Err(CrateError::ExternLocationNotFile(self.crate_name, loc_orig.clone()));
            }
            // Note to take care and match against the non-canonicalized name:
            // some systems save build artifacts into content-addressed stores
            // that do not preserve extensions, and then link to them using
            // e.g. symbolic links. If we canonicalize too early, we resolve
            // the symlink, the file type is lost and we might treat rlibs and
            // rmetas as dylibs.
            let Some(file) = loc_orig.file_name().and_then(|s| s.to_str()) else {
                return Err(CrateError::ExternLocationNotFile(self.crate_name, loc_orig.clone()));
            };
            // FnMut cannot return reference to captured value, so references
            // must be taken outside the closure.
            let rlibs = &mut rlibs;
            let rmetas = &mut rmetas;
            let dylibs = &mut dylibs;
            let type_via_filename = (|| {
                if file.starts_with("lib") {
                    if file.ends_with(".rlib") {
                        return Some(rlibs);
                    }
                    if file.ends_with(".rmeta") {
                        return Some(rmetas);
                    }
                }
                let dll_prefix = self.target.dll_prefix.as_ref();
                let dll_suffix = self.target.dll_suffix.as_ref();
                if file.starts_with(dll_prefix) && file.ends_with(dll_suffix) {
                    return Some(dylibs);
                }
                None
            })();
            match type_via_filename {
                Some(type_via_filename) => {
                    type_via_filename.insert(loc_canon.clone(), PathKind::ExternFlag);
                }
                None => {
                    self.crate_rejections
                        .via_filename
                        .push(CrateMismatch { path: loc_orig.clone(), got: String::new() });
                }
            }
        }

        // Extract the dylib/rlib/rmeta triple.
        self.extract_lib(rlibs, rmetas, dylibs).map(|opt| opt.map(|(_, lib)| lib))
    }

    pub(crate) fn into_error(self, root: Option<CratePaths>) -> CrateError {
        CrateError::LocatorCombined(Box::new(CombinedLocatorError {
            crate_name: self.crate_name,
            root,
            triple: self.tuple,
            dll_prefix: self.target.dll_prefix.to_string(),
            dll_suffix: self.target.dll_suffix.to_string(),
            crate_rejections: self.crate_rejections,
        }))
    }
}

fn get_metadata_section<'p>(
    target: &Target,
    flavor: CrateFlavor,
    filename: &'p Path,
    loader: &dyn MetadataLoader,
    cfg_version: &'static str,
) -> Result<MetadataBlob, MetadataError<'p>> {
    if !filename.exists() {
        return Err(MetadataError::NotPresent(filename));
    }
    let raw_bytes = match flavor {
        CrateFlavor::Rlib => {
            loader.get_rlib_metadata(target, filename).map_err(MetadataError::LoadFailure)?
        }
        CrateFlavor::Dylib => {
            let buf =
                loader.get_dylib_metadata(target, filename).map_err(MetadataError::LoadFailure)?;
            let header_len = METADATA_HEADER.len();
            // header + u64 length of data
            let data_start = header_len + 8;

            debug!("checking {} bytes of metadata-version stamp", header_len);
            let header = &buf[..cmp::min(header_len, buf.len())];
            if header != METADATA_HEADER {
                return Err(MetadataError::LoadFailure(format!(
                    "invalid metadata version found: {}",
                    filename.display()
                )));
            }

            // Length of the metadata - this allows linkers to pad the section if they want
            let Ok(len_bytes) =
                <[u8; 8]>::try_from(&buf[header_len..cmp::min(data_start, buf.len())])
            else {
                return Err(MetadataError::LoadFailure(
                    "invalid metadata length found".to_string(),
                ));
            };
            let metadata_len = u64::from_le_bytes(len_bytes) as usize;

            // Header is okay -> inflate the actual metadata
            buf.slice(|buf| &buf[data_start..(data_start + metadata_len)])
        }
        CrateFlavor::Rmeta => {
            // mmap the file, because only a small fraction of it is read.
            let file = std::fs::File::open(filename).map_err(|_| {
                MetadataError::LoadFailure(format!(
                    "failed to open rmeta metadata: '{}'",
                    filename.display()
                ))
            })?;
            let mmap = unsafe { Mmap::map(file) };
            let mmap = mmap.map_err(|_| {
                MetadataError::LoadFailure(format!(
                    "failed to mmap rmeta metadata: '{}'",
                    filename.display()
                ))
            })?;

            slice_owned(mmap, Deref::deref)
        }
    };
    let Ok(blob) = MetadataBlob::new(raw_bytes) else {
        return Err(MetadataError::LoadFailure(format!(
            "corrupt metadata encountered in {}",
            filename.display()
        )));
    };
    match blob.check_compatibility(cfg_version) {
        Ok(()) => {
            debug!("metadata blob read okay");
            Ok(blob)
        }
        Err(None) => Err(MetadataError::LoadFailure(format!(
            "invalid metadata version found: {}",
            filename.display()
        ))),
        Err(Some(found_version)) => {
            return Err(MetadataError::VersionMismatch {
                expected_version: rustc_version(cfg_version),
                found_version,
            });
        }
    }
}

