rustc_hir_typeck/
upvar.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
//! ### Inferring borrow kinds for upvars
//!
//! Whenever there is a closure expression, we need to determine how each
//! upvar is used. We do this by initially assigning each upvar an
//! immutable "borrow kind" (see `ty::BorrowKind` for details) and then
//! "escalating" the kind as needed. The borrow kind proceeds according to
//! the following lattice:
//! ```ignore (not-rust)
//! ty::ImmBorrow -> ty::UniqueImmBorrow -> ty::MutBorrow
//! ```
//! So, for example, if we see an assignment `x = 5` to an upvar `x`, we
//! will promote its borrow kind to mutable borrow. If we see an `&mut x`
//! we'll do the same. Naturally, this applies not just to the upvar, but
//! to everything owned by `x`, so the result is the same for something
//! like `x.f = 5` and so on (presuming `x` is not a borrowed pointer to a
//! struct). These adjustments are performed in
//! `adjust_upvar_borrow_kind()` (you can trace backwards through the code
//! from there).
//!
//! The fact that we are inferring borrow kinds as we go results in a
//! semi-hacky interaction with mem-categorization. In particular,
//! mem-categorization will query the current borrow kind as it
//! categorizes, and we'll return the *current* value, but this may get
//! adjusted later. Therefore, in this module, we generally ignore the
//! borrow kind (and derived mutabilities) that are returned from
//! mem-categorization, since they may be inaccurate. (Another option
//! would be to use a unification scheme, where instead of returning a
//! concrete borrow kind like `ty::ImmBorrow`, we return a
//! `ty::InferBorrow(upvar_id)` or something like that, but this would
//! then mean that all later passes would have to check for these figments
//! and report an error, and it just seems like more mess in the end.)

use std::iter;

use rustc_abi::FIRST_VARIANT;
use rustc_data_structures::fx::{FxIndexMap, FxIndexSet};
use rustc_data_structures::unord::{ExtendUnord, UnordSet};
use rustc_errors::{Applicability, MultiSpan};
use rustc_hir as hir;
use rustc_hir::HirId;
use rustc_hir::def_id::LocalDefId;
use rustc_hir::intravisit::{self, Visitor};
use rustc_middle::hir::place::{Place, PlaceBase, PlaceWithHirId, Projection, ProjectionKind};
use rustc_middle::mir::FakeReadCause;
use rustc_middle::traits::ObligationCauseCode;
use rustc_middle::ty::{
    self, BorrowKind, ClosureSizeProfileData, Ty, TyCtxt, TypeVisitableExt as _, TypeckResults,
    UpvarArgs, UpvarCapture,
};
use rustc_middle::{bug, span_bug};
use rustc_session::lint;
use rustc_span::{BytePos, Pos, Span, Symbol, sym};
use rustc_trait_selection::infer::InferCtxtExt;
use tracing::{debug, instrument};

use super::FnCtxt;
use crate::expr_use_visitor as euv;

/// Describe the relationship between the paths of two places
/// eg:
/// - `foo` is ancestor of `foo.bar.baz`
/// - `foo.bar.baz` is an descendant of `foo.bar`
/// - `foo.bar` and `foo.baz` are divergent
enum PlaceAncestryRelation {
    Ancestor,
    Descendant,
    SamePlace,
    Divergent,
}

/// Intermediate format to store a captured `Place` and associated `ty::CaptureInfo`
/// during capture analysis. Information in this map feeds into the minimum capture
/// analysis pass.
type InferredCaptureInformation<'tcx> = Vec<(Place<'tcx>, ty::CaptureInfo)>;

impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
    pub(crate) fn closure_analyze(&self, body: &'tcx hir::Body<'tcx>) {
        InferBorrowKindVisitor { fcx: self }.visit_body(body);

        // it's our job to process these.
        assert!(self.deferred_call_resolutions.borrow().is_empty());
    }
}

/// Intermediate format to store the hir_id pointing to the use that resulted in the
/// corresponding place being captured and a String which contains the captured value's
/// name (i.e: a.b.c)
#[derive(Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
enum UpvarMigrationInfo {
    /// We previously captured all of `x`, but now we capture some sub-path.
    CapturingPrecise { source_expr: Option<HirId>, var_name: String },
    CapturingNothing {
        // where the variable appears in the closure (but is not captured)
        use_span: Span,
    },
}

/// Reasons that we might issue a migration warning.
#[derive(Clone, Debug, Default, PartialEq, Eq, PartialOrd, Ord, Hash)]
struct MigrationWarningReason {
    /// When we used to capture `x` in its entirety, we implemented the auto-trait(s)
    /// in this vec, but now we don't.
    auto_traits: Vec<&'static str>,

    /// When we used to capture `x` in its entirety, we would execute some destructors
    /// at a different time.
    drop_order: bool,
}

impl MigrationWarningReason {
    fn migration_message(&self) -> String {
        let base = "changes to closure capture in Rust 2021 will affect";
        if !self.auto_traits.is_empty() && self.drop_order {
            format!("{base} drop order and which traits the closure implements")
        } else if self.drop_order {
            format!("{base} drop order")
        } else {
            format!("{base} which traits the closure implements")
        }
    }
}

/// Intermediate format to store information needed to generate a note in the migration lint.
struct MigrationLintNote {
    captures_info: UpvarMigrationInfo,

    /// reasons why migration is needed for this capture
    reason: MigrationWarningReason,
}

/// Intermediate format to store the hir id of the root variable and a HashSet containing
/// information on why the root variable should be fully captured
struct NeededMigration {
    var_hir_id: HirId,
    diagnostics_info: Vec<MigrationLintNote>,
}

struct InferBorrowKindVisitor<'a, 'tcx> {
    fcx: &'a FnCtxt<'a, 'tcx>,
}

impl<'a, 'tcx> Visitor<'tcx> for InferBorrowKindVisitor<'a, 'tcx> {
    fn visit_expr(&mut self, expr: &'tcx hir::Expr<'tcx>) {
        match expr.kind {
            hir::ExprKind::Closure(&hir::Closure { capture_clause, body: body_id, .. }) => {
                let body = self.fcx.tcx.hir().body(body_id);
                self.visit_body(body);
                self.fcx.analyze_closure(expr.hir_id, expr.span, body_id, body, capture_clause);
            }
            hir::ExprKind::ConstBlock(anon_const) => {
                let body = self.fcx.tcx.hir().body(anon_const.body);
                self.visit_body(body);
            }
            _ => {}
        }

        intravisit::walk_expr(self, expr);
    }
}

impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
    /// Analysis starting point.
    #[instrument(skip(self, body), level = "debug")]
    fn analyze_closure(
        &self,
        closure_hir_id: HirId,
        span: Span,
        body_id: hir::BodyId,
        body: &'tcx hir::Body<'tcx>,
        mut capture_clause: hir::CaptureBy,
    ) {
        // Extract the type of the closure.
        let ty = self.node_ty(closure_hir_id);
        let (closure_def_id, args, infer_kind) = match *ty.kind() {
            ty::Closure(def_id, args) => {
                (def_id, UpvarArgs::Closure(args), self.closure_kind(ty).is_none())
            }
            ty::CoroutineClosure(def_id, args) => {
                (def_id, UpvarArgs::CoroutineClosure(args), self.closure_kind(ty).is_none())
            }
            ty::Coroutine(def_id, args) => (def_id, UpvarArgs::Coroutine(args), false),
            ty::Error(_) => {
                // #51714: skip analysis when we have already encountered type errors
                return;
            }
            _ => {
                span_bug!(
                    span,
                    "type of closure expr {:?} is not a closure {:?}",
                    closure_hir_id,
                    ty
                );
            }
        };
        let args = self.resolve_vars_if_possible(args);
        let closure_def_id = closure_def_id.expect_local();

        assert_eq!(self.tcx.hir().body_owner_def_id(body.id()), closure_def_id);
        let mut delegate = InferBorrowKind {
            closure_def_id,
            capture_information: Default::default(),
            fake_reads: Default::default(),
        };

        let _ = euv::ExprUseVisitor::new(
            &FnCtxt::new(self, self.tcx.param_env(closure_def_id), closure_def_id),
            &mut delegate,
        )
        .consume_body(body);

        // There are several curious situations with coroutine-closures where
        // analysis is too aggressive with borrows when the coroutine-closure is
        // marked `move`. Specifically:
        //
        // 1. If the coroutine-closure was inferred to be `FnOnce` during signature
        // inference, then it's still possible that we try to borrow upvars from
        // the coroutine-closure because they are not used by the coroutine body
        // in a way that forces a move. See the test:
        // `async-await/async-closures/force-move-due-to-inferred-kind.rs`.
        //
        // 2. If the coroutine-closure is forced to be `FnOnce` due to the way it
        // uses its upvars (e.g. it consumes a non-copy value), but not *all* upvars
        // would force the closure to `FnOnce`.
        // See the test: `async-await/async-closures/force-move-due-to-actually-fnonce.rs`.
        //
        // This would lead to an impossible to satisfy situation, since `AsyncFnOnce`
        // coroutine bodies can't borrow from their parent closure. To fix this,
        // we force the inner coroutine to also be `move`. This only matters for
        // coroutine-closures that are `move` since otherwise they themselves will
        // be borrowing from the outer environment, so there's no self-borrows occurring.
        if let UpvarArgs::Coroutine(..) = args
            && let hir::CoroutineKind::Desugared(_, hir::CoroutineSource::Closure) =
                self.tcx.coroutine_kind(closure_def_id).expect("coroutine should have kind")
            && let parent_hir_id =
                self.tcx.local_def_id_to_hir_id(self.tcx.local_parent(closure_def_id))
            && let parent_ty = self.node_ty(parent_hir_id)
            && let hir::CaptureBy::Value { move_kw } =
                self.tcx.hir_node(parent_hir_id).expect_closure().capture_clause
        {
            // (1.) Closure signature inference forced this closure to `FnOnce`.
            if let Some(ty::ClosureKind::FnOnce) = self.closure_kind(parent_ty) {
                capture_clause = hir::CaptureBy::Value { move_kw };
            }
            // (2.) The way that the closure uses its upvars means it's `FnOnce`.
            else if self.coroutine_body_consumes_upvars(closure_def_id, body) {
                capture_clause = hir::CaptureBy::Value { move_kw };
            }
        }

        // As noted in `lower_coroutine_body_with_moved_arguments`, we default the capture mode
        // to `ByRef` for the `async {}` block internal to async fns/closure. This means
        // that we would *not* be moving all of the parameters into the async block in all cases.
        // For example, when one of the arguments is `Copy`, we turn a consuming use into a copy of
        // a reference, so for `async fn x(t: i32) {}`, we'd only take a reference to `t`.
        //
        // We force all of these arguments to be captured by move before we do expr use analysis.
        //
        // FIXME(async_closures): This could be cleaned up. It's a bit janky that we're just
        // moving all of the `LocalSource::AsyncFn` locals here.
        if let Some(hir::CoroutineKind::Desugared(
            _,
            hir::CoroutineSource::Fn | hir::CoroutineSource::Closure,
        )) = self.tcx.coroutine_kind(closure_def_id)
        {
            let hir::ExprKind::Block(block, _) = body.value.kind else {
                bug!();
            };
            for stmt in block.stmts {
                let hir::StmtKind::Let(hir::LetStmt {
                    init: Some(init),
                    source: hir::LocalSource::AsyncFn,
                    pat,
                    ..
                }) = stmt.kind
                else {
                    bug!();
                };
                let hir::PatKind::Binding(hir::BindingMode(hir::ByRef::No, _), _, _, _) = pat.kind
                else {
                    // Complex pattern, skip the non-upvar local.
                    continue;
                };
                let hir::ExprKind::Path(hir::QPath::Resolved(_, path)) = init.kind else {
                    bug!();
                };
                let hir::def::Res::Local(local_id) = path.res else {
                    bug!();
                };
                let place = self.place_for_root_variable(closure_def_id, local_id);
                delegate.capture_information.push((place, ty::CaptureInfo {
                    capture_kind_expr_id: Some(init.hir_id),
                    path_expr_id: Some(init.hir_id),
                    capture_kind: UpvarCapture::ByValue,
                }));
            }
        }

        debug!(
            "For closure={:?}, capture_information={:#?}",
            closure_def_id, delegate.capture_information
        );

        self.log_capture_analysis_first_pass(closure_def_id, &delegate.capture_information, span);

        let (capture_information, closure_kind, origin) = self
            .process_collected_capture_information(capture_clause, &delegate.capture_information);

        self.compute_min_captures(closure_def_id, capture_information, span);

        let closure_hir_id = self.tcx.local_def_id_to_hir_id(closure_def_id);

        if should_do_rust_2021_incompatible_closure_captures_analysis(self.tcx, closure_hir_id) {
            self.perform_2229_migration_analysis(closure_def_id, body_id, capture_clause, span);
        }

        let after_feature_tys = self.final_upvar_tys(closure_def_id);

