rustc_const_eval/interpret/validity.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
//! Check the validity invariant of a given value, and tell the user
//! where in the value it got violated.
//! In const context, this goes even further and tries to approximate const safety.
//! That's useful because it means other passes (e.g. promotion) can rely on `const`s
//! to be const-safe.
use std::borrow::Cow;
use std::fmt::Write;
use std::hash::Hash;
use std::num::NonZero;
use either::{Left, Right};
use hir::def::DefKind;
use rustc_abi::{
BackendRepr, FieldIdx, FieldsShape, Scalar as ScalarAbi, Size, VariantIdx, Variants,
WrappingRange,
};
use rustc_ast::Mutability;
use rustc_data_structures::fx::FxHashSet;
use rustc_hir as hir;
use rustc_middle::bug;
use rustc_middle::mir::interpret::ValidationErrorKind::{self, *};
use rustc_middle::mir::interpret::{
ExpectedKind, InterpErrorKind, InvalidMetaKind, Misalignment, PointerKind, Provenance,
UnsupportedOpInfo, ValidationErrorInfo, alloc_range, interp_ok,
};
use rustc_middle::ty::layout::{LayoutCx, LayoutOf, TyAndLayout};
use rustc_middle::ty::{self, Ty};
use rustc_span::{Symbol, sym};
use tracing::trace;
use super::machine::AllocMap;
use super::{
AllocId, CheckInAllocMsg, GlobalAlloc, ImmTy, Immediate, InterpCx, InterpResult, MPlaceTy,
Machine, MemPlaceMeta, PlaceTy, Pointer, Projectable, Scalar, ValueVisitor, err_ub,
format_interp_error,
};
// for the validation errors
#[rustfmt::skip]
use super::InterpErrorKind::UndefinedBehavior as Ub;
use super::InterpErrorKind::Unsupported as Unsup;
use super::UndefinedBehaviorInfo::*;
use super::UnsupportedOpInfo::*;
macro_rules! err_validation_failure {
($where:expr, $kind: expr) => {{
let where_ = &$where;
let path = if !where_.is_empty() {
let mut path = String::new();
write_path(&mut path, where_);
Some(path)
} else {
None
};
err_ub!(ValidationError(ValidationErrorInfo { path, kind: $kind }))
}};
}
macro_rules! throw_validation_failure {
($where:expr, $kind: expr) => {
do yeet err_validation_failure!($where, $kind)
};
}
/// If $e throws an error matching the pattern, throw a validation failure.
/// Other errors are passed back to the caller, unchanged -- and if they reach the root of
/// the visitor, we make sure only validation errors and `InvalidProgram` errors are left.
/// This lets you use the patterns as a kind of validation list, asserting which errors
/// can possibly happen:
///
/// ```ignore(illustrative)
/// let v = try_validation!(some_fn(), some_path, {
/// Foo | Bar | Baz => { "some failure" },
/// });
/// ```
///
/// The patterns must be of type `UndefinedBehaviorInfo`.
/// An additional expected parameter can also be added to the failure message:
///
/// ```ignore(illustrative)
/// let v = try_validation!(some_fn(), some_path, {
/// Foo | Bar | Baz => { "some failure" } expected { "something that wasn't a failure" },
/// });
/// ```
///
/// An additional nicety is that both parameters actually take format args, so you can just write
/// the format string in directly:
///
/// ```ignore(illustrative)
/// let v = try_validation!(some_fn(), some_path, {
/// Foo | Bar | Baz => { "{:?}", some_failure } expected { "{}", expected_value },
/// });
/// ```
///
macro_rules! try_validation {
($e:expr, $where:expr,
$( $( $p:pat_param )|+ => $kind: expr ),+ $(,)?
) => {{
$e.map_err_kind(|e| {
// We catch the error and turn it into a validation failure. We are okay with
// allocation here as this can only slow down builds that fail anyway.
match e {
$(
$($p)|+ => {
err_validation_failure!(
$where,
$kind
)
}
),+,
e => e,
}
})?
}};
}
/// We want to show a nice path to the invalid field for diagnostics,
/// but avoid string operations in the happy case where no error happens.
/// So we track a `Vec<PathElem>` where `PathElem` contains all the data we
/// need to later print something for the user.
#[derive(Copy, Clone, Debug)]
pub enum PathElem {
Field(Symbol),
Variant(Symbol),
CoroutineState(VariantIdx),
CapturedVar(Symbol),
ArrayElem(usize),
TupleElem(usize),
Deref,
EnumTag,
CoroutineTag,
DynDowncast,
Vtable,
}
/// Extra things to check for during validation of CTFE results.
#[derive(Copy, Clone)]
pub enum CtfeValidationMode {
/// Validation of a `static`
Static { mutbl: Mutability },
/// Validation of a promoted.
Promoted,
/// Validation of a `const`.
/// `allow_immutable_unsafe_cell` says whether we allow `UnsafeCell` in immutable memory (which is the
/// case for the top-level allocation of a `const`, where this is fine because the allocation will be
/// copied at each use site).
Const { allow_immutable_unsafe_cell: bool },
}
impl CtfeValidationMode {
fn allow_immutable_unsafe_cell(self) -> bool {
match self {
CtfeValidationMode::Static { .. } => false,
CtfeValidationMode::Promoted { .. } => false,
CtfeValidationMode::Const { allow_immutable_unsafe_cell, .. } => {
allow_immutable_unsafe_cell
}
}
}
}
/// State for tracking recursive validation of references
pub struct RefTracking<T, PATH = ()> {
seen: FxHashSet<T>,
todo: Vec<(T, PATH)>,
}
impl<T: Clone + Eq + Hash + std::fmt::Debug, PATH: Default> RefTracking<T, PATH> {
pub fn empty() -> Self {
RefTracking { seen: FxHashSet::default(), todo: vec![] }
}
pub fn new(val: T) -> Self {
let mut ref_tracking_for_consts =
RefTracking { seen: FxHashSet::default(), todo: vec![(val.clone(), PATH::default())] };
ref_tracking_for_consts.seen.insert(val);
ref_tracking_for_consts
}
pub fn next(&mut self) -> Option<(T, PATH)> {
self.todo.pop()
}
fn track(&mut self, val: T, path: impl FnOnce() -> PATH) {
if self.seen.insert(val.clone()) {
trace!("Recursing below ptr {:#?}", val);
let path = path();
// Remember to come back to this later.
self.todo.push((val, path));
}
}
}
// FIXME make this translatable as well?
