rustc_hir_typeck/upvar.rs
1//! ### Inferring borrow kinds for upvars
2//!
3//! Whenever there is a closure expression, we need to determine how each
4//! upvar is used. We do this by initially assigning each upvar an
5//! immutable "borrow kind" (see `ty::BorrowKind` for details) and then
6//! "escalating" the kind as needed. The borrow kind proceeds according to
7//! the following lattice:
8//! ```ignore (not-rust)
9//! ty::ImmBorrow -> ty::UniqueImmBorrow -> ty::MutBorrow
10//! ```
11//! So, for example, if we see an assignment `x = 5` to an upvar `x`, we
12//! will promote its borrow kind to mutable borrow. If we see an `&mut x`
13//! we'll do the same. Naturally, this applies not just to the upvar, but
14//! to everything owned by `x`, so the result is the same for something
15//! like `x.f = 5` and so on (presuming `x` is not a borrowed pointer to a
16//! struct). These adjustments are performed in
17//! `adjust_for_non_move_closure` (you can trace backwards through the code
18//! from there).
19//!
20//! The fact that we are inferring borrow kinds as we go results in a
21//! semi-hacky interaction with the way `ExprUseVisitor` is computing
22//! `Place`s. In particular, it will query the current borrow kind as it
23//! goes, and we'll return the *current* value, but this may get
24//! adjusted later. Therefore, in this module, we generally ignore the
25//! borrow kind (and derived mutabilities) that `ExprUseVisitor` returns
26//! within `Place`s, since they may be inaccurate. (Another option
27//! would be to use a unification scheme, where instead of returning a
28//! concrete borrow kind like `ty::ImmBorrow`, we return a
29//! `ty::InferBorrow(upvar_id)` or something like that, but this would
30//! then mean that all later passes would have to check for these figments
31//! and report an error, and it just seems like more mess in the end.)
32
33use std::iter;
34
35use rustc_abi::FIRST_VARIANT;
36use rustc_data_structures::fx::{FxIndexMap, FxIndexSet};
37use rustc_data_structures::unord::{ExtendUnord, UnordSet};
38use rustc_errors::{Applicability, MultiSpan};
39use rustc_hir as hir;
40use rustc_hir::HirId;
41use rustc_hir::def_id::LocalDefId;
42use rustc_hir::intravisit::{self, Visitor};
43use rustc_middle::hir::place::{Place, PlaceBase, PlaceWithHirId, Projection, ProjectionKind};
44use rustc_middle::mir::FakeReadCause;
45use rustc_middle::traits::ObligationCauseCode;
46use rustc_middle::ty::{
47 self, BorrowKind, ClosureSizeProfileData, Ty, TyCtxt, TypeVisitableExt as _, TypeckResults,
48 UpvarArgs, UpvarCapture,
49};
50use rustc_middle::{bug, span_bug};
51use rustc_session::lint;
52use rustc_span::{BytePos, Pos, Span, Symbol, sym};
53use rustc_trait_selection::infer::InferCtxtExt;
54use tracing::{debug, instrument};
55
56use super::FnCtxt;
57use crate::expr_use_visitor as euv;
58
59/// Describe the relationship between the paths of two places
60/// eg:
61/// - `foo` is ancestor of `foo.bar.baz`
62/// - `foo.bar.baz` is an descendant of `foo.bar`
63/// - `foo.bar` and `foo.baz` are divergent
64enum PlaceAncestryRelation {
65 Ancestor,
66 Descendant,
67 SamePlace,
68 Divergent,
69}
70
71/// Intermediate format to store a captured `Place` and associated `ty::CaptureInfo`
72/// during capture analysis. Information in this map feeds into the minimum capture
73/// analysis pass.
74type InferredCaptureInformation<'tcx> = Vec<(Place<'tcx>, ty::CaptureInfo)>;
75
76impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
77 pub(crate) fn closure_analyze(&self, body: &'tcx hir::Body<'tcx>) {
78 InferBorrowKindVisitor { fcx: self }.visit_body(body);
79
80 // it's our job to process these.
81 assert!(self.deferred_call_resolutions.borrow().is_empty());
82 }
83}
84
85/// Intermediate format to store the hir_id pointing to the use that resulted in the
86/// corresponding place being captured and a String which contains the captured value's
87/// name (i.e: a.b.c)
88#[derive(Clone, Debug, PartialEq, Eq, Hash)]
89enum UpvarMigrationInfo {
90 /// We previously captured all of `x`, but now we capture some sub-path.
91 CapturingPrecise { source_expr: Option<HirId>, var_name: String },
92 CapturingNothing {
93 // where the variable appears in the closure (but is not captured)
94 use_span: Span,
95 },
96}
97
98/// Reasons that we might issue a migration warning.
99#[derive(Clone, Debug, Default, PartialEq, Eq, PartialOrd, Ord, Hash)]
100struct MigrationWarningReason {
101 /// When we used to capture `x` in its entirety, we implemented the auto-trait(s)
102 /// in this vec, but now we don't.
103 auto_traits: Vec<&'static str>,
104
105 /// When we used to capture `x` in its entirety, we would execute some destructors
106 /// at a different time.
107 drop_order: bool,
108}
109
110impl MigrationWarningReason {
111 fn migration_message(&self) -> String {
112 let base = "changes to closure capture in Rust 2021 will affect";
113 if !self.auto_traits.is_empty() && self.drop_order {
114 format!("{base} drop order and which traits the closure implements")
115 } else if self.drop_order {
116 format!("{base} drop order")
117 } else {
118 format!("{base} which traits the closure implements")
119 }
120 }
121}
122
123/// Intermediate format to store information needed to generate a note in the migration lint.
124struct MigrationLintNote {
125 captures_info: UpvarMigrationInfo,
126
127 /// reasons why migration is needed for this capture
128 reason: MigrationWarningReason,
129}
130
131/// Intermediate format to store the hir id of the root variable and a HashSet containing
132/// information on why the root variable should be fully captured
133struct NeededMigration {
134 var_hir_id: HirId,
135 diagnostics_info: Vec<MigrationLintNote>,
136}
137
138struct InferBorrowKindVisitor<'a, 'tcx> {
139 fcx: &'a FnCtxt<'a, 'tcx>,
140}
141
142impl<'a, 'tcx> Visitor<'tcx> for InferBorrowKindVisitor<'a, 'tcx> {
143 fn visit_expr(&mut self, expr: &'tcx hir::Expr<'tcx>) {
144 match expr.kind {
145 hir::ExprKind::Closure(&hir::Closure { capture_clause, body: body_id, .. }) => {
146 let body = self.fcx.tcx.hir_body(body_id);
147 self.visit_body(body);
148 self.fcx.analyze_closure(expr.hir_id, expr.span, body_id, body, capture_clause);
149 }
150 _ => {}
151 }
152
153 intravisit::walk_expr(self, expr);
154 }
155
156 fn visit_inline_const(&mut self, c: &'tcx hir::ConstBlock) {
157 let body = self.fcx.tcx.hir_body(c.body);
158 self.visit_body(body);
159 }
160}
161
162impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
163 /// Analysis starting point.
164 #[instrument(skip(self, body), level = "debug")]
165 fn analyze_closure(
166 &self,
167 closure_hir_id: HirId,
168 span: Span,
169 body_id: hir::BodyId,
170 body: &'tcx hir::Body<'tcx>,
171 mut capture_clause: hir::CaptureBy,
172 ) {
173 // Extract the type of the closure.
174 let ty = self.node_ty(closure_hir_id);
175 let (closure_def_id, args, infer_kind) = match *ty.kind() {
176 ty::Closure(def_id, args) => {
177 (def_id, UpvarArgs::Closure(args), self.closure_kind(ty).is_none())
178 }
179 ty::CoroutineClosure(def_id, args) => {
180 (def_id, UpvarArgs::CoroutineClosure(args), self.closure_kind(ty).is_none())
181 }
182 ty::Coroutine(def_id, args) => (def_id, UpvarArgs::Coroutine(args), false),
183 ty::Error(_) => {
184 // #51714: skip analysis when we have already encountered type errors
185 return;
186 }
187 _ => {
188 span_bug!(
189 span,
190 "type of closure expr {:?} is not a closure {:?}",
191 closure_hir_id,
192 ty
193 );
194 }
195 };
196 let args = self.resolve_vars_if_possible(args);
197 let closure_def_id = closure_def_id.expect_local();
198
199 assert_eq!(self.tcx.hir_body_owner_def_id(body.id()), closure_def_id);
200 let mut delegate = InferBorrowKind {
201 closure_def_id,
202 capture_information: Default::default(),
203 fake_reads: Default::default(),
204 };
205
206 let _ = euv::ExprUseVisitor::new(
207 &FnCtxt::new(self, self.tcx.param_env(closure_def_id), closure_def_id),
208 &mut delegate,
209 )
210 .consume_body(body);
211
212 // There are several curious situations with coroutine-closures where
213 // analysis is too aggressive with borrows when the coroutine-closure is
214 // marked `move`. Specifically:
215 //
216 // 1. If the coroutine-closure was inferred to be `FnOnce` during signature
217 // inference, then it's still possible that we try to borrow upvars from
218 // the coroutine-closure because they are not used by the coroutine body
219 // in a way that forces a move. See the test:
220 // `async-await/async-closures/force-move-due-to-inferred-kind.rs`.
221 //
222 // 2. If the coroutine-closure is forced to be `FnOnce` due to the way it
223 // uses its upvars (e.g. it consumes a non-copy value), but not *all* upvars
224 // would force the closure to `FnOnce`.
225 // See the test: `async-await/async-closures/force-move-due-to-actually-fnonce.rs`.
226 //
227 // This would lead to an impossible to satisfy situation, since `AsyncFnOnce`
228 // coroutine bodies can't borrow from their parent closure. To fix this,
229 // we force the inner coroutine to also be `move`. This only matters for
230 // coroutine-closures that are `move` since otherwise they themselves will
231 // be borrowing from the outer environment, so there's no self-borrows occurring.
232 if let UpvarArgs::Coroutine(..) = args
233 && let hir::CoroutineKind::Desugared(_, hir::CoroutineSource::Closure) =
234 self.tcx.coroutine_kind(closure_def_id).expect("coroutine should have kind")
235 && let parent_hir_id =
236 self.tcx.local_def_id_to_hir_id(self.tcx.local_parent(closure_def_id))
237 && let parent_ty = self.node_ty(parent_hir_id)
238 && let hir::CaptureBy::Value { move_kw } =
239 self.tcx.hir_node(parent_hir_id).expect_closure().capture_clause
240 {
241 // (1.) Closure signature inference forced this closure to `FnOnce`.
242 if let Some(ty::ClosureKind::FnOnce) = self.closure_kind(parent_ty) {
243 capture_clause = hir::CaptureBy::Value { move_kw };
244 }
245 // (2.) The way that the closure uses its upvars means it's `FnOnce`.
246 else if self.coroutine_body_consumes_upvars(closure_def_id, body) {
247 capture_clause = hir::CaptureBy::Value { move_kw };
248 }
249 }
250
251 // As noted in `lower_coroutine_body_with_moved_arguments`, we default the capture mode
252 // to `ByRef` for the `async {}` block internal to async fns/closure. This means
253 // that we would *not* be moving all of the parameters into the async block in all cases.
254 // For example, when one of the arguments is `Copy`, we turn a consuming use into a copy of
255 // a reference, so for `async fn x(t: i32) {}`, we'd only take a reference to `t`.
256 //
257 // We force all of these arguments to be captured by move before we do expr use analysis.
258 //
259 // FIXME(async_closures): This could be cleaned up. It's a bit janky that we're just
260 // moving all of the `LocalSource::AsyncFn` locals here.
261 if let Some(hir::CoroutineKind::Desugared(
262 _,
263 hir::CoroutineSource::Fn | hir::CoroutineSource::Closure,
264 )) = self.tcx.coroutine_kind(closure_def_id)
265 {
266 let hir::ExprKind::Block(block, _) = body.value.kind else {
267 bug!();
268 };
269 for stmt in block.stmts {
270 let hir::StmtKind::Let(hir::LetStmt {
271 init: Some(init),
272 source: hir::LocalSource::AsyncFn,
273 pat,
274 ..
275 }) = stmt.kind
276 else {
277 bug!();
278 };
279 let hir::PatKind::Binding(hir::BindingMode(hir::ByRef::No, _), _, _, _) = pat.kind
280 else {
281 // Complex pattern, skip the non-upvar local.
282 continue;
283 };
284 let hir::ExprKind::Path(hir::QPath::Resolved(_, path)) = init.kind else {
285 bug!();
286 };
287 let hir::def::Res::Local(local_id) = path.res else {
288 bug!();
289 };
290 let place = self.place_for_root_variable(closure_def_id, local_id);
291 delegate.capture_information.push((
292 place,
293 ty::CaptureInfo {
294 capture_kind_expr_id: Some(init.hir_id),
295 path_expr_id: Some(init.hir_id),
296 capture_kind: UpvarCapture::ByValue,
297 },
298 ));
299 }
300 }
301
302 debug!(
303 "For closure={:?}, capture_information={:#?}",
304 closure_def_id, delegate.capture_information
305 );
306
307 self.log_capture_analysis_first_pass(closure_def_id, &delegate.capture_information, span);
308
309 let (capture_information, closure_kind, origin) = self
310 .process_collected_capture_information(capture_clause, &delegate.capture_information);
311
312 self.compute_min_captures(closure_def_id, capture_information, span);
313
314 let closure_hir_id = self.tcx.local_def_id_to_hir_id(closure_def_id);
315
316 if should_do_rust_2021_incompatible_closure_captures_analysis(self.tcx, closure_hir_id) {
317 self.perform_2229_migration_analysis(closure_def_id, body_id, capture_clause, span);
318 }
319
320 let after_feature_tys = self.final_upvar_tys(closure_def_id);
321
322 // We now fake capture information for all variables that are mentioned within the closure
323 // We do this after handling migrations so that min_captures computes before
324 if !enable_precise_capture(span) {
325 let mut capture_information: InferredCaptureInformation<'tcx> = Default::default();
326
327 if let Some(upvars) = self.tcx.upvars_mentioned(closure_def_id) {
328 for var_hir_id in upvars.keys() {
329 let place = self.place_for_root_variable(closure_def_id, *var_hir_id);
330
331 debug!("seed place {:?}", place);
332
333 let capture_kind = self.init_capture_kind_for_place(&place, capture_clause);
334 let fake_info = ty::CaptureInfo {
335 capture_kind_expr_id: None,
336 path_expr_id: None,
337 capture_kind,
338 };
339
340 capture_information.push((place, fake_info));
341 }
342 }
343
344 // This will update the min captures based on this new fake information.