        // We now fake capture information for all variables that are mentioned within the closure
        // We do this after handling migrations so that min_captures computes before
        if !enable_precise_capture(span) {
            let mut capture_information: InferredCaptureInformation<'tcx> = Default::default();

            if let Some(upvars) = self.tcx.upvars_mentioned(closure_def_id) {
                for var_hir_id in upvars.keys() {
                    let place = self.place_for_root_variable(closure_def_id, *var_hir_id);

                    debug!("seed place {:?}", place);

                    let capture_kind = self.init_capture_kind_for_place(&place, capture_clause);
                    let fake_info = ty::CaptureInfo {
                        capture_kind_expr_id: None,
                        path_expr_id: None,
                        capture_kind,
                    };

                    capture_information.push((place, fake_info));
                }
            }

            // This will update the min captures based on this new fake information.
            self.compute_min_captures(closure_def_id, capture_information, span);
        }

        let before_feature_tys = self.final_upvar_tys(closure_def_id);

        if infer_kind {
            // Unify the (as yet unbound) type variable in the closure
            // args with the kind we inferred.
            let closure_kind_ty = match args {
                UpvarArgs::Closure(args) => args.as_closure().kind_ty(),
                UpvarArgs::CoroutineClosure(args) => args.as_coroutine_closure().kind_ty(),
                UpvarArgs::Coroutine(_) => unreachable!("coroutines don't have an inferred kind"),
            };
            self.demand_eqtype(
                span,
                Ty::from_closure_kind(self.tcx, closure_kind),
                closure_kind_ty,
            );

            // If we have an origin, store it.
            if let Some(mut origin) = origin {
                if !enable_precise_capture(span) {
                    // Without precise captures, we just capture the base and ignore
                    // the projections.
                    origin.1.projections.clear()
                }

                self.typeck_results
                    .borrow_mut()
                    .closure_kind_origins_mut()
                    .insert(closure_hir_id, origin);
            }
        }

        // For coroutine-closures, we additionally must compute the
        // `coroutine_captures_by_ref_ty` type, which is used to generate the by-ref
        // version of the coroutine-closure's output coroutine.
        if let UpvarArgs::CoroutineClosure(args) = args
            && !args.references_error()
        {
            let closure_env_region: ty::Region<'_> =
                ty::Region::new_bound(self.tcx, ty::INNERMOST, ty::BoundRegion {
                    var: ty::BoundVar::ZERO,
                    kind: ty::BoundRegionKind::ClosureEnv,
                });

            let num_args = args
                .as_coroutine_closure()
                .coroutine_closure_sig()
                .skip_binder()
                .tupled_inputs_ty
                .tuple_fields()
                .len();
            let typeck_results = self.typeck_results.borrow();

            let tupled_upvars_ty_for_borrow = Ty::new_tup_from_iter(
                self.tcx,
                ty::analyze_coroutine_closure_captures(
                    typeck_results.closure_min_captures_flattened(closure_def_id),
                    typeck_results
                        .closure_min_captures_flattened(
                            self.tcx.coroutine_for_closure(closure_def_id).expect_local(),
                        )
                        // Skip the captures that are just moving the closure's args
                        // into the coroutine. These are always by move, and we append
                        // those later in the `CoroutineClosureSignature` helper functions.
                        .skip(num_args),
                    |(_, parent_capture), (_, child_capture)| {
                        // This is subtle. See documentation on function.
                        let needs_ref = should_reborrow_from_env_of_parent_coroutine_closure(
                            parent_capture,
                            child_capture,
                        );

                        let upvar_ty = child_capture.place.ty();
                        let capture = child_capture.info.capture_kind;
                        // Not all upvars are captured by ref, so use
                        // `apply_capture_kind_on_capture_ty` to ensure that we
                        // compute the right captured type.
                        return apply_capture_kind_on_capture_ty(
                            self.tcx,
                            upvar_ty,
                            capture,
                            if needs_ref {
                                closure_env_region
                            } else {
                                self.tcx.lifetimes.re_erased
                            },
                        );
                    },
                ),
            );
            let coroutine_captures_by_ref_ty = Ty::new_fn_ptr(
                self.tcx,
                ty::Binder::bind_with_vars(
                    self.tcx.mk_fn_sig(
                        [],
                        tupled_upvars_ty_for_borrow,
                        false,
                        hir::Safety::Safe,
                        rustc_abi::ExternAbi::Rust,
                    ),
                    self.tcx.mk_bound_variable_kinds(&[ty::BoundVariableKind::Region(
                        ty::BoundRegionKind::ClosureEnv,
                    )]),
                ),
            );
            self.demand_eqtype(
                span,
                args.as_coroutine_closure().coroutine_captures_by_ref_ty(),
                coroutine_captures_by_ref_ty,
            );

            // Additionally, we can now constrain the coroutine's kind type.
            //
            // We only do this if `infer_kind`, because if we have constrained
            // the kind from closure signature inference, the kind inferred
            // for the inner coroutine may actually be more restrictive.
            if infer_kind {
                let ty::Coroutine(_, coroutine_args) =
                    *self.typeck_results.borrow().expr_ty(body.value).kind()
                else {
                    bug!();
                };
                self.demand_eqtype(
                    span,
                    coroutine_args.as_coroutine().kind_ty(),
                    Ty::from_coroutine_closure_kind(self.tcx, closure_kind),
                );
            }
        }

        self.log_closure_min_capture_info(closure_def_id, span);

        // Now that we've analyzed the closure, we know how each
        // variable is borrowed, and we know what traits the closure
        // implements (Fn vs FnMut etc). We now have some updates to do
        // with that information.
        //
        // Note that no closure type C may have an upvar of type C
        // (though it may reference itself via a trait object). This
        // results from the desugaring of closures to a struct like
        // `Foo<..., UV0...UVn>`. If one of those upvars referenced
        // C, then the type would have infinite size (and the
        // inference algorithm will reject it).

        // Equate the type variables for the upvars with the actual types.
        let final_upvar_tys = self.final_upvar_tys(closure_def_id);
        debug!(?closure_hir_id, ?args, ?final_upvar_tys);

        if self.tcx.features().unsized_locals() || self.tcx.features().unsized_fn_params() {
            for capture in
                self.typeck_results.borrow().closure_min_captures_flattened(closure_def_id)
            {
                if let UpvarCapture::ByValue = capture.info.capture_kind {
                    self.require_type_is_sized(
                        capture.place.ty(),
                        capture.get_path_span(self.tcx),
                        ObligationCauseCode::SizedClosureCapture(closure_def_id),
                    );
                }
            }
        }

        // Build a tuple (U0..Un) of the final upvar types U0..Un
        // and unify the upvar tuple type in the closure with it:
        let final_tupled_upvars_type = Ty::new_tup(self.tcx, &final_upvar_tys);
        self.demand_suptype(span, args.tupled_upvars_ty(), final_tupled_upvars_type);

        let fake_reads = delegate.fake_reads;

        self.typeck_results.borrow_mut().closure_fake_reads.insert(closure_def_id, fake_reads);

        if self.tcx.sess.opts.unstable_opts.profile_closures {
            self.typeck_results.borrow_mut().closure_size_eval.insert(
                closure_def_id,
                ClosureSizeProfileData {
                    before_feature_tys: Ty::new_tup(self.tcx, &before_feature_tys),
                    after_feature_tys: Ty::new_tup(self.tcx, &after_feature_tys),
                },
            );
        }

        // If we are also inferred the closure kind here,
        // process any deferred resolutions.
        let deferred_call_resolutions = self.remove_deferred_call_resolutions(closure_def_id);
        for deferred_call_resolution in deferred_call_resolutions {
            deferred_call_resolution.resolve(self);
        }
    }

    /// Determines whether the body of the coroutine uses its upvars in a way that
    /// consumes (i.e. moves) the value, which would force the coroutine to `FnOnce`.
    /// In a more detailed comment above, we care whether this happens, since if
    /// this happens, we want to force the coroutine to move all of the upvars it
    /// would've borrowed from the parent coroutine-closure.
    ///
    /// This only really makes sense to be called on the child coroutine of a
    /// coroutine-closure.
    fn coroutine_body_consumes_upvars(
        &self,
        coroutine_def_id: LocalDefId,
        body: &'tcx hir::Body<'tcx>,
    ) -> bool {
        // This block contains argument capturing details. Since arguments
        // aren't upvars, we do not care about them for determining if the
        // coroutine body actually consumes its upvars.
        let hir::ExprKind::Block(&hir::Block { expr: Some(body), .. }, None) = body.value.kind
        else {
            bug!();
        };
        // Specifically, we only care about the *real* body of the coroutine.
        // We skip out into the drop-temps within the block of the body in order
        // to skip over the args of the desugaring.
        let hir::ExprKind::DropTemps(body) = body.kind else {
            bug!();
        };

        let mut delegate = InferBorrowKind {
            closure_def_id: coroutine_def_id,
            capture_information: Default::default(),
            fake_reads: Default::default(),
        };

        let _ = euv::ExprUseVisitor::new(
            &FnCtxt::new(self, self.tcx.param_env(coroutine_def_id), coroutine_def_id),
            &mut delegate,
        )
        .consume_expr(body);

        let (_, kind, _) = self.process_collected_capture_information(
            hir::CaptureBy::Ref,
            &delegate.capture_information,
        );

        matches!(kind, ty::ClosureKind::FnOnce)
    }

    // Returns a list of `Ty`s for each upvar.
    fn final_upvar_tys(&self, closure_id: LocalDefId) -> Vec<Ty<'tcx>> {
        self.typeck_results
            .borrow()
            .closure_min_captures_flattened(closure_id)
            .map(|captured_place| {
                let upvar_ty = captured_place.place.ty();
                let capture = captured_place.info.capture_kind;

                debug!(?captured_place.place, ?upvar_ty, ?capture, ?captured_place.mutability);

                apply_capture_kind_on_capture_ty(
                    self.tcx,
                    upvar_ty,
                    capture,
                    self.tcx.lifetimes.re_erased,
                )
            })
            .collect()
    }

