rustc_mir_build/builder/scope.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728
/*!
Managing the scope stack. The scopes are tied to lexical scopes, so as
we descend the THIR, we push a scope on the stack, build its
contents, and then pop it off. Every scope is named by a
`region::Scope`.
### SEME Regions
When pushing a new [Scope], we record the current point in the graph (a
basic block); this marks the entry to the scope. We then generate more
stuff in the control-flow graph. Whenever the scope is exited, either
via a `break` or `return` or just by fallthrough, that marks an exit
from the scope. Each lexical scope thus corresponds to a single-entry,
multiple-exit (SEME) region in the control-flow graph.
For now, we record the `region::Scope` to each SEME region for later reference
(see caveat in next paragraph). This is because destruction scopes are tied to
them. This may change in the future so that MIR lowering determines its own
destruction scopes.
### Not so SEME Regions
In the course of building matches, it sometimes happens that certain code
(namely guards) gets executed multiple times. This means that the scope lexical
scope may in fact correspond to multiple, disjoint SEME regions. So in fact our
mapping is from one scope to a vector of SEME regions. Since the SEME regions
are disjoint, the mapping is still one-to-one for the set of SEME regions that
we're currently in.
Also in matches, the scopes assigned to arms are not always even SEME regions!
Each arm has a single region with one entry for each pattern. We manually
manipulate the scheduled drops in this scope to avoid dropping things multiple
times.
### Drops
The primary purpose for scopes is to insert drops: while building
the contents, we also accumulate places that need to be dropped upon
exit from each scope. This is done by calling `schedule_drop`. Once a
drop is scheduled, whenever we branch out we will insert drops of all
those places onto the outgoing edge. Note that we don't know the full
set of scheduled drops up front, and so whenever we exit from the
scope we only drop the values scheduled thus far. For example, consider
the scope S corresponding to this loop:
```
# let cond = true;
loop {
let x = ..;
if cond { break; }
let y = ..;
}
```
When processing the `let x`, we will add one drop to the scope for
`x`. The break will then insert a drop for `x`. When we process `let
y`, we will add another drop (in fact, to a subscope, but let's ignore
that for now); any later drops would also drop `y`.
### Early exit
There are numerous "normal" ways to early exit a scope: `break`,
`continue`, `return` (panics are handled separately). Whenever an
early exit occurs, the method `break_scope` is called. It is given the
current point in execution where the early exit occurs, as well as the
scope you want to branch to (note that all early exits from to some
other enclosing scope). `break_scope` will record the set of drops currently
scheduled in a [DropTree]. Later, before `in_breakable_scope` exits, the drops
will be added to the CFG.
Panics are handled in a similar fashion, except that the drops are added to the
MIR once the rest of the function has finished being lowered. If a terminator
can panic, call `diverge_from(block)` with the block containing the terminator
`block`.
### Breakable scopes
In addition to the normal scope stack, we track a loop scope stack
that contains only loops and breakable blocks. It tracks where a `break`,
`continue` or `return` should go to.
*/
use std::mem;
use rustc_data_structures::fx::FxHashMap;
use rustc_hir::HirId;
use rustc_index::{IndexSlice, IndexVec};
use rustc_middle::middle::region;
use rustc_middle::mir::*;
use rustc_middle::thir::{ExprId, LintLevel};
use rustc_middle::{bug, span_bug};
use rustc_session::lint::Level;
use rustc_span::source_map::Spanned;
use rustc_span::{DUMMY_SP, Span};
use tracing::{debug, instrument};
use crate::builder::{BlockAnd, BlockAndExtension, BlockFrame, Builder, CFG};
#[derive(Debug)]
pub(crate) struct Scopes<'tcx> {
scopes: Vec<Scope>,
/// The current set of breakable scopes. See module comment for more details.
breakable_scopes: Vec<BreakableScope<'tcx>>,
/// The scope of the innermost if-then currently being lowered.
if_then_scope: Option<IfThenScope>,
/// Drops that need to be done on unwind paths. See the comment on
/// [DropTree] for more details.
unwind_drops: DropTree,
/// Drops that need to be done on paths to the `CoroutineDrop` terminator.
coroutine_drops: DropTree,
}
#[derive(Debug)]
struct Scope {
/// The source scope this scope was created in.
source_scope: SourceScope,
/// the region span of this scope within source code.
region_scope: region::Scope,
/// set of places to drop when exiting this scope. This starts
/// out empty but grows as variables are declared during the
/// building process. This is a stack, so we always drop from the
/// end of the vector (top of the stack) first.
drops: Vec<DropData>,
moved_locals: Vec<Local>,
/// The drop index that will drop everything in and below this scope on an
/// unwind path.
cached_unwind_block: Option<DropIdx>,
/// The drop index that will drop everything in and below this scope on a
/// coroutine drop path.
cached_coroutine_drop_block: Option<DropIdx>,
}
#[derive(Clone, Copy, Debug)]
struct DropData {
/// The `Span` where drop obligation was incurred (typically where place was
/// declared)
source_info: SourceInfo,
/// local to drop
local: Local,
/// Whether this is a value Drop or a StorageDead.
kind: DropKind,
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub(crate) enum DropKind {
Value,
Storage,
ForLint,
}
#[derive(Debug)]
struct BreakableScope<'tcx> {
/// Region scope of the loop
region_scope: region::Scope,
/// The destination of the loop/block expression itself (i.e., where to put
/// the result of a `break` or `return` expression)
break_destination: Place<'tcx>,
/// Drops that happen on the `break`/`return` path.
break_drops: DropTree,
/// Drops that happen on the `continue` path.