345 self.compute_min_captures(closure_def_id, capture_information, span);
346 }
347
348 let before_feature_tys = self.final_upvar_tys(closure_def_id);
349
350 if infer_kind {
351 // Unify the (as yet unbound) type variable in the closure
352 // args with the kind we inferred.
353 let closure_kind_ty = match args {
354 UpvarArgs::Closure(args) => args.as_closure().kind_ty(),
355 UpvarArgs::CoroutineClosure(args) => args.as_coroutine_closure().kind_ty(),
356 UpvarArgs::Coroutine(_) => unreachable!("coroutines don't have an inferred kind"),
357 };
358 self.demand_eqtype(
359 span,
360 Ty::from_closure_kind(self.tcx, closure_kind),
361 closure_kind_ty,
362 );
363
364 // If we have an origin, store it.
365 if let Some(mut origin) = origin {
366 if !enable_precise_capture(span) {
367 // Without precise captures, we just capture the base and ignore
368 // the projections.
369 origin.1.projections.clear()
370 }
371
372 self.typeck_results
373 .borrow_mut()
374 .closure_kind_origins_mut()
375 .insert(closure_hir_id, origin);
376 }
377 }
378
379 // For coroutine-closures, we additionally must compute the
380 // `coroutine_captures_by_ref_ty` type, which is used to generate the by-ref
381 // version of the coroutine-closure's output coroutine.
382 if let UpvarArgs::CoroutineClosure(args) = args
383 && !args.references_error()
384 {
385 let closure_env_region: ty::Region<'_> = ty::Region::new_bound(
386 self.tcx,
387 ty::INNERMOST,
388 ty::BoundRegion { var: ty::BoundVar::ZERO, kind: ty::BoundRegionKind::ClosureEnv },
389 );
390
391 let num_args = args
392 .as_coroutine_closure()
393 .coroutine_closure_sig()
394 .skip_binder()
395 .tupled_inputs_ty
396 .tuple_fields()
397 .len();
398 let typeck_results = self.typeck_results.borrow();
399
400 let tupled_upvars_ty_for_borrow = Ty::new_tup_from_iter(
401 self.tcx,
402 ty::analyze_coroutine_closure_captures(
403 typeck_results.closure_min_captures_flattened(closure_def_id),
404 typeck_results
405 .closure_min_captures_flattened(
406 self.tcx.coroutine_for_closure(closure_def_id).expect_local(),
407 )
408 // Skip the captures that are just moving the closure's args
409 // into the coroutine. These are always by move, and we append
410 // those later in the `CoroutineClosureSignature` helper functions.
411 .skip(num_args),
412 |(_, parent_capture), (_, child_capture)| {
413 // This is subtle. See documentation on function.
414 let needs_ref = should_reborrow_from_env_of_parent_coroutine_closure(
415 parent_capture,
416 child_capture,
417 );
418
419 let upvar_ty = child_capture.place.ty();
420 let capture = child_capture.info.capture_kind;
421 // Not all upvars are captured by ref, so use
422 // `apply_capture_kind_on_capture_ty` to ensure that we
423 // compute the right captured type.
424 apply_capture_kind_on_capture_ty(
425 self.tcx,
426 upvar_ty,
427 capture,
428 if needs_ref {
429 closure_env_region
430 } else {
431 self.tcx.lifetimes.re_erased
432 },
433 )
434 },
435 ),
436 );
437 let coroutine_captures_by_ref_ty = Ty::new_fn_ptr(
438 self.tcx,
439 ty::Binder::bind_with_vars(
440 self.tcx.mk_fn_sig(
441 [],
442 tupled_upvars_ty_for_borrow,
443 false,
444 hir::Safety::Safe,
445 rustc_abi::ExternAbi::Rust,
446 ),
447 self.tcx.mk_bound_variable_kinds(&[ty::BoundVariableKind::Region(
448 ty::BoundRegionKind::ClosureEnv,
449 )]),
450 ),
451 );
452 self.demand_eqtype(
453 span,
454 args.as_coroutine_closure().coroutine_captures_by_ref_ty(),
455 coroutine_captures_by_ref_ty,
456 );
457
458 // Additionally, we can now constrain the coroutine's kind type.
459 //
460 // We only do this if `infer_kind`, because if we have constrained
461 // the kind from closure signature inference, the kind inferred
462 // for the inner coroutine may actually be more restrictive.
463 if infer_kind {
464 let ty::Coroutine(_, coroutine_args) =
465 *self.typeck_results.borrow().expr_ty(body.value).kind()
466 else {
467 bug!();
468 };
469 self.demand_eqtype(
470 span,
471 coroutine_args.as_coroutine().kind_ty(),
472 Ty::from_coroutine_closure_kind(self.tcx, closure_kind),
473 );
474 }
475 }
476
477 self.log_closure_min_capture_info(closure_def_id, span);
478
479 // Now that we've analyzed the closure, we know how each
480 // variable is borrowed, and we know what traits the closure
481 // implements (Fn vs FnMut etc). We now have some updates to do
482 // with that information.
483 //
484 // Note that no closure type C may have an upvar of type C
485 // (though it may reference itself via a trait object). This
486 // results from the desugaring of closures to a struct like
487 // `Foo<..., UV0...UVn>`. If one of those upvars referenced
488 // C, then the type would have infinite size (and the
489 // inference algorithm will reject it).
490
491 // Equate the type variables for the upvars with the actual types.
492 let final_upvar_tys = self.final_upvar_tys(closure_def_id);
493 debug!(?closure_hir_id, ?args, ?final_upvar_tys);
494
495 if self.tcx.features().unsized_fn_params() {
496 for capture in
497 self.typeck_results.borrow().closure_min_captures_flattened(closure_def_id)
498 {
499 if let UpvarCapture::ByValue = capture.info.capture_kind {
500 self.require_type_is_sized(
501 capture.place.ty(),
502 capture.get_path_span(self.tcx),
503 ObligationCauseCode::SizedClosureCapture(closure_def_id),
504 );
505 }
506 }
507 }
508
509 // Build a tuple (U0..Un) of the final upvar types U0..Un
510 // and unify the upvar tuple type in the closure with it:
511 let final_tupled_upvars_type = Ty::new_tup(self.tcx, &final_upvar_tys);
512 self.demand_suptype(span, args.tupled_upvars_ty(), final_tupled_upvars_type);
513
514 let fake_reads = delegate.fake_reads;
515
516 self.typeck_results.borrow_mut().closure_fake_reads.insert(closure_def_id, fake_reads);
517
518 if self.tcx.sess.opts.unstable_opts.profile_closures {
519 self.typeck_results.borrow_mut().closure_size_eval.insert(
520 closure_def_id,
521 ClosureSizeProfileData {
522 before_feature_tys: Ty::new_tup(self.tcx, &before_feature_tys),
523 after_feature_tys: Ty::new_tup(self.tcx, &after_feature_tys),
524 },
525 );
526 }
527
528 // If we are also inferred the closure kind here,
529 // process any deferred resolutions.
530 let deferred_call_resolutions = self.remove_deferred_call_resolutions(closure_def_id);
531 for deferred_call_resolution in deferred_call_resolutions {
532 deferred_call_resolution.resolve(&FnCtxt::new(self, self.param_env, closure_def_id));
533 }
534 }
535
536 /// Determines whether the body of the coroutine uses its upvars in a way that
537 /// consumes (i.e. moves) the value, which would force the coroutine to `FnOnce`.
538 /// In a more detailed comment above, we care whether this happens, since if
539 /// this happens, we want to force the coroutine to move all of the upvars it
540 /// would've borrowed from the parent coroutine-closure.
541 ///
542 /// This only really makes sense to be called on the child coroutine of a
543 /// coroutine-closure.
544 fn coroutine_body_consumes_upvars(
545 &self,
546 coroutine_def_id: LocalDefId,
547 body: &'tcx hir::Body<'tcx>,
548 ) -> bool {
549 // This block contains argument capturing details. Since arguments
550 // aren't upvars, we do not care about them for determining if the
551 // coroutine body actually consumes its upvars.
552 let hir::ExprKind::Block(&hir::Block { expr: Some(body), .. }, None) = body.value.kind
553 else {
554 bug!();
555 };
556 // Specifically, we only care about the *real* body of the coroutine.
557 // We skip out into the drop-temps within the block of the body in order
558 // to skip over the args of the desugaring.
559 let hir::ExprKind::DropTemps(body) = body.kind else {
560 bug!();
561 };
562
563 let mut delegate = InferBorrowKind {
564 closure_def_id: coroutine_def_id,
565 capture_information: Default::default(),
566 fake_reads: Default::default(),
567 };
568
569 let _ = euv::ExprUseVisitor::new(
570 &FnCtxt::new(self, self.tcx.param_env(coroutine_def_id), coroutine_def_id),
571 &mut delegate,
572 )
573 .consume_expr(body);
574
575 let (_, kind, _) = self.process_collected_capture_information(
576 hir::CaptureBy::Ref,
577 &delegate.capture_information,
578 );
579
580 matches!(kind, ty::ClosureKind::FnOnce)
581 }
582
583 // Returns a list of `Ty`s for each upvar.
584 fn final_upvar_tys(&self, closure_id: LocalDefId) -> Vec<Ty<'tcx>> {
585 self.typeck_results
586 .borrow()
587 .closure_min_captures_flattened(closure_id)
588 .map(|captured_place| {
589 let upvar_ty = captured_place.place.ty();
590 let capture = captured_place.info.capture_kind;
591
592 debug!(?captured_place.place, ?upvar_ty, ?capture, ?captured_place.mutability);
593
594 apply_capture_kind_on_capture_ty(
595 self.tcx,
596 upvar_ty,
597 capture,
598 self.tcx.lifetimes.re_erased,
599 )
600 })
601 .collect()
602 }
603
604 /// Adjusts the closure capture information to ensure that the operations aren't unsafe,
605 /// and that the path can be captured with required capture kind (depending on use in closure,
606 /// move closure etc.)
607 ///
608 /// Returns the set of adjusted information along with the inferred closure kind and span
609 /// associated with the closure kind inference.
610 ///
611 /// Note that we *always* infer a minimal kind, even if
612 /// we don't always *use* that in the final result (i.e., sometimes
613 /// we've taken the closure kind from the expectations instead, and
614 /// for coroutines we don't even implement the closure traits
615 /// really).
616 ///
617 /// If we inferred that the closure needs to be FnMut/FnOnce, last element of the returned tuple
618 /// contains a `Some()` with the `Place` that caused us to do so.
619 fn process_collected_capture_information(
620 &self,
621 capture_clause: hir::CaptureBy,
622 capture_information: &InferredCaptureInformation<'tcx>,
623 ) -> (InferredCaptureInformation<'tcx>, ty::ClosureKind, Option<(Span, Place<'tcx>)>) {
624 let mut closure_kind = ty::ClosureKind::LATTICE_BOTTOM;
625 let mut origin: Option<(Span, Place<'tcx>)> = None;
626
627 let processed = capture_information
628 .iter()
629 .cloned()
630 .map(|(place, mut capture_info)| {
631 // Apply rules for safety before inferring closure kind
632 let (place, capture_kind) =
633 restrict_capture_precision(place, capture_info.capture_kind);
634
635 let (place, capture_kind) = truncate_capture_for_optimization(place, capture_kind);
636
637 let usage_span = if let Some(usage_expr) = capture_info.path_expr_id {
638 self.tcx.hir_span(usage_expr)
639 } else {
640 unreachable!()
641 };
642
643 let updated = match capture_kind {
644 ty::UpvarCapture::ByValue => match closure_kind {
645 ty::ClosureKind::Fn | ty::ClosureKind::FnMut => {
646 (ty::ClosureKind::FnOnce, Some((usage_span, place.clone())))
647 }
648 // If closure is already FnOnce, don't update
649 ty::ClosureKind::FnOnce => (closure_kind, origin.take()),
650 },
651
652 ty::UpvarCapture::ByRef(
653 ty::BorrowKind::Mutable | ty::BorrowKind::UniqueImmutable,
654 ) => {
655 match closure_kind {
656 ty::ClosureKind::Fn => {
657 (ty::ClosureKind::FnMut, Some((usage_span, place.clone())))
658 }
659 // Don't update the origin
660 ty::ClosureKind::FnMut | ty::ClosureKind::FnOnce => {
661 (closure_kind, origin.take())
662 }
663 }
664 }
665
666 _ => (closure_kind, origin.take()),
667 };
668
669 closure_kind = updated.0;
670 origin = updated.1;
671
672 let (place, capture_kind) = match capture_clause {
673 hir::CaptureBy::Value { .. } => adjust_for_move_closure(place, capture_kind),
674 hir::CaptureBy::Use { .. } => adjust_for_use_closure(place, capture_kind),
675 hir::CaptureBy::Ref => adjust_for_non_move_closure(place, capture_kind),
676 };
677
678 // This restriction needs to be applied after we have handled adjustments for `move`
679 // closures. We want to make sure any adjustment that might make us move the place into
680 // the closure gets handled.