/// Format a path
fn write_path(out: &mut String, path: &[PathElem]) {
use self::PathElem::*;
for elem in path.iter() {
match elem {
Field(name) => write!(out, ".{name}"),
EnumTag => write!(out, ".<enum-tag>"),
Variant(name) => write!(out, ".<enum-variant({name})>"),
CoroutineTag => write!(out, ".<coroutine-tag>"),
CoroutineState(idx) => write!(out, ".<coroutine-state({})>", idx.index()),
CapturedVar(name) => write!(out, ".<captured-var({name})>"),
TupleElem(idx) => write!(out, ".{idx}"),
ArrayElem(idx) => write!(out, "[{idx}]"),
// `.<deref>` does not match Rust syntax, but it is more readable for long paths -- and
// some of the other items here also are not Rust syntax. Actually we can't
// even use the usual syntax because we are just showing the projections,
// not the root.
Deref => write!(out, ".<deref>"),
DynDowncast => write!(out, ".<dyn-downcast>"),
Vtable => write!(out, ".<vtable>"),
}
.unwrap()
}
}
/// Represents a set of `Size` values as a sorted list of ranges.
// These are (offset, length) pairs, and they are sorted and mutually disjoint,
// and never adjacent (i.e. there's always a gap between two of them).
#[derive(Debug, Clone)]
pub struct RangeSet(Vec<(Size, Size)>);
impl RangeSet {
fn add_range(&mut self, offset: Size, size: Size) {
if size.bytes() == 0 {
// No need to track empty ranges.
return;
}
let v = &mut self.0;
// We scan for a partition point where the left partition is all the elements that end
// strictly before we start. Those are elements that are too "low" to merge with us.
let idx =
v.partition_point(|&(other_offset, other_size)| other_offset + other_size < offset);
// Now we want to either merge with the first element of the second partition, or insert ourselves before that.
if let Some(&(other_offset, other_size)) = v.get(idx)
&& offset + size >= other_offset
{
// Their end is >= our start (otherwise it would not be in the 2nd partition) and
// our end is >= their start. This means we can merge the ranges.
let new_start = other_offset.min(offset);
let mut new_end = (other_offset + other_size).max(offset + size);
// We grew to the right, so merge with overlapping/adjacent elements.
// (We also may have grown to the left, but that can never make us adjacent with
// anything there since we selected the first such candidate via `partition_point`.)
let mut scan_right = 1;
while let Some(&(next_offset, next_size)) = v.get(idx + scan_right)
&& new_end >= next_offset
{
// Increase our size to absorb the next element.
new_end = new_end.max(next_offset + next_size);
// Look at the next element.
scan_right += 1;
}
// Update the element we grew.
v[idx] = (new_start, new_end - new_start);
// Remove the elements we absorbed (if any).
if scan_right > 1 {
drop(v.drain((idx + 1)..(idx + scan_right)));
}
} else {
// Insert new element.
v.insert(idx, (offset, size));
}
}
}
struct ValidityVisitor<'rt, 'tcx, M: Machine<'tcx>> {
/// The `path` may be pushed to, but the part that is present when a function
/// starts must not be changed! `visit_fields` and `visit_array` rely on
/// this stack discipline.
path: Vec<PathElem>,
ref_tracking: Option<&'rt mut RefTracking<MPlaceTy<'tcx, M::Provenance>, Vec<PathElem>>>,
/// `None` indicates this is not validating for CTFE (but for runtime).
ctfe_mode: Option<CtfeValidationMode>,
ecx: &'rt mut InterpCx<'tcx, M>,
/// Whether provenance should be reset outside of pointers (emulating the effect of a typed
/// copy).
reset_provenance_and_padding: bool,
/// This tracks which byte ranges in this value contain data; the remaining bytes are padding.
/// The ideal representation here would be pointer-length pairs, but to keep things more compact
/// we only store a (range) set of offsets -- the base pointer is the same throughout the entire
/// visit, after all.
/// If this is `Some`, then `reset_provenance_and_padding` must be true (but not vice versa:
/// we might not track data vs padding bytes if the operand isn't stored in memory anyway).
data_bytes: Option<RangeSet>,
}
impl<'rt, 'tcx, M: Machine<'tcx>> ValidityVisitor<'rt, 'tcx, M> {
fn aggregate_field_path_elem(&mut self, layout: TyAndLayout<'tcx>, field: usize) -> PathElem {
// First, check if we are projecting to a variant.
match layout.variants {
Variants::Multiple { tag_field, .. } => {
if tag_field == field {
return match layout.ty.kind() {
ty::Adt(def, ..) if def.is_enum() => PathElem::EnumTag,
ty::Coroutine(..) => PathElem::CoroutineTag,
_ => bug!("non-variant type {:?}", layout.ty),
};
}
}
Variants::Single { .. } | Variants::Empty => {}
}
// Now we know we are projecting to a field, so figure out which one.
match layout.ty.kind() {
// coroutines, closures, and coroutine-closures all have upvars that may be named.
ty::Closure(def_id, _) | ty::Coroutine(def_id, _) | ty::CoroutineClosure(def_id, _) => {
let mut name = None;
// FIXME this should be more descriptive i.e. CapturePlace instead of CapturedVar
// https://github.com/rust-lang/project-rfc-2229/issues/46
if let Some(local_def_id) = def_id.as_local() {
let captures = self.ecx.tcx.closure_captures(local_def_id);
if let Some(captured_place) = captures.get(field) {
// Sometimes the index is beyond the number of upvars (seen
// for a coroutine).
let var_hir_id = captured_place.get_root_variable();
let node = self.ecx.tcx.hir_node(var_hir_id);
if let hir::Node::Pat(pat) = node {
if let hir::PatKind::Binding(_, _, ident, _) = pat.kind {
name = Some(ident.name);
}
}
}
}
PathElem::CapturedVar(name.unwrap_or_else(|| {
// Fall back to showing the field index.
sym::integer(field)
}))
}
// tuples
ty::Tuple(_) => PathElem::TupleElem(field),
// enums
ty::Adt(def, ..) if def.is_enum() => {
// we might be projecting *to* a variant, or to a field *in* a variant.