continue_drops: Option<DropTree>,
}
#[derive(Debug)]
struct IfThenScope {
/// The if-then scope or arm scope
region_scope: region::Scope,
/// Drops that happen on the `else` path.
else_drops: DropTree,
}
/// The target of an expression that breaks out of a scope
#[derive(Clone, Copy, Debug)]
pub(crate) enum BreakableTarget {
Continue(region::Scope),
Break(region::Scope),
Return,
}
rustc_index::newtype_index! {
#[orderable]
struct DropIdx {}
}
const ROOT_NODE: DropIdx = DropIdx::ZERO;
/// A tree of drops that we have deferred lowering. It's used for:
///
/// * Drops on unwind paths
/// * Drops on coroutine drop paths (when a suspended coroutine is dropped)
/// * Drops on return and loop exit paths
/// * Drops on the else path in an `if let` chain
///
/// Once no more nodes could be added to the tree, we lower it to MIR in one go
/// in `build_mir`.
#[derive(Debug)]
struct DropTree {
/// Nodes in the drop tree, containing drop data and a link to the next node.
drops: IndexVec<DropIdx, DropNode>,
/// Map for finding the index of an existing node, given its contents.
existing_drops_map: FxHashMap<DropNodeKey, DropIdx>,
/// Edges into the `DropTree` that need to be added once it's lowered.
entry_points: Vec<(DropIdx, BasicBlock)>,
}
/// A single node in the drop tree.
#[derive(Debug)]
struct DropNode {
/// Info about the drop to be performed at this node in the drop tree.
data: DropData,
/// Index of the "next" drop to perform (in drop order, not declaration order).
next: DropIdx,
}
/// Subset of [`DropNode`] used for reverse lookup in a hash table.
#[derive(Debug, PartialEq, Eq, Hash)]
struct DropNodeKey {
next: DropIdx,
local: Local,
kind: DropKind,
}
impl Scope {
/// Whether there's anything to do for the cleanup path, that is,
/// when unwinding through this scope. This includes destructors,
/// but not StorageDead statements, which don't get emitted at all
/// for unwinding, for several reasons:
/// * clang doesn't emit llvm.lifetime.end for C++ unwinding
/// * LLVM's memory dependency analysis can't handle it atm
/// * polluting the cleanup MIR with StorageDead creates
/// landing pads even though there's no actual destructors
/// * freeing up stack space has no effect during unwinding
/// Note that for coroutines we do emit StorageDeads, for the
/// use of optimizations in the MIR coroutine transform.
fn needs_cleanup(&self) -> bool {
self.drops.iter().any(|drop| match drop.kind {
DropKind::Value | DropKind::ForLint => true,
DropKind::Storage => false,
})
}
fn invalidate_cache(&mut self) {
self.cached_unwind_block = None;
self.cached_coroutine_drop_block = None;
}
}
/// A trait that determined how [DropTree] creates its blocks and
/// links to any entry nodes.
trait DropTreeBuilder<'tcx> {
/// Create a new block for the tree. This should call either
/// `cfg.start_new_block()` or `cfg.start_new_cleanup_block()`.
fn make_block(cfg: &mut CFG<'tcx>) -> BasicBlock;
/// Links a block outside the drop tree, `from`, to the block `to` inside
/// the drop tree.
fn link_entry_point(cfg: &mut CFG<'tcx>, from: BasicBlock, to: BasicBlock);
}
impl DropTree {
fn new() -> Self {
// The root node of the tree doesn't represent a drop, but instead
// represents the block in the tree that should be jumped to once all
// of the required drops have been performed.
let fake_source_info = SourceInfo::outermost(DUMMY_SP);
let fake_data =
DropData { source_info: fake_source_info, local: Local::MAX, kind: DropKind::Storage };
let drops = IndexVec::from_raw(vec![DropNode { data: fake_data, next: DropIdx::MAX }]);
Self { drops, entry_points: Vec::new(), existing_drops_map: FxHashMap::default() }
}
/// Adds a node to the drop tree, consisting of drop data and the index of
/// the "next" drop (in drop order), which could be the sentinel [`ROOT_NODE`].
///
/// If there is already an equivalent node in the tree, nothing is added, and
/// that node's index is returned. Otherwise, the new node's index is returned.
fn add_drop(&mut self, data: DropData, next: DropIdx) -> DropIdx {
let drops = &mut self.drops;
*self
.existing_drops_map
.entry(DropNodeKey { next, local: data.local, kind: data.kind })
// Create a new node, and also add its index to the map.
.or_insert_with(|| drops.push(DropNode { data, next }))
}
/// Registers `from` as an entry point to this drop tree, at `to`.
///
/// During [`Self::build_mir`], `from` will be linked to the corresponding
/// block within the drop tree.
fn add_entry_point(&mut self, from: BasicBlock, to: DropIdx) {
debug_assert!(to < self.drops.next_index());
self.entry_points.push((to, from));
}
/// Builds the MIR for a given drop tree.
///
/// `blocks` should have the same length as `self.drops`, and may have its
/// first value set to some already existing block.
fn build_mir<'tcx, T: DropTreeBuilder<'tcx>>(
&mut self,
cfg: &mut CFG<'tcx>,
blocks: &mut IndexVec<DropIdx, Option<BasicBlock>>,
) {
debug!("DropTree::build_mir(drops = {:#?})", self);
assert_eq!(blocks.len(), self.drops.len());
self.assign_blocks::<T>(cfg, blocks);
self.link_blocks(cfg, blocks)
}
/// Assign blocks for all of the drops in the drop tree that need them.
fn assign_blocks<'tcx, T: DropTreeBuilder<'tcx>>(
&mut self,
cfg: &mut CFG<'tcx>,
blocks: &mut IndexVec<DropIdx, Option<BasicBlock>>,
) {
// StorageDead statements can share blocks with each other and also with
// a Drop terminator. We iterate through the drops to find which drops
// need their own block.
