rustc_trait_selection/
infer.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
use std::fmt::Debug;

use rustc_hir::def_id::DefId;
use rustc_hir::lang_items::LangItem;
pub use rustc_infer::infer::*;
use rustc_macros::extension;
use rustc_middle::arena::ArenaAllocatable;
use rustc_middle::infer::canonical::{
    Canonical, CanonicalQueryInput, CanonicalQueryResponse, QueryResponse,
};
use rustc_middle::traits::query::NoSolution;
use rustc_middle::ty::{self, GenericArg, Ty, TyCtxt, TypeFoldable, TypeVisitableExt, Upcast};
use rustc_span::DUMMY_SP;
use tracing::instrument;

use crate::infer::at::ToTrace;
use crate::traits::query::evaluate_obligation::InferCtxtExt as _;
use crate::traits::{self, Obligation, ObligationCause, ObligationCtxt, SelectionContext};

#[extension(pub trait InferCtxtExt<'tcx>)]
impl<'tcx> InferCtxt<'tcx> {
    fn can_eq<T: ToTrace<'tcx>>(&self, param_env: ty::ParamEnv<'tcx>, a: T, b: T) -> bool {
        self.probe(|_| {
            let ocx = ObligationCtxt::new(self);
            let Ok(()) = ocx.eq(&ObligationCause::dummy(), param_env, a, b) else {
                return false;
            };
            ocx.select_where_possible().is_empty()
        })
    }

    fn type_is_copy_modulo_regions(&self, param_env: ty::ParamEnv<'tcx>, ty: Ty<'tcx>) -> bool {
        let ty = self.resolve_vars_if_possible(ty);

        // FIXME(#132279): This should be removed as it causes us to incorrectly
        // handle opaques in their defining scope.
        if !(param_env, ty).has_infer() {
            return self.tcx.type_is_copy_modulo_regions(self.typing_env(param_env), ty);
        }

        let copy_def_id = self.tcx.require_lang_item(LangItem::Copy, None);

        // This can get called from typeck (by euv), and `moves_by_default`
        // rightly refuses to work with inference variables, but
        // moves_by_default has a cache, which we want to use in other
        // cases.
        traits::type_known_to_meet_bound_modulo_regions(self, param_env, ty, copy_def_id)
    }

    fn type_is_sized_modulo_regions(&self, param_env: ty::ParamEnv<'tcx>, ty: Ty<'tcx>) -> bool {
        let lang_item = self.tcx.require_lang_item(LangItem::Sized, None);
        traits::type_known_to_meet_bound_modulo_regions(self, param_env, ty, lang_item)
    }

    /// Check whether a `ty` implements given trait(trait_def_id) without side-effects.
    ///
    /// The inputs are:
    ///
    /// - the def-id of the trait
    /// - the type parameters of the trait, including the self-type
    /// - the parameter environment
    ///
    /// Invokes `evaluate_obligation`, so in the event that evaluating
    /// `Ty: Trait` causes overflow, EvaluatedToAmbigStackDependent will be returned.
    ///
    /// `type_implements_trait` is a convenience function for simple cases like
    ///
    /// ```ignore (illustrative)
    /// let copy_trait = infcx.tcx.require_lang_item(LangItem::Copy, span);
    /// let implements_copy = infcx.type_implements_trait(copy_trait, [ty], param_env)
    /// .must_apply_modulo_regions();
    /// ```
    ///
    /// In most cases you should instead create an [Obligation] and check whether
    ///  it holds via [`evaluate_obligation`] or one of its helper functions like
    /// [`predicate_must_hold_modulo_regions`], because it properly handles higher ranked traits
    /// and it is more convenient and safer when your `params` are inside a [`Binder`].
    ///
    /// [Obligation]: traits::Obligation
    /// [`evaluate_obligation`]: crate::traits::query::evaluate_obligation::InferCtxtExt::evaluate_obligation
    /// [`predicate_must_hold_modulo_regions`]: crate::traits::query::evaluate_obligation::InferCtxtExt::predicate_must_hold_modulo_regions
    /// [`Binder`]: ty::Binder
    #[instrument(level = "debug", skip(self, params), ret)]
    fn type_implements_trait(
        &self,
        trait_def_id: DefId,
        params: impl IntoIterator<Item: Into<GenericArg<'tcx>>>,
        param_env: ty::ParamEnv<'tcx>,
    ) -> traits::EvaluationResult {
        let trait_ref = ty::TraitRef::new(self.tcx, trait_def_id, params);