681 let (place, capture_kind) =
682 restrict_precision_for_drop_types(self, place, capture_kind);
683
684 capture_info.capture_kind = capture_kind;
685 (place, capture_info)
686 })
687 .collect();
688
689 (processed, closure_kind, origin)
690 }
691
692 /// Analyzes the information collected by `InferBorrowKind` to compute the min number of
693 /// Places (and corresponding capture kind) that we need to keep track of to support all
694 /// the required captured paths.
695 ///
696 ///
697 /// Note: If this function is called multiple times for the same closure, it will update
698 /// the existing min_capture map that is stored in TypeckResults.
699 ///
700 /// Eg:
701 /// ```
702 /// #[derive(Debug)]
703 /// struct Point { x: i32, y: i32 }
704 ///
705 /// let s = String::from("s"); // hir_id_s
706 /// let mut p = Point { x: 2, y: -2 }; // his_id_p
707 /// let c = || {
708 /// println!("{s:?}"); // L1
709 /// p.x += 10; // L2
710 /// println!("{}" , p.y); // L3
711 /// println!("{p:?}"); // L4
712 /// drop(s); // L5
713 /// };
714 /// ```
715 /// and let hir_id_L1..5 be the expressions pointing to use of a captured variable on
716 /// the lines L1..5 respectively.
717 ///
718 /// InferBorrowKind results in a structure like this:
719 ///
720 /// ```ignore (illustrative)
721 /// {
722 /// Place(base: hir_id_s, projections: [], ....) -> {
723 /// capture_kind_expr: hir_id_L5,
724 /// path_expr_id: hir_id_L5,
725 /// capture_kind: ByValue
726 /// },
727 /// Place(base: hir_id_p, projections: [Field(0, 0)], ...) -> {
728 /// capture_kind_expr: hir_id_L2,
729 /// path_expr_id: hir_id_L2,
730 /// capture_kind: ByValue
731 /// },
732 /// Place(base: hir_id_p, projections: [Field(1, 0)], ...) -> {
733 /// capture_kind_expr: hir_id_L3,
734 /// path_expr_id: hir_id_L3,
735 /// capture_kind: ByValue
736 /// },
737 /// Place(base: hir_id_p, projections: [], ...) -> {
738 /// capture_kind_expr: hir_id_L4,
739 /// path_expr_id: hir_id_L4,
740 /// capture_kind: ByValue
741 /// },
742 /// }
743 /// ```
744 ///
745 /// After the min capture analysis, we get:
746 /// ```ignore (illustrative)
747 /// {
748 /// hir_id_s -> [
749 /// Place(base: hir_id_s, projections: [], ....) -> {
750 /// capture_kind_expr: hir_id_L5,
751 /// path_expr_id: hir_id_L5,
752 /// capture_kind: ByValue
753 /// },
754 /// ],
755 /// hir_id_p -> [
756 /// Place(base: hir_id_p, projections: [], ...) -> {
757 /// capture_kind_expr: hir_id_L2,
758 /// path_expr_id: hir_id_L4,
759 /// capture_kind: ByValue
760 /// },
761 /// ],
762 /// }
763 /// ```
764 fn compute_min_captures(
765 &self,
766 closure_def_id: LocalDefId,
767 capture_information: InferredCaptureInformation<'tcx>,
768 closure_span: Span,
769 ) {
770 if capture_information.is_empty() {
771 return;
772 }
773
774 let mut typeck_results = self.typeck_results.borrow_mut();
775
776 let mut root_var_min_capture_list =
777 typeck_results.closure_min_captures.remove(&closure_def_id).unwrap_or_default();
778
779 for (mut place, capture_info) in capture_information.into_iter() {
780 let var_hir_id = match place.base {
781 PlaceBase::Upvar(upvar_id) => upvar_id.var_path.hir_id,
782 base => bug!("Expected upvar, found={:?}", base),
783 };
784 let var_ident = self.tcx.hir_ident(var_hir_id);
785
786 let Some(min_cap_list) = root_var_min_capture_list.get_mut(&var_hir_id) else {
787 let mutability = self.determine_capture_mutability(&typeck_results, &place);
788 let min_cap_list =
789 vec![ty::CapturedPlace { var_ident, place, info: capture_info, mutability }];
790 root_var_min_capture_list.insert(var_hir_id, min_cap_list);
791 continue;
792 };
793
794 // Go through each entry in the current list of min_captures
795 // - if ancestor is found, update its capture kind to account for current place's
796 // capture information.
797 //
798 // - if descendant is found, remove it from the list, and update the current place's
799 // capture information to account for the descendant's capture kind.
800 //
801 // We can never be in a case where the list contains both an ancestor and a descendant
802 // Also there can only be ancestor but in case of descendants there might be
803 // multiple.
804
805 let mut descendant_found = false;
806 let mut updated_capture_info = capture_info;
807 min_cap_list.retain(|possible_descendant| {
808 match determine_place_ancestry_relation(&place, &possible_descendant.place) {
809 // current place is ancestor of possible_descendant
810 PlaceAncestryRelation::Ancestor => {
811 descendant_found = true;
812
813 let mut possible_descendant = possible_descendant.clone();
814 let backup_path_expr_id = updated_capture_info.path_expr_id;
815
816 // Truncate the descendant (already in min_captures) to be same as the ancestor to handle any
817 // possible change in capture mode.
818 truncate_place_to_len_and_update_capture_kind(
819 &mut possible_descendant.place,
820 &mut possible_descendant.info.capture_kind,
821 place.projections.len(),
822 );
823
824 updated_capture_info =
825 determine_capture_info(updated_capture_info, possible_descendant.info);
826
827 // we need to keep the ancestor's `path_expr_id`
828 updated_capture_info.path_expr_id = backup_path_expr_id;
829 false
830 }
831
832 _ => true,
833 }
834 });
835
836 let mut ancestor_found = false;
837 if !descendant_found {
838 for possible_ancestor in min_cap_list.iter_mut() {
839 match determine_place_ancestry_relation(&place, &possible_ancestor.place) {
840 PlaceAncestryRelation::SamePlace => {
841 ancestor_found = true;
842 possible_ancestor.info = determine_capture_info(
843 possible_ancestor.info,
844 updated_capture_info,
845 );
846
847 // Only one related place will be in the list.
848 break;
849 }
850 // current place is descendant of possible_ancestor
851 PlaceAncestryRelation::Descendant => {
852 ancestor_found = true;
853 let backup_path_expr_id = possible_ancestor.info.path_expr_id;
854
855 // Truncate the descendant (current place) to be same as the ancestor to handle any
856 // possible change in capture mode.
857 truncate_place_to_len_and_update_capture_kind(
858 &mut place,
859 &mut updated_capture_info.capture_kind,
860 possible_ancestor.place.projections.len(),
861 );
862
863 possible_ancestor.info = determine_capture_info(
864 possible_ancestor.info,
865 updated_capture_info,
866 );
867
868 // we need to keep the ancestor's `path_expr_id`
869 possible_ancestor.info.path_expr_id = backup_path_expr_id;
870
871 // Only one related place will be in the list.
872 break;
873 }
874 _ => {}
875 }
876 }
877 }
878
879 // Only need to insert when we don't have an ancestor in the existing min capture list
880 if !ancestor_found {
881 let mutability = self.determine_capture_mutability(&typeck_results, &place);
882 let captured_place =
883 ty::CapturedPlace { var_ident, place, info: updated_capture_info, mutability };
884 min_cap_list.push(captured_place);
885 }
886 }
887
888 debug!(
889 "For closure={:?}, min_captures before sorting={:?}",
890 closure_def_id, root_var_min_capture_list
891 );
892
893 // Now that we have the minimized list of captures, sort the captures by field id.
894 // This causes the closure to capture the upvars in the same order as the fields are
895 // declared which is also the drop order. Thus, in situations where we capture all the
896 // fields of some type, the observable drop order will remain the same as it previously
897 // was even though we're dropping each capture individually.
898 // See https://github.com/rust-lang/project-rfc-2229/issues/42 and
899 // `tests/ui/closures/2229_closure_analysis/preserve_field_drop_order.rs`.
900 for (_, captures) in &mut root_var_min_capture_list {
901 captures.sort_by(|capture1, capture2| {
902 fn is_field<'a>(p: &&Projection<'a>) -> bool {
903 match p.kind {
904 ProjectionKind::Field(_, _) => true,
905 ProjectionKind::Deref
906 | ProjectionKind::OpaqueCast
907 | ProjectionKind::UnwrapUnsafeBinder => false,
908 p @ (ProjectionKind::Subslice | ProjectionKind::Index) => {
909 bug!("ProjectionKind {:?} was unexpected", p)
910 }
911 }
912 }
913
914 // Need to sort only by Field projections, so filter away others.
915 // A previous implementation considered other projection types too
916 // but that caused ICE #118144
917 let capture1_field_projections = capture1.place.projections.iter().filter(is_field);
918 let capture2_field_projections = capture2.place.projections.iter().filter(is_field);
919
920 for (p1, p2) in capture1_field_projections.zip(capture2_field_projections) {
921 // We do not need to look at the `Projection.ty` fields here because at each
922 // step of the iteration, the projections will either be the same and therefore
923 // the types must be as well or the current projection will be different and
924 // we will return the result of comparing the field indexes.
925 match (p1.kind, p2.kind) {
926 (ProjectionKind::Field(i1, _), ProjectionKind::Field(i2, _)) => {
927 // Compare only if paths are different.
928 // Otherwise continue to the next iteration
929 if i1 != i2 {
930 return i1.cmp(&i2);
931 }
932 }
933 // Given the filter above, this arm should never be hit
934 (l, r) => bug!("ProjectionKinds {:?} or {:?} were unexpected", l, r),
935 }
936 }
937
938 self.dcx().span_delayed_bug(
939 closure_span,
940 format!(
941 "two identical projections: ({:?}, {:?})",
942 capture1.place.projections, capture2.place.projections
943 ),
944 );
945 std::cmp::Ordering::Equal
946 });
947 }
948
949 debug!(
950 "For closure={:?}, min_captures after sorting={:#?}",
951 closure_def_id, root_var_min_capture_list
952 );
953 typeck_results.closure_min_captures.insert(closure_def_id, root_var_min_capture_list);
954 }
955
956 /// Perform the migration analysis for RFC 2229, and emit lint
957 /// `disjoint_capture_drop_reorder` if needed.
958 fn perform_2229_migration_analysis(
959 &self,
960 closure_def_id: LocalDefId,
961 body_id: hir::BodyId,
962 capture_clause: hir::CaptureBy,
963 span: Span,
964 ) {
965 let (need_migrations, reasons) = self.compute_2229_migrations(
966 closure_def_id,
967 span,
968 capture_clause,
969 self.typeck_results.borrow().closure_min_captures.get(&closure_def_id),
970 );
971
972 if !need_migrations.is_empty() {
973 let (migration_string, migrated_variables_concat) =
974 migration_suggestion_for_2229(self.tcx, &need_migrations);
975
976 let closure_hir_id = self.tcx.local_def_id_to_hir_id(closure_def_id);
977 let closure_head_span = self.tcx.def_span(closure_def_id);
978 self.tcx.node_span_lint(
979 lint::builtin::RUST_2021_INCOMPATIBLE_CLOSURE_CAPTURES,
980 closure_hir_id,
981 closure_head_span,
982 |lint| {
983 lint.primary_message(reasons.migration_message());
984
985 for NeededMigration { var_hir_id, diagnostics_info } in &need_migrations {
986 // Labels all the usage of the captured variable and why they are responsible
987 // for migration being needed
988 for lint_note in diagnostics_info.iter() {
989 match &lint_note.captures_info {
990 UpvarMigrationInfo::CapturingPrecise { source_expr: Some(capture_expr_id), var_name: captured_name } => {
991 let cause_span = self.tcx.hir_span(*capture_expr_id);
992 lint.span_label(cause_span, format!("in Rust 2018, this closure captures all of `{}`, but in Rust 2021, it will only capture `{}`",
993 self.tcx.hir_name(*var_hir_id),
994 captured_name,
995 ));
996 }
997 UpvarMigrationInfo::CapturingNothing { use_span } => {
998 lint.span_label(*use_span, format!("in Rust 2018, this causes the closure to capture `{}`, but in Rust 2021, it has no effect",
999 self.tcx.hir_name(*var_hir_id),
1000 ));
1001 }
1002
1003 _ => { }
1004 }
1005
1006 // Add a label pointing to where a captured variable affected by drop order
1007 // is dropped
1008 if lint_note.reason.drop_order {
1009 let drop_location_span = drop_location_span(self.tcx, closure_hir_id);
1010
1011 match &lint_note.captures_info {
1012 UpvarMigrationInfo::CapturingPrecise { var_name: captured_name, .. } => {
1013 lint.span_label(drop_location_span, format!("in Rust 2018, `{}` is dropped here, but in Rust 2021, only `{}` will be dropped here as part of the closure",
1014 self.tcx.hir_name(*var_hir_id),
1015 captured_name,
1016 ));
1017 }
1018 UpvarMigrationInfo::CapturingNothing { use_span: _ } => {
1019 lint.span_label(drop_location_span, format!("in Rust 2018, `{v}` is dropped here along with the closure, but in Rust 2021 `{v}` is not part of the closure",
1020 v = self.tcx.hir_name(*var_hir_id),
1021 ));
1022 }
1023 }
1024 }
1025
1026 // Add a label explaining why a closure no longer implements a trait
1027 for &missing_trait in &lint_note.reason.auto_traits {
1028 // not capturing something anymore cannot cause a trait to fail to be implemented:
1029 match &lint_note.captures_info {
1030 UpvarMigrationInfo::CapturingPrecise { var_name: captured_name, .. } => {
1031 let var_name = self.tcx.hir_name(*var_hir_id);
1032 lint.span_label(closure_head_span, format!("\
1033 in Rust 2018, this closure implements {missing_trait} \
1034 as `{var_name}` implements {missing_trait}, but in Rust 2021, \
1035 this closure will no longer implement {missing_trait} \
1036 because `{var_name}` is not fully captured \
1037 and `{captured_name}` does not implement {missing_trait}"));
1038 }
1039
1040 // Cannot happen: if we don't capture a variable, we impl strictly more traits
1041 UpvarMigrationInfo::CapturingNothing { use_span } => span_bug!(*use_span, "missing trait from not capturing something"),
1042 }
1043 }
1044 }
1045 }
1046
1047 let diagnostic_msg = format!(
1048 "add a dummy let to cause {migrated_variables_concat} to be fully captured"
1049 );
1050
1051 let closure_span = self.tcx.hir_span_with_body(closure_hir_id);
1052 let mut closure_body_span = {
1053 // If the body was entirely expanded from a macro
1054 // invocation, i.e. the body is not contained inside the
1055 // closure span, then we walk up the expansion until we
1056 // find the span before the expansion.