#[derive(Clone, Copy)]
enum Block {
// This drop is unreachable
None,
// This drop is only reachable through the `StorageDead` with the
// specified index.
Shares(DropIdx),
// This drop has more than one way of being reached, or it is
// branched to from outside the tree, or its predecessor is a
// `Value` drop.
Own,
}
let mut needs_block = IndexVec::from_elem(Block::None, &self.drops);
if blocks[ROOT_NODE].is_some() {
// In some cases (such as drops for `continue`) the root node
// already has a block. In this case, make sure that we don't
// override it.
needs_block[ROOT_NODE] = Block::Own;
}
// Sort so that we only need to check the last value.
let entry_points = &mut self.entry_points;
entry_points.sort();
for (drop_idx, drop_node) in self.drops.iter_enumerated().rev() {
if entry_points.last().is_some_and(|entry_point| entry_point.0 == drop_idx) {
let block = *blocks[drop_idx].get_or_insert_with(|| T::make_block(cfg));
needs_block[drop_idx] = Block::Own;
while entry_points.last().is_some_and(|entry_point| entry_point.0 == drop_idx) {
let entry_block = entry_points.pop().unwrap().1;
T::link_entry_point(cfg, entry_block, block);
}
}
match needs_block[drop_idx] {
Block::None => continue,
Block::Own => {
blocks[drop_idx].get_or_insert_with(|| T::make_block(cfg));
}
Block::Shares(pred) => {
blocks[drop_idx] = blocks[pred];
}
}
if let DropKind::Value = drop_node.data.kind {
needs_block[drop_node.next] = Block::Own;
} else if drop_idx != ROOT_NODE {
match &mut needs_block[drop_node.next] {
pred @ Block::None => *pred = Block::Shares(drop_idx),
pred @ Block::Shares(_) => *pred = Block::Own,
Block::Own => (),
}
}
}
debug!("assign_blocks: blocks = {:#?}", blocks);
assert!(entry_points.is_empty());
}
fn link_blocks<'tcx>(
&self,
cfg: &mut CFG<'tcx>,
blocks: &IndexSlice<DropIdx, Option<BasicBlock>>,
) {
for (drop_idx, drop_node) in self.drops.iter_enumerated().rev() {
let Some(block) = blocks[drop_idx] else { continue };
match drop_node.data.kind {
DropKind::Value => {
let terminator = TerminatorKind::Drop {
target: blocks[drop_node.next].unwrap(),
// The caller will handle this if needed.
unwind: UnwindAction::Terminate(UnwindTerminateReason::InCleanup),
place: drop_node.data.local.into(),
replace: false,
};
cfg.terminate(block, drop_node.data.source_info, terminator);
}
DropKind::ForLint => {
let stmt = Statement {
source_info: drop_node.data.source_info,
kind: StatementKind::BackwardIncompatibleDropHint {
place: Box::new(drop_node.data.local.into()),
reason: BackwardIncompatibleDropReason::Edition2024,
},
};
cfg.push(block, stmt);
let target = blocks[drop_node.next].unwrap();
if target != block {
// Diagnostics don't use this `Span` but debuginfo
// might. Since we don't want breakpoints to be placed
// here, especially when this is on an unwind path, we
// use `DUMMY_SP`.
let source_info =
SourceInfo { span: DUMMY_SP, ..drop_node.data.source_info };
let terminator = TerminatorKind::Goto { target };
cfg.terminate(block, source_info, terminator);
}
}
// Root nodes don't correspond to a drop.
DropKind::Storage if drop_idx == ROOT_NODE => {}
DropKind::Storage => {
let stmt = Statement {
source_info: drop_node.data.source_info,
kind: StatementKind::StorageDead(drop_node.data.local),
};
cfg.push(block, stmt);
let target = blocks[drop_node.next].unwrap();
if target != block {
// Diagnostics don't use this `Span` but debuginfo
// might. Since we don't want breakpoints to be placed
// here, especially when this is on an unwind path, we
// use `DUMMY_SP`.
let source_info =
SourceInfo { span: DUMMY_SP, ..drop_node.data.source_info };
let terminator = TerminatorKind::Goto { target };
cfg.terminate(block, source_info, terminator);
}
}
}
}
}
}
impl<'tcx> Scopes<'tcx> {
pub(crate) fn new() -> Self {
Self {
scopes: Vec::new(),
breakable_scopes: Vec::new(),
if_then_scope: None,
unwind_drops: DropTree::new(),
coroutine_drops: DropTree::new(),
}
}
fn push_scope(&mut self, region_scope: (region::Scope, SourceInfo), vis_scope: SourceScope) {
debug!("push_scope({:?})", region_scope);
self.scopes.push(Scope {
source_scope: vis_scope,
region_scope: region_scope.0,
drops: vec![],
moved_locals: vec![],
cached_unwind_block: None,
cached_coroutine_drop_block: None,
});
}
fn pop_scope(&mut self, region_scope: (region::Scope, SourceInfo)) -> Scope {
let scope = self.scopes.pop().unwrap();
assert_eq!(scope.region_scope, region_scope.0);
scope
}
fn scope_index(&self, region_scope: region::Scope, span: Span) -> usize {
self.scopes
.iter()
.rposition(|scope| scope.region_scope == region_scope)
.unwrap_or_else(|| span_bug!(span, "region_scope {:?} does not enclose", region_scope))
}
/// Returns the topmost active scope, which is known to be alive until
/// the next scope expression.