    /// Adjusts the closure capture information to ensure that the operations aren't unsafe,
    /// and that the path can be captured with required capture kind (depending on use in closure,
    /// move closure etc.)
    ///
    /// Returns the set of adjusted information along with the inferred closure kind and span
    /// associated with the closure kind inference.
    ///
    /// Note that we *always* infer a minimal kind, even if
    /// we don't always *use* that in the final result (i.e., sometimes
    /// we've taken the closure kind from the expectations instead, and
    /// for coroutines we don't even implement the closure traits
    /// really).
    ///
    /// If we inferred that the closure needs to be FnMut/FnOnce, last element of the returned tuple
    /// contains a `Some()` with the `Place` that caused us to do so.
    fn process_collected_capture_information(
        &self,
        capture_clause: hir::CaptureBy,
        capture_information: &InferredCaptureInformation<'tcx>,
    ) -> (InferredCaptureInformation<'tcx>, ty::ClosureKind, Option<(Span, Place<'tcx>)>) {
        let mut closure_kind = ty::ClosureKind::LATTICE_BOTTOM;
        let mut origin: Option<(Span, Place<'tcx>)> = None;

        let processed = capture_information
            .iter()
            .cloned()
            .map(|(place, mut capture_info)| {
                // Apply rules for safety before inferring closure kind
                let (place, capture_kind) =
                    restrict_capture_precision(place, capture_info.capture_kind);

                let (place, capture_kind) = truncate_capture_for_optimization(place, capture_kind);

                let usage_span = if let Some(usage_expr) = capture_info.path_expr_id {
                    self.tcx.hir().span(usage_expr)
                } else {
                    unreachable!()
                };

                let updated = match capture_kind {
                    ty::UpvarCapture::ByValue => match closure_kind {
                        ty::ClosureKind::Fn | ty::ClosureKind::FnMut => {
                            (ty::ClosureKind::FnOnce, Some((usage_span, place.clone())))
                        }
                        // If closure is already FnOnce, don't update
                        ty::ClosureKind::FnOnce => (closure_kind, origin.take()),
                    },

                    ty::UpvarCapture::ByRef(
                        ty::BorrowKind::Mutable | ty::BorrowKind::UniqueImmutable,
                    ) => {
                        match closure_kind {
                            ty::ClosureKind::Fn => {
                                (ty::ClosureKind::FnMut, Some((usage_span, place.clone())))
                            }
                            // Don't update the origin
                            ty::ClosureKind::FnMut | ty::ClosureKind::FnOnce => {
                                (closure_kind, origin.take())
                            }
                        }
                    }

                    _ => (closure_kind, origin.take()),
                };

                closure_kind = updated.0;
                origin = updated.1;

                let (place, capture_kind) = match capture_clause {
                    hir::CaptureBy::Value { .. } => adjust_for_move_closure(place, capture_kind),
                    hir::CaptureBy::Ref => adjust_for_non_move_closure(place, capture_kind),
                };

                // This restriction needs to be applied after we have handled adjustments for `move`
                // closures. We want to make sure any adjustment that might make us move the place into
                // the closure gets handled.
                let (place, capture_kind) =
                    restrict_precision_for_drop_types(self, place, capture_kind);

                capture_info.capture_kind = capture_kind;
                (place, capture_info)
            })
            .collect();

        (processed, closure_kind, origin)
    }

    /// Analyzes the information collected by `InferBorrowKind` to compute the min number of
    /// Places (and corresponding capture kind) that we need to keep track of to support all
    /// the required captured paths.
    ///
    ///
    /// Note: If this function is called multiple times for the same closure, it will update
    ///       the existing min_capture map that is stored in TypeckResults.
    ///
    /// Eg:
    /// ```
    /// #[derive(Debug)]
    /// struct Point { x: i32, y: i32 }
    ///
    /// let s = String::from("s");  // hir_id_s
    /// let mut p = Point { x: 2, y: -2 }; // his_id_p
    /// let c = || {
    ///        println!("{s:?}");  // L1
    ///        p.x += 10;  // L2
    ///        println!("{}" , p.y); // L3
    ///        println!("{p:?}"); // L4
    ///        drop(s);   // L5
    /// };
    /// ```
    /// and let hir_id_L1..5 be the expressions pointing to use of a captured variable on
    /// the lines L1..5 respectively.
    ///
    /// InferBorrowKind results in a structure like this:
    ///
    /// ```ignore (illustrative)
    /// {
    ///       Place(base: hir_id_s, projections: [], ....) -> {
    ///                                                            capture_kind_expr: hir_id_L5,
    ///                                                            path_expr_id: hir_id_L5,
    ///                                                            capture_kind: ByValue
    ///                                                       },
    ///       Place(base: hir_id_p, projections: [Field(0, 0)], ...) -> {
    ///                                                                     capture_kind_expr: hir_id_L2,
    ///                                                                     path_expr_id: hir_id_L2,
    ///                                                                     capture_kind: ByValue
    ///                                                                 },
    ///       Place(base: hir_id_p, projections: [Field(1, 0)], ...) -> {
    ///                                                                     capture_kind_expr: hir_id_L3,
    ///                                                                     path_expr_id: hir_id_L3,
    ///                                                                     capture_kind: ByValue
    ///                                                                 },
    ///       Place(base: hir_id_p, projections: [], ...) -> {
    ///                                                          capture_kind_expr: hir_id_L4,
    ///                                                          path_expr_id: hir_id_L4,
    ///                                                          capture_kind: ByValue
    ///                                                      },
    /// }
    /// ```
    ///
    /// After the min capture analysis, we get:
    /// ```ignore (illustrative)
    /// {
    ///       hir_id_s -> [
    ///            Place(base: hir_id_s, projections: [], ....) -> {
    ///                                                                capture_kind_expr: hir_id_L5,
    ///                                                                path_expr_id: hir_id_L5,
    ///                                                                capture_kind: ByValue
    ///                                                            },
    ///       ],
    ///       hir_id_p -> [
    ///            Place(base: hir_id_p, projections: [], ...) -> {
    ///                                                               capture_kind_expr: hir_id_L2,
    ///                                                               path_expr_id: hir_id_L4,
    ///                                                               capture_kind: ByValue
    ///                                                           },
    ///       ],
    /// }
    /// ```
    fn compute_min_captures(
        &self,
        closure_def_id: LocalDefId,
        capture_information: InferredCaptureInformation<'tcx>,
        closure_span: Span,
    ) {
        if capture_information.is_empty() {
            return;
        }

        let mut typeck_results = self.typeck_results.borrow_mut();

        let mut root_var_min_capture_list =
            typeck_results.closure_min_captures.remove(&closure_def_id).unwrap_or_default();

        for (mut place, capture_info) in capture_information.into_iter() {
            let var_hir_id = match place.base {
                PlaceBase::Upvar(upvar_id) => upvar_id.var_path.hir_id,
                base => bug!("Expected upvar, found={:?}", base),
            };
            let var_ident = self.tcx.hir().ident(var_hir_id);

            let Some(min_cap_list) = root_var_min_capture_list.get_mut(&var_hir_id) else {
                let mutability = self.determine_capture_mutability(&typeck_results, &place);
                let min_cap_list =
                    vec![ty::CapturedPlace { var_ident, place, info: capture_info, mutability }];
                root_var_min_capture_list.insert(var_hir_id, min_cap_list);
                continue;
            };

            // Go through each entry in the current list of min_captures
            // - if ancestor is found, update its capture kind to account for current place's
            // capture information.
            //
            // - if descendant is found, remove it from the list, and update the current place's
            // capture information to account for the descendant's capture kind.
            //
            // We can never be in a case where the list contains both an ancestor and a descendant
            // Also there can only be ancestor but in case of descendants there might be
            // multiple.

            let mut descendant_found = false;
            let mut updated_capture_info = capture_info;
            min_cap_list.retain(|possible_descendant| {
                match determine_place_ancestry_relation(&place, &possible_descendant.place) {
                    // current place is ancestor of possible_descendant
                    PlaceAncestryRelation::Ancestor => {
                        descendant_found = true;

                        let mut possible_descendant = possible_descendant.clone();
                        let backup_path_expr_id = updated_capture_info.path_expr_id;

                        // Truncate the descendant (already in min_captures) to be same as the ancestor to handle any
                        // possible change in capture mode.
                        truncate_place_to_len_and_update_capture_kind(
                            &mut possible_descendant.place,
                            &mut possible_descendant.info.capture_kind,
                            place.projections.len(),
                        );

                        updated_capture_info =
                            determine_capture_info(updated_capture_info, possible_descendant.info);

                        // we need to keep the ancestor's `path_expr_id`
                        updated_capture_info.path_expr_id = backup_path_expr_id;
                        false
                    }

                    _ => true,
                }
            });

            let mut ancestor_found = false;
            if !descendant_found {
                for possible_ancestor in min_cap_list.iter_mut() {
                    match determine_place_ancestry_relation(&place, &possible_ancestor.place) {
                        PlaceAncestryRelation::SamePlace => {
                            ancestor_found = true;
                            possible_ancestor.info = determine_capture_info(
                                possible_ancestor.info,
                                updated_capture_info,
                            );

                            // Only one related place will be in the list.
                            break;
                        }
                        // current place is descendant of possible_ancestor
                        PlaceAncestryRelation::Descendant => {
                            ancestor_found = true;
                            let backup_path_expr_id = possible_ancestor.info.path_expr_id;

                            // Truncate the descendant (current place) to be same as the ancestor to handle any
                            // possible change in capture mode.
                            truncate_place_to_len_and_update_capture_kind(
                                &mut place,
                                &mut updated_capture_info.capture_kind,
                                possible_ancestor.place.projections.len(),
                            );

                            possible_ancestor.info = determine_capture_info(
                                possible_ancestor.info,
                                updated_capture_info,
                            );

                            // we need to keep the ancestor's `path_expr_id`
                            possible_ancestor.info.path_expr_id = backup_path_expr_id;

                            // Only one related place will be in the list.
                            break;
                        }
                        _ => {}
                    }
                }
            }

            // Only need to insert when we don't have an ancestor in the existing min capture list
            if !ancestor_found {
                let mutability = self.determine_capture_mutability(&typeck_results, &place);
                let captured_place =
                    ty::CapturedPlace { var_ident, place, info: updated_capture_info, mutability };
                min_cap_list.push(captured_place);
            }
        }

        debug!(
            "For closure={:?}, min_captures before sorting={:?}",
            closure_def_id, root_var_min_capture_list
        );

        // Now that we have the minimized list of captures, sort the captures by field id.
        // This causes the closure to capture the upvars in the same order as the fields are
        // declared which is also the drop order. Thus, in situations where we capture all the
        // fields of some type, the observable drop order will remain the same as it previously
        // was even though we're dropping each capture individually.
        // See https://github.com/rust-lang/project-rfc-2229/issues/42 and
        // `tests/ui/closures/2229_closure_analysis/preserve_field_drop_order.rs`.
        for (_, captures) in &mut root_var_min_capture_list {
            captures.sort_by(|capture1, capture2| {
                fn is_field<'a>(p: &&Projection<'a>) -> bool {
                    match p.kind {
                        ProjectionKind::Field(_, _) => true,
                        ProjectionKind::Deref | ProjectionKind::OpaqueCast => false,
                        p @ (ProjectionKind::Subslice | ProjectionKind::Index) => {
                            bug!("ProjectionKind {:?} was unexpected", p)
                        }
                    }
                }

                // Need to sort only by Field projections, so filter away others.
                // A previous implementation considered other projection types too
                // but that caused ICE #118144
                let capture1_field_projections = capture1.place.projections.iter().filter(is_field);
                let capture2_field_projections = capture2.place.projections.iter().filter(is_field);

                for (p1, p2) in capture1_field_projections.zip(capture2_field_projections) {
                    // We do not need to look at the `Projection.ty` fields here because at each
                    // step of the iteration, the projections will either be the same and therefore
                    // the types must be as well or the current projection will be different and
                    // we will return the result of comparing the field indexes.
                    match (p1.kind, p2.kind) {
                        (ProjectionKind::Field(i1, _), ProjectionKind::Field(i2, _)) => {
                            // Compare only if paths are different.
                            // Otherwise continue to the next iteration
                            if i1 != i2 {
                                return i1.cmp(&i2);
                            }
                        }
                        // Given the filter above, this arm should never be hit
                        (l, r) => bug!("ProjectionKinds {:?} or {:?} were unexpected", l, r),
                    }
                }

                self.dcx().span_delayed_bug(
                    closure_span,
                    format!(
                        "two identical projections: ({:?}, {:?})",
                        capture1.place.projections, capture2.place.projections
                    ),
                );
                std::cmp::Ordering::Equal
            });
        }

        debug!(
            "For closure={:?}, min_captures after sorting={:#?}",
            closure_def_id, root_var_min_capture_list
        );
        typeck_results.closure_min_captures.insert(closure_def_id, root_var_min_capture_list);
    }