match layout.variants {
Variants::Single { index } => {
// Inside a variant
PathElem::Field(def.variant(index).fields[FieldIdx::from_usize(field)].name)
}
Variants::Empty => panic!("there is no field in Variants::Empty types"),
Variants::Multiple { .. } => bug!("we handled variants above"),
}
}
// other ADTs
ty::Adt(def, _) => {
PathElem::Field(def.non_enum_variant().fields[FieldIdx::from_usize(field)].name)
}
// arrays/slices
ty::Array(..) | ty::Slice(..) => PathElem::ArrayElem(field),
// dyn* vtables
ty::Dynamic(_, _, ty::DynKind::DynStar) if field == 1 => PathElem::Vtable,
// dyn traits
ty::Dynamic(..) => {
assert_eq!(field, 0);
PathElem::DynDowncast
}
// nothing else has an aggregate layout
_ => bug!("aggregate_field_path_elem: got non-aggregate type {:?}", layout.ty),
}
}
fn with_elem<R>(
&mut self,
elem: PathElem,
f: impl FnOnce(&mut Self) -> InterpResult<'tcx, R>,
) -> InterpResult<'tcx, R> {
// Remember the old state
let path_len = self.path.len();
// Record new element
self.path.push(elem);
// Perform operation
let r = f(self)?;
// Undo changes
self.path.truncate(path_len);
// Done
interp_ok(r)
}
fn read_immediate(
&self,
val: &PlaceTy<'tcx, M::Provenance>,
expected: ExpectedKind,
) -> InterpResult<'tcx, ImmTy<'tcx, M::Provenance>> {
interp_ok(try_validation!(
self.ecx.read_immediate(val),
self.path,
Ub(InvalidUninitBytes(None)) =>
Uninit { expected },
// The `Unsup` cases can only occur during CTFE
Unsup(ReadPointerAsInt(_)) =>
PointerAsInt { expected },
Unsup(ReadPartialPointer(_)) =>
PartialPointer,
))
}
fn read_scalar(
&self,
val: &PlaceTy<'tcx, M::Provenance>,
expected: ExpectedKind,
) -> InterpResult<'tcx, Scalar<M::Provenance>> {
interp_ok(self.read_immediate(val, expected)?.to_scalar())
}
fn deref_pointer(
&mut self,
val: &PlaceTy<'tcx, M::Provenance>,
expected: ExpectedKind,
) -> InterpResult<'tcx, MPlaceTy<'tcx, M::Provenance>> {
// Not using `ecx.deref_pointer` since we want to use our `read_immediate` wrapper.
let imm = self.read_immediate(val, expected)?;
// Reset provenance: ensure slice tail metadata does not preserve provenance,
// and ensure all pointers do not preserve partial provenance.
if self.reset_provenance_and_padding {
if matches!(imm.layout.backend_repr, BackendRepr::Scalar(..)) {
// A thin pointer. If it has provenance, we don't have to do anything.
// If it does not, ensure we clear the provenance in memory.
if matches!(imm.to_scalar(), Scalar::Int(..)) {
self.ecx.clear_provenance(val)?;
}
} else {
// A wide pointer. This means we have to worry both about the pointer itself and the
// metadata. We do the lazy thing and just write back the value we got. Just
// clearing provenance in a targeted manner would be more efficient, but unless this
// is a perf hotspot it's just not worth the effort.
self.ecx.write_immediate_no_validate(*imm, val)?;
}
// The entire thing is data, not padding.
self.add_data_range_place(val);
}
// Now turn it into a place.
self.ecx.ref_to_mplace(&imm)
}
fn check_wide_ptr_meta(
&mut self,
meta: MemPlaceMeta<M::Provenance>,
pointee: TyAndLayout<'tcx>,
) -> InterpResult<'tcx> {
let tail = self.ecx.tcx.struct_tail_for_codegen(pointee.ty, self.ecx.typing_env);
match tail.kind() {
ty::Dynamic(data, _, ty::Dyn) => {
let vtable = meta.unwrap_meta().to_pointer(self.ecx)?;
// Make sure it is a genuine vtable pointer for the right trait.
try_validation!(
self.ecx.get_ptr_vtable_ty(vtable, Some(data)),
self.path,
Ub(DanglingIntPointer{ .. } | InvalidVTablePointer(..)) =>
InvalidVTablePtr { value: format!("{vtable}") },
Ub(InvalidVTableTrait { vtable_dyn_type, expected_dyn_type }) => {
InvalidMetaWrongTrait { vtable_dyn_type, expected_dyn_type }
},
);
}
ty::Slice(..) | ty::Str => {
let _len = meta.unwrap_meta().to_target_usize(self.ecx)?;
// We do not check that `len * elem_size <= isize::MAX`:
// that is only required for references, and there it falls out of the
// "dereferenceable" check performed by Stacked Borrows.
}
ty::Foreign(..) => {
// Unsized, but not wide.
}
_ => bug!("Unexpected unsized type tail: {:?}", tail),
}
interp_ok(())
}
/// Check a reference or `Box`.
fn check_safe_pointer(
&mut self,
value: &PlaceTy<'tcx, M::Provenance>,
ptr_kind: PointerKind,
) -> InterpResult<'tcx> {
let place = self.deref_pointer(value, ptr_kind.into())?;
// Handle wide pointers.
// Check metadata early, for better diagnostics
if place.layout.is_unsized() {
self.check_wide_ptr_meta(place.meta(), place.layout)?;
}
// Make sure this is dereferenceable and all.
let size_and_align = try_validation!(
self.ecx.size_and_align_of_mplace(&place),
self.path,
Ub(InvalidMeta(msg)) => match msg {
InvalidMetaKind::SliceTooBig => InvalidMetaSliceTooLarge { ptr_kind },
InvalidMetaKind::TooBig => InvalidMetaTooLarge { ptr_kind },
}
);
let (size, align) = size_and_align
// for the purpose of validity, consider foreign types to have
// alignment and size determined by the layout (size will be 0,
// alignment should take attributes into account).
.unwrap_or_else(|| (place.layout.size, place.layout.align.abi));
// Direct call to `check_ptr_access_align` checks alignment even on CTFE machines.
try_validation!(
self.ecx.check_ptr_access(
place.ptr(),
size,
CheckInAllocMsg::InboundsTest, // will anyway be replaced by validity message
),
self.path,
Ub(DanglingIntPointer { addr: 0, .. }) => NullPtr { ptr_kind },
Ub(DanglingIntPointer { addr: i, .. }) => DanglingPtrNoProvenance {
ptr_kind,
// FIXME this says "null pointer" when null but we need translate
pointer: format!("{}", Pointer::<Option<AllocId>>::from_addr_invalid(i))
},
Ub(PointerOutOfBounds { .. }) => DanglingPtrOutOfBounds {
ptr_kind
},
Ub(PointerUseAfterFree(..)) => DanglingPtrUseAfterFree {
ptr_kind,
},
);
try_validation!(
self.ecx.check_ptr_align(
place.ptr(),
align,
),
self.path,
Ub(AlignmentCheckFailed(Misalignment { required, has }, _msg)) => UnalignedPtr {
ptr_kind,
required_bytes: required.bytes(),
found_bytes: has.bytes()
},
);
// Make sure this is non-null. We checked dereferenceability above, but if `size` is zero
// that does not imply non-null.
if self.ecx.scalar_may_be_null(Scalar::from_maybe_pointer(place.ptr(), self.ecx))? {
throw_validation_failure!(self.path, NullPtr { ptr_kind })
}
// Do not allow references to uninhabited types.
if place.layout.is_uninhabited() {
let ty = place.layout.ty;
throw_validation_failure!(self.path, PtrToUninhabited { ptr_kind, ty })
}
// Recursive checking
if let Some(ref_tracking) = self.ref_tracking.as_deref_mut() {
// Proceed recursively even for ZST, no reason to skip them!