1057 let s = self.tcx.hir_span_with_body(body_id.hir_id);
1058 s.find_ancestor_inside(closure_span).unwrap_or(s)
1059 };
1060
1061 if let Ok(mut s) = self.tcx.sess.source_map().span_to_snippet(closure_body_span) {
1062 if s.starts_with('$') {
1063 // Looks like a macro fragment. Try to find the real block.
1064 if let hir::Node::Expr(&hir::Expr {
1065 kind: hir::ExprKind::Block(block, ..), ..
1066 }) = self.tcx.hir_node(body_id.hir_id) {
1067 // If the body is a block (with `{..}`), we use the span of that block.
1068 // E.g. with a `|| $body` expanded from a `m!({ .. })`, we use `{ .. }`, and not `$body`.
1069 // Since we know it's a block, we know we can insert the `let _ = ..` without
1070 // breaking the macro syntax.
1071 if let Ok(snippet) = self.tcx.sess.source_map().span_to_snippet(block.span) {
1072 closure_body_span = block.span;
1073 s = snippet;
1074 }
1075 }
1076 }
1077
1078 let mut lines = s.lines();
1079 let line1 = lines.next().unwrap_or_default();
1080
1081 if line1.trim_end() == "{" {
1082 // This is a multi-line closure with just a `{` on the first line,
1083 // so we put the `let` on its own line.
1084 // We take the indentation from the next non-empty line.
1085 let line2 = lines.find(|line| !line.is_empty()).unwrap_or_default();
1086 let indent = line2.split_once(|c: char| !c.is_whitespace()).unwrap_or_default().0;
1087 lint.span_suggestion(
1088 closure_body_span.with_lo(closure_body_span.lo() + BytePos::from_usize(line1.len())).shrink_to_lo(),
1089 diagnostic_msg,
1090 format!("\n{indent}{migration_string};"),
1091 Applicability::MachineApplicable,
1092 );
1093 } else if line1.starts_with('{') {
1094 // This is a closure with its body wrapped in
1095 // braces, but with more than just the opening
1096 // brace on the first line. We put the `let`
1097 // directly after the `{`.
1098 lint.span_suggestion(
1099 closure_body_span.with_lo(closure_body_span.lo() + BytePos(1)).shrink_to_lo(),
1100 diagnostic_msg,
1101 format!(" {migration_string};"),
1102 Applicability::MachineApplicable,
1103 );
1104 } else {
1105 // This is a closure without braces around the body.
1106 // We add braces to add the `let` before the body.
1107 lint.multipart_suggestion(
1108 diagnostic_msg,
1109 vec![
1110 (closure_body_span.shrink_to_lo(), format!("{{ {migration_string}; ")),
1111 (closure_body_span.shrink_to_hi(), " }".to_string()),
1112 ],
1113 Applicability::MachineApplicable
1114 );
1115 }
1116 } else {
1117 lint.span_suggestion(
1118 closure_span,
1119 diagnostic_msg,
1120 migration_string,
1121 Applicability::HasPlaceholders
1122 );
1123 }
1124 },
1125 );
1126 }
1127 }
1128
1129 /// Combines all the reasons for 2229 migrations
1130 fn compute_2229_migrations_reasons(
1131 &self,
1132 auto_trait_reasons: UnordSet<&'static str>,
1133 drop_order: bool,
1134 ) -> MigrationWarningReason {
1135 MigrationWarningReason {
1136 auto_traits: auto_trait_reasons.into_sorted_stable_ord(),
1137 drop_order,
1138 }
1139 }
1140
1141 /// Figures out the list of root variables (and their types) that aren't completely
1142 /// captured by the closure when `capture_disjoint_fields` is enabled and auto-traits
1143 /// differ between the root variable and the captured paths.
1144 ///
1145 /// Returns a tuple containing a HashMap of CapturesInfo that maps to a HashSet of trait names
1146 /// if migration is needed for traits for the provided var_hir_id, otherwise returns None
1147 fn compute_2229_migrations_for_trait(
1148 &self,
1149 min_captures: Option<&ty::RootVariableMinCaptureList<'tcx>>,
1150 var_hir_id: HirId,
1151 closure_clause: hir::CaptureBy,
1152 ) -> Option<FxIndexMap<UpvarMigrationInfo, UnordSet<&'static str>>> {
1153 let auto_traits_def_id = [
1154 self.tcx.lang_items().clone_trait(),
1155 self.tcx.lang_items().sync_trait(),
1156 self.tcx.get_diagnostic_item(sym::Send),
1157 self.tcx.lang_items().unpin_trait(),
1158 self.tcx.get_diagnostic_item(sym::unwind_safe_trait),
1159 self.tcx.get_diagnostic_item(sym::ref_unwind_safe_trait),
1160 ];
1161 const AUTO_TRAITS: [&str; 6] =
1162 ["`Clone`", "`Sync`", "`Send`", "`Unpin`", "`UnwindSafe`", "`RefUnwindSafe`"];
1163
1164 let root_var_min_capture_list = min_captures.and_then(|m| m.get(&var_hir_id))?;
1165
1166 let ty = self.resolve_vars_if_possible(self.node_ty(var_hir_id));
1167
1168 let ty = match closure_clause {
1169 hir::CaptureBy::Value { .. } => ty, // For move closure the capture kind should be by value
1170 hir::CaptureBy::Ref | hir::CaptureBy::Use { .. } => {
1171 // For non move closure the capture kind is the max capture kind of all captures
1172 // according to the ordering ImmBorrow < UniqueImmBorrow < MutBorrow < ByValue
1173 let mut max_capture_info = root_var_min_capture_list.first().unwrap().info;
1174 for capture in root_var_min_capture_list.iter() {
1175 max_capture_info = determine_capture_info(max_capture_info, capture.info);
1176 }
1177
1178 apply_capture_kind_on_capture_ty(
1179 self.tcx,
1180 ty,
1181 max_capture_info.capture_kind,
1182 self.tcx.lifetimes.re_erased,
1183 )
1184 }
1185 };
1186
1187 let mut obligations_should_hold = Vec::new();
1188 // Checks if a root variable implements any of the auto traits
1189 for check_trait in auto_traits_def_id.iter() {
1190 obligations_should_hold.push(check_trait.is_some_and(|check_trait| {
1191 self.infcx
1192 .type_implements_trait(check_trait, [ty], self.param_env)
1193 .must_apply_modulo_regions()
1194 }));
1195 }
1196
1197 let mut problematic_captures = FxIndexMap::default();
1198 // Check whether captured fields also implement the trait
1199 for capture in root_var_min_capture_list.iter() {
1200 let ty = apply_capture_kind_on_capture_ty(
1201 self.tcx,
1202 capture.place.ty(),
1203 capture.info.capture_kind,
1204 self.tcx.lifetimes.re_erased,
1205 );
1206
1207 // Checks if a capture implements any of the auto traits
1208 let mut obligations_holds_for_capture = Vec::new();
1209 for check_trait in auto_traits_def_id.iter() {
1210 obligations_holds_for_capture.push(check_trait.is_some_and(|check_trait| {
1211 self.infcx
1212 .type_implements_trait(check_trait, [ty], self.param_env)
1213 .must_apply_modulo_regions()
1214 }));
1215 }
1216
1217 let mut capture_problems = UnordSet::default();
1218
1219 // Checks if for any of the auto traits, one or more trait is implemented
1220 // by the root variable but not by the capture
1221 for (idx, _) in obligations_should_hold.iter().enumerate() {
1222 if !obligations_holds_for_capture[idx] && obligations_should_hold[idx] {
1223 capture_problems.insert(AUTO_TRAITS[idx]);
1224 }
1225 }
1226
1227 if !capture_problems.is_empty() {
1228 problematic_captures.insert(
1229 UpvarMigrationInfo::CapturingPrecise {
1230 source_expr: capture.info.path_expr_id,
1231 var_name: capture.to_string(self.tcx),
1232 },
1233 capture_problems,
1234 );
1235 }
1236 }
1237 if !problematic_captures.is_empty() {
1238 return Some(problematic_captures);
1239 }
1240 None
1241 }
1242
1243 /// Figures out the list of root variables (and their types) that aren't completely
1244 /// captured by the closure when `capture_disjoint_fields` is enabled and drop order of
1245 /// some path starting at that root variable **might** be affected.
1246 ///
1247 /// The output list would include a root variable if:
1248 /// - It would have been moved into the closure when `capture_disjoint_fields` wasn't
1249 /// enabled, **and**
1250 /// - It wasn't completely captured by the closure, **and**
1251 /// - One of the paths starting at this root variable, that is not captured needs Drop.
1252 ///
1253 /// This function only returns a HashSet of CapturesInfo for significant drops. If there
1254 /// are no significant drops than None is returned
1255 #[instrument(level = "debug", skip(self))]
1256 fn compute_2229_migrations_for_drop(
1257 &self,
1258 closure_def_id: LocalDefId,
1259 closure_span: Span,
1260 min_captures: Option<&ty::RootVariableMinCaptureList<'tcx>>,
1261 closure_clause: hir::CaptureBy,
1262 var_hir_id: HirId,
1263 ) -> Option<FxIndexSet<UpvarMigrationInfo>> {
1264 let ty = self.resolve_vars_if_possible(self.node_ty(var_hir_id));
1265
1266 // FIXME(#132279): Using `non_body_analysis` here feels wrong.
1267 if !ty.has_significant_drop(
1268 self.tcx,
1269 ty::TypingEnv::non_body_analysis(self.tcx, closure_def_id),
1270 ) {
1271 debug!("does not have significant drop");
1272 return None;
1273 }
1274
1275 let Some(root_var_min_capture_list) = min_captures.and_then(|m| m.get(&var_hir_id)) else {
1276 // The upvar is mentioned within the closure but no path starting from it is
1277 // used. This occurs when you have (e.g.)
1278 //
1279 // ```
1280 // let x = move || {
1281 // let _ = y;
1282 // });
1283 // ```
1284 debug!("no path starting from it is used");
1285
1286 match closure_clause {
1287 // Only migrate if closure is a move closure
1288 hir::CaptureBy::Value { .. } => {
1289 let mut diagnostics_info = FxIndexSet::default();
1290 let upvars =
1291 self.tcx.upvars_mentioned(closure_def_id).expect("must be an upvar");
1292 let upvar = upvars[&var_hir_id];
1293 diagnostics_info
1294 .insert(UpvarMigrationInfo::CapturingNothing { use_span: upvar.span });
1295 return Some(diagnostics_info);
1296 }
1297 hir::CaptureBy::Ref | hir::CaptureBy::Use { .. } => {}
1298 }
1299
1300 return None;
1301 };
1302 debug!(?root_var_min_capture_list);
1303
1304 let mut projections_list = Vec::new();
1305 let mut diagnostics_info = FxIndexSet::default();
1306
1307 for captured_place in root_var_min_capture_list.iter() {
1308 match captured_place.info.capture_kind {
1309 // Only care about captures that are moved into the closure
1310 ty::UpvarCapture::ByValue | ty::UpvarCapture::ByUse => {
1311 projections_list.push(captured_place.place.projections.as_slice());
1312 diagnostics_info.insert(UpvarMigrationInfo::CapturingPrecise {
1313 source_expr: captured_place.info.path_expr_id,
1314 var_name: captured_place.to_string(self.tcx),
1315 });
1316 }
1317 ty::UpvarCapture::ByRef(..) => {}
1318 }
1319 }
1320
1321 debug!(?projections_list);
1322 debug!(?diagnostics_info);
1323
1324 let is_moved = !projections_list.is_empty();
1325 debug!(?is_moved);
1326
1327 let is_not_completely_captured =
1328 root_var_min_capture_list.iter().any(|capture| !capture.place.projections.is_empty());
1329 debug!(?is_not_completely_captured);
1330
1331 if is_moved
1332 && is_not_completely_captured
1333 && self.has_significant_drop_outside_of_captures(
1334 closure_def_id,
1335 closure_span,
1336 ty,
1337 projections_list,
1338 )
1339 {
1340 return Some(diagnostics_info);
1341 }
1342
1343 None
1344 }
1345
1346 /// Figures out the list of root variables (and their types) that aren't completely
1347 /// captured by the closure when `capture_disjoint_fields` is enabled and either drop
1348 /// order of some path starting at that root variable **might** be affected or auto-traits
1349 /// differ between the root variable and the captured paths.