fn topmost(&self) -> region::Scope {
self.scopes.last().expect("topmost_scope: no scopes present").region_scope
}
}
impl<'a, 'tcx> Builder<'a, 'tcx> {
// Adding and removing scopes
// ==========================
/// Start a breakable scope, which tracks where `continue`, `break` and
/// `return` should branch to.
pub(crate) fn in_breakable_scope<F>(
&mut self,
loop_block: Option<BasicBlock>,
break_destination: Place<'tcx>,
span: Span,
f: F,
) -> BlockAnd<()>
where
F: FnOnce(&mut Builder<'a, 'tcx>) -> Option<BlockAnd<()>>,
{
let region_scope = self.scopes.topmost();
let scope = BreakableScope {
region_scope,
break_destination,
break_drops: DropTree::new(),
continue_drops: loop_block.map(|_| DropTree::new()),
};
self.scopes.breakable_scopes.push(scope);
let normal_exit_block = f(self);
let breakable_scope = self.scopes.breakable_scopes.pop().unwrap();
assert!(breakable_scope.region_scope == region_scope);
let break_block =
self.build_exit_tree(breakable_scope.break_drops, region_scope, span, None);
if let Some(drops) = breakable_scope.continue_drops {
self.build_exit_tree(drops, region_scope, span, loop_block);
}
match (normal_exit_block, break_block) {
(Some(block), None) | (None, Some(block)) => block,
(None, None) => self.cfg.start_new_block().unit(),
(Some(normal_block), Some(exit_block)) => {
let target = self.cfg.start_new_block();
let source_info = self.source_info(span);
self.cfg.terminate(normal_block.into_block(), source_info, TerminatorKind::Goto {
target,
});
self.cfg.terminate(exit_block.into_block(), source_info, TerminatorKind::Goto {
target,
});
target.unit()
}
}
}
/// Start an if-then scope which tracks drop for `if` expressions and `if`
/// guards.
///
/// For an if-let chain:
///
/// if let Some(x) = a && let Some(y) = b && let Some(z) = c { ... }
///
/// There are three possible ways the condition can be false and we may have
/// to drop `x`, `x` and `y`, or neither depending on which binding fails.
/// To handle this correctly we use a `DropTree` in a similar way to a
/// `loop` expression and 'break' out on all of the 'else' paths.
///
/// Notes:
/// - We don't need to keep a stack of scopes in the `Builder` because the
/// 'else' paths will only leave the innermost scope.
/// - This is also used for match guards.
pub(crate) fn in_if_then_scope<F>(
&mut self,
region_scope: region::Scope,
span: Span,
f: F,
) -> (BasicBlock, BasicBlock)
where
F: FnOnce(&mut Builder<'a, 'tcx>) -> BlockAnd<()>,
{
let scope = IfThenScope { region_scope, else_drops: DropTree::new() };
let previous_scope = mem::replace(&mut self.scopes.if_then_scope, Some(scope));
let then_block = f(self).into_block();
let if_then_scope = mem::replace(&mut self.scopes.if_then_scope, previous_scope).unwrap();
assert!(if_then_scope.region_scope == region_scope);
let else_block =
self.build_exit_tree(if_then_scope.else_drops, region_scope, span, None).map_or_else(
|| self.cfg.start_new_block(),
|else_block_and| else_block_and.into_block(),
);
(then_block, else_block)
}
/// Convenience wrapper that pushes a scope and then executes `f`
/// to build its contents, popping the scope afterwards.
#[instrument(skip(self, f), level = "debug")]
pub(crate) fn in_scope<F, R>(
&mut self,
region_scope: (region::Scope, SourceInfo),
lint_level: LintLevel,
f: F,
) -> BlockAnd<R>
where
F: FnOnce(&mut Builder<'a, 'tcx>) -> BlockAnd<R>,
{
let source_scope = self.source_scope;
if let LintLevel::Explicit(current_hir_id) = lint_level {
let parent_id =
self.source_scopes[source_scope].local_data.as_ref().assert_crate_local().lint_root;
self.maybe_new_source_scope(region_scope.1.span, current_hir_id, parent_id);
}
self.push_scope(region_scope);
let mut block;
let rv = unpack!(block = f(self));
block = self.pop_scope(region_scope, block).into_block();
self.source_scope = source_scope;
debug!(?block);
block.and(rv)
}
/// Push a scope onto the stack. You can then build code in this
/// scope and call `pop_scope` afterwards. Note that these two
/// calls must be paired; using `in_scope` as a convenience
/// wrapper maybe preferable.
pub(crate) fn push_scope(&mut self, region_scope: (region::Scope, SourceInfo)) {
self.scopes.push_scope(region_scope, self.source_scope);
}
/// Pops a scope, which should have region scope `region_scope`,
/// adding any drops onto the end of `block` that are needed.