// `!` is a ZST and we want to validate it.
if let Some(ctfe_mode) = self.ctfe_mode {
let mut skip_recursive_check = false;
// CTFE imposes restrictions on what references can point to.
if let Ok((alloc_id, _offset, _prov)) =
self.ecx.ptr_try_get_alloc_id(place.ptr(), 0)
{
// Everything should be already interned.
let Some(global_alloc) = self.ecx.tcx.try_get_global_alloc(alloc_id) else {
assert!(self.ecx.memory.alloc_map.get(alloc_id).is_none());
// We can't have *any* references to non-existing allocations in const-eval
// as the rest of rustc isn't happy with them... so we throw an error, even
// though for zero-sized references this isn't really UB.
// A potential future alternative would be to resurrect this as a zero-sized allocation
// (which codegen will then compile to an aligned dummy pointer anyway).
throw_validation_failure!(self.path, DanglingPtrUseAfterFree { ptr_kind });
};
let (size, _align) =
global_alloc.size_and_align(*self.ecx.tcx, self.ecx.typing_env);
if let GlobalAlloc::Static(did) = global_alloc {
let DefKind::Static { nested, .. } = self.ecx.tcx.def_kind(did) else {
bug!()
};
// Special handling for pointers to statics (irrespective of their type).
assert!(!self.ecx.tcx.is_thread_local_static(did));
assert!(self.ecx.tcx.is_static(did));
// Mode-specific checks
match ctfe_mode {
CtfeValidationMode::Static { .. }
| CtfeValidationMode::Promoted { .. } => {
// We skip recursively checking other statics. These statics must be sound by
// themselves, and the only way to get broken statics here is by using
// unsafe code.
// The reasons we don't check other statics is twofold. For one, in all
// sound cases, the static was already validated on its own, and second, we
// trigger cycle errors if we try to compute the value of the other static
// and that static refers back to us (potentially through a promoted).
// This could miss some UB, but that's fine.
// We still walk nested allocations, as they are fundamentally part of this validation run.
// This means we will also recurse into nested statics of *other*
// statics, even though we do not recurse into other statics directly.
// That's somewhat inconsistent but harmless.
skip_recursive_check = !nested;
}
CtfeValidationMode::Const { .. } => {
// We can't recursively validate `extern static`, so we better reject them.
if self.ecx.tcx.is_foreign_item(did) {
throw_validation_failure!(self.path, ConstRefToExtern);
}
}
}
}
// If this allocation has size zero, there is no actual mutability here.
if size != Size::ZERO {
// Determine whether this pointer expects to be pointing to something mutable.
let ptr_expected_mutbl = match ptr_kind {
PointerKind::Box => Mutability::Mut,
PointerKind::Ref(mutbl) => {
// We do not take into account interior mutability here since we cannot know if
// there really is an `UnsafeCell` inside `Option<UnsafeCell>` -- so we check
// that in the recursive descent behind this reference (controlled by
// `allow_immutable_unsafe_cell`).
mutbl
}
};
// Determine what it actually points to.
let alloc_actual_mutbl =
global_alloc.mutability(*self.ecx.tcx, self.ecx.typing_env);
// Mutable pointer to immutable memory is no good.
if ptr_expected_mutbl == Mutability::Mut
&& alloc_actual_mutbl == Mutability::Not
{
// This can actually occur with transmutes.
throw_validation_failure!(self.path, MutableRefToImmutable);
}
// In a const, everything must be completely immutable.
if matches!(self.ctfe_mode, Some(CtfeValidationMode::Const { .. })) {
if ptr_expected_mutbl == Mutability::Mut
|| alloc_actual_mutbl == Mutability::Mut
{
throw_validation_failure!(self.path, ConstRefToMutable);
}
}
}
}
// Potentially skip recursive check.
if skip_recursive_check {
return interp_ok(());
}
} else {
// This is not CTFE, so it's Miri with recursive checking.
// FIXME: we do *not* check behind boxes, since creating a new box first creates it uninitialized
// and then puts the value in there, so briefly we have a box with uninit contents.
// FIXME: should we also skip `UnsafeCell` behind shared references? Currently that is not
// needed since validation reads bypass Stacked Borrows and data race checks.
if matches!(ptr_kind, PointerKind::Box) {
return interp_ok(());
}
}
let path = &self.path;
ref_tracking.track(place, || {
// We need to clone the path anyway, make sure it gets created
// with enough space for the additional `Deref`.
let mut new_path = Vec::with_capacity(path.len() + 1);
new_path.extend(path);
new_path.push(PathElem::Deref);
new_path
});
}
interp_ok(())
}
/// Check if this is a value of primitive type, and if yes check the validity of the value
/// at that type. Return `true` if the type is indeed primitive.