/// A diagnostic function for dumping crate metadata to an output stream.
pub fn list_file_metadata(
    target: &Target,
    path: &Path,
    metadata_loader: &dyn MetadataLoader,
    out: &mut dyn Write,
    ls_kinds: &[String],
    cfg_version: &'static str,
) -> IoResult<()> {
    let flavor = get_flavor_from_path(path);
    match get_metadata_section(target, flavor, path, metadata_loader, cfg_version) {
        Ok(metadata) => metadata.list_crate_metadata(out, ls_kinds),
        Err(msg) => write!(out, "{msg}\n"),
    }
}

fn get_flavor_from_path(path: &Path) -> CrateFlavor {
    let filename = path.file_name().unwrap().to_str().unwrap();

    if filename.ends_with(".rlib") {
        CrateFlavor::Rlib
    } else if filename.ends_with(".rmeta") {
        CrateFlavor::Rmeta
    } else {
        CrateFlavor::Dylib
    }
}

// ------------------------------------------ Error reporting -------------------------------------

#[derive(Clone)]
struct CrateMismatch {
    path: PathBuf,
    got: String,
}

#[derive(Clone, Default)]
struct CrateRejections {
    via_hash: Vec<CrateMismatch>,
    via_triple: Vec<CrateMismatch>,
    via_kind: Vec<CrateMismatch>,
    via_version: Vec<CrateMismatch>,
    via_filename: Vec<CrateMismatch>,
    via_invalid: Vec<CrateMismatch>,
}

/// Candidate rejection reasons collected during crate search.
/// If no candidate is accepted, then these reasons are presented to the user,
/// otherwise they are ignored.
pub(crate) struct CombinedLocatorError {
    crate_name: Symbol,
    root: Option<CratePaths>,
    triple: TargetTuple,
    dll_prefix: String,
    dll_suffix: String,
    crate_rejections: CrateRejections,
}

pub(crate) enum CrateError {
    NonAsciiName(Symbol),
    ExternLocationNotExist(Symbol, PathBuf),
    ExternLocationNotFile(Symbol, PathBuf),
    MultipleCandidates(Symbol, CrateFlavor, Vec<PathBuf>),
    SymbolConflictsCurrent(Symbol),
    StableCrateIdCollision(Symbol, Symbol),
    DlOpen(String, String),
    DlSym(String, String),
    LocatorCombined(Box<CombinedLocatorError>),
    NotFound(Symbol),
}

enum MetadataError<'a> {
    /// The file was missing.
    NotPresent(&'a Path),
    /// The file was present and invalid.
    LoadFailure(String),
    /// The file was present, but compiled with a different rustc version.
    VersionMismatch { expected_version: String, found_version: String },
}

impl fmt::Display for MetadataError<'_> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self {
            MetadataError::NotPresent(filename) => {
                f.write_str(&format!("no such file: '{}'", filename.display()))
            }
            MetadataError::LoadFailure(msg) => f.write_str(msg),
            MetadataError::VersionMismatch { expected_version, found_version } => {
                f.write_str(&format!(
                    "rustc version mismatch. expected {}, found {}",
                    expected_version, found_version,
                ))
            }
        }
    }
}