1350 ///
1351 /// The output list would include a root variable if:
1352 /// - It would have been moved into the closure when `capture_disjoint_fields` wasn't
1353 /// enabled, **and**
1354 /// - It wasn't completely captured by the closure, **and**
1355 /// - One of the paths starting at this root variable, that is not captured needs Drop **or**
1356 /// - One of the paths captured does not implement all the auto-traits its root variable
1357 /// implements.
1358 ///
1359 /// Returns a tuple containing a vector of MigrationDiagnosticInfo, as well as a String
1360 /// containing the reason why root variables whose HirId is contained in the vector should
1361 /// be captured
1362 #[instrument(level = "debug", skip(self))]
1363 fn compute_2229_migrations(
1364 &self,
1365 closure_def_id: LocalDefId,
1366 closure_span: Span,
1367 closure_clause: hir::CaptureBy,
1368 min_captures: Option<&ty::RootVariableMinCaptureList<'tcx>>,
1369 ) -> (Vec<NeededMigration>, MigrationWarningReason) {
1370 let Some(upvars) = self.tcx.upvars_mentioned(closure_def_id) else {
1371 return (Vec::new(), MigrationWarningReason::default());
1372 };
1373
1374 let mut need_migrations = Vec::new();
1375 let mut auto_trait_migration_reasons = UnordSet::default();
1376 let mut drop_migration_needed = false;
1377
1378 // Perform auto-trait analysis
1379 for (&var_hir_id, _) in upvars.iter() {
1380 let mut diagnostics_info = Vec::new();
1381
1382 let auto_trait_diagnostic = self
1383 .compute_2229_migrations_for_trait(min_captures, var_hir_id, closure_clause)
1384 .unwrap_or_default();
1385
1386 let drop_reorder_diagnostic = if let Some(diagnostics_info) = self
1387 .compute_2229_migrations_for_drop(
1388 closure_def_id,
1389 closure_span,
1390 min_captures,
1391 closure_clause,
1392 var_hir_id,
1393 ) {
1394 drop_migration_needed = true;
1395 diagnostics_info
1396 } else {
1397 FxIndexSet::default()
1398 };
1399
1400 // Combine all the captures responsible for needing migrations into one IndexSet
1401 let mut capture_diagnostic = drop_reorder_diagnostic.clone();
1402 for key in auto_trait_diagnostic.keys() {
1403 capture_diagnostic.insert(key.clone());
1404 }
1405
1406 let mut capture_diagnostic = capture_diagnostic.into_iter().collect::<Vec<_>>();
1407 capture_diagnostic.sort_by_cached_key(|info| match info {
1408 UpvarMigrationInfo::CapturingPrecise { source_expr: _, var_name } => {
1409 (0, Some(var_name.clone()))
1410 }
1411 UpvarMigrationInfo::CapturingNothing { use_span: _ } => (1, None),
1412 });
1413 for captures_info in capture_diagnostic {
1414 // Get the auto trait reasons of why migration is needed because of that capture, if there are any
1415 let capture_trait_reasons =
1416 if let Some(reasons) = auto_trait_diagnostic.get(&captures_info) {
1417 reasons.clone()
1418 } else {
1419 UnordSet::default()
1420 };
1421
1422 // Check if migration is needed because of drop reorder as a result of that capture
1423 let capture_drop_reorder_reason = drop_reorder_diagnostic.contains(&captures_info);
1424
1425 // Combine all the reasons of why the root variable should be captured as a result of
1426 // auto trait implementation issues
1427 auto_trait_migration_reasons.extend_unord(capture_trait_reasons.items().copied());
1428
1429 diagnostics_info.push(MigrationLintNote {
1430 captures_info,
1431 reason: self.compute_2229_migrations_reasons(
1432 capture_trait_reasons,
1433 capture_drop_reorder_reason,
1434 ),
1435 });
1436 }
1437
1438 if !diagnostics_info.is_empty() {
1439 need_migrations.push(NeededMigration { var_hir_id, diagnostics_info });
1440 }
1441 }
1442 (
1443 need_migrations,
1444 self.compute_2229_migrations_reasons(
1445 auto_trait_migration_reasons,
1446 drop_migration_needed,
1447 ),
1448 )
1449 }
1450
1451 /// This is a helper function to `compute_2229_migrations_precise_pass`. Provided the type
1452 /// of a root variable and a list of captured paths starting at this root variable (expressed
1453 /// using list of `Projection` slices), it returns true if there is a path that is not
1454 /// captured starting at this root variable that implements Drop.
1455 ///
1456 /// The way this function works is at a given call it looks at type `base_path_ty` of some base
1457 /// path say P and then list of projection slices which represent the different captures moved
1458 /// into the closure starting off of P.
1459 ///
1460 /// This will make more sense with an example:
1461 ///
1462 /// ```rust,edition2021
1463 ///
1464 /// struct FancyInteger(i32); // This implements Drop
1465 ///
1466 /// struct Point { x: FancyInteger, y: FancyInteger }
1467 /// struct Color;
1468 ///
1469 /// struct Wrapper { p: Point, c: Color }
1470 ///
1471 /// fn f(w: Wrapper) {
1472 /// let c = || {
1473 /// // Closure captures w.p.x and w.c by move.
1474 /// };
1475 ///
1476 /// c();
1477 /// }
1478 /// ```
1479 ///
1480 /// If `capture_disjoint_fields` wasn't enabled the closure would've moved `w` instead of the
1481 /// precise paths. If we look closely `w.p.y` isn't captured which implements Drop and
1482 /// therefore Drop ordering would change and we want this function to return true.
1483 ///
1484 /// Call stack to figure out if we need to migrate for `w` would look as follows:
1485 ///
1486 /// Our initial base path is just `w`, and the paths captured from it are `w[p, x]` and
1487 /// `w[c]`.
1488 /// Notation:
1489 /// - Ty(place): Type of place
1490 /// - `(a, b)`: Represents the function parameters `base_path_ty` and `captured_by_move_projs`
1491 /// respectively.
1492 /// ```ignore (illustrative)
1493 /// (Ty(w), [ &[p, x], &[c] ])
1494 /// // |
1495 /// // ----------------------------
1496 /// // | |
1497 /// // v v
1498 /// (Ty(w.p), [ &[x] ]) (Ty(w.c), [ &[] ]) // I(1)
1499 /// // | |
1500 /// // v v
1501 /// (Ty(w.p), [ &[x] ]) false
1502 /// // |
1503 /// // |
1504 /// // -------------------------------
1505 /// // | |
1506 /// // v v
1507 /// (Ty((w.p).x), [ &[] ]) (Ty((w.p).y), []) // IMP 2
1508 /// // | |
1509 /// // v v
1510 /// false NeedsSignificantDrop(Ty(w.p.y))
1511 /// // |
1512 /// // v
1513 /// true
1514 /// ```
1515 ///
1516 /// IMP 1 `(Ty(w.c), [ &[] ])`: Notice the single empty slice inside `captured_projs`.
1517 /// This implies that the `w.c` is completely captured by the closure.
1518 /// Since drop for this path will be called when the closure is
1519 /// dropped we don't need to migrate for it.
1520 ///
1521 /// IMP 2 `(Ty((w.p).y), [])`: Notice that `captured_projs` is empty. This implies that this
1522 /// path wasn't captured by the closure. Also note that even
1523 /// though we didn't capture this path, the function visits it,
1524 /// which is kind of the point of this function. We then return
1525 /// if the type of `w.p.y` implements Drop, which in this case is
1526 /// true.
1527 ///
1528 /// Consider another example:
1529 ///
1530 /// ```ignore (pseudo-rust)
1531 /// struct X;
1532 /// impl Drop for X {}
1533 ///
1534 /// struct Y(X);
1535 /// impl Drop for Y {}
1536 ///
1537 /// fn foo() {
1538 /// let y = Y(X);
1539 /// let c = || move(y.0);
1540 /// }
1541 /// ```
1542 ///
1543 /// Note that `y.0` is captured by the closure. When this function is called for `y`, it will
1544 /// return true, because even though all paths starting at `y` are captured, `y` itself
1545 /// implements Drop which will be affected since `y` isn't completely captured.
1546 fn has_significant_drop_outside_of_captures(
1547 &self,
1548 closure_def_id: LocalDefId,
1549 closure_span: Span,
1550 base_path_ty: Ty<'tcx>,
1551 captured_by_move_projs: Vec<&[Projection<'tcx>]>,
1552 ) -> bool {
1553 // FIXME(#132279): Using `non_body_analysis` here feels wrong.
1554 let needs_drop = |ty: Ty<'tcx>| {
1555 ty.has_significant_drop(
1556 self.tcx,
1557 ty::TypingEnv::non_body_analysis(self.tcx, closure_def_id),
1558 )
1559 };
1560
1561 let is_drop_defined_for_ty = |ty: Ty<'tcx>| {
1562 let drop_trait = self.tcx.require_lang_item(hir::LangItem::Drop, closure_span);
1563 self.infcx
1564 .type_implements_trait(drop_trait, [ty], self.tcx.param_env(closure_def_id))
1565 .must_apply_modulo_regions()
1566 };
1567
1568 let is_drop_defined_for_ty = is_drop_defined_for_ty(base_path_ty);
1569
1570 // If there is a case where no projection is applied on top of current place
1571 // then there must be exactly one capture corresponding to such a case. Note that this
1572 // represents the case of the path being completely captured by the variable.
1573 //
1574 // eg. If `a.b` is captured and we are processing `a.b`, then we can't have the closure also
1575 // capture `a.b.c`, because that violates min capture.
1576 let is_completely_captured = captured_by_move_projs.iter().any(|projs| projs.is_empty());
1577
1578 assert!(!is_completely_captured || (captured_by_move_projs.len() == 1));
1579
1580 if is_completely_captured {
1581 // The place is captured entirely, so doesn't matter if needs dtor, it will be drop
1582 // when the closure is dropped.
1583 return false;
1584 }
1585
1586 if captured_by_move_projs.is_empty() {
1587 return needs_drop(base_path_ty);
1588 }
1589
1590 if is_drop_defined_for_ty {
1591 // If drop is implemented for this type then we need it to be fully captured,
1592 // and we know it is not completely captured because of the previous checks.
1593
1594 // Note that this is a bug in the user code that will be reported by the
1595 // borrow checker, since we can't move out of drop types.
1596
1597 // The bug exists in the user's code pre-migration, and we don't migrate here.
1598 return false;
1599 }
1600
1601 match base_path_ty.kind() {
1602 // Observations:
1603 // - `captured_by_move_projs` is not empty. Therefore we can call
1604 // `captured_by_move_projs.first().unwrap()` safely.
1605 // - All entries in `captured_by_move_projs` have at least one projection.
1606 // Therefore we can call `captured_by_move_projs.first().unwrap().first().unwrap()` safely.
1607
1608 // We don't capture derefs in case of move captures, which would have be applied to
1609 // access any further paths.
1610 ty::Adt(def, _) if def.is_box() => unreachable!(),
1611 ty::Ref(..) => unreachable!(),
1612 ty::RawPtr(..) => unreachable!(),
1613
1614 ty::Adt(def, args) => {
1615 // Multi-variant enums are captured in entirety,
1616 // which would've been handled in the case of single empty slice in `captured_by_move_projs`.
1617 assert_eq!(def.variants().len(), 1);
1618
1619 // Only Field projections can be applied to a non-box Adt.
1620 assert!(
1621 captured_by_move_projs.iter().all(|projs| matches!(
1622 projs.first().unwrap().kind,
1623 ProjectionKind::Field(..)
1624 ))
1625 );
1626 def.variants().get(FIRST_VARIANT).unwrap().fields.iter_enumerated().any(
1627 |(i, field)| {
1628 let paths_using_field = captured_by_move_projs
1629 .iter()
1630 .filter_map(|projs| {
1631 if let ProjectionKind::Field(field_idx, _) =
1632 projs.first().unwrap().kind
1633 {
1634 if field_idx == i { Some(&projs[1..]) } else { None }
1635 } else {
1636 unreachable!();
1637 }
1638 })
1639 .collect();
1640
1641 let after_field_ty = field.ty(self.tcx, args);
1642 self.has_significant_drop_outside_of_captures(
1643 closure_def_id,
1644 closure_span,
1645 after_field_ty,
1646 paths_using_field,
1647 )
1648 },
1649 )
1650 }
1651
1652 ty::Tuple(fields) => {
1653 // Only Field projections can be applied to a tuple.
1654 assert!(
1655 captured_by_move_projs.iter().all(|projs| matches!(
1656 projs.first().unwrap().kind,
1657 ProjectionKind::Field(..)
1658 ))
1659 );
1660
1661 fields.iter().enumerate().any(|(i, element_ty)| {
1662 let paths_using_field = captured_by_move_projs
1663 .iter()
1664 .filter_map(|projs| {
1665 if let ProjectionKind::Field(field_idx, _) = projs.first().unwrap().kind
1666 {
1667 if field_idx.index() == i { Some(&projs[1..]) } else { None }
1668 } else {
1669 unreachable!();
1670 }
1671 })
1672 .collect();
1673
1674 self.has_significant_drop_outside_of_captures(
1675 closure_def_id,
1676 closure_span,
1677 element_ty,
1678 paths_using_field,
1679 )
1680 })
1681 }
1682
1683 // Anything else would be completely captured and therefore handled already.