///
/// Note that not all of these have `FieldsShape::Primitive`, e.g. wide references.
fn try_visit_primitive(
&mut self,
value: &PlaceTy<'tcx, M::Provenance>,
) -> InterpResult<'tcx, bool> {
// Go over all the primitive types
let ty = value.layout.ty;
match ty.kind() {
ty::Bool => {
let scalar = self.read_scalar(value, ExpectedKind::Bool)?;
try_validation!(
scalar.to_bool(),
self.path,
Ub(InvalidBool(..)) => ValidationErrorKind::InvalidBool {
value: format!("{scalar:x}"),
}
);
if self.reset_provenance_and_padding {
self.ecx.clear_provenance(value)?;
self.add_data_range_place(value);
}
interp_ok(true)
}
ty::Char => {
let scalar = self.read_scalar(value, ExpectedKind::Char)?;
try_validation!(
scalar.to_char(),
self.path,
Ub(InvalidChar(..)) => ValidationErrorKind::InvalidChar {
value: format!("{scalar:x}"),
}
);
if self.reset_provenance_and_padding {
self.ecx.clear_provenance(value)?;
self.add_data_range_place(value);
}
interp_ok(true)
}
ty::Float(_) | ty::Int(_) | ty::Uint(_) => {
// NOTE: Keep this in sync with the array optimization for int/float
// types below!
self.read_scalar(
value,
if matches!(ty.kind(), ty::Float(..)) {
ExpectedKind::Float
} else {
ExpectedKind::Int
},
)?;
if self.reset_provenance_and_padding {
self.ecx.clear_provenance(value)?;
self.add_data_range_place(value);
}
interp_ok(true)
}
ty::RawPtr(..) => {
let place = self.deref_pointer(value, ExpectedKind::RawPtr)?;
if place.layout.is_unsized() {
self.check_wide_ptr_meta(place.meta(), place.layout)?;
}
interp_ok(true)
}
ty::Ref(_, _ty, mutbl) => {
self.check_safe_pointer(value, PointerKind::Ref(*mutbl))?;
interp_ok(true)
}
ty::FnPtr(..) => {
let scalar = self.read_scalar(value, ExpectedKind::FnPtr)?;
// If we check references recursively, also check that this points to a function.
if let Some(_) = self.ref_tracking {
let ptr = scalar.to_pointer(self.ecx)?;
let _fn = try_validation!(
self.ecx.get_ptr_fn(ptr),
self.path,
Ub(DanglingIntPointer{ .. } | InvalidFunctionPointer(..)) =>
InvalidFnPtr { value: format!("{ptr}") },
);
// FIXME: Check if the signature matches
} else {
// Otherwise (for standalone Miri), we have to still check it to be non-null.
if self.ecx.scalar_may_be_null(scalar)? {
throw_validation_failure!(self.path, NullFnPtr);
}
}
if self.reset_provenance_and_padding {
// Make sure we do not preserve partial provenance. This matches the thin
// pointer handling in `deref_pointer`.
if matches!(scalar, Scalar::Int(..)) {
self.ecx.clear_provenance(value)?;
}
self.add_data_range_place(value);
}
interp_ok(true)
}
ty::Never => throw_validation_failure!(self.path, NeverVal),
ty::Foreign(..) | ty::FnDef(..) => {
// Nothing to check.
interp_ok(true)
}
// The above should be all the primitive types. The rest is compound, we
// check them by visiting their fields/variants.
ty::Adt(..)
| ty::Tuple(..)
| ty::Array(..)
| ty::Slice(..)
| ty::Str
| ty::Dynamic(..)
| ty::Closure(..)
| ty::Pat(..)
| ty::CoroutineClosure(..)
| ty::Coroutine(..) => interp_ok(false),
// Some types only occur during typechecking, they have no layout.
// We should not see them here and we could not check them anyway.
ty::Error(_)
| ty::Infer(..)
| ty::Placeholder(..)
| ty::Bound(..)
| ty::Param(..)
| ty::Alias(..)
| ty::CoroutineWitness(..) => bug!("Encountered invalid type {:?}", ty),
}
}
fn visit_scalar(
&mut self,
scalar: Scalar<M::Provenance>,
scalar_layout: ScalarAbi,
) -> InterpResult<'tcx> {
let size = scalar_layout.size(self.ecx);
let valid_range = scalar_layout.valid_range(self.ecx);
let WrappingRange { start, end } = valid_range;
let max_value = size.unsigned_int_max();
assert!(end <= max_value);
let bits = match scalar.try_to_scalar_int() {
Ok(int) => int.to_bits(size),
Err(_) => {
// So this is a pointer then, and casting to an int failed.
// Can only happen during CTFE.
// We support 2 kinds of ranges here: full range, and excluding zero.
if start == 1 && end == max_value {
// Only null is the niche. So make sure the ptr is NOT null.
if self.ecx.scalar_may_be_null(scalar)? {
throw_validation_failure!(self.path, NullablePtrOutOfRange {
range: valid_range,
max_value
})
} else {
return interp_ok(());
}
} else if scalar_layout.is_always_valid(self.ecx) {
// Easy. (This is reachable if `enforce_number_validity` is set.)
return interp_ok(());
} else {
// Conservatively, we reject, because the pointer *could* have a bad
// value.
throw_validation_failure!(self.path, PtrOutOfRange {
range: valid_range,
max_value
})
}
}
};
// Now compare.
if valid_range.contains(bits) {
interp_ok(())
} else {
throw_validation_failure!(self.path, OutOfRange {
value: format!("{bits}"),
range: valid_range,
max_value
})
}
}
fn in_mutable_memory(&self, val: &PlaceTy<'tcx, M::Provenance>) -> bool {
debug_assert!(self.ctfe_mode.is_some());
if let Some(mplace) = val.as_mplace_or_local().left() {
if let Some(alloc_id) = mplace.ptr().provenance.and_then(|p| p.get_alloc_id()) {
let tcx = *self.ecx.tcx;
// Everything must be already interned.
let mutbl = tcx.global_alloc(alloc_id).mutability(tcx, self.ecx.typing_env);
if let Some((_, alloc)) = self.ecx.memory.alloc_map.get(alloc_id) {
assert_eq!(alloc.mutability, mutbl);
}
mutbl.is_mut()
} else {
// No memory at all.
false
}
} else {
// A local variable -- definitely mutable.
true
}
}
/// Add the given pointer-length pair to the "data" range of this visit.
fn add_data_range(&mut self, ptr: Pointer<Option<M::Provenance>>, size: Size) {
if let Some(data_bytes) = self.data_bytes.as_mut() {
// We only have to store the offset, the rest is the same for all pointers here.
let (_prov, offset) = ptr.into_parts();
// Add this.
data_bytes.add_range(offset, size);
};
}
/// Add the entire given place to the "data" range of this visit.
fn add_data_range_place(&mut self, place: &PlaceTy<'tcx, M::Provenance>) {
// Only sized places can be added this way.
debug_assert!(place.layout.is_sized());
if let Some(data_bytes) = self.data_bytes.as_mut() {
let offset = Self::data_range_offset(self.ecx, place);
data_bytes.add_range(offset, place.layout.size);
}
}
/// Convert a place into the offset it starts at, for the purpose of data_range tracking.