/// This must match 1-to-1 with `push_scope`.
pub(crate) fn pop_scope(
&mut self,
region_scope: (region::Scope, SourceInfo),
mut block: BasicBlock,
) -> BlockAnd<()> {
debug!("pop_scope({:?}, {:?})", region_scope, block);
block = self.leave_top_scope(block);
self.scopes.pop_scope(region_scope);
block.unit()
}
/// Sets up the drops for breaking from `block` to `target`.
pub(crate) fn break_scope(
&mut self,
mut block: BasicBlock,
value: Option<ExprId>,
target: BreakableTarget,
source_info: SourceInfo,
) -> BlockAnd<()> {
let span = source_info.span;
let get_scope_index = |scope: region::Scope| {
// find the loop-scope by its `region::Scope`.
self.scopes
.breakable_scopes
.iter()
.rposition(|breakable_scope| breakable_scope.region_scope == scope)
.unwrap_or_else(|| span_bug!(span, "no enclosing breakable scope found"))
};
let (break_index, destination) = match target {
BreakableTarget::Return => {
let scope = &self.scopes.breakable_scopes[0];
if scope.break_destination != Place::return_place() {
span_bug!(span, "`return` in item with no return scope");
}
(0, Some(scope.break_destination))
}
BreakableTarget::Break(scope) => {
let break_index = get_scope_index(scope);
let scope = &self.scopes.breakable_scopes[break_index];
(break_index, Some(scope.break_destination))
}
BreakableTarget::Continue(scope) => {
let break_index = get_scope_index(scope);
(break_index, None)
}
};
match (destination, value) {
(Some(destination), Some(value)) => {
debug!("stmt_expr Break val block_context.push(SubExpr)");
self.block_context.push(BlockFrame::SubExpr);
block = self.expr_into_dest(destination, block, value).into_block();
self.block_context.pop();
}
(Some(destination), None) => {
self.cfg.push_assign_unit(block, source_info, destination, self.tcx)
}
(None, Some(_)) => {
panic!("`return`, `become` and `break` with value and must have a destination")
}
(None, None) => {
if self.tcx.sess.instrument_coverage() {
// Normally we wouldn't build any MIR in this case, but that makes it
// harder for coverage instrumentation to extract a relevant span for
// `continue` expressions. So here we inject a dummy statement with the
// desired span.
self.cfg.push_coverage_span_marker(block, source_info);
}
}
}
let region_scope = self.scopes.breakable_scopes[break_index].region_scope;
let scope_index = self.scopes.scope_index(region_scope, span);
let drops = if destination.is_some() {
&mut self.scopes.breakable_scopes[break_index].break_drops
} else {
let Some(drops) = self.scopes.breakable_scopes[break_index].continue_drops.as_mut()
else {
self.tcx.dcx().span_delayed_bug(
source_info.span,
"unlabelled `continue` within labelled block",
);
self.cfg.terminate(block, source_info, TerminatorKind::Unreachable);
return self.cfg.start_new_block().unit();
};
drops
};
let drop_idx = self.scopes.scopes[scope_index + 1..]
.iter()
.flat_map(|scope| &scope.drops)
.fold(ROOT_NODE, |drop_idx, &drop| drops.add_drop(drop, drop_idx));
drops.add_entry_point(block, drop_idx);
// `build_drop_trees` doesn't have access to our source_info, so we
// create a dummy terminator now. `TerminatorKind::UnwindResume` is used
// because MIR type checking will panic if it hasn't been overwritten.
// (See `<ExitScopes as DropTreeBuilder>::link_entry_point`.)
self.cfg.terminate(block, source_info, TerminatorKind::UnwindResume);
self.cfg.start_new_block().unit()
}
/// Sets up the drops for breaking from `block` due to an `if` condition
/// that turned out to be false.
///
/// Must be called in the context of [`Builder::in_if_then_scope`], so that
/// there is an if-then scope to tell us what the target scope is.
pub(crate) fn break_for_else(&mut self, block: BasicBlock, source_info: SourceInfo) {
let if_then_scope = self
.scopes
.if_then_scope
.as_ref()
.unwrap_or_else(|| span_bug!(source_info.span, "no if-then scope found"));
let target = if_then_scope.region_scope;
let scope_index = self.scopes.scope_index(target, source_info.span);
// Upgrade `if_then_scope` to `&mut`.
let if_then_scope = self.scopes.if_then_scope.as_mut().expect("upgrading & to &mut");
let mut drop_idx = ROOT_NODE;
let drops = &mut if_then_scope.else_drops;
for scope in &self.scopes.scopes[scope_index + 1..] {
for drop in &scope.drops {
drop_idx = drops.add_drop(*drop, drop_idx);
}
}
drops.add_entry_point(block, drop_idx);
// `build_drop_trees` doesn't have access to our source_info, so we
// create a dummy terminator now. `TerminatorKind::UnwindResume` is used
// because MIR type checking will panic if it hasn't been overwritten.
// (See `<ExitScopes as DropTreeBuilder>::link_entry_point`.)
self.cfg.terminate(block, source_info, TerminatorKind::UnwindResume);
}
/// Sets up the drops for explicit tail calls.
///
/// Unlike other kinds of early exits, tail calls do not go through the drop tree.
/// Instead, all scheduled drops are immediately added to the CFG.
pub(crate) fn break_for_tail_call(
&mut self,
mut block: BasicBlock,
args: &[Spanned<Operand<'tcx>>],
source_info: SourceInfo,
) -> BlockAnd<()> {
let arg_drops: Vec<_> = args
.iter()
.rev()
.filter_map(|arg| match &arg.node {
Operand::Copy(_) => bug!("copy op in tail call args"),
Operand::Move(place) => {
let local =
place.as_local().unwrap_or_else(|| bug!("projection in tail call args"));
Some(DropData { source_info, local, kind: DropKind::Value })
}
Operand::Constant(_) => None,
})
.collect();
let mut unwind_to = self.diverge_cleanup_target(
self.scopes.scopes.iter().rev().nth(1).unwrap().region_scope,
DUMMY_SP,
);
let unwind_drops = &mut self.scopes.unwind_drops;
// the innermost scope contains only the destructors for the tail call arguments
// we only want to drop these in case of a panic, so we skip it
for scope in self.scopes.scopes[1..].iter().rev().skip(1) {
// FIXME(explicit_tail_calls) code duplication with `build_scope_drops`
for drop_data in scope.drops.iter().rev() {
let source_info = drop_data.source_info;
let local = drop_data.local;
match drop_data.kind {
DropKind::Value => {
// `unwind_to` should drop the value that we're about to
// schedule. If dropping this value panics, then we continue
// with the *next* value on the unwind path.