    /// Perform the migration analysis for RFC 2229, and emit lint
    /// `disjoint_capture_drop_reorder` if needed.
    fn perform_2229_migration_analysis(
        &self,
        closure_def_id: LocalDefId,
        body_id: hir::BodyId,
        capture_clause: hir::CaptureBy,
        span: Span,
    ) {
        let (need_migrations, reasons) = self.compute_2229_migrations(
            closure_def_id,
            span,
            capture_clause,
            self.typeck_results.borrow().closure_min_captures.get(&closure_def_id),
        );

        if !need_migrations.is_empty() {
            let (migration_string, migrated_variables_concat) =
                migration_suggestion_for_2229(self.tcx, &need_migrations);

            let closure_hir_id = self.tcx.local_def_id_to_hir_id(closure_def_id);
            let closure_head_span = self.tcx.def_span(closure_def_id);
            self.tcx.node_span_lint(
                lint::builtin::RUST_2021_INCOMPATIBLE_CLOSURE_CAPTURES,
                closure_hir_id,
                closure_head_span,
                |lint| {
                    lint.primary_message(reasons.migration_message());

                    for NeededMigration { var_hir_id, diagnostics_info } in &need_migrations {
                        // Labels all the usage of the captured variable and why they are responsible
                        // for migration being needed
                        for lint_note in diagnostics_info.iter() {
                            match &lint_note.captures_info {
                                UpvarMigrationInfo::CapturingPrecise { source_expr: Some(capture_expr_id), var_name: captured_name } => {
                                    let cause_span = self.tcx.hir().span(*capture_expr_id);
                                    lint.span_label(cause_span, format!("in Rust 2018, this closure captures all of `{}`, but in Rust 2021, it will only capture `{}`",
                                        self.tcx.hir().name(*var_hir_id),
                                        captured_name,
                                    ));
                                }
                                UpvarMigrationInfo::CapturingNothing { use_span } => {
                                    lint.span_label(*use_span, format!("in Rust 2018, this causes the closure to capture `{}`, but in Rust 2021, it has no effect",
                                        self.tcx.hir().name(*var_hir_id),
                                    ));
                                }

                                _ => { }
                            }

                            // Add a label pointing to where a captured variable affected by drop order
                            // is dropped
                            if lint_note.reason.drop_order {
                                let drop_location_span = drop_location_span(self.tcx, closure_hir_id);

                                match &lint_note.captures_info {
                                    UpvarMigrationInfo::CapturingPrecise { var_name: captured_name, .. } => {
                                        lint.span_label(drop_location_span, format!("in Rust 2018, `{}` is dropped here, but in Rust 2021, only `{}` will be dropped here as part of the closure",
                                            self.tcx.hir().name(*var_hir_id),
                                            captured_name,
                                        ));
                                    }
                                    UpvarMigrationInfo::CapturingNothing { use_span: _ } => {
                                        lint.span_label(drop_location_span, format!("in Rust 2018, `{v}` is dropped here along with the closure, but in Rust 2021 `{v}` is not part of the closure",
                                            v = self.tcx.hir().name(*var_hir_id),
                                        ));
                                    }
                                }
                            }

                            // Add a label explaining why a closure no longer implements a trait
                            for &missing_trait in &lint_note.reason.auto_traits {
                                // not capturing something anymore cannot cause a trait to fail to be implemented:
                                match &lint_note.captures_info {
                                    UpvarMigrationInfo::CapturingPrecise { var_name: captured_name, .. } => {
                                        let var_name = self.tcx.hir().name(*var_hir_id);
                                        lint.span_label(closure_head_span, format!("\
                                        in Rust 2018, this closure implements {missing_trait} \
                                        as `{var_name}` implements {missing_trait}, but in Rust 2021, \
                                        this closure will no longer implement {missing_trait} \
                                        because `{var_name}` is not fully captured \
                                        and `{captured_name}` does not implement {missing_trait}"));
                                    }

                                    // Cannot happen: if we don't capture a variable, we impl strictly more traits
                                    UpvarMigrationInfo::CapturingNothing { use_span } => span_bug!(*use_span, "missing trait from not capturing something"),
                                }
                            }
                        }
                    }
                    lint.note("for more information, see <https://doc.rust-lang.org/nightly/edition-guide/rust-2021/disjoint-capture-in-closures.html>");

                    let diagnostic_msg = format!(
                        "add a dummy let to cause {migrated_variables_concat} to be fully captured"
                    );

                    let closure_span = self.tcx.hir().span_with_body(closure_hir_id);
                    let mut closure_body_span = {
                        // If the body was entirely expanded from a macro
                        // invocation, i.e. the body is not contained inside the
                        // closure span, then we walk up the expansion until we
                        // find the span before the expansion.
                        let s = self.tcx.hir().span_with_body(body_id.hir_id);
                        s.find_ancestor_inside(closure_span).unwrap_or(s)
                    };

                    if let Ok(mut s) = self.tcx.sess.source_map().span_to_snippet(closure_body_span) {
                        if s.starts_with('$') {
                            // Looks like a macro fragment. Try to find the real block.
                            if let hir::Node::Expr(&hir::Expr {
                                kind: hir::ExprKind::Block(block, ..), ..
                            }) = self.tcx.hir_node(body_id.hir_id) {
                                // If the body is a block (with `{..}`), we use the span of that block.
                                // E.g. with a `|| $body` expanded from a `m!({ .. })`, we use `{ .. }`, and not `$body`.
                                // Since we know it's a block, we know we can insert the `let _ = ..` without
                                // breaking the macro syntax.
                                if let Ok(snippet) = self.tcx.sess.source_map().span_to_snippet(block.span) {
                                    closure_body_span = block.span;
                                    s = snippet;
                                }
                            }
                        }

                        let mut lines = s.lines();
                        let line1 = lines.next().unwrap_or_default();

                        if line1.trim_end() == "{" {
                            // This is a multi-line closure with just a `{` on the first line,
                            // so we put the `let` on its own line.
                            // We take the indentation from the next non-empty line.
                            let line2 = lines.find(|line| !line.is_empty()).unwrap_or_default();
                            let indent = line2.split_once(|c: char| !c.is_whitespace()).unwrap_or_default().0;
                            lint.span_suggestion(
                                closure_body_span.with_lo(closure_body_span.lo() + BytePos::from_usize(line1.len())).shrink_to_lo(),
                                diagnostic_msg,
                                format!("\n{indent}{migration_string};"),
                                Applicability::MachineApplicable,
                            );
                        } else if line1.starts_with('{') {
                            // This is a closure with its body wrapped in
                            // braces, but with more than just the opening
                            // brace on the first line. We put the `let`
                            // directly after the `{`.
                            lint.span_suggestion(
                                closure_body_span.with_lo(closure_body_span.lo() + BytePos(1)).shrink_to_lo(),
                                diagnostic_msg,
                                format!(" {migration_string};"),
                                Applicability::MachineApplicable,
                            );
                        } else {
                            // This is a closure without braces around the body.
                            // We add braces to add the `let` before the body.
                            lint.multipart_suggestion(
                                diagnostic_msg,
                                vec![
                                    (closure_body_span.shrink_to_lo(), format!("{{ {migration_string}; ")),
                                    (closure_body_span.shrink_to_hi(), " }".to_string()),
                                ],
                                Applicability::MachineApplicable
                            );
                        }
                    } else {
                        lint.span_suggestion(
                            closure_span,
                            diagnostic_msg,
                            migration_string,
                            Applicability::HasPlaceholders
                        );
                    }
                },
            );
        }
    }

    /// Combines all the reasons for 2229 migrations
    fn compute_2229_migrations_reasons(
        &self,
        auto_trait_reasons: UnordSet<&'static str>,
        drop_order: bool,
    ) -> MigrationWarningReason {
        MigrationWarningReason {
            auto_traits: auto_trait_reasons.into_sorted_stable_ord(),
            drop_order,
        }
    }

    /// Figures out the list of root variables (and their types) that aren't completely
    /// captured by the closure when `capture_disjoint_fields` is enabled and auto-traits
    /// differ between the root variable and the captured paths.
    ///
    /// Returns a tuple containing a HashMap of CapturesInfo that maps to a HashSet of trait names
    /// if migration is needed for traits for the provided var_hir_id, otherwise returns None
    fn compute_2229_migrations_for_trait(
        &self,
        min_captures: Option<&ty::RootVariableMinCaptureList<'tcx>>,
        var_hir_id: HirId,
        closure_clause: hir::CaptureBy,
    ) -> Option<FxIndexMap<UpvarMigrationInfo, UnordSet<&'static str>>> {
        let auto_traits_def_id = [
            self.tcx.lang_items().clone_trait(),
            self.tcx.lang_items().sync_trait(),
            self.tcx.get_diagnostic_item(sym::Send),
            self.tcx.lang_items().unpin_trait(),
            self.tcx.get_diagnostic_item(sym::unwind_safe_trait),
            self.tcx.get_diagnostic_item(sym::ref_unwind_safe_trait),
        ];
        const AUTO_TRAITS: [&str; 6] =
            ["`Clone`", "`Sync`", "`Send`", "`Unpin`", "`UnwindSafe`", "`RefUnwindSafe`"];

        let root_var_min_capture_list = min_captures.and_then(|m| m.get(&var_hir_id))?;

        let ty = self.resolve_vars_if_possible(self.node_ty(var_hir_id));

        let ty = match closure_clause {
            hir::CaptureBy::Value { .. } => ty, // For move closure the capture kind should be by value
            hir::CaptureBy::Ref => {
                // For non move closure the capture kind is the max capture kind of all captures
                // according to the ordering ImmBorrow < UniqueImmBorrow < MutBorrow < ByValue
                let mut max_capture_info = root_var_min_capture_list.first().unwrap().info;
                for capture in root_var_min_capture_list.iter() {
                    max_capture_info = determine_capture_info(max_capture_info, capture.info);
                }

                apply_capture_kind_on_capture_ty(
                    self.tcx,
                    ty,
                    max_capture_info.capture_kind,
                    self.tcx.lifetimes.re_erased,
                )
            }
        };

        let mut obligations_should_hold = Vec::new();
        // Checks if a root variable implements any of the auto traits
        for check_trait in auto_traits_def_id.iter() {
            obligations_should_hold.push(check_trait.is_some_and(|check_trait| {
                self.infcx
                    .type_implements_trait(check_trait, [ty], self.param_env)
                    .must_apply_modulo_regions()
            }));
        }

        let mut problematic_captures = FxIndexMap::default();
        // Check whether captured fields also implement the trait
        for capture in root_var_min_capture_list.iter() {
            let ty = apply_capture_kind_on_capture_ty(
                self.tcx,
                capture.place.ty(),
                capture.info.capture_kind,
                self.tcx.lifetimes.re_erased,
            );

            // Checks if a capture implements any of the auto traits
            let mut obligations_holds_for_capture = Vec::new();
            for check_trait in auto_traits_def_id.iter() {
                obligations_holds_for_capture.push(check_trait.is_some_and(|check_trait| {
                    self.infcx
                        .type_implements_trait(check_trait, [ty], self.param_env)
                        .must_apply_modulo_regions()
                }));
            }

            let mut capture_problems = UnordSet::default();

            // Checks if for any of the auto traits, one or more trait is implemented
            // by the root variable but not by the capture
            for (idx, _) in obligations_should_hold.iter().enumerate() {
                if !obligations_holds_for_capture[idx] && obligations_should_hold[idx] {
                    capture_problems.insert(AUTO_TRAITS[idx]);
                }
            }

            if !capture_problems.is_empty() {
                problematic_captures.insert(
                    UpvarMigrationInfo::CapturingPrecise {
                        source_expr: capture.info.path_expr_id,
                        var_name: capture.to_string(self.tcx),
                    },
                    capture_problems,
                );
            }
        }
        if !problematic_captures.is_empty() {
            return Some(problematic_captures);
        }
        None
    }