/// Must only be called if `data_bytes` is `Some(_)`.
fn data_range_offset(ecx: &InterpCx<'tcx, M>, place: &PlaceTy<'tcx, M::Provenance>) -> Size {
// The presence of `data_bytes` implies that our place is in memory.
let ptr = ecx
.place_to_op(place)
.expect("place must be in memory")
.as_mplace_or_imm()
.expect_left("place must be in memory")
.ptr();
let (_prov, offset) = ptr.into_parts();
offset
}
fn reset_padding(&mut self, place: &PlaceTy<'tcx, M::Provenance>) -> InterpResult<'tcx> {
let Some(data_bytes) = self.data_bytes.as_mut() else { return interp_ok(()) };
// Our value must be in memory, otherwise we would not have set up `data_bytes`.
let mplace = self.ecx.force_allocation(place)?;
// Determine starting offset and size.
let (_prov, start_offset) = mplace.ptr().into_parts();
let (size, _align) = self
.ecx
.size_and_align_of_mplace(&mplace)?
.unwrap_or((mplace.layout.size, mplace.layout.align.abi));
// If there is no padding at all, we can skip the rest: check for
// a single data range covering the entire value.
if data_bytes.0 == &[(start_offset, size)] {
return interp_ok(());
}
// Get a handle for the allocation. Do this only once, to avoid looking up the same
// allocation over and over again. (Though to be fair, iterating the value already does
// exactly that.)
let Some(mut alloc) = self.ecx.get_ptr_alloc_mut(mplace.ptr(), size)? else {
// A ZST, no padding to clear.
return interp_ok(());
};
// Add a "finalizer" data range at the end, so that the iteration below finds all gaps
// between ranges.
data_bytes.0.push((start_offset + size, Size::ZERO));
// Iterate, and reset gaps.
let mut padding_cleared_until = start_offset;
for &(offset, size) in data_bytes.0.iter() {
assert!(
offset >= padding_cleared_until,
"reset_padding on {}: previous field ended at offset {}, next field starts at {} (and has a size of {} bytes)",
mplace.layout.ty,
(padding_cleared_until - start_offset).bytes(),
(offset - start_offset).bytes(),
size.bytes(),
);
if offset > padding_cleared_until {
// We found padding. Adjust the range to be relative to `alloc`, and make it uninit.
let padding_start = padding_cleared_until - start_offset;
let padding_size = offset - padding_cleared_until;
let range = alloc_range(padding_start, padding_size);
trace!("reset_padding on {}: resetting padding range {range:?}", mplace.layout.ty);
alloc.write_uninit(range)?;
}
padding_cleared_until = offset + size;
}
assert!(padding_cleared_until == start_offset + size);
interp_ok(())
}
/// Computes the data range of this union type:
/// which bytes are inside a field (i.e., not padding.)
fn union_data_range<'e>(
ecx: &'e mut InterpCx<'tcx, M>,
layout: TyAndLayout<'tcx>,
) -> Cow<'e, RangeSet> {
assert!(layout.ty.is_union());
assert!(layout.is_sized(), "there are no unsized unions");
let layout_cx = LayoutCx::new(*ecx.tcx, ecx.typing_env);
return M::cached_union_data_range(ecx, layout.ty, || {
let mut out = RangeSet(Vec::new());
union_data_range_uncached(&layout_cx, layout, Size::ZERO, &mut out);
out
});
/// Helper for recursive traversal: add data ranges of the given type to `out`.
fn union_data_range_uncached<'tcx>(
cx: &LayoutCx<'tcx>,
layout: TyAndLayout<'tcx>,
base_offset: Size,
out: &mut RangeSet,
) {
// If this is a ZST, we don't contain any data. In particular, this helps us to quickly
// skip over huge arrays of ZST.
if layout.is_zst() {
return;
}
// Just recursively add all the fields of everything to the output.
match &layout.fields {
FieldsShape::Primitive => {
out.add_range(base_offset, layout.size);
}
&FieldsShape::Union(fields) => {
// Currently, all fields start at offset 0 (relative to `base_offset`).
for field in 0..fields.get() {
let field = layout.field(cx, field);
union_data_range_uncached(cx, field, base_offset, out);
}
}
&FieldsShape::Array { stride, count } => {
let elem = layout.field(cx, 0);
// Fast-path for large arrays of simple types that do not contain any padding.
if elem.backend_repr.is_scalar() {
out.add_range(base_offset, elem.size * count);
} else {
for idx in 0..count {
// This repeats the same computation for every array element... but the alternative
// is to allocate temporary storage for a dedicated `out` set for the array element,
// and replicating that N times. Is that better?
union_data_range_uncached(cx, elem, base_offset + idx * stride, out);
}
}
}
FieldsShape::Arbitrary { offsets, .. } => {
for (field, &offset) in offsets.iter_enumerated() {
let field = layout.field(cx, field.as_usize());
union_data_range_uncached(cx, field, base_offset + offset, out);
}
}
}
// Don't forget potential other variants.
match &layout.variants {
Variants::Single { .. } | Variants::Empty => {
// Fully handled above.
}
Variants::Multiple { variants, .. } => {
for variant in variants.indices() {
let variant = layout.for_variant(cx, variant);
union_data_range_uncached(cx, variant, base_offset, out);
}
}
}
}
}
}
impl<'rt, 'tcx, M: Machine<'tcx>> ValueVisitor<'tcx, M> for ValidityVisitor<'rt, 'tcx, M> {
type V = PlaceTy<'tcx, M::Provenance>;
#[inline(always)]
fn ecx(&self) -> &InterpCx<'tcx, M> {
self.ecx
}
fn read_discriminant(
&mut self,
val: &PlaceTy<'tcx, M::Provenance>,
) -> InterpResult<'tcx, VariantIdx> {
self.with_elem(PathElem::EnumTag, move |this| {
interp_ok(try_validation!(
this.ecx.read_discriminant(val),
this.path,
Ub(InvalidTag(val)) => InvalidEnumTag {
value: format!("{val:x}"),
},
Ub(UninhabitedEnumVariantRead(_)) => UninhabitedEnumVariant,
// Uninit / bad provenance are not possible since the field was already previously
// checked at its integer type.