        let obligation = traits::Obligation {
            cause: traits::ObligationCause::dummy(),
            param_env,
            recursion_depth: 0,
            predicate: trait_ref.upcast(self.tcx),
        };
        self.evaluate_obligation(&obligation).unwrap_or(traits::EvaluationResult::EvaluatedToErr)
    }

    /// Returns `Some` if a type implements a trait shallowly, without side-effects,
    /// along with any errors that would have been reported upon further obligation
    /// processing.
    ///
    /// - If this returns `Some([])`, then the trait holds modulo regions.
    /// - If this returns `Some([errors..])`, then the trait has an impl for
    /// the self type, but some nested obligations do not hold.
    /// - If this returns `None`, no implementation that applies could be found.
    ///
    /// FIXME(-Znext-solver): Due to the recursive nature of the new solver,
    /// this will probably only ever return `Some([])` or `None`.
    fn type_implements_trait_shallow(
        &self,
        trait_def_id: DefId,
        ty: Ty<'tcx>,
        param_env: ty::ParamEnv<'tcx>,
    ) -> Option<Vec<traits::FulfillmentError<'tcx>>> {
        self.probe(|_snapshot| {
            let mut selcx = SelectionContext::new(self);
            match selcx.select(&Obligation::new(
                self.tcx,
                ObligationCause::dummy(),
                param_env,
                ty::TraitRef::new(self.tcx, trait_def_id, [ty]),
            )) {
                Ok(Some(selection)) => {
                    let ocx = ObligationCtxt::new_with_diagnostics(self);
                    ocx.register_obligations(selection.nested_obligations());
                    Some(ocx.select_all_or_error())
                }
                Ok(None) | Err(_) => None,
            }
        })
    }
}

#[extension(pub trait InferCtxtBuilderExt<'tcx>)]
impl<'tcx> InferCtxtBuilder<'tcx> {
    /// The "main method" for a canonicalized trait query. Given the
    /// canonical key `canonical_key`, this method will create a new
    /// inference context, instantiate the key, and run your operation
    /// `op`. The operation should yield up a result (of type `R`) as
    /// well as a set of trait obligations that must be fully
    /// satisfied. These obligations will be processed and the
    /// canonical result created.
    ///
    /// Returns `NoSolution` in the event of any error.
    ///
    /// (It might be mildly nicer to implement this on `TyCtxt`, and
    /// not `InferCtxtBuilder`, but that is a bit tricky right now.
    /// In part because we would need a `for<'tcx>` sort of
    /// bound for the closure and in part because it is convenient to
    /// have `'tcx` be free on this function so that we can talk about
    /// `K: TypeFoldable<TyCtxt<'tcx>>`.)
    fn enter_canonical_trait_query<K, R>(
        self,
        canonical_key: &CanonicalQueryInput<'tcx, K>,
        operation: impl FnOnce(&ObligationCtxt<'_, 'tcx>, K) -> Result<R, NoSolution>,
    ) -> Result<CanonicalQueryResponse<'tcx, R>, NoSolution>
    where
        K: TypeFoldable<TyCtxt<'tcx>>,
        R: Debug + TypeFoldable<TyCtxt<'tcx>>,
        Canonical<'tcx, QueryResponse<'tcx, R>>: ArenaAllocatable<'tcx>,
    {
        let (infcx, key, canonical_inference_vars) =
            self.build_with_canonical(DUMMY_SP, canonical_key);
        let ocx = ObligationCtxt::new(&infcx);
        let value = operation(&ocx, key)?;
        ocx.make_canonicalized_query_response(canonical_inference_vars, value)
    }
}