    /// Figures out the list of root variables (and their types) that aren't completely
    /// captured by the closure when `capture_disjoint_fields` is enabled and drop order of
    /// some path starting at that root variable **might** be affected.
    ///
    /// The output list would include a root variable if:
    /// - It would have been moved into the closure when `capture_disjoint_fields` wasn't
    ///   enabled, **and**
    /// - It wasn't completely captured by the closure, **and**
    /// - One of the paths starting at this root variable, that is not captured needs Drop.
    ///
    /// This function only returns a HashSet of CapturesInfo for significant drops. If there
    /// are no significant drops than None is returned
    #[instrument(level = "debug", skip(self))]
    fn compute_2229_migrations_for_drop(
        &self,
        closure_def_id: LocalDefId,
        closure_span: Span,
        min_captures: Option<&ty::RootVariableMinCaptureList<'tcx>>,
        closure_clause: hir::CaptureBy,
        var_hir_id: HirId,
    ) -> Option<FxIndexSet<UpvarMigrationInfo>> {
        let ty = self.resolve_vars_if_possible(self.node_ty(var_hir_id));

        // FIXME(#132279): Using `non_body_analysis` here feels wrong.
        if !ty.has_significant_drop(
            self.tcx,
            ty::TypingEnv::non_body_analysis(self.tcx, closure_def_id),
        ) {
            debug!("does not have significant drop");
            return None;
        }

        let Some(root_var_min_capture_list) = min_captures.and_then(|m| m.get(&var_hir_id)) else {
            // The upvar is mentioned within the closure but no path starting from it is
            // used. This occurs when you have (e.g.)
            //
            // ```
            // let x = move || {
            //     let _ = y;
            // });
            // ```
            debug!("no path starting from it is used");

            match closure_clause {
                // Only migrate if closure is a move closure
                hir::CaptureBy::Value { .. } => {
                    let mut diagnostics_info = FxIndexSet::default();
                    let upvars =
                        self.tcx.upvars_mentioned(closure_def_id).expect("must be an upvar");
                    let upvar = upvars[&var_hir_id];
                    diagnostics_info
                        .insert(UpvarMigrationInfo::CapturingNothing { use_span: upvar.span });
                    return Some(diagnostics_info);
                }
                hir::CaptureBy::Ref => {}
            }

            return None;
        };
        debug!(?root_var_min_capture_list);

        let mut projections_list = Vec::new();
        let mut diagnostics_info = FxIndexSet::default();

        for captured_place in root_var_min_capture_list.iter() {
            match captured_place.info.capture_kind {
                // Only care about captures that are moved into the closure
                ty::UpvarCapture::ByValue => {
                    projections_list.push(captured_place.place.projections.as_slice());
                    diagnostics_info.insert(UpvarMigrationInfo::CapturingPrecise {
                        source_expr: captured_place.info.path_expr_id,
                        var_name: captured_place.to_string(self.tcx),
                    });
                }
                ty::UpvarCapture::ByRef(..) => {}
            }
        }

        debug!(?projections_list);
        debug!(?diagnostics_info);

        let is_moved = !projections_list.is_empty();
        debug!(?is_moved);

        let is_not_completely_captured =
            root_var_min_capture_list.iter().any(|capture| !capture.place.projections.is_empty());
        debug!(?is_not_completely_captured);

        if is_moved
            && is_not_completely_captured
            && self.has_significant_drop_outside_of_captures(
                closure_def_id,
                closure_span,
                ty,
                projections_list,
            )
        {
            return Some(diagnostics_info);
        }

        None
    }

    /// Figures out the list of root variables (and their types) that aren't completely
    /// captured by the closure when `capture_disjoint_fields` is enabled and either drop
    /// order of some path starting at that root variable **might** be affected or auto-traits
    /// differ between the root variable and the captured paths.
    ///
    /// The output list would include a root variable if:
    /// - It would have been moved into the closure when `capture_disjoint_fields` wasn't
    ///   enabled, **and**
    /// - It wasn't completely captured by the closure, **and**
    /// - One of the paths starting at this root variable, that is not captured needs Drop **or**
    /// - One of the paths captured does not implement all the auto-traits its root variable
    ///   implements.
    ///
    /// Returns a tuple containing a vector of MigrationDiagnosticInfo, as well as a String
    /// containing the reason why root variables whose HirId is contained in the vector should
    /// be captured
    #[instrument(level = "debug", skip(self))]
    fn compute_2229_migrations(
        &self,
        closure_def_id: LocalDefId,
        closure_span: Span,
        closure_clause: hir::CaptureBy,
        min_captures: Option<&ty::RootVariableMinCaptureList<'tcx>>,
    ) -> (Vec<NeededMigration>, MigrationWarningReason) {
        let Some(upvars) = self.tcx.upvars_mentioned(closure_def_id) else {
            return (Vec::new(), MigrationWarningReason::default());
        };

        let mut need_migrations = Vec::new();
        let mut auto_trait_migration_reasons = UnordSet::default();
        let mut drop_migration_needed = false;

        // Perform auto-trait analysis
        for (&var_hir_id, _) in upvars.iter() {
            let mut diagnostics_info = Vec::new();

            let auto_trait_diagnostic = self
                .compute_2229_migrations_for_trait(min_captures, var_hir_id, closure_clause)
                .unwrap_or_default();

            let drop_reorder_diagnostic = if let Some(diagnostics_info) = self
                .compute_2229_migrations_for_drop(
                    closure_def_id,
                    closure_span,
                    min_captures,
                    closure_clause,
                    var_hir_id,
                ) {
                drop_migration_needed = true;
                diagnostics_info
            } else {
                FxIndexSet::default()
            };

            // Combine all the captures responsible for needing migrations into one HashSet
            let mut capture_diagnostic = drop_reorder_diagnostic.clone();
            for key in auto_trait_diagnostic.keys() {
                capture_diagnostic.insert(key.clone());
            }

            let mut capture_diagnostic = capture_diagnostic.into_iter().collect::<Vec<_>>();
            capture_diagnostic.sort();
            for captures_info in capture_diagnostic {
                // Get the auto trait reasons of why migration is needed because of that capture, if there are any
                let capture_trait_reasons =
                    if let Some(reasons) = auto_trait_diagnostic.get(&captures_info) {
                        reasons.clone()
                    } else {
                        UnordSet::default()
                    };

                // Check if migration is needed because of drop reorder as a result of that capture
                let capture_drop_reorder_reason = drop_reorder_diagnostic.contains(&captures_info);

                // Combine all the reasons of why the root variable should be captured as a result of
                // auto trait implementation issues
                auto_trait_migration_reasons.extend_unord(capture_trait_reasons.items().copied());

                diagnostics_info.push(MigrationLintNote {
                    captures_info,
                    reason: self.compute_2229_migrations_reasons(
                        capture_trait_reasons,
                        capture_drop_reorder_reason,
                    ),
                });
            }

            if !diagnostics_info.is_empty() {
                need_migrations.push(NeededMigration { var_hir_id, diagnostics_info });
            }
        }
        (
            need_migrations,
            self.compute_2229_migrations_reasons(
                auto_trait_migration_reasons,
                drop_migration_needed,
            ),
        )
    }

    /// This is a helper function to `compute_2229_migrations_precise_pass`. Provided the type
    /// of a root variable and a list of captured paths starting at this root variable (expressed
    /// using list of `Projection` slices), it returns true if there is a path that is not
    /// captured starting at this root variable that implements Drop.
    ///
    /// The way this function works is at a given call it looks at type `base_path_ty` of some base
    /// path say P and then list of projection slices which represent the different captures moved
    /// into the closure starting off of P.
    ///
    /// This will make more sense with an example:
    ///
    /// ```rust,edition2021
    ///
    /// struct FancyInteger(i32); // This implements Drop
    ///
    /// struct Point { x: FancyInteger, y: FancyInteger }
    /// struct Color;
    ///
    /// struct Wrapper { p: Point, c: Color }
    ///
    /// fn f(w: Wrapper) {
    ///   let c = || {
    ///       // Closure captures w.p.x and w.c by move.
    ///   };
    ///
    ///   c();
    /// }
    /// ```
    ///
    /// If `capture_disjoint_fields` wasn't enabled the closure would've moved `w` instead of the
    /// precise paths. If we look closely `w.p.y` isn't captured which implements Drop and
    /// therefore Drop ordering would change and we want this function to return true.
    ///
    /// Call stack to figure out if we need to migrate for `w` would look as follows:
    ///
    /// Our initial base path is just `w`, and the paths captured from it are `w[p, x]` and
    /// `w[c]`.
    /// Notation:
    /// - Ty(place): Type of place
    /// - `(a, b)`: Represents the function parameters `base_path_ty` and `captured_by_move_projs`
    /// respectively.
    /// ```ignore (illustrative)
    ///                  (Ty(w), [ &[p, x], &[c] ])
    /// //                              |
    /// //                 ----------------------------
    /// //                 |                          |
    /// //                 v                          v
    ///        (Ty(w.p), [ &[x] ])          (Ty(w.c), [ &[] ]) // I(1)
    /// //                 |                          |
    /// //                 v                          v
    ///        (Ty(w.p), [ &[x] ])                 false
    /// //                 |
    /// //                 |
    /// //       -------------------------------
    /// //       |                             |
    /// //       v                             v
    ///     (Ty((w.p).x), [ &[] ])     (Ty((w.p).y), []) // IMP 2
    /// //       |                             |
    /// //       v                             v
    ///        false              NeedsSignificantDrop(Ty(w.p.y))
    /// //                                     |
    /// //                                     v
    ///                                      true
    /// ```
    ///
    /// IMP 1 `(Ty(w.c), [ &[] ])`: Notice the single empty slice inside `captured_projs`.
    ///                             This implies that the `w.c` is completely captured by the closure.
    ///                             Since drop for this path will be called when the closure is
    ///                             dropped we don't need to migrate for it.
    ///
    /// IMP 2 `(Ty((w.p).y), [])`: Notice that `captured_projs` is empty. This implies that this
    ///                             path wasn't captured by the closure. Also note that even
    ///                             though we didn't capture this path, the function visits it,
    ///                             which is kind of the point of this function. We then return
    ///                             if the type of `w.p.y` implements Drop, which in this case is
    ///                             true.
    ///
    /// Consider another example:
    ///
    /// ```ignore (pseudo-rust)
    /// struct X;
    /// impl Drop for X {}
    ///
    /// struct Y(X);
    /// impl Drop for Y {}
    ///
    /// fn foo() {
    ///     let y = Y(X);
    ///     let c = || move(y.0);
    /// }
    /// ```
    ///
    /// Note that `y.0` is captured by the closure. When this function is called for `y`, it will
    /// return true, because even though all paths starting at `y` are captured, `y` itself
    /// implements Drop which will be affected since `y` isn't completely captured.
    fn has_significant_drop_outside_of_captures(
        &self,
        closure_def_id: LocalDefId,
        closure_span: Span,
        base_path_ty: Ty<'tcx>,
        captured_by_move_projs: Vec<&[Projection<'tcx>]>,
    ) -> bool {
        // FIXME(#132279): Using `non_body_analysis` here feels wrong.
        let needs_drop = |ty: Ty<'tcx>| {
            ty.has_significant_drop(
                self.tcx,
                ty::TypingEnv::non_body_analysis(self.tcx, closure_def_id),
            )
        };

        let is_drop_defined_for_ty = |ty: Ty<'tcx>| {
            let drop_trait = self.tcx.require_lang_item(hir::LangItem::Drop, Some(closure_span));
            self.infcx
                .type_implements_trait(drop_trait, [ty], self.tcx.param_env(closure_def_id))
                .must_apply_modulo_regions()
        };

        let is_drop_defined_for_ty = is_drop_defined_for_ty(base_path_ty);

        // If there is a case where no projection is applied on top of current place
        // then there must be exactly one capture corresponding to such a case. Note that this
        // represents the case of the path being completely captured by the variable.
        //
        // eg. If `a.b` is captured and we are processing `a.b`, then we can't have the closure also
        //     capture `a.b.c`, because that violates min capture.
        let is_completely_captured = captured_by_move_projs.iter().any(|projs| projs.is_empty());

        assert!(!is_completely_captured || (captured_by_move_projs.len() == 1));

        if is_completely_captured {
            // The place is captured entirely, so doesn't matter if needs dtor, it will be drop
            // when the closure is dropped.
            return false;
        }

        if captured_by_move_projs.is_empty() {
            return needs_drop(base_path_ty);
        }

        if is_drop_defined_for_ty {
            // If drop is implemented for this type then we need it to be fully captured,
            // and we know it is not completely captured because of the previous checks.