debug_assert_eq!(unwind_drops.drops[unwind_to].data.local, drop_data.local);
debug_assert_eq!(unwind_drops.drops[unwind_to].data.kind, drop_data.kind);
unwind_to = unwind_drops.drops[unwind_to].next;
let mut unwind_entry_point = unwind_to;
// the tail call arguments must be dropped if any of these drops panic
for drop in arg_drops.iter().copied() {
unwind_entry_point = unwind_drops.add_drop(drop, unwind_entry_point);
}
unwind_drops.add_entry_point(block, unwind_entry_point);
let next = self.cfg.start_new_block();
self.cfg.terminate(block, source_info, TerminatorKind::Drop {
place: local.into(),
target: next,
unwind: UnwindAction::Continue,
replace: false,
});
block = next;
}
DropKind::ForLint => {
self.cfg.push(block, Statement {
source_info,
kind: StatementKind::BackwardIncompatibleDropHint {
place: Box::new(local.into()),
reason: BackwardIncompatibleDropReason::Edition2024,
},
});
}
DropKind::Storage => {
// Only temps and vars need their storage dead.
assert!(local.index() > self.arg_count);
self.cfg.push(block, Statement {
source_info,
kind: StatementKind::StorageDead(local),
});
}
}
}
}
block.unit()
}
fn leave_top_scope(&mut self, block: BasicBlock) -> BasicBlock {
// If we are emitting a `drop` statement, we need to have the cached
// diverge cleanup pads ready in case that drop panics.
let needs_cleanup = self.scopes.scopes.last().is_some_and(|scope| scope.needs_cleanup());
let is_coroutine = self.coroutine.is_some();
let unwind_to = if needs_cleanup { self.diverge_cleanup() } else { DropIdx::MAX };
let scope = self.scopes.scopes.last().expect("leave_top_scope called with no scopes");
build_scope_drops(
&mut self.cfg,
&mut self.scopes.unwind_drops,
scope,
block,
unwind_to,
is_coroutine && needs_cleanup,
self.arg_count,
)
.into_block()
}
/// Possibly creates a new source scope if `current_root` and `parent_root`
/// are different, or if -Zmaximal-hir-to-mir-coverage is enabled.
pub(crate) fn maybe_new_source_scope(
&mut self,
span: Span,
current_id: HirId,
parent_id: HirId,
) {
let (current_root, parent_root) =
if self.tcx.sess.opts.unstable_opts.maximal_hir_to_mir_coverage {
// Some consumers of rustc need to map MIR locations back to HIR nodes. Currently
// the only part of rustc that tracks MIR -> HIR is the
// `SourceScopeLocalData::lint_root` field that tracks lint levels for MIR
// locations. Normally the number of source scopes is limited to the set of nodes
// with lint annotations. The -Zmaximal-hir-to-mir-coverage flag changes this
// behavior to maximize the number of source scopes, increasing the granularity of
// the MIR->HIR mapping.
(current_id, parent_id)
} else {
// Use `maybe_lint_level_root_bounded` to avoid adding Hir dependencies on our
// parents. We estimate the true lint roots here to avoid creating a lot of source
// scopes.
(
self.maybe_lint_level_root_bounded(current_id),
if parent_id == self.hir_id {
parent_id // this is very common
} else {
self.maybe_lint_level_root_bounded(parent_id)
},
)
};
if current_root != parent_root {
let lint_level = LintLevel::Explicit(current_root);
self.source_scope = self.new_source_scope(span, lint_level);
}
}
/// Walks upwards from `orig_id` to find a node which might change lint levels with attributes.
/// It stops at `self.hir_id` and just returns it if reached.
fn maybe_lint_level_root_bounded(&mut self, orig_id: HirId) -> HirId {
// This assertion lets us just store `ItemLocalId` in the cache, rather
// than the full `HirId`.
assert_eq!(orig_id.owner, self.hir_id.owner);
let mut id = orig_id;
let hir = self.tcx.hir();
loop {
if id == self.hir_id {
// This is a moderately common case, mostly hit for previously unseen nodes.
break;
}
if hir.attrs(id).iter().any(|attr| Level::from_attr(attr).is_some()) {
// This is a rare case. It's for a node path that doesn't reach the root due to an
// intervening lint level attribute. This result doesn't get cached.
return id;
}
let next = self.tcx.parent_hir_id(id);
if next == id {
bug!("lint traversal reached the root of the crate");
}
id = next;
// This lookup is just an optimization; it can be removed without affecting
// functionality. It might seem strange to see this at the end of this loop, but the
// `orig_id` passed in to this function is almost always previously unseen, for which a
// lookup will be a miss. So we only do lookups for nodes up the parent chain, where
// cache lookups have a very high hit rate.
if self.lint_level_roots_cache.contains(id.local_id) {
break;
}
}
// `orig_id` traced to `self_id`; record this fact. If `orig_id` is a leaf node it will
// rarely (never?) subsequently be searched for, but it's hard to know if that is the case.