1684 _ => unreachable!(),
1685 }
1686 }
1687
1688 fn init_capture_kind_for_place(
1689 &self,
1690 place: &Place<'tcx>,
1691 capture_clause: hir::CaptureBy,
1692 ) -> ty::UpvarCapture {
1693 match capture_clause {
1694 // In case of a move closure if the data is accessed through a reference we
1695 // want to capture by ref to allow precise capture using reborrows.
1696 //
1697 // If the data will be moved out of this place, then the place will be truncated
1698 // at the first Deref in `adjust_for_move_closure` and then moved into the closure.
1699 //
1700 // For example:
1701 //
1702 // struct Buffer<'a> {
1703 // x: &'a String,
1704 // y: Vec<u8>,
1705 // }
1706 //
1707 // fn get<'a>(b: Buffer<'a>) -> impl Sized + 'a {
1708 // let c = move || b.x;
1709 // drop(b);
1710 // c
1711 // }
1712 //
1713 // Even though the closure is declared as move, when we are capturing borrowed data (in
1714 // this case, *b.x) we prefer to capture by reference.
1715 // Otherwise you'd get an error in 2021 immediately because you'd be trying to take
1716 // ownership of the (borrowed) String or else you'd take ownership of b, as in 2018 and
1717 // before, which is also an error.
1718 hir::CaptureBy::Value { .. } if !place.deref_tys().any(Ty::is_ref) => {
1719 ty::UpvarCapture::ByValue
1720 }
1721 hir::CaptureBy::Use { .. } if !place.deref_tys().any(Ty::is_ref) => {
1722 ty::UpvarCapture::ByUse
1723 }
1724 hir::CaptureBy::Value { .. } | hir::CaptureBy::Use { .. } | hir::CaptureBy::Ref => {
1725 ty::UpvarCapture::ByRef(BorrowKind::Immutable)
1726 }
1727 }
1728 }
1729
1730 fn place_for_root_variable(
1731 &self,
1732 closure_def_id: LocalDefId,
1733 var_hir_id: HirId,
1734 ) -> Place<'tcx> {
1735 let upvar_id = ty::UpvarId::new(var_hir_id, closure_def_id);
1736
1737 Place {
1738 base_ty: self.node_ty(var_hir_id),
1739 base: PlaceBase::Upvar(upvar_id),
1740 projections: Default::default(),
1741 }
1742 }
1743
1744 fn should_log_capture_analysis(&self, closure_def_id: LocalDefId) -> bool {
1745 self.has_rustc_attrs && self.tcx.has_attr(closure_def_id, sym::rustc_capture_analysis)
1746 }
1747
1748 fn log_capture_analysis_first_pass(
1749 &self,
1750 closure_def_id: LocalDefId,
1751 capture_information: &InferredCaptureInformation<'tcx>,
1752 closure_span: Span,
1753 ) {
1754 if self.should_log_capture_analysis(closure_def_id) {
1755 let mut diag =
1756 self.dcx().struct_span_err(closure_span, "First Pass analysis includes:");
1757 for (place, capture_info) in capture_information {
1758 let capture_str = construct_capture_info_string(self.tcx, place, capture_info);
1759 let output_str = format!("Capturing {capture_str}");
1760
1761 let span = capture_info.path_expr_id.map_or(closure_span, |e| self.tcx.hir_span(e));
1762 diag.span_note(span, output_str);
1763 }
1764 diag.emit();
1765 }
1766 }
1767
1768 fn log_closure_min_capture_info(&self, closure_def_id: LocalDefId, closure_span: Span) {
1769 if self.should_log_capture_analysis(closure_def_id) {
1770 if let Some(min_captures) =
1771 self.typeck_results.borrow().closure_min_captures.get(&closure_def_id)
1772 {
1773 let mut diag =
1774 self.dcx().struct_span_err(closure_span, "Min Capture analysis includes:");
1775
1776 for (_, min_captures_for_var) in min_captures {
1777 for capture in min_captures_for_var {
1778 let place = &capture.place;
1779 let capture_info = &capture.info;
1780
1781 let capture_str =
1782 construct_capture_info_string(self.tcx, place, capture_info);
1783 let output_str = format!("Min Capture {capture_str}");
1784
1785 if capture.info.path_expr_id != capture.info.capture_kind_expr_id {
1786 let path_span = capture_info
1787 .path_expr_id
1788 .map_or(closure_span, |e| self.tcx.hir_span(e));
1789 let capture_kind_span = capture_info
1790 .capture_kind_expr_id
1791 .map_or(closure_span, |e| self.tcx.hir_span(e));
1792
1793 let mut multi_span: MultiSpan =
1794 MultiSpan::from_spans(vec![path_span, capture_kind_span]);
1795
1796 let capture_kind_label =
1797 construct_capture_kind_reason_string(self.tcx, place, capture_info);
1798 let path_label = construct_path_string(self.tcx, place);
1799
1800 multi_span.push_span_label(path_span, path_label);
1801 multi_span.push_span_label(capture_kind_span, capture_kind_label);
1802
1803 diag.span_note(multi_span, output_str);
1804 } else {
1805 let span = capture_info
1806 .path_expr_id
1807 .map_or(closure_span, |e| self.tcx.hir_span(e));
1808
1809 diag.span_note(span, output_str);
1810 };
1811 }
1812 }
1813 diag.emit();
1814 }
1815 }
1816 }
1817
1818 /// A captured place is mutable if
1819 /// 1. Projections don't include a Deref of an immut-borrow, **and**
1820 /// 2. PlaceBase is mut or projections include a Deref of a mut-borrow.
1821 fn determine_capture_mutability(
1822 &self,
1823 typeck_results: &'a TypeckResults<'tcx>,
1824 place: &Place<'tcx>,
1825 ) -> hir::Mutability {
1826 let var_hir_id = match place.base {
1827 PlaceBase::Upvar(upvar_id) => upvar_id.var_path.hir_id,
1828 _ => unreachable!(),
1829 };
1830
1831 let bm = *typeck_results.pat_binding_modes().get(var_hir_id).expect("missing binding mode");
1832
1833 let mut is_mutbl = bm.1;
1834
1835 for pointer_ty in place.deref_tys() {
1836 match self.structurally_resolve_type(self.tcx.hir_span(var_hir_id), pointer_ty).kind() {
1837 // We don't capture derefs of raw ptrs
1838 ty::RawPtr(_, _) => unreachable!(),
1839
1840 // Dereferencing a mut-ref allows us to mut the Place if we don't deref
1841 // an immut-ref after on top of this.
1842 ty::Ref(.., hir::Mutability::Mut) => is_mutbl = hir::Mutability::Mut,
1843
1844 // The place isn't mutable once we dereference an immutable reference.
1845 ty::Ref(.., hir::Mutability::Not) => return hir::Mutability::Not,
1846
1847 // Dereferencing a box doesn't change mutability
1848 ty::Adt(def, ..) if def.is_box() => {}
1849
1850 unexpected_ty => span_bug!(
1851 self.tcx.hir_span(var_hir_id),
1852 "deref of unexpected pointer type {:?}",
1853 unexpected_ty
1854 ),
1855 }
1856 }
1857
1858 is_mutbl
1859 }
1860}
1861
1862/// Determines whether a child capture that is derived from a parent capture
1863/// should be borrowed with the lifetime of the parent coroutine-closure's env.
1864///
1865/// There are two cases when this needs to happen:
1866///
1867/// (1.) Are we borrowing data owned by the parent closure? We can determine if
1868/// that is the case by checking if the parent capture is by move, EXCEPT if we
1869/// apply a deref projection of an immutable reference, reborrows of immutable
1870/// references which aren't restricted to the LUB of the lifetimes of the deref
1871/// chain. This is why `&'short mut &'long T` can be reborrowed as `&'long T`.
1872///
1873/// ```rust
1874/// let x = &1i32; // Let's call this lifetime `'1`.
1875/// let c = async move || {
1876/// println!("{:?}", *x);
1877/// // Even though the inner coroutine borrows by ref, we're only capturing `*x`,
1878/// // not `x`, so the inner closure is allowed to reborrow the data for `'1`.
1879/// };
1880/// ```
1881///
1882/// (2.) If a coroutine is mutably borrowing from a parent capture, then that
1883/// mutable borrow cannot live for longer than either the parent *or* the borrow
1884/// that we have on the original upvar. Therefore we always need to borrow the
1885/// child capture with the lifetime of the parent coroutine-closure's env.
1886///
1887/// ```rust
1888/// let mut x = 1i32;
1889/// let c = async || {
1890/// x = 1;
1891/// // The parent borrows `x` for some `&'1 mut i32`.
1892/// // However, when we call `c()`, we implicitly autoref for the signature of
1893/// // `AsyncFnMut::async_call_mut`. Let's call that lifetime `'call`. Since
1894/// // the maximum that `&'call mut &'1 mut i32` can be reborrowed is `&'call mut i32`,
1895/// // the inner coroutine should capture w/ the lifetime of the coroutine-closure.
1896/// };
1897/// ```
1898///
1899/// If either of these cases apply, then we should capture the borrow with the
1900/// lifetime of the parent coroutine-closure's env. Luckily, if this function is
1901/// not correct, then the program is not unsound, since we still borrowck and validate
1902/// the choices made from this function -- the only side-effect is that the user
1903/// may receive unnecessary borrowck errors.
1904fn should_reborrow_from_env_of_parent_coroutine_closure<'tcx>(
1905 parent_capture: &ty::CapturedPlace<'tcx>,
1906 child_capture: &ty::CapturedPlace<'tcx>,
1907) -> bool {
1908 // (1.)
1909 (!parent_capture.is_by_ref()
1910 // This is just inlined `place.deref_tys()` but truncated to just
1911 // the child projections. Namely, look for a `&T` deref, since we
1912 // can always extend `&'short mut &'long T` to `&'long T`.
1913 && !child_capture
1914 .place
1915 .projections
1916 .iter()
1917 .enumerate()
1918 .skip(parent_capture.place.projections.len())
1919 .any(|(idx, proj)| {
1920 matches!(proj.kind, ProjectionKind::Deref)
1921 && matches!(
1922 child_capture.place.ty_before_projection(idx).kind(),
1923 ty::Ref(.., ty::Mutability::Not)
1924 )
1925 }))
1926 // (2.)
1927 || matches!(child_capture.info.capture_kind, UpvarCapture::ByRef(ty::BorrowKind::Mutable))
1928}
1929
1930/// Truncate the capture so that the place being borrowed is in accordance with RFC 1240,
1931/// which states that it's unsafe to take a reference into a struct marked `repr(packed)`.
1932fn restrict_repr_packed_field_ref_capture<'tcx>(
1933 mut place: Place<'tcx>,
1934 mut curr_borrow_kind: ty::UpvarCapture,
1935) -> (Place<'tcx>, ty::UpvarCapture) {
1936 let pos = place.projections.iter().enumerate().position(|(i, p)| {
1937 let ty = place.ty_before_projection(i);
1938
1939 // Return true for fields of packed structs.
1940 match p.kind {
1941 ProjectionKind::Field(..) => match ty.kind() {
1942 ty::Adt(def, _) if def.repr().packed() => {
1943 // We stop here regardless of field alignment. Field alignment can change as
1944 // types change, including the types of private fields in other crates, and that
1945 // shouldn't affect how we compute our captures.
1946 true
1947 }
1948
1949 _ => false,
1950 },
1951 _ => false,
1952 }
1953 });
1954
1955 if let Some(pos) = pos {
1956 truncate_place_to_len_and_update_capture_kind(&mut place, &mut curr_borrow_kind, pos);
1957 }
1958
1959 (place, curr_borrow_kind)
1960}
1961
1962/// Returns a Ty that applies the specified capture kind on the provided capture Ty
1963fn apply_capture_kind_on_capture_ty<'tcx>(
1964 tcx: TyCtxt<'tcx>,
1965 ty: Ty<'tcx>,
1966 capture_kind: UpvarCapture,
1967 region: ty::Region<'tcx>,
1968) -> Ty<'tcx> {
1969 match capture_kind {
1970 ty::UpvarCapture::ByValue | ty::UpvarCapture::ByUse => ty,
1971 ty::UpvarCapture::ByRef(kind) => Ty::new_ref(tcx, region, ty, kind.to_mutbl_lossy()),
1972 }
1973}
1974
1975/// Returns the Span of where the value with the provided HirId would be dropped
1976fn drop_location_span(tcx: TyCtxt<'_>, hir_id: HirId) -> Span {
1977 let owner_id = tcx.hir_get_enclosing_scope(hir_id).unwrap();
1978
1979 let owner_node = tcx.hir_node(owner_id);
1980 let owner_span = match owner_node {
1981 hir::Node::Item(item) => match item.kind {
1982 hir::ItemKind::Fn { body: owner_id, .. } => tcx.hir_span(owner_id.hir_id),
1983 _ => {
1984 bug!("Drop location span error: need to handle more ItemKind '{:?}'", item.kind);
1985 }
1986 },
1987 hir::Node::Block(block) => tcx.hir_span(block.hir_id),
1988 hir::Node::TraitItem(item) => tcx.hir_span(item.hir_id()),
1989 hir::Node::ImplItem(item) => tcx.hir_span(item.hir_id()),
1990 _ => {
1991 bug!("Drop location span error: need to handle more Node '{:?}'", owner_node);
1992 }
1993 };
1994 tcx.sess.source_map().end_point(owner_span)
1995}
1996
1997struct InferBorrowKind<'tcx> {
1998 // The def-id of the closure whose kind and upvar accesses are being inferred.