            // Note that this is a bug in the user code that will be reported by the
            // borrow checker, since we can't move out of drop types.

            // The bug exists in the user's code pre-migration, and we don't migrate here.
            return false;
        }

        match base_path_ty.kind() {
            // Observations:
            // - `captured_by_move_projs` is not empty. Therefore we can call
            //   `captured_by_move_projs.first().unwrap()` safely.
            // - All entries in `captured_by_move_projs` have at least one projection.
            //   Therefore we can call `captured_by_move_projs.first().unwrap().first().unwrap()` safely.

            // We don't capture derefs in case of move captures, which would have be applied to
            // access any further paths.
            ty::Adt(def, _) if def.is_box() => unreachable!(),
            ty::Ref(..) => unreachable!(),
            ty::RawPtr(..) => unreachable!(),

            ty::Adt(def, args) => {
                // Multi-variant enums are captured in entirety,
                // which would've been handled in the case of single empty slice in `captured_by_move_projs`.
                assert_eq!(def.variants().len(), 1);

                // Only Field projections can be applied to a non-box Adt.
                assert!(
                    captured_by_move_projs.iter().all(|projs| matches!(
                        projs.first().unwrap().kind,
                        ProjectionKind::Field(..)
                    ))
                );
                def.variants().get(FIRST_VARIANT).unwrap().fields.iter_enumerated().any(
                    |(i, field)| {
                        let paths_using_field = captured_by_move_projs
                            .iter()
                            .filter_map(|projs| {
                                if let ProjectionKind::Field(field_idx, _) =
                                    projs.first().unwrap().kind
                                {
                                    if field_idx == i { Some(&projs[1..]) } else { None }
                                } else {
                                    unreachable!();
                                }
                            })
                            .collect();

                        let after_field_ty = field.ty(self.tcx, args);
                        self.has_significant_drop_outside_of_captures(
                            closure_def_id,
                            closure_span,
                            after_field_ty,
                            paths_using_field,
                        )
                    },
                )
            }

            ty::Tuple(fields) => {
                // Only Field projections can be applied to a tuple.
                assert!(
                    captured_by_move_projs.iter().all(|projs| matches!(
                        projs.first().unwrap().kind,
                        ProjectionKind::Field(..)
                    ))
                );

                fields.iter().enumerate().any(|(i, element_ty)| {
                    let paths_using_field = captured_by_move_projs
                        .iter()
                        .filter_map(|projs| {
                            if let ProjectionKind::Field(field_idx, _) = projs.first().unwrap().kind
                            {
                                if field_idx.index() == i { Some(&projs[1..]) } else { None }
                            } else {
                                unreachable!();
                            }
                        })
                        .collect();

                    self.has_significant_drop_outside_of_captures(
                        closure_def_id,
                        closure_span,
                        element_ty,
                        paths_using_field,
                    )
                })
            }

            // Anything else would be completely captured and therefore handled already.
            _ => unreachable!(),
        }
    }

    fn init_capture_kind_for_place(
        &self,
        place: &Place<'tcx>,
        capture_clause: hir::CaptureBy,
    ) -> ty::UpvarCapture {
        match capture_clause {
            // In case of a move closure if the data is accessed through a reference we
            // want to capture by ref to allow precise capture using reborrows.
            //
            // If the data will be moved out of this place, then the place will be truncated
            // at the first Deref in `adjust_upvar_borrow_kind_for_consume` and then moved into
            // the closure.
            hir::CaptureBy::Value { .. } if !place.deref_tys().any(Ty::is_ref) => {
                ty::UpvarCapture::ByValue
            }
            hir::CaptureBy::Value { .. } | hir::CaptureBy::Ref => {
                ty::UpvarCapture::ByRef(BorrowKind::Immutable)
            }
        }
    }

    fn place_for_root_variable(
        &self,
        closure_def_id: LocalDefId,
        var_hir_id: HirId,
    ) -> Place<'tcx> {
        let upvar_id = ty::UpvarId::new(var_hir_id, closure_def_id);

        Place {
            base_ty: self.node_ty(var_hir_id),
            base: PlaceBase::Upvar(upvar_id),
            projections: Default::default(),
        }
    }

    fn should_log_capture_analysis(&self, closure_def_id: LocalDefId) -> bool {
        self.tcx.has_attr(closure_def_id, sym::rustc_capture_analysis)
    }

    fn log_capture_analysis_first_pass(
        &self,
        closure_def_id: LocalDefId,
        capture_information: &InferredCaptureInformation<'tcx>,
        closure_span: Span,
    ) {
        if self.should_log_capture_analysis(closure_def_id) {
            let mut diag =
                self.dcx().struct_span_err(closure_span, "First Pass analysis includes:");
            for (place, capture_info) in capture_information {
                let capture_str = construct_capture_info_string(self.tcx, place, capture_info);
                let output_str = format!("Capturing {capture_str}");

                let span =
                    capture_info.path_expr_id.map_or(closure_span, |e| self.tcx.hir().span(e));
                diag.span_note(span, output_str);
            }
            diag.emit();
        }
    }

    fn log_closure_min_capture_info(&self, closure_def_id: LocalDefId, closure_span: Span) {
        if self.should_log_capture_analysis(closure_def_id) {
            if let Some(min_captures) =
                self.typeck_results.borrow().closure_min_captures.get(&closure_def_id)
            {
                let mut diag =
                    self.dcx().struct_span_err(closure_span, "Min Capture analysis includes:");

                for (_, min_captures_for_var) in min_captures {
                    for capture in min_captures_for_var {
                        let place = &capture.place;
                        let capture_info = &capture.info;

                        let capture_str =
                            construct_capture_info_string(self.tcx, place, capture_info);
                        let output_str = format!("Min Capture {capture_str}");

                        if capture.info.path_expr_id != capture.info.capture_kind_expr_id {
                            let path_span = capture_info
                                .path_expr_id
                                .map_or(closure_span, |e| self.tcx.hir().span(e));
                            let capture_kind_span = capture_info
                                .capture_kind_expr_id
                                .map_or(closure_span, |e| self.tcx.hir().span(e));

                            let mut multi_span: MultiSpan =
                                MultiSpan::from_spans(vec![path_span, capture_kind_span]);

                            let capture_kind_label =
                                construct_capture_kind_reason_string(self.tcx, place, capture_info);
                            let path_label = construct_path_string(self.tcx, place);

                            multi_span.push_span_label(path_span, path_label);
                            multi_span.push_span_label(capture_kind_span, capture_kind_label);

                            diag.span_note(multi_span, output_str);
                        } else {
                            let span = capture_info
                                .path_expr_id
                                .map_or(closure_span, |e| self.tcx.hir().span(e));

                            diag.span_note(span, output_str);
                        };
                    }
                }
                diag.emit();
            }
        }
    }

    /// A captured place is mutable if
    /// 1. Projections don't include a Deref of an immut-borrow, **and**
    /// 2. PlaceBase is mut or projections include a Deref of a mut-borrow.
    fn determine_capture_mutability(
        &self,
        typeck_results: &'a TypeckResults<'tcx>,
        place: &Place<'tcx>,
    ) -> hir::Mutability {
        let var_hir_id = match place.base {
            PlaceBase::Upvar(upvar_id) => upvar_id.var_path.hir_id,
            _ => unreachable!(),
        };

        let bm = *typeck_results.pat_binding_modes().get(var_hir_id).expect("missing binding mode");

        let mut is_mutbl = bm.1;

        for pointer_ty in place.deref_tys() {
            match pointer_ty.kind() {
                // We don't capture derefs of raw ptrs
                ty::RawPtr(_, _) => unreachable!(),

                // Dereferencing a mut-ref allows us to mut the Place if we don't deref
                // an immut-ref after on top of this.
                ty::Ref(.., hir::Mutability::Mut) => is_mutbl = hir::Mutability::Mut,

                // The place isn't mutable once we dereference an immutable reference.
                ty::Ref(.., hir::Mutability::Not) => return hir::Mutability::Not,

                // Dereferencing a box doesn't change mutability
                ty::Adt(def, ..) if def.is_box() => {}

                unexpected_ty => bug!("deref of unexpected pointer type {:?}", unexpected_ty),
            }
        }

        is_mutbl
    }
}

/// Determines whether a child capture that is derived from a parent capture
/// should be borrowed with the lifetime of the parent coroutine-closure's env.
///
/// There are two cases when this needs to happen:
///
/// (1.) Are we borrowing data owned by the parent closure? We can determine if
/// that is the case by checking if the parent capture is by move, EXCEPT if we
/// apply a deref projection, which means we're reborrowing a reference that we
/// captured by move.
///
/// ```rust
/// #![feature(async_closure)]
/// let x = &1i32; // Let's call this lifetime `'1`.
/// let c = async move || {
///     println!("{:?}", *x);
///     // Even though the inner coroutine borrows by ref, we're only capturing `*x`,
///     // not `x`, so the inner closure is allowed to reborrow the data for `'1`.
/// };
/// ```
///
/// (2.) If a coroutine is mutably borrowing from a parent capture, then that
/// mutable borrow cannot live for longer than either the parent *or* the borrow
/// that we have on the original upvar. Therefore we always need to borrow the
/// child capture with the lifetime of the parent coroutine-closure's env.
///
/// ```rust
/// #![feature(async_closure)]
/// let mut x = 1i32;
/// let c = async || {
///     x = 1;
///     // The parent borrows `x` for some `&'1 mut i32`.
///     // However, when we call `c()`, we implicitly autoref for the signature of
///     // `AsyncFnMut::async_call_mut`. Let's call that lifetime `'call`. Since
///     // the maximum that `&'call mut &'1 mut i32` can be reborrowed is `&'call mut i32`,
///     // the inner coroutine should capture w/ the lifetime of the coroutine-closure.
/// };
/// ```
///
/// If either of these cases apply, then we should capture the borrow with the
/// lifetime of the parent coroutine-closure's env. Luckily, if this function is
/// not correct, then the program is not unsound, since we still borrowck and validate
/// the choices made from this function -- the only side-effect is that the user
/// may receive unnecessary borrowck errors.
fn should_reborrow_from_env_of_parent_coroutine_closure<'tcx>(
    parent_capture: &ty::CapturedPlace<'tcx>,
    child_capture: &ty::CapturedPlace<'tcx>,
) -> bool {
    // (1.)
    (!parent_capture.is_by_ref()
        && !matches!(
            child_capture.place.projections.get(parent_capture.place.projections.len()),
            Some(Projection { kind: ProjectionKind::Deref, .. })
        ))
        // (2.)
        || matches!(child_capture.info.capture_kind, UpvarCapture::ByRef(ty::BorrowKind::Mutable))
}

/// Truncate the capture so that the place being borrowed is in accordance with RFC 1240,
/// which states that it's unsafe to take a reference into a struct marked `repr(packed)`.
fn restrict_repr_packed_field_ref_capture<'tcx>(
    mut place: Place<'tcx>,
    mut curr_borrow_kind: ty::UpvarCapture,
) -> (Place<'tcx>, ty::UpvarCapture) {
    let pos = place.projections.iter().enumerate().position(|(i, p)| {
        let ty = place.ty_before_projection(i);