))
})
}
#[inline]
fn visit_field(
&mut self,
old_val: &PlaceTy<'tcx, M::Provenance>,
field: usize,
new_val: &PlaceTy<'tcx, M::Provenance>,
) -> InterpResult<'tcx> {
let elem = self.aggregate_field_path_elem(old_val.layout, field);
self.with_elem(elem, move |this| this.visit_value(new_val))
}
#[inline]
fn visit_variant(
&mut self,
old_val: &PlaceTy<'tcx, M::Provenance>,
variant_id: VariantIdx,
new_val: &PlaceTy<'tcx, M::Provenance>,
) -> InterpResult<'tcx> {
let name = match old_val.layout.ty.kind() {
ty::Adt(adt, _) => PathElem::Variant(adt.variant(variant_id).name),
// Coroutines also have variants
ty::Coroutine(..) => PathElem::CoroutineState(variant_id),
_ => bug!("Unexpected type with variant: {:?}", old_val.layout.ty),
};
self.with_elem(name, move |this| this.visit_value(new_val))
}
#[inline(always)]
fn visit_union(
&mut self,
val: &PlaceTy<'tcx, M::Provenance>,
_fields: NonZero<usize>,
) -> InterpResult<'tcx> {
// Special check for CTFE validation, preventing `UnsafeCell` inside unions in immutable memory.
if self.ctfe_mode.is_some_and(|c| !c.allow_immutable_unsafe_cell()) {
if !val.layout.is_zst() && !val.layout.ty.is_freeze(*self.ecx.tcx, self.ecx.typing_env)
{
if !self.in_mutable_memory(val) {
throw_validation_failure!(self.path, UnsafeCellInImmutable);
}
}
}
if self.reset_provenance_and_padding
&& let Some(data_bytes) = self.data_bytes.as_mut()
{
let base_offset = Self::data_range_offset(self.ecx, val);
// Determine and add data range for this union.
let union_data_range = Self::union_data_range(self.ecx, val.layout);
for &(offset, size) in union_data_range.0.iter() {
data_bytes.add_range(base_offset + offset, size);
}
}
interp_ok(())
}
#[inline]
fn visit_box(
&mut self,
_box_ty: Ty<'tcx>,
val: &PlaceTy<'tcx, M::Provenance>,
) -> InterpResult<'tcx> {
self.check_safe_pointer(val, PointerKind::Box)?;
interp_ok(())
}
#[inline]
fn visit_value(&mut self, val: &PlaceTy<'tcx, M::Provenance>) -> InterpResult<'tcx> {
trace!("visit_value: {:?}, {:?}", *val, val.layout);
// Check primitive types -- the leaves of our recursive descent.
// This is called even for enum discriminants (which are "fields" of their enum),
// so for integer-typed discriminants the provenance reset will happen here.
// We assume that the Scalar validity range does not restrict these values
// any further than `try_visit_primitive` does!
if self.try_visit_primitive(val)? {
return interp_ok(());
}
// Special check preventing `UnsafeCell` in the inner part of constants
if self.ctfe_mode.is_some_and(|c| !c.allow_immutable_unsafe_cell()) {
if !val.layout.is_zst()
&& let Some(def) = val.layout.ty.ty_adt_def()
&& def.is_unsafe_cell()
{
if !self.in_mutable_memory(val) {
throw_validation_failure!(self.path, UnsafeCellInImmutable);
}
}
}
// Recursively walk the value at its type. Apply optimizations for some large types.
match val.layout.ty.kind() {
ty::Str => {
let mplace = val.assert_mem_place(); // strings are unsized and hence never immediate
let len = mplace.len(self.ecx)?;
try_validation!(
self.ecx.read_bytes_ptr_strip_provenance(mplace.ptr(), Size::from_bytes(len)),
self.path,
Ub(InvalidUninitBytes(..)) => Uninit { expected: ExpectedKind::Str },
Unsup(ReadPointerAsInt(_)) => PointerAsInt { expected: ExpectedKind::Str }
);
}
ty::Array(tys, ..) | ty::Slice(tys)
// This optimization applies for types that can hold arbitrary non-provenance bytes (such as
// integer and floating point types).
// FIXME(wesleywiser) This logic could be extended further to arbitrary structs or
// tuples made up of integer/floating point types or inhabited ZSTs with no padding.
if matches!(tys.kind(), ty::Int(..) | ty::Uint(..) | ty::Float(..))
=>
{
let expected = if tys.is_integral() { ExpectedKind::Int } else { ExpectedKind::Float };
// Optimized handling for arrays of integer/float type.
// This is the length of the array/slice.
let len = val.len(self.ecx)?;
// This is the element type size.
let layout = self.ecx.layout_of(*tys)?;
// This is the size in bytes of the whole array. (This checks for overflow.)
let size = layout.size * len;
// If the size is 0, there is nothing to check.
// (`size` can only be 0 if `len` is 0, and empty arrays are always valid.)
if size == Size::ZERO {
return interp_ok(());
}
// Now that we definitely have a non-ZST array, we know it lives in memory -- except it may
// be an uninitialized local variable, those are also "immediate".
let mplace = match val.to_op(self.ecx)?.as_mplace_or_imm() {
Left(mplace) => mplace,
Right(imm) => match *imm {
Immediate::Uninit =>
throw_validation_failure!(self.path, Uninit { expected }),
Immediate::Scalar(..) | Immediate::ScalarPair(..) =>
bug!("arrays/slices can never have Scalar/ScalarPair layout"),
}
};
// Optimization: we just check the entire range at once.
// NOTE: Keep this in sync with the handling of integer and float
// types above, in `visit_primitive`.
// No need for an alignment check here, this is not an actual memory access.
let alloc = self.ecx.get_ptr_alloc(mplace.ptr(), size)?.expect("we already excluded size 0");
alloc.get_bytes_strip_provenance().map_err_kind(|kind| {
// Some error happened, try to provide a more detailed description.
// For some errors we might be able to provide extra information.
// (This custom logic does not fit the `try_validation!` macro.)
match kind {
Ub(InvalidUninitBytes(Some((_alloc_id, access)))) | Unsup(ReadPointerAsInt(Some((_alloc_id, access)))) => {
// Some byte was uninitialized, determine which
// element that byte belongs to so we can
// provide an index.
let i = usize::try_from(
access.bad.start.bytes() / layout.size.bytes(),
)
.unwrap();
self.path.push(PathElem::ArrayElem(i));
if matches!(kind, Ub(InvalidUninitBytes(_))) {
err_validation_failure!(self.path, Uninit { expected })
} else {
err_validation_failure!(self.path, PointerAsInt { expected })
}
}
// Propagate upwards (that will also check for unexpected errors).
err => err,
}
})?;
// Don't forget that these are all non-pointer types, and thus do not preserve
// provenance.
if self.reset_provenance_and_padding {
// We can't share this with above as above, we might be looking at read-only memory.
let mut alloc = self.ecx.get_ptr_alloc_mut(mplace.ptr(), size)?.expect("we already excluded size 0");
alloc.clear_provenance()?;
// Also, mark this as containing data, not padding.
self.add_data_range(mplace.ptr(), size);
}
}
// Fast path for arrays and slices of ZSTs. We only need to check a single ZST element
// of an array and not all of them, because there's only a single value of a specific
// ZST type, so either validation fails for all elements or none.
ty::Array(tys, ..) | ty::Slice(tys) if self.ecx.layout_of(*tys)?.is_zst() => {
// Validate just the first element (if any).
if val.len(self.ecx)? > 0 {
self.visit_field(val, 0, &self.ecx.project_index(val, 0)?)?;
}
}
_ => {
// default handler
try_validation!(
self.walk_value(val),
self.path,
// It's not great to catch errors here, since we can't give a very good path,
// but it's better than ICEing.