// The performance wins from the cache all come from caching non-leaf nodes.
self.lint_level_roots_cache.insert(orig_id.local_id);
self.hir_id
}
/// Creates a new source scope, nested in the current one.
pub(crate) fn new_source_scope(&mut self, span: Span, lint_level: LintLevel) -> SourceScope {
let parent = self.source_scope;
debug!(
"new_source_scope({:?}, {:?}) - parent({:?})={:?}",
span,
lint_level,
parent,
self.source_scopes.get(parent)
);
let scope_local_data = SourceScopeLocalData {
lint_root: if let LintLevel::Explicit(lint_root) = lint_level {
lint_root
} else {
self.source_scopes[parent].local_data.as_ref().assert_crate_local().lint_root
},
};
self.source_scopes.push(SourceScopeData {
span,
parent_scope: Some(parent),
inlined: None,
inlined_parent_scope: None,
local_data: ClearCrossCrate::Set(scope_local_data),
})
}
/// Given a span and the current source scope, make a SourceInfo.
pub(crate) fn source_info(&self, span: Span) -> SourceInfo {
SourceInfo { span, scope: self.source_scope }
}
// Finding scopes
// ==============
/// Returns the scope that we should use as the lifetime of an
/// operand. Basically, an operand must live until it is consumed.
/// This is similar to, but not quite the same as, the temporary
/// scope (which can be larger or smaller).
///
/// Consider:
/// ```ignore (illustrative)
/// let x = foo(bar(X, Y));
/// ```
/// We wish to pop the storage for X and Y after `bar()` is
/// called, not after the whole `let` is completed.
///
/// As another example, if the second argument diverges:
/// ```ignore (illustrative)
/// foo(Box::new(2), panic!())
/// ```
/// We would allocate the box but then free it on the unwinding
/// path; we would also emit a free on the 'success' path from
/// panic, but that will turn out to be removed as dead-code.
pub(crate) fn local_scope(&self) -> region::Scope {
self.scopes.topmost()
}
// Scheduling drops
// ================
pub(crate) fn schedule_drop_storage_and_value(
&mut self,
span: Span,
region_scope: region::Scope,
local: Local,
) {
self.schedule_drop(span, region_scope, local, DropKind::Storage);
self.schedule_drop(span, region_scope, local, DropKind::Value);
}
/// Indicates that `place` should be dropped on exit from `region_scope`.
///
/// When called with `DropKind::Storage`, `place` shouldn't be the return
/// place, or a function parameter.
pub(crate) fn schedule_drop(
&mut self,
span: Span,
region_scope: region::Scope,
local: Local,
drop_kind: DropKind,
) {
let needs_drop = match drop_kind {
DropKind::Value | DropKind::ForLint => {
if !self.local_decls[local].ty.needs_drop(self.tcx, self.typing_env()) {
return;
}
true
}
DropKind::Storage => {
if local.index() <= self.arg_count {
span_bug!(
span,
"`schedule_drop` called with body argument {:?} \
but its storage does not require a drop",
local,
)
}
false
}
};
// When building drops, we try to cache chains of drops to reduce the
// number of `DropTree::add_drop` calls. This, however, means that
// whenever we add a drop into a scope which already had some entries
// in the drop tree built (and thus, cached) for it, we must invalidate
// all caches which might branch into the scope which had a drop just
// added to it. This is necessary, because otherwise some other code
// might use the cache to branch into already built chain of drops,
// essentially ignoring the newly added drop.
//
// For example consider there’s two scopes with a drop in each. These
// are built and thus the caches are filled:
//
// +--------------------------------------------------------+
// | +---------------------------------+ |
// | | +--------+ +-------------+ | +---------------+ |
// | | | return | <-+ | drop(outer) | <-+ | drop(middle) | |
// | | +--------+ +-------------+ | +---------------+ |
// | +------------|outer_scope cache|--+ |
// +------------------------------|middle_scope cache|------+
//
// Now, a new, innermost scope is added along with a new drop into
// both innermost and outermost scopes:
//
// +------------------------------------------------------------+
// | +----------------------------------+ |
// | | +--------+ +-------------+ | +---------------+ | +-------------+
// | | | return | <+ | drop(new) | <-+ | drop(middle) | <--+| drop(inner) |
// | | +--------+ | | drop(outer) | | +---------------+ | +-------------+
// | | +-+ +-------------+ | |
// | +---|invalid outer_scope cache|----+ |
// +----=----------------|invalid middle_scope cache|-----------+
//
// If, when adding `drop(new)` we do not invalidate the cached blocks for both
// outer_scope and middle_scope, then, when building drops for the inner (rightmost)
// scope, the old, cached blocks, without `drop(new)` will get used, producing the
// wrong results.
//
// Note that this code iterates scopes from the innermost to the outermost,
// invalidating caches of each scope visited. This way bare minimum of the
// caches gets invalidated. i.e., if a new drop is added into the middle scope, the
// cache of outer scope stays intact.
//
// Since we only cache drops for the unwind path and the coroutine drop
// path, we only need to invalidate the cache for drops that happen on
// the unwind or coroutine drop paths. This means that for
// non-coroutines we don't need to invalidate caches for `DropKind::Storage`.
let invalidate_caches = needs_drop || self.coroutine.is_some();
for scope in self.scopes.scopes.iter_mut().rev() {
if invalidate_caches {
scope.invalidate_cache();
}
if scope.region_scope == region_scope {
let region_scope_span = region_scope.span(self.tcx, self.region_scope_tree);
// Attribute scope exit drops to scope's closing brace.
let scope_end = self.tcx.sess.source_map().end_point(region_scope_span);
scope.drops.push(DropData {
source_info: SourceInfo { span: scope_end, scope: scope.source_scope },
local,
kind: drop_kind,
});
return;
}
}
span_bug!(span, "region scope {:?} not in scope to drop {:?}", region_scope, local);
}
/// Schedule emission of a backwards incompatible drop lint hint.