1999 closure_def_id: LocalDefId,
2000
2001 /// For each Place that is captured by the closure, we track the minimal kind of
2002 /// access we need (ref, ref mut, move, etc) and the expression that resulted in such access.
2003 ///
2004 /// Consider closure where s.str1 is captured via an ImmutableBorrow and
2005 /// s.str2 via a MutableBorrow
2006 ///
2007 /// ```rust,no_run
2008 /// struct SomeStruct { str1: String, str2: String };
2009 ///
2010 /// // Assume that the HirId for the variable definition is `V1`
2011 /// let mut s = SomeStruct { str1: format!("s1"), str2: format!("s2") };
2012 ///
2013 /// let fix_s = |new_s2| {
2014 /// // Assume that the HirId for the expression `s.str1` is `E1`
2015 /// println!("Updating SomeStruct with str1={0}", s.str1);
2016 /// // Assume that the HirId for the expression `*s.str2` is `E2`
2017 /// s.str2 = new_s2;
2018 /// };
2019 /// ```
2020 ///
2021 /// For closure `fix_s`, (at a high level) the map contains
2022 ///
2023 /// ```ignore (illustrative)
2024 /// Place { V1, [ProjectionKind::Field(Index=0, Variant=0)] } : CaptureKind { E1, ImmutableBorrow }
2025 /// Place { V1, [ProjectionKind::Field(Index=1, Variant=0)] } : CaptureKind { E2, MutableBorrow }
2026 /// ```
2027 capture_information: InferredCaptureInformation<'tcx>,
2028 fake_reads: Vec<(Place<'tcx>, FakeReadCause, HirId)>,
2029}
2030
2031impl<'tcx> euv::Delegate<'tcx> for InferBorrowKind<'tcx> {
2032 fn fake_read(
2033 &mut self,
2034 place_with_id: &PlaceWithHirId<'tcx>,
2035 cause: FakeReadCause,
2036 diag_expr_id: HirId,
2037 ) {
2038 let PlaceBase::Upvar(_) = place_with_id.place.base else { return };
2039
2040 // We need to restrict Fake Read precision to avoid fake reading unsafe code,
2041 // such as deref of a raw pointer.
2042 let dummy_capture_kind = ty::UpvarCapture::ByRef(ty::BorrowKind::Immutable);
2043
2044 let (place, _) =
2045 restrict_capture_precision(place_with_id.place.clone(), dummy_capture_kind);
2046
2047 let (place, _) = restrict_repr_packed_field_ref_capture(place, dummy_capture_kind);
2048 self.fake_reads.push((place, cause, diag_expr_id));
2049 }
2050
2051 #[instrument(skip(self), level = "debug")]
2052 fn consume(&mut self, place_with_id: &PlaceWithHirId<'tcx>, diag_expr_id: HirId) {
2053 let PlaceBase::Upvar(upvar_id) = place_with_id.place.base else { return };
2054 assert_eq!(self.closure_def_id, upvar_id.closure_expr_id);
2055
2056 self.capture_information.push((
2057 place_with_id.place.clone(),
2058 ty::CaptureInfo {
2059 capture_kind_expr_id: Some(diag_expr_id),
2060 path_expr_id: Some(diag_expr_id),
2061 capture_kind: ty::UpvarCapture::ByValue,
2062 },
2063 ));
2064 }
2065
2066 #[instrument(skip(self), level = "debug")]
2067 fn use_cloned(&mut self, place_with_id: &PlaceWithHirId<'tcx>, diag_expr_id: HirId) {
2068 let PlaceBase::Upvar(upvar_id) = place_with_id.place.base else { return };
2069 assert_eq!(self.closure_def_id, upvar_id.closure_expr_id);
2070
2071 self.capture_information.push((
2072 place_with_id.place.clone(),
2073 ty::CaptureInfo {
2074 capture_kind_expr_id: Some(diag_expr_id),
2075 path_expr_id: Some(diag_expr_id),
2076 capture_kind: ty::UpvarCapture::ByUse,
2077 },
2078 ));
2079 }
2080
2081 #[instrument(skip(self), level = "debug")]
2082 fn borrow(
2083 &mut self,
2084 place_with_id: &PlaceWithHirId<'tcx>,
2085 diag_expr_id: HirId,
2086 bk: ty::BorrowKind,
2087 ) {
2088 let PlaceBase::Upvar(upvar_id) = place_with_id.place.base else { return };
2089 assert_eq!(self.closure_def_id, upvar_id.closure_expr_id);
2090
2091 // The region here will get discarded/ignored
2092 let capture_kind = ty::UpvarCapture::ByRef(bk);
2093
2094 // We only want repr packed restriction to be applied to reading references into a packed
2095 // struct, and not when the data is being moved. Therefore we call this method here instead
2096 // of in `restrict_capture_precision`.
2097 let (place, mut capture_kind) =
2098 restrict_repr_packed_field_ref_capture(place_with_id.place.clone(), capture_kind);
2099
2100 // Raw pointers don't inherit mutability
2101 if place_with_id.place.deref_tys().any(Ty::is_raw_ptr) {
2102 capture_kind = ty::UpvarCapture::ByRef(ty::BorrowKind::Immutable);
2103 }
2104
2105 self.capture_information.push((
2106 place,
2107 ty::CaptureInfo {
2108 capture_kind_expr_id: Some(diag_expr_id),
2109 path_expr_id: Some(diag_expr_id),
2110 capture_kind,
2111 },
2112 ));
2113 }
2114
2115 #[instrument(skip(self), level = "debug")]
2116 fn mutate(&mut self, assignee_place: &PlaceWithHirId<'tcx>, diag_expr_id: HirId) {
2117 self.borrow(assignee_place, diag_expr_id, ty::BorrowKind::Mutable);
2118 }
2119}
2120
2121/// Rust doesn't permit moving fields out of a type that implements drop
2122fn restrict_precision_for_drop_types<'a, 'tcx>(
2123 fcx: &'a FnCtxt<'a, 'tcx>,
2124 mut place: Place<'tcx>,
2125 mut curr_mode: ty::UpvarCapture,
2126) -> (Place<'tcx>, ty::UpvarCapture) {
2127 let is_copy_type = fcx.infcx.type_is_copy_modulo_regions(fcx.param_env, place.ty());
2128
2129 if let (false, UpvarCapture::ByValue) = (is_copy_type, curr_mode) {
2130 for i in 0..place.projections.len() {
2131 match place.ty_before_projection(i).kind() {
2132 ty::Adt(def, _) if def.destructor(fcx.tcx).is_some() => {
2133 truncate_place_to_len_and_update_capture_kind(&mut place, &mut curr_mode, i);
2134 break;
2135 }
2136 _ => {}
2137 }
2138 }
2139 }
2140
2141 (place, curr_mode)
2142}
2143
2144/// Truncate `place` so that an `unsafe` block isn't required to capture it.
2145/// - No projections are applied to raw pointers, since these require unsafe blocks. We capture
2146/// them completely.
2147/// - No projections are applied on top of Union ADTs, since these require unsafe blocks.
2148fn restrict_precision_for_unsafe(
2149 mut place: Place<'_>,
2150 mut curr_mode: ty::UpvarCapture,
2151) -> (Place<'_>, ty::UpvarCapture) {
2152 if place.base_ty.is_raw_ptr() {
2153 truncate_place_to_len_and_update_capture_kind(&mut place, &mut curr_mode, 0);
2154 }
2155
2156 if place.base_ty.is_union() {
2157 truncate_place_to_len_and_update_capture_kind(&mut place, &mut curr_mode, 0);
2158 }
2159
2160 for (i, proj) in place.projections.iter().enumerate() {
2161 if proj.ty.is_raw_ptr() {
2162 // Don't apply any projections on top of a raw ptr.
2163 truncate_place_to_len_and_update_capture_kind(&mut place, &mut curr_mode, i + 1);
2164 break;
2165 }
2166
2167 if proj.ty.is_union() {
2168 // Don't capture precise fields of a union.
2169 truncate_place_to_len_and_update_capture_kind(&mut place, &mut curr_mode, i + 1);
2170 break;
2171 }
2172 }
2173
2174 (place, curr_mode)
2175}
2176
2177/// Truncate projections so that the following rules are obeyed by the captured `place`:
2178/// - No Index projections are captured, since arrays are captured completely.
2179/// - No unsafe block is required to capture `place`.
2180///
2181/// Returns the truncated place and updated capture mode.
2182fn restrict_capture_precision(
2183 place: Place<'_>,
2184 curr_mode: ty::UpvarCapture,
2185) -> (Place<'_>, ty::UpvarCapture) {
2186 let (mut place, mut curr_mode) = restrict_precision_for_unsafe(place, curr_mode);
2187
2188 if place.projections.is_empty() {
2189 // Nothing to do here
2190 return (place, curr_mode);
2191 }
2192
2193 for (i, proj) in place.projections.iter().enumerate() {
2194 match proj.kind {
2195 ProjectionKind::Index | ProjectionKind::Subslice => {
2196 // Arrays are completely captured, so we drop Index and Subslice projections
2197 truncate_place_to_len_and_update_capture_kind(&mut place, &mut curr_mode, i);
2198 return (place, curr_mode);
2199 }
2200 ProjectionKind::Deref => {}
2201 ProjectionKind::OpaqueCast => {}
2202 ProjectionKind::Field(..) => {}
2203 ProjectionKind::UnwrapUnsafeBinder => {}
2204 }
2205 }
2206
2207 (place, curr_mode)
2208}
2209
2210/// Truncate deref of any reference.
2211fn adjust_for_move_closure(
2212 mut place: Place<'_>,
2213 mut kind: ty::UpvarCapture,
2214) -> (Place<'_>, ty::UpvarCapture) {
2215 let first_deref = place.projections.iter().position(|proj| proj.kind == ProjectionKind::Deref);
2216
2217 if let Some(idx) = first_deref {
2218 truncate_place_to_len_and_update_capture_kind(&mut place, &mut kind, idx);
2219 }
2220
2221 (place, ty::UpvarCapture::ByValue)
2222}
2223
2224/// Truncate deref of any reference.
2225fn adjust_for_use_closure(
2226 mut place: Place<'_>,
2227 mut kind: ty::UpvarCapture,
2228) -> (Place<'_>, ty::UpvarCapture) {
2229 let first_deref = place.projections.iter().position(|proj| proj.kind == ProjectionKind::Deref);
2230
2231 if let Some(idx) = first_deref {
2232 truncate_place_to_len_and_update_capture_kind(&mut place, &mut kind, idx);
2233 }
2234
2235 (place, ty::UpvarCapture::ByUse)
2236}
2237
2238/// Adjust closure capture just that if taking ownership of data, only move data
2239/// from enclosing stack frame.
2240fn adjust_for_non_move_closure(
2241 mut place: Place<'_>,
2242 mut kind: ty::UpvarCapture,
2243) -> (Place<'_>, ty::UpvarCapture) {
2244 let contains_deref =
2245 place.projections.iter().position(|proj| proj.kind == ProjectionKind::Deref);
2246
2247 match kind {
2248 ty::UpvarCapture::ByValue | ty::UpvarCapture::ByUse => {
2249 if let Some(idx) = contains_deref {
2250 truncate_place_to_len_and_update_capture_kind(&mut place, &mut kind, idx);
2251 }
2252 }
2253
2254 ty::UpvarCapture::ByRef(..) => {}
2255 }
2256
2257 (place, kind)
2258}
2259
2260fn construct_place_string<'tcx>(tcx: TyCtxt<'_>, place: &Place<'tcx>) -> String {
2261 let variable_name = match place.base {
2262 PlaceBase::Upvar(upvar_id) => var_name(tcx, upvar_id.var_path.hir_id).to_string(),
2263 _ => bug!("Capture_information should only contain upvars"),
2264 };
2265
2266 let mut projections_str = String::new();
2267 for (i, item) in place.projections.iter().enumerate() {
2268 let proj = match item.kind {
2269 ProjectionKind::Field(a, b) => format!("({a:?}, {b:?})"),
2270 ProjectionKind::Deref => String::from("Deref"),
2271 ProjectionKind::Index => String::from("Index"),
2272 ProjectionKind::Subslice => String::from("Subslice"),
2273 ProjectionKind::OpaqueCast => String::from("OpaqueCast"),
2274 ProjectionKind::UnwrapUnsafeBinder => String::from("UnwrapUnsafeBinder"),
2275 };
2276 if i != 0 {
2277 projections_str.push(',');
2278 }
2279 projections_str.push_str(proj.as_str());
2280 }
2281
2282 format!("{variable_name}[{projections_str}]")
2283}
2284
2285fn construct_capture_kind_reason_string<'tcx>(
2286 tcx: TyCtxt<'_>,
2287 place: &Place<'tcx>,
2288 capture_info: &ty::CaptureInfo,
2289) -> String {
2290 let place_str = construct_place_string(tcx, place);
2291
2292 let capture_kind_str = match capture_info.capture_kind {
2293 ty::UpvarCapture::ByValue => "ByValue".into(),
2294 ty::UpvarCapture::ByUse => "ByUse".into(),
2295 ty::UpvarCapture::ByRef(kind) => format!("{kind:?}"),
2296 };
2297
2298 format!("{place_str} captured as {capture_kind_str} here")
2299}
2300
2301fn construct_path_string<'tcx>(tcx: TyCtxt<'_>, place: &Place<'tcx>) -> String {
2302 let place_str = construct_place_string(tcx, place);
2303
2304 format!("{place_str} used here")
2305}
2306
2307fn construct_capture_info_string<'tcx>(
2308 tcx: TyCtxt<'_>,
2309 place: &Place<'tcx>,
2310 capture_info: &ty::CaptureInfo,
2311) -> String {
2312 let place_str = construct_place_string(tcx, place);
2313
2314 let capture_kind_str = match capture_info.capture_kind {
2315 ty::UpvarCapture::ByValue => "ByValue".into(),
2316 ty::UpvarCapture::ByUse => "ByUse".into(),
2317 ty::UpvarCapture::ByRef(kind) => format!("{kind:?}"),
2318 };
2319 format!("{place_str} -> {capture_kind_str}")
2320}
2321
2322fn var_name(tcx: TyCtxt<'_>, var_hir_id: HirId) -> Symbol {
2323 tcx.hir_name(var_hir_id)
2324}
2325
2326#[instrument(level = "debug", skip(tcx))]
2327fn should_do_rust_2021_incompatible_closure_captures_analysis(
2328 tcx: TyCtxt<'_>,
2329 closure_id: HirId,
2330) -> bool {
2331 if tcx.sess.at_least_rust_2021() {
2332 return false;
2333 }
2334
2335 let level = tcx
2336 .lint_level_at_node(lint::builtin::RUST_2021_INCOMPATIBLE_CLOSURE_CAPTURES, closure_id)
2337 .level;
2338
2339 !matches!(level, lint::Level::Allow)
2340}
2341
2342/// Return a two string tuple (s1, s2)
2343/// - s1: Line of code that is needed for the migration: eg: `let _ = (&x, ...)`.