impl CrateError {
    pub(crate) fn report(self, sess: &Session, span: Span, missing_core: bool) {
        let dcx = sess.dcx();
        match self {
            CrateError::NonAsciiName(crate_name) => {
                dcx.emit_err(errors::NonAsciiName { span, crate_name });
            }
            CrateError::ExternLocationNotExist(crate_name, loc) => {
                dcx.emit_err(errors::ExternLocationNotExist { span, crate_name, location: &loc });
            }
            CrateError::ExternLocationNotFile(crate_name, loc) => {
                dcx.emit_err(errors::ExternLocationNotFile { span, crate_name, location: &loc });
            }
            CrateError::MultipleCandidates(crate_name, flavor, candidates) => {
                dcx.emit_err(errors::MultipleCandidates { span, crate_name, flavor, candidates });
            }
            CrateError::SymbolConflictsCurrent(root_name) => {
                dcx.emit_err(errors::SymbolConflictsCurrent { span, crate_name: root_name });
            }
            CrateError::StableCrateIdCollision(crate_name0, crate_name1) => {
                dcx.emit_err(errors::StableCrateIdCollision { span, crate_name0, crate_name1 });
            }
            CrateError::DlOpen(path, err) | CrateError::DlSym(path, err) => {
                dcx.emit_err(errors::DlError { span, path, err });
            }
            CrateError::LocatorCombined(locator) => {
                let crate_name = locator.crate_name;
                let add_info = match &locator.root {
                    None => String::new(),
                    Some(r) => format!(" which `{}` depends on", r.name),
                };
                if !locator.crate_rejections.via_filename.is_empty() {
                    let mismatches = locator.crate_rejections.via_filename.iter();
                    for CrateMismatch { path, .. } in mismatches {
                        dcx.emit_err(errors::CrateLocationUnknownType { span, path, crate_name });
                        dcx.emit_err(errors::LibFilenameForm {
                            span,
                            dll_prefix: &locator.dll_prefix,
                            dll_suffix: &locator.dll_suffix,
                        });
                    }
                }
                let mut found_crates = String::new();
                if !locator.crate_rejections.via_hash.is_empty() {
                    let mismatches = locator.crate_rejections.via_hash.iter();
                    for CrateMismatch { path, .. } in mismatches {
                        found_crates.push_str(&format!(
                            "\ncrate `{}`: {}",
                            crate_name,
                            path.display()
                        ));
                    }
                    if let Some(r) = locator.root {
                        for path in r.source.paths() {
                            found_crates.push_str(&format!(
                                "\ncrate `{}`: {}",
                                r.name,
                                path.display()
                            ));
                        }
                    }
                    dcx.emit_err(errors::NewerCrateVersion {
                        span,
                        crate_name,
                        add_info,
                        found_crates,
                    });
                } else if !locator.crate_rejections.via_triple.is_empty() {
                    let mismatches = locator.crate_rejections.via_triple.iter();
                    for CrateMismatch { path, got } in mismatches {
                        found_crates.push_str(&format!(
                            "\ncrate `{}`, target triple {}: {}",
                            crate_name,
                            got,
                            path.display(),
                        ));
                    }
                    dcx.emit_err(errors::NoCrateWithTriple {
                        span,
                        crate_name,
                        locator_triple: locator.triple.tuple(),
                        add_info,
                        found_crates,
                    });
                } else if !locator.crate_rejections.via_kind.is_empty() {
                    let mismatches = locator.crate_rejections.via_kind.iter();
                    for CrateMismatch { path, .. } in mismatches {
                        found_crates.push_str(&format!(
                            "\ncrate `{}`: {}",
                            crate_name,
                            path.display()
                        ));
                    }
                    dcx.emit_err(errors::FoundStaticlib {
                        span,
                        crate_name,
                        add_info,
                        found_crates,
                    });
                } else if !locator.crate_rejections.via_version.is_empty() {
                    let mismatches = locator.crate_rejections.via_version.iter();
                    for CrateMismatch { path, got } in mismatches {
                        found_crates.push_str(&format!(
                            "\ncrate `{}` compiled by {}: {}",
                            crate_name,
                            got,
                            path.display(),
                        ));
                    }
                    dcx.emit_err(errors::IncompatibleRustc {
                        span,
                        crate_name,
                        add_info,
                        found_crates,
                        rustc_version: rustc_version(sess.cfg_version),
                    });
                } else if !locator.crate_rejections.via_invalid.is_empty() {
                    let mut crate_rejections = Vec::new();
                    for CrateMismatch { path: _, got } in locator.crate_rejections.via_invalid {
                        crate_rejections.push(got);
                    }
                    dcx.emit_err(errors::InvalidMetadataFiles {
                        span,
                        crate_name,
                        add_info,
                        crate_rejections,
                    });
                } else {
                    let error = errors::CannotFindCrate {
                        span,
                        crate_name,
                        add_info,
                        missing_core,
                        current_crate: sess
                            .opts
                            .crate_name
                            .clone()
                            .unwrap_or("<unknown>".to_string()),
                        is_nightly_build: sess.is_nightly_build(),
                        profiler_runtime: Symbol::intern(&sess.opts.unstable_opts.profiler_runtime),
                        locator_triple: locator.triple,
                        is_ui_testing: sess.opts.unstable_opts.ui_testing,
                    };
                    // The diagnostic for missing core is very good, but it is followed by a lot of
                    // other diagnostics that do not add information.
                    if missing_core {
                        dcx.emit_fatal(error);
                    } else {
                        dcx.emit_err(error);
                    }
                }
            }
            CrateError::NotFound(crate_name) => {
                let error = errors::CannotFindCrate {
                    span,
                    crate_name,
                    add_info: String::new(),
                    missing_core,
                    current_crate: sess.opts.crate_name.clone().unwrap_or("<unknown>".to_string()),
                    is_nightly_build: sess.is_nightly_build(),
                    profiler_runtime: Symbol::intern(&sess.opts.unstable_opts.profiler_runtime),
                    locator_triple: sess.opts.target_triple.clone(),
                    is_ui_testing: sess.opts.unstable_opts.ui_testing,
                };
                // The diagnostic for missing core is very good, but it is followed by a lot of
                // other diagnostics that do not add information.
                if missing_core {
                    dcx.emit_fatal(error);
                } else {
                    dcx.emit_err(error);
                }
            }
        }
    }
}