        // Return true for fields of packed structs.
        match p.kind {
            ProjectionKind::Field(..) => match ty.kind() {
                ty::Adt(def, _) if def.repr().packed() => {
                    // We stop here regardless of field alignment. Field alignment can change as
                    // types change, including the types of private fields in other crates, and that
                    // shouldn't affect how we compute our captures.
                    true
                }

                _ => false,
            },
            _ => false,
        }
    });

    if let Some(pos) = pos {
        truncate_place_to_len_and_update_capture_kind(&mut place, &mut curr_borrow_kind, pos);
    }

    (place, curr_borrow_kind)
}

/// Returns a Ty that applies the specified capture kind on the provided capture Ty
fn apply_capture_kind_on_capture_ty<'tcx>(
    tcx: TyCtxt<'tcx>,
    ty: Ty<'tcx>,
    capture_kind: UpvarCapture,
    region: ty::Region<'tcx>,
) -> Ty<'tcx> {
    match capture_kind {
        ty::UpvarCapture::ByValue => ty,
        ty::UpvarCapture::ByRef(kind) => Ty::new_ref(tcx, region, ty, kind.to_mutbl_lossy()),
    }
}

/// Returns the Span of where the value with the provided HirId would be dropped
fn drop_location_span(tcx: TyCtxt<'_>, hir_id: HirId) -> Span {
    let owner_id = tcx.hir().get_enclosing_scope(hir_id).unwrap();

    let owner_node = tcx.hir_node(owner_id);
    let owner_span = match owner_node {
        hir::Node::Item(item) => match item.kind {
            hir::ItemKind::Fn(_, _, owner_id) => tcx.hir().span(owner_id.hir_id),
            _ => {
                bug!("Drop location span error: need to handle more ItemKind '{:?}'", item.kind);
            }
        },
        hir::Node::Block(block) => tcx.hir().span(block.hir_id),
        hir::Node::TraitItem(item) => tcx.hir().span(item.hir_id()),
        hir::Node::ImplItem(item) => tcx.hir().span(item.hir_id()),
        _ => {
            bug!("Drop location span error: need to handle more Node '{:?}'", owner_node);
        }
    };
    tcx.sess.source_map().end_point(owner_span)
}

struct InferBorrowKind<'tcx> {
    // The def-id of the closure whose kind and upvar accesses are being inferred.
    closure_def_id: LocalDefId,

    /// For each Place that is captured by the closure, we track the minimal kind of
    /// access we need (ref, ref mut, move, etc) and the expression that resulted in such access.
    ///
    /// Consider closure where s.str1 is captured via an ImmutableBorrow and
    /// s.str2 via a MutableBorrow
    ///
    /// ```rust,no_run
    /// struct SomeStruct { str1: String, str2: String };
    ///
    /// // Assume that the HirId for the variable definition is `V1`
    /// let mut s = SomeStruct { str1: format!("s1"), str2: format!("s2") };
    ///
    /// let fix_s = |new_s2| {
    ///     // Assume that the HirId for the expression `s.str1` is `E1`
    ///     println!("Updating SomeStruct with str1={0}", s.str1);
    ///     // Assume that the HirId for the expression `*s.str2` is `E2`
    ///     s.str2 = new_s2;
    /// };
    /// ```
    ///
    /// For closure `fix_s`, (at a high level) the map contains
    ///
    /// ```ignore (illustrative)
    /// Place { V1, [ProjectionKind::Field(Index=0, Variant=0)] } : CaptureKind { E1, ImmutableBorrow }
    /// Place { V1, [ProjectionKind::Field(Index=1, Variant=0)] } : CaptureKind { E2, MutableBorrow }
    /// ```
    capture_information: InferredCaptureInformation<'tcx>,
    fake_reads: Vec<(Place<'tcx>, FakeReadCause, HirId)>,
}

impl<'tcx> euv::Delegate<'tcx> for InferBorrowKind<'tcx> {
    fn fake_read(
        &mut self,
        place: &PlaceWithHirId<'tcx>,
        cause: FakeReadCause,
        diag_expr_id: HirId,
    ) {
        let PlaceBase::Upvar(_) = place.place.base else { return };

        // We need to restrict Fake Read precision to avoid fake reading unsafe code,
        // such as deref of a raw pointer.
        let dummy_capture_kind = ty::UpvarCapture::ByRef(ty::BorrowKind::Immutable);

        let (place, _) = restrict_capture_precision(place.place.clone(), dummy_capture_kind);

        let (place, _) = restrict_repr_packed_field_ref_capture(place, dummy_capture_kind);
        self.fake_reads.push((place, cause, diag_expr_id));
    }

    #[instrument(skip(self), level = "debug")]
    fn consume(&mut self, place_with_id: &PlaceWithHirId<'tcx>, diag_expr_id: HirId) {
        let PlaceBase::Upvar(upvar_id) = place_with_id.place.base else { return };
        assert_eq!(self.closure_def_id, upvar_id.closure_expr_id);

        self.capture_information.push((place_with_id.place.clone(), ty::CaptureInfo {
            capture_kind_expr_id: Some(diag_expr_id),
            path_expr_id: Some(diag_expr_id),
            capture_kind: ty::UpvarCapture::ByValue,
        }));
    }

    #[instrument(skip(self), level = "debug")]
    fn borrow(
        &mut self,
        place_with_id: &PlaceWithHirId<'tcx>,
        diag_expr_id: HirId,
        bk: ty::BorrowKind,
    ) {
        let PlaceBase::Upvar(upvar_id) = place_with_id.place.base else { return };
        assert_eq!(self.closure_def_id, upvar_id.closure_expr_id);

        // The region here will get discarded/ignored
        let capture_kind = ty::UpvarCapture::ByRef(bk);

        // We only want repr packed restriction to be applied to reading references into a packed
        // struct, and not when the data is being moved. Therefore we call this method here instead
        // of in `restrict_capture_precision`.
        let (place, mut capture_kind) =
            restrict_repr_packed_field_ref_capture(place_with_id.place.clone(), capture_kind);

        // Raw pointers don't inherit mutability
        if place_with_id.place.deref_tys().any(Ty::is_unsafe_ptr) {
            capture_kind = ty::UpvarCapture::ByRef(ty::BorrowKind::Immutable);
        }

        self.capture_information.push((place, ty::CaptureInfo {
            capture_kind_expr_id: Some(diag_expr_id),
            path_expr_id: Some(diag_expr_id),
            capture_kind,
        }));
    }

    #[instrument(skip(self), level = "debug")]
    fn mutate(&mut self, assignee_place: &PlaceWithHirId<'tcx>, diag_expr_id: HirId) {
        self.borrow(assignee_place, diag_expr_id, ty::BorrowKind::Mutable);
    }
}

/// Rust doesn't permit moving fields out of a type that implements drop
fn restrict_precision_for_drop_types<'a, 'tcx>(
    fcx: &'a FnCtxt<'a, 'tcx>,
    mut place: Place<'tcx>,
    mut curr_mode: ty::UpvarCapture,
) -> (Place<'tcx>, ty::UpvarCapture) {
    let is_copy_type = fcx.infcx.type_is_copy_modulo_regions(fcx.param_env, place.ty());

    if let (false, UpvarCapture::ByValue) = (is_copy_type, curr_mode) {
        for i in 0..place.projections.len() {
            match place.ty_before_projection(i).kind() {
                ty::Adt(def, _) if def.destructor(fcx.tcx).is_some() => {
                    truncate_place_to_len_and_update_capture_kind(&mut place, &mut curr_mode, i);
                    break;
                }
                _ => {}
            }
        }
    }

    (place, curr_mode)
}

/// Truncate `place` so that an `unsafe` block isn't required to capture it.
/// - No projections are applied to raw pointers, since these require unsafe blocks. We capture
///   them completely.
/// - No projections are applied on top of Union ADTs, since these require unsafe blocks.
fn restrict_precision_for_unsafe(
    mut place: Place<'_>,
    mut curr_mode: ty::UpvarCapture,
) -> (Place<'_>, ty::UpvarCapture) {
    if place.base_ty.is_unsafe_ptr() {
        truncate_place_to_len_and_update_capture_kind(&mut place, &mut curr_mode, 0);
    }

    if place.base_ty.is_union() {
        truncate_place_to_len_and_update_capture_kind(&mut place, &mut curr_mode, 0);
    }

    for (i, proj) in place.projections.iter().enumerate() {
        if proj.ty.is_unsafe_ptr() {
            // Don't apply any projections on top of an unsafe ptr.
            truncate_place_to_len_and_update_capture_kind(&mut place, &mut curr_mode, i + 1);
            break;
        }

        if proj.ty.is_union() {
            // Don't capture precise fields of a union.
            truncate_place_to_len_and_update_capture_kind(&mut place, &mut curr_mode, i + 1);
            break;
        }
    }

    (place, curr_mode)
}

/// Truncate projections so that following rules are obeyed by the captured `place`:
/// - No Index projections are captured, since arrays are captured completely.
/// - No unsafe block is required to capture `place`
/// Returns the truncated place and updated capture mode.
fn restrict_capture_precision(
    place: Place<'_>,
    curr_mode: ty::UpvarCapture,
) -> (Place<'_>, ty::UpvarCapture) {
    let (mut place, mut curr_mode) = restrict_precision_for_unsafe(place, curr_mode);

    if place.projections.is_empty() {
        // Nothing to do here
        return (place, curr_mode);
    }

    for (i, proj) in place.projections.iter().enumerate() {
        match proj.kind {
            ProjectionKind::Index | ProjectionKind::Subslice => {
                // Arrays are completely captured, so we drop Index and Subslice projections
                truncate_place_to_len_and_update_capture_kind(&mut place, &mut curr_mode, i);
                return (place, curr_mode);
            }
            ProjectionKind::Deref => {}
            ProjectionKind::OpaqueCast => {}
            ProjectionKind::Field(..) => {} // ignore
        }
    }

    (place, curr_mode)
}

/// Truncate deref of any reference.
fn adjust_for_move_closure(
    mut place: Place<'_>,
    mut kind: ty::UpvarCapture,
) -> (Place<'_>, ty::UpvarCapture) {
    let first_deref = place.projections.iter().position(|proj| proj.kind == ProjectionKind::Deref);

    if let Some(idx) = first_deref {
        truncate_place_to_len_and_update_capture_kind(&mut place, &mut kind, idx);
    }

    (place, ty::UpvarCapture::ByValue)
}

/// Adjust closure capture just that if taking ownership of data, only move data
/// from enclosing stack frame.
fn adjust_for_non_move_closure(
    mut place: Place<'_>,
    mut kind: ty::UpvarCapture,
) -> (Place<'_>, ty::UpvarCapture) {
    let contains_deref =
        place.projections.iter().position(|proj| proj.kind == ProjectionKind::Deref);

    match kind {
        ty::UpvarCapture::ByValue => {
            if let Some(idx) = contains_deref {
                truncate_place_to_len_and_update_capture_kind(&mut place, &mut kind, idx);
            }
        }

        ty::UpvarCapture::ByRef(..) => {}
    }

    (place, kind)
}

fn construct_place_string<'tcx>(tcx: TyCtxt<'_>, place: &Place<'tcx>) -> String {
    let variable_name = match place.base {
        PlaceBase::Upvar(upvar_id) => var_name(tcx, upvar_id.var_path.hir_id).to_string(),
        _ => bug!("Capture_information should only contain upvars"),
    };

    let mut projections_str = String::new();
    for (i, item) in place.projections.iter().enumerate() {
        let proj = match item.kind {
            ProjectionKind::Field(a, b) => format!("({a:?}, {b:?})"),
            ProjectionKind::Deref => String::from("Deref"),
            ProjectionKind::Index => String::from("Index"),
            ProjectionKind::Subslice => String::from("Subslice"),
            ProjectionKind::OpaqueCast => String::from("OpaqueCast"),
        };
        if i != 0 {
            projections_str.push(',');
        }
        projections_str.push_str(proj.as_str());
    }

    format!("{variable_name}[{projections_str}]")
}

fn construct_capture_kind_reason_string<'tcx>(
    tcx: TyCtxt<'_>,
    place: &Place<'tcx>,
    capture_info: &ty::CaptureInfo,
) -> String {
    let place_str = construct_place_string(tcx, place);

    let capture_kind_str = match capture_info.capture_kind {
        ty::UpvarCapture::ByValue => "ByValue".into(),
        ty::UpvarCapture::ByRef(kind) => format!("{kind:?}"),
    };

    format!("{place_str} captured as {capture_kind_str} here")
}

fn construct_path_string<'tcx>(tcx: TyCtxt<'_>, place: &Place<'tcx>) -> String {
    let place_str = construct_place_string(tcx, place);

    format!("{place_str} used here")
}

fn construct_capture_info_string<'tcx>(
    tcx: TyCtxt<'_>,
    place: &Place<'tcx>,
    capture_info: &ty::CaptureInfo,
) -> String {
    let place_str = construct_place_string(tcx, place);

    let capture_kind_str = match capture_info.capture_kind {
        ty::UpvarCapture::ByValue => "ByValue".into(),
        ty::UpvarCapture::ByRef(kind) => format!("{kind:?}"),
    };
    format!("{place_str} -> {capture_kind_str}")
}

fn var_name(tcx: TyCtxt<'_>, var_hir_id: HirId) -> Symbol {
    tcx.hir().name(var_hir_id)
}