2344/// - s2: Comma separated names of the variables being migrated.
2345fn migration_suggestion_for_2229(
2346 tcx: TyCtxt<'_>,
2347 need_migrations: &[NeededMigration],
2348) -> (String, String) {
2349 let need_migrations_variables = need_migrations
2350 .iter()
2351 .map(|NeededMigration { var_hir_id: v, .. }| var_name(tcx, *v))
2352 .collect::<Vec<_>>();
2353
2354 let migration_ref_concat =
2355 need_migrations_variables.iter().map(|v| format!("&{v}")).collect::<Vec<_>>().join(", ");
2356
2357 let migration_string = if 1 == need_migrations.len() {
2358 format!("let _ = {migration_ref_concat}")
2359 } else {
2360 format!("let _ = ({migration_ref_concat})")
2361 };
2362
2363 let migrated_variables_concat =
2364 need_migrations_variables.iter().map(|v| format!("`{v}`")).collect::<Vec<_>>().join(", ");
2365
2366 (migration_string, migrated_variables_concat)
2367}
2368
2369/// Helper function to determine if we need to escalate CaptureKind from
2370/// CaptureInfo A to B and returns the escalated CaptureInfo.
2371/// (Note: CaptureInfo contains CaptureKind and an expression that led to capture it in that way)
2372///
2373/// If both `CaptureKind`s are considered equivalent, then the CaptureInfo is selected based
2374/// on the `CaptureInfo` containing an associated `capture_kind_expr_id`.
2375///
2376/// It is the caller's duty to figure out which path_expr_id to use.
2377///
2378/// If both the CaptureKind and Expression are considered to be equivalent,
2379/// then `CaptureInfo` A is preferred. This can be useful in cases where we want to prioritize
2380/// expressions reported back to the user as part of diagnostics based on which appears earlier
2381/// in the closure. This can be achieved simply by calling
2382/// `determine_capture_info(existing_info, current_info)`. This works out because the
2383/// expressions that occur earlier in the closure body than the current expression are processed before.
2384/// Consider the following example
2385/// ```rust,no_run
2386/// struct Point { x: i32, y: i32 }
2387/// let mut p = Point { x: 10, y: 10 };
2388///
2389/// let c = || {
2390/// p.x += 10; // E1
2391/// // ...
2392/// // More code
2393/// // ...
2394/// p.x += 10; // E2
2395/// };
2396/// ```
2397/// `CaptureKind` associated with both `E1` and `E2` will be ByRef(MutBorrow),
2398/// and both have an expression associated, however for diagnostics we prefer reporting
2399/// `E1` since it appears earlier in the closure body. When `E2` is being processed we
2400/// would've already handled `E1`, and have an existing capture_information for it.
2401/// Calling `determine_capture_info(existing_info_e1, current_info_e2)` will return
2402/// `existing_info_e1` in this case, allowing us to point to `E1` in case of diagnostics.
2403fn determine_capture_info(
2404 capture_info_a: ty::CaptureInfo,
2405 capture_info_b: ty::CaptureInfo,
2406) -> ty::CaptureInfo {
2407 // If the capture kind is equivalent then, we don't need to escalate and can compare the
2408 // expressions.
2409 let eq_capture_kind = match (capture_info_a.capture_kind, capture_info_b.capture_kind) {
2410 (ty::UpvarCapture::ByValue, ty::UpvarCapture::ByValue) => true,
2411 (ty::UpvarCapture::ByUse, ty::UpvarCapture::ByUse) => true,
2412 (ty::UpvarCapture::ByRef(ref_a), ty::UpvarCapture::ByRef(ref_b)) => ref_a == ref_b,
2413 (ty::UpvarCapture::ByValue, _)
2414 | (ty::UpvarCapture::ByUse, _)
2415 | (ty::UpvarCapture::ByRef(_), _) => false,
2416 };
2417
2418 if eq_capture_kind {
2419 match (capture_info_a.capture_kind_expr_id, capture_info_b.capture_kind_expr_id) {
2420 (Some(_), _) | (None, None) => capture_info_a,
2421 (None, Some(_)) => capture_info_b,
2422 }
2423 } else {
2424 // We select the CaptureKind which ranks higher based the following priority order:
2425 // (ByUse | ByValue) > MutBorrow > UniqueImmBorrow > ImmBorrow
2426 match (capture_info_a.capture_kind, capture_info_b.capture_kind) {
2427 (ty::UpvarCapture::ByUse, ty::UpvarCapture::ByValue)
2428 | (ty::UpvarCapture::ByValue, ty::UpvarCapture::ByUse) => {
2429 bug!("Same capture can't be ByUse and ByValue at the same time")
2430 }
2431 (ty::UpvarCapture::ByValue, ty::UpvarCapture::ByValue)
2432 | (ty::UpvarCapture::ByUse, ty::UpvarCapture::ByUse)
2433 | (ty::UpvarCapture::ByValue | ty::UpvarCapture::ByUse, ty::UpvarCapture::ByRef(_)) => {
2434 capture_info_a
2435 }
2436 (ty::UpvarCapture::ByRef(_), ty::UpvarCapture::ByValue | ty::UpvarCapture::ByUse) => {
2437 capture_info_b
2438 }
2439 (ty::UpvarCapture::ByRef(ref_a), ty::UpvarCapture::ByRef(ref_b)) => {
2440 match (ref_a, ref_b) {
2441 // Take LHS:
2442 (BorrowKind::UniqueImmutable | BorrowKind::Mutable, BorrowKind::Immutable)
2443 | (BorrowKind::Mutable, BorrowKind::UniqueImmutable) => capture_info_a,
2444
2445 // Take RHS:
2446 (BorrowKind::Immutable, BorrowKind::UniqueImmutable | BorrowKind::Mutable)
2447 | (BorrowKind::UniqueImmutable, BorrowKind::Mutable) => capture_info_b,
2448
2449 (BorrowKind::Immutable, BorrowKind::Immutable)
2450 | (BorrowKind::UniqueImmutable, BorrowKind::UniqueImmutable)
2451 | (BorrowKind::Mutable, BorrowKind::Mutable) => {
2452 bug!("Expected unequal capture kinds");
2453 }
2454 }
2455 }
2456 }
2457 }
2458}
2459
2460/// Truncates `place` to have up to `len` projections.
2461/// `curr_mode` is the current required capture kind for the place.
2462/// Returns the truncated `place` and the updated required capture kind.
2463///
2464/// Note: Capture kind changes from `MutBorrow` to `UniqueImmBorrow` if the truncated part of the `place`
2465/// contained `Deref` of `&mut`.
2466fn truncate_place_to_len_and_update_capture_kind<'tcx>(
2467 place: &mut Place<'tcx>,
2468 curr_mode: &mut ty::UpvarCapture,
2469 len: usize,
2470) {
2471 let is_mut_ref = |ty: Ty<'_>| matches!(ty.kind(), ty::Ref(.., hir::Mutability::Mut));
2472
2473 // If the truncated part of the place contains `Deref` of a `&mut` then convert MutBorrow ->
2474 // UniqueImmBorrow
2475 // Note that if the place contained Deref of a raw pointer it would've not been MutBorrow, so
2476 // we don't need to worry about that case here.
2477 match curr_mode {
2478 ty::UpvarCapture::ByRef(ty::BorrowKind::Mutable) => {
2479 for i in len..place.projections.len() {
2480 if place.projections[i].kind == ProjectionKind::Deref
2481 && is_mut_ref(place.ty_before_projection(i))
2482 {
2483 *curr_mode = ty::UpvarCapture::ByRef(ty::BorrowKind::UniqueImmutable);
2484 break;
2485 }
2486 }
2487 }
2488
2489 ty::UpvarCapture::ByRef(..) => {}
2490 ty::UpvarCapture::ByValue | ty::UpvarCapture::ByUse => {}
2491 }
2492
2493 place.projections.truncate(len);
2494}
2495
2496/// Determines the Ancestry relationship of Place A relative to Place B
2497///
2498/// `PlaceAncestryRelation::Ancestor` implies Place A is ancestor of Place B
2499/// `PlaceAncestryRelation::Descendant` implies Place A is descendant of Place B
2500/// `PlaceAncestryRelation::Divergent` implies neither of them is the ancestor of the other.
2501fn determine_place_ancestry_relation<'tcx>(
2502 place_a: &Place<'tcx>,
2503 place_b: &Place<'tcx>,
2504) -> PlaceAncestryRelation {
2505 // If Place A and Place B don't start off from the same root variable, they are divergent.
2506 if place_a.base != place_b.base {
2507 return PlaceAncestryRelation::Divergent;
2508 }
2509
2510 // Assume of length of projections_a = n
2511 let projections_a = &place_a.projections;
2512
2513 // Assume of length of projections_b = m
2514 let projections_b = &place_b.projections;
2515
2516 let same_initial_projections =
2517 iter::zip(projections_a, projections_b).all(|(proj_a, proj_b)| proj_a.kind == proj_b.kind);
2518
2519 if same_initial_projections {
2520 use std::cmp::Ordering;
2521
2522 // First min(n, m) projections are the same
2523 // Select Ancestor/Descendant
2524 match projections_b.len().cmp(&projections_a.len()) {
2525 Ordering::Greater => PlaceAncestryRelation::Ancestor,
2526 Ordering::Equal => PlaceAncestryRelation::SamePlace,
2527 Ordering::Less => PlaceAncestryRelation::Descendant,
2528 }
2529 } else {
2530 PlaceAncestryRelation::Divergent
2531 }
2532}
2533
2534/// Reduces the precision of the captured place when the precision doesn't yield any benefit from
2535/// borrow checking perspective, allowing us to save us on the size of the capture.
2536///
2537///
2538/// Fields that are read through a shared reference will always be read via a shared ref or a copy,
2539/// and therefore capturing precise paths yields no benefit. This optimization truncates the
2540/// rightmost deref of the capture if the deref is applied to a shared ref.
2541///
2542/// Reason we only drop the last deref is because of the following edge case:
2543///
2544/// ```
2545/// # struct A { field_of_a: Box<i32> }
2546/// # struct B {}
2547/// # struct C<'a>(&'a i32);
2548/// struct MyStruct<'a> {
2549/// a: &'static A,
2550/// b: B,
2551/// c: C<'a>,
2552/// }
2553///
2554/// fn foo<'a, 'b>(m: &'a MyStruct<'b>) -> impl FnMut() + 'static {
2555/// || drop(&*m.a.field_of_a)
2556/// // Here we really do want to capture `*m.a` because that outlives `'static`
2557///
2558/// // If we capture `m`, then the closure no longer outlives `'static`
2559/// // it is constrained to `'a`
2560/// }
2561/// ```
2562fn truncate_capture_for_optimization(
2563 mut place: Place<'_>,
2564 mut curr_mode: ty::UpvarCapture,
2565) -> (Place<'_>, ty::UpvarCapture) {
2566 let is_shared_ref = |ty: Ty<'_>| matches!(ty.kind(), ty::Ref(.., hir::Mutability::Not));
2567
2568 // Find the rightmost deref (if any). All the projections that come after this
2569 // are fields or other "in-place pointer adjustments"; these refer therefore to
2570 // data owned by whatever pointer is being dereferenced here.
2571 let idx = place.projections.iter().rposition(|proj| ProjectionKind::Deref == proj.kind);
2572
2573 match idx {
2574 // If that pointer is a shared reference, then we don't need those fields.
2575 Some(idx) if is_shared_ref(place.ty_before_projection(idx)) => {
2576 truncate_place_to_len_and_update_capture_kind(&mut place, &mut curr_mode, idx + 1)
2577 }
2578 None | Some(_) => {}
2579 }
2580
2581 (place, curr_mode)
2582}
2583
2584/// Precise capture is enabled if user is using Rust Edition 2021 or higher.
2585/// `span` is the span of the closure.
2586fn enable_precise_capture(span: Span) -> bool {
2587 // We use span here to ensure that if the closure was generated by a macro with a different
2588 // edition.
2589 span.at_least_rust_2021()
2590}