Ub(InvalidVTableTrait { vtable_dyn_type, expected_dyn_type }) => {
InvalidMetaWrongTrait { vtable_dyn_type, expected_dyn_type }
},
);
}
}
// *After* all of this, check the ABI. We need to check the ABI to handle
// types like `NonNull` where the `Scalar` info is more restrictive than what
// the fields say (`rustc_layout_scalar_valid_range_start`).
// But in most cases, this will just propagate what the fields say,
// and then we want the error to point at the field -- so, first recurse,
// then check ABI.
//
// FIXME: We could avoid some redundant checks here. For newtypes wrapping
// scalars, we do the same check on every "level" (e.g., first we check
// MyNewtype and then the scalar in there).
match val.layout.backend_repr {
BackendRepr::Uninhabited => {
let ty = val.layout.ty;
throw_validation_failure!(self.path, UninhabitedVal { ty });
}
BackendRepr::Scalar(scalar_layout) => {
if !scalar_layout.is_uninit_valid() {
// There is something to check here.
let scalar = self.read_scalar(val, ExpectedKind::InitScalar)?;
self.visit_scalar(scalar, scalar_layout)?;
}
}
BackendRepr::ScalarPair(a_layout, b_layout) => {
// We can only proceed if *both* scalars need to be initialized.
// FIXME: find a way to also check ScalarPair when one side can be uninit but
// the other must be init.
if !a_layout.is_uninit_valid() && !b_layout.is_uninit_valid() {
let (a, b) =
self.read_immediate(val, ExpectedKind::InitScalar)?.to_scalar_pair();
self.visit_scalar(a, a_layout)?;
self.visit_scalar(b, b_layout)?;
}
}
BackendRepr::Vector { .. } => {
// No checks here, we assume layout computation gets this right.
// (This is harder to check since Miri does not represent these as `Immediate`. We
// also cannot use field projections since this might be a newtype around a vector.)
}
BackendRepr::Memory { .. } => {
// Nothing to do.
}
}
interp_ok(())
}
}
impl<'tcx, M: Machine<'tcx>> InterpCx<'tcx, M> {
fn validate_operand_internal(
&mut self,
val: &PlaceTy<'tcx, M::Provenance>,
path: Vec<PathElem>,
ref_tracking: Option<&mut RefTracking<MPlaceTy<'tcx, M::Provenance>, Vec<PathElem>>>,
ctfe_mode: Option<CtfeValidationMode>,
reset_provenance_and_padding: bool,
) -> InterpResult<'tcx> {
trace!("validate_operand_internal: {:?}, {:?}", *val, val.layout.ty);
// Run the visitor.
self.run_for_validation(|ecx| {
let reset_padding = reset_provenance_and_padding && {
// Check if `val` is actually stored in memory. If not, padding is not even
// represented and we need not reset it.
ecx.place_to_op(val)?.as_mplace_or_imm().is_left()
};
let mut v = ValidityVisitor {
path,
ref_tracking,
ctfe_mode,
ecx,
reset_provenance_and_padding,
data_bytes: reset_padding.then_some(RangeSet(Vec::new())),
};
v.visit_value(val)?;
v.reset_padding(val)?;
interp_ok(())
})
.map_err_info(|err| {
if !matches!(
err.kind(),
err_ub!(ValidationError { .. })
| InterpErrorKind::InvalidProgram(_)
| InterpErrorKind::Unsupported(UnsupportedOpInfo::ExternTypeField)
) {
bug!(
"Unexpected error during validation: {}",
format_interp_error(self.tcx.dcx(), err)
);
}
err
})
}
/// This function checks the data at `op` to be const-valid.
/// `op` is assumed to cover valid memory if it is an indirect operand.
/// It will error if the bits at the destination do not match the ones described by the layout.
///
/// `ref_tracking` is used to record references that we encounter so that they
/// can be checked recursively by an outside driving loop.
///
/// `constant` controls whether this must satisfy the rules for constants:
/// - no pointers to statics.
/// - no `UnsafeCell` or non-ZST `&mut`.
#[inline(always)]
pub(crate) fn const_validate_operand(
&mut self,
val: &PlaceTy<'tcx, M::Provenance>,
path: Vec<PathElem>,
ref_tracking: &mut RefTracking<MPlaceTy<'tcx, M::Provenance>, Vec<PathElem>>,
ctfe_mode: CtfeValidationMode,
) -> InterpResult<'tcx> {
self.validate_operand_internal(
val,
path,
Some(ref_tracking),
Some(ctfe_mode),
/*reset_provenance*/ false,
)
}
/// This function checks the data at `op` to be runtime-valid.
/// `op` is assumed to cover valid memory if it is an indirect operand.
/// It will error if the bits at the destination do not match the ones described by the layout.
#[inline(always)]
pub fn validate_operand(
&mut self,
val: &PlaceTy<'tcx, M::Provenance>,
recursive: bool,
reset_provenance_and_padding: bool,
) -> InterpResult<'tcx> {
// Note that we *could* actually be in CTFE here with `-Zextra-const-ub-checks`, but it's
// still correct to not use `ctfe_mode`: that mode is for validation of the final constant
// value, it rules out things like `UnsafeCell` in awkward places.
if !recursive {
return self.validate_operand_internal(
val,
vec![],
None,
None,
reset_provenance_and_padding,
);
}
// Do a recursive check.
let mut ref_tracking = RefTracking::empty();
self.validate_operand_internal(
val,
vec![],
Some(&mut ref_tracking),
None,
reset_provenance_and_padding,
)?;
while let Some((mplace, path)) = ref_tracking.todo.pop() {
// Things behind reference do *not* have the provenance reset.
self.validate_operand_internal(
&mplace.into(),
path,
Some(&mut ref_tracking),
None,
/*reset_provenance_and_padding*/ false,
)?;
}
interp_ok(())
}
}