#[instrument(level = "debug", skip(tcx))]
fn should_do_rust_2021_incompatible_closure_captures_analysis(
    tcx: TyCtxt<'_>,
    closure_id: HirId,
) -> bool {
    if tcx.sess.at_least_rust_2021() {
        return false;
    }

    let (level, _) =
        tcx.lint_level_at_node(lint::builtin::RUST_2021_INCOMPATIBLE_CLOSURE_CAPTURES, closure_id);

    !matches!(level, lint::Level::Allow)
}

/// Return a two string tuple (s1, s2)
/// - s1: Line of code that is needed for the migration: eg: `let _ = (&x, ...)`.
/// - s2: Comma separated names of the variables being migrated.
fn migration_suggestion_for_2229(
    tcx: TyCtxt<'_>,
    need_migrations: &[NeededMigration],
) -> (String, String) {
    let need_migrations_variables = need_migrations
        .iter()
        .map(|NeededMigration { var_hir_id: v, .. }| var_name(tcx, *v))
        .collect::<Vec<_>>();

    let migration_ref_concat =
        need_migrations_variables.iter().map(|v| format!("&{v}")).collect::<Vec<_>>().join(", ");

    let migration_string = if 1 == need_migrations.len() {
        format!("let _ = {migration_ref_concat}")
    } else {
        format!("let _ = ({migration_ref_concat})")
    };

    let migrated_variables_concat =
        need_migrations_variables.iter().map(|v| format!("`{v}`")).collect::<Vec<_>>().join(", ");

    (migration_string, migrated_variables_concat)
}

/// Helper function to determine if we need to escalate CaptureKind from
/// CaptureInfo A to B and returns the escalated CaptureInfo.
/// (Note: CaptureInfo contains CaptureKind and an expression that led to capture it in that way)
///
/// If both `CaptureKind`s are considered equivalent, then the CaptureInfo is selected based
/// on the `CaptureInfo` containing an associated `capture_kind_expr_id`.
///
/// It is the caller's duty to figure out which path_expr_id to use.
///
/// If both the CaptureKind and Expression are considered to be equivalent,
/// then `CaptureInfo` A is preferred. This can be useful in cases where we want to prioritize
/// expressions reported back to the user as part of diagnostics based on which appears earlier
/// in the closure. This can be achieved simply by calling
/// `determine_capture_info(existing_info, current_info)`. This works out because the
/// expressions that occur earlier in the closure body than the current expression are processed before.
/// Consider the following example
/// ```rust,no_run
/// struct Point { x: i32, y: i32 }
/// let mut p = Point { x: 10, y: 10 };
///
/// let c = || {
///     p.x     += 10;
/// // ^ E1 ^
///     // ...
///     // More code
///     // ...
///     p.x += 10; // E2
/// // ^ E2 ^
/// };
/// ```
/// `CaptureKind` associated with both `E1` and `E2` will be ByRef(MutBorrow),
/// and both have an expression associated, however for diagnostics we prefer reporting
/// `E1` since it appears earlier in the closure body. When `E2` is being processed we
/// would've already handled `E1`, and have an existing capture_information for it.
/// Calling `determine_capture_info(existing_info_e1, current_info_e2)` will return
/// `existing_info_e1` in this case, allowing us to point to `E1` in case of diagnostics.
fn determine_capture_info(
    capture_info_a: ty::CaptureInfo,
    capture_info_b: ty::CaptureInfo,
) -> ty::CaptureInfo {
    // If the capture kind is equivalent then, we don't need to escalate and can compare the
    // expressions.
    let eq_capture_kind = match (capture_info_a.capture_kind, capture_info_b.capture_kind) {
        (ty::UpvarCapture::ByValue, ty::UpvarCapture::ByValue) => true,
        (ty::UpvarCapture::ByRef(ref_a), ty::UpvarCapture::ByRef(ref_b)) => ref_a == ref_b,
        (ty::UpvarCapture::ByValue, _) | (ty::UpvarCapture::ByRef(_), _) => false,
    };

    if eq_capture_kind {
        match (capture_info_a.capture_kind_expr_id, capture_info_b.capture_kind_expr_id) {
            (Some(_), _) | (None, None) => capture_info_a,
            (None, Some(_)) => capture_info_b,
        }
    } else {
        // We select the CaptureKind which ranks higher based the following priority order:
        // ByValue > MutBorrow > UniqueImmBorrow > ImmBorrow
        match (capture_info_a.capture_kind, capture_info_b.capture_kind) {
            (ty::UpvarCapture::ByValue, _) => capture_info_a,
            (_, ty::UpvarCapture::ByValue) => capture_info_b,
            (ty::UpvarCapture::ByRef(ref_a), ty::UpvarCapture::ByRef(ref_b)) => {
                match (ref_a, ref_b) {
                    // Take LHS:
                    (BorrowKind::UniqueImmutable | BorrowKind::Mutable, BorrowKind::Immutable)
                    | (BorrowKind::Mutable, BorrowKind::UniqueImmutable) => capture_info_a,

                    // Take RHS:
                    (BorrowKind::Immutable, BorrowKind::UniqueImmutable | BorrowKind::Mutable)
                    | (BorrowKind::UniqueImmutable, BorrowKind::Mutable) => capture_info_b,

                    (BorrowKind::Immutable, BorrowKind::Immutable)
                    | (BorrowKind::UniqueImmutable, BorrowKind::UniqueImmutable)
                    | (BorrowKind::Mutable, BorrowKind::Mutable) => {
                        bug!("Expected unequal capture kinds");
                    }
                }
            }
        }
    }
}

/// Truncates `place` to have up to `len` projections.
/// `curr_mode` is the current required capture kind for the place.
/// Returns the truncated `place` and the updated required capture kind.
///
/// Note: Capture kind changes from `MutBorrow` to `UniqueImmBorrow` if the truncated part of the `place`
/// contained `Deref` of `&mut`.
fn truncate_place_to_len_and_update_capture_kind<'tcx>(
    place: &mut Place<'tcx>,
    curr_mode: &mut ty::UpvarCapture,
    len: usize,
) {
    let is_mut_ref = |ty: Ty<'_>| matches!(ty.kind(), ty::Ref(.., hir::Mutability::Mut));

    // If the truncated part of the place contains `Deref` of a `&mut` then convert MutBorrow ->
    // UniqueImmBorrow
    // Note that if the place contained Deref of a raw pointer it would've not been MutBorrow, so
    // we don't need to worry about that case here.
    match curr_mode {
        ty::UpvarCapture::ByRef(ty::BorrowKind::Mutable) => {
            for i in len..place.projections.len() {
                if place.projections[i].kind == ProjectionKind::Deref
                    && is_mut_ref(place.ty_before_projection(i))
                {
                    *curr_mode = ty::UpvarCapture::ByRef(ty::BorrowKind::UniqueImmutable);
                    break;
                }
            }
        }

        ty::UpvarCapture::ByRef(..) => {}
        ty::UpvarCapture::ByValue => {}
    }

    place.projections.truncate(len);
}

/// Determines the Ancestry relationship of Place A relative to Place B
///
/// `PlaceAncestryRelation::Ancestor` implies Place A is ancestor of Place B
/// `PlaceAncestryRelation::Descendant` implies Place A is descendant of Place B
/// `PlaceAncestryRelation::Divergent` implies neither of them is the ancestor of the other.
fn determine_place_ancestry_relation<'tcx>(
    place_a: &Place<'tcx>,
    place_b: &Place<'tcx>,
) -> PlaceAncestryRelation {
    // If Place A and Place B don't start off from the same root variable, they are divergent.
    if place_a.base != place_b.base {
        return PlaceAncestryRelation::Divergent;
    }

    // Assume of length of projections_a = n
    let projections_a = &place_a.projections;

    // Assume of length of projections_b = m
    let projections_b = &place_b.projections;

    let same_initial_projections =
        iter::zip(projections_a, projections_b).all(|(proj_a, proj_b)| proj_a.kind == proj_b.kind);

    if same_initial_projections {
        use std::cmp::Ordering;

        // First min(n, m) projections are the same
        // Select Ancestor/Descendant
        match projections_b.len().cmp(&projections_a.len()) {
            Ordering::Greater => PlaceAncestryRelation::Ancestor,
            Ordering::Equal => PlaceAncestryRelation::SamePlace,
            Ordering::Less => PlaceAncestryRelation::Descendant,
        }
    } else {
        PlaceAncestryRelation::Divergent
    }
}

/// Reduces the precision of the captured place when the precision doesn't yield any benefit from
/// borrow checking perspective, allowing us to save us on the size of the capture.
///
///
/// Fields that are read through a shared reference will always be read via a shared ref or a copy,
/// and therefore capturing precise paths yields no benefit. This optimization truncates the
/// rightmost deref of the capture if the deref is applied to a shared ref.
///
/// Reason we only drop the last deref is because of the following edge case:
///
/// ```
/// # struct A { field_of_a: Box<i32> }
/// # struct B {}
/// # struct C<'a>(&'a i32);
/// struct MyStruct<'a> {
///    a: &'static A,
///    b: B,
///    c: C<'a>,
/// }
///
/// fn foo<'a, 'b>(m: &'a MyStruct<'b>) -> impl FnMut() + 'static {
///     || drop(&*m.a.field_of_a)
///     // Here we really do want to capture `*m.a` because that outlives `'static`
///
///     // If we capture `m`, then the closure no longer outlives `'static`
///     // it is constrained to `'a`
/// }
/// ```
fn truncate_capture_for_optimization(
    mut place: Place<'_>,
    mut curr_mode: ty::UpvarCapture,
) -> (Place<'_>, ty::UpvarCapture) {
    let is_shared_ref = |ty: Ty<'_>| matches!(ty.kind(), ty::Ref(.., hir::Mutability::Not));

    // Find the rightmost deref (if any). All the projections that come after this
    // are fields or other "in-place pointer adjustments"; these refer therefore to
    // data owned by whatever pointer is being dereferenced here.
    let idx = place.projections.iter().rposition(|proj| ProjectionKind::Deref == proj.kind);

    match idx {
        // If that pointer is a shared reference, then we don't need those fields.
        Some(idx) if is_shared_ref(place.ty_before_projection(idx)) => {
            truncate_place_to_len_and_update_capture_kind(&mut place, &mut curr_mode, idx + 1)
        }
        None | Some(_) => {}
    }

    (place, curr_mode)
}

/// Precise capture is enabled if user is using Rust Edition 2021 or higher.
/// `span` is the span of the closure.
fn enable_precise_capture(span: Span) -> bool {
    // We use span here to ensure that if the closure was generated by a macro with a different
    // edition.
    span.at_least_rust_2021()
}