/// Applicable only to temporary values for now.
pub(crate) fn schedule_backwards_incompatible_drop(
&mut self,
span: Span,
region_scope: region::Scope,
local: Local,
) {
if !self.local_decls[local].ty.has_significant_drop(self.tcx, self.typing_env()) {
return;
}
for scope in self.scopes.scopes.iter_mut().rev() {
// Since we are inserting linting MIR statement, we have to invalidate the caches
scope.invalidate_cache();
if scope.region_scope == region_scope {
let region_scope_span = region_scope.span(self.tcx, self.region_scope_tree);
let scope_end = self.tcx.sess.source_map().end_point(region_scope_span);
scope.drops.push(DropData {
source_info: SourceInfo { span: scope_end, scope: scope.source_scope },
local,
kind: DropKind::ForLint,
});
return;
}
}
span_bug!(
span,
"region scope {:?} not in scope to drop {:?} for linting",
region_scope,
local
);
}
/// Indicates that the "local operand" stored in `local` is
/// *moved* at some point during execution (see `local_scope` for
/// more information about what a "local operand" is -- in short,
/// it's an intermediate operand created as part of preparing some
/// MIR instruction). We use this information to suppress
/// redundant drops on the non-unwind paths. This results in less
/// MIR, but also avoids spurious borrow check errors
/// (c.f. #64391).
///
/// Example: when compiling the call to `foo` here:
///
/// ```ignore (illustrative)
/// foo(bar(), ...)
/// ```
///
/// we would evaluate `bar()` to an operand `_X`. We would also
/// schedule `_X` to be dropped when the expression scope for
/// `foo(bar())` is exited. This is relevant, for example, if the
/// later arguments should unwind (it would ensure that `_X` gets
/// dropped). However, if no unwind occurs, then `_X` will be
/// unconditionally consumed by the `call`:
///
/// ```ignore (illustrative)
/// bb {
/// ...
/// _R = CALL(foo, _X, ...)
/// }
/// ```
///
/// However, `_X` is still registered to be dropped, and so if we
/// do nothing else, we would generate a `DROP(_X)` that occurs
/// after the call. This will later be optimized out by the
/// drop-elaboration code, but in the meantime it can lead to
/// spurious borrow-check errors -- the problem, ironically, is
/// not the `DROP(_X)` itself, but the (spurious) unwind pathways
/// that it creates. See #64391 for an example.
pub(crate) fn record_operands_moved(&mut self, operands: &[Spanned<Operand<'tcx>>]) {
let local_scope = self.local_scope();
let scope = self.scopes.scopes.last_mut().unwrap();
assert_eq!(scope.region_scope, local_scope, "local scope is not the topmost scope!",);
// look for moves of a local variable, like `MOVE(_X)`
let locals_moved = operands.iter().flat_map(|operand| match operand.node {
Operand::Copy(_) | Operand::Constant(_) => None,
Operand::Move(place) => place.as_local(),
});
for local in locals_moved {
// check if we have a Drop for this operand and -- if so
// -- add it to the list of moved operands. Note that this
// local might not have been an operand created for this
// call, it could come from other places too.
if scope.drops.iter().any(|drop| drop.local == local && drop.kind == DropKind::Value) {
scope.moved_locals.push(local);
}
}
}
// Other
// =====
/// Returns the [DropIdx] for the innermost drop if the function unwound at
/// this point. The `DropIdx` will be created if it doesn't already exist.
fn diverge_cleanup(&mut self) -> DropIdx {
// It is okay to use dummy span because the getting scope index on the topmost scope
// must always succeed.
self.diverge_cleanup_target(self.scopes.topmost(), DUMMY_SP)
}
/// This is similar to [diverge_cleanup](Self::diverge_cleanup) except its target is set to
/// some ancestor scope instead of the current scope.
/// It is possible to unwind to some ancestor scope if some drop panics as
/// the program breaks out of a if-then scope.
fn diverge_cleanup_target(&mut self, target_scope: region::Scope, span: Span) -> DropIdx {
let target = self.scopes.scope_index(target_scope, span);
let (uncached_scope, mut cached_drop) = self.scopes.scopes[..=target]
.iter()
.enumerate()
.rev()
.find_map(|(scope_idx, scope)| {
scope.cached_unwind_block.map(|cached_block| (scope_idx + 1, cached_block))
})
.unwrap_or((0, ROOT_NODE));
if uncached_scope > target {
return cached_drop;
}
let is_coroutine = self.coroutine.is_some();
for scope in &mut self.scopes.scopes[uncached_scope..=target] {
for drop in &scope.drops {
if is_coroutine || drop.kind == DropKind::Value {
cached_drop = self.scopes.unwind_drops.add_drop(*drop, cached_drop);
}
}
scope.cached_unwind_block = Some(cached_drop);
}
cached_drop
}
/// Prepares to create a path that performs all required cleanup for a
/// terminator that can unwind at the given basic block.
///
/// This path terminates in Resume. The path isn't created until after all
/// of the non-unwind paths in this item have been lowered.
pub(crate) fn diverge_from(&mut self, start: BasicBlock) {
debug_assert!(
matches!(
self.cfg.block_data(start).terminator().kind,
TerminatorKind::Assert { .. }
| TerminatorKind::Call { .. }
| TerminatorKind::Drop { .. }
| TerminatorKind::FalseUnwind { .. }
| TerminatorKind::InlineAsm { .. }
),
"diverge_from called on block with terminator that cannot unwind."
);
let next_drop = self.diverge_cleanup();
self.scopes.unwind_drops.add_entry_point(start, next_drop);
}
/// Sets up a path that performs all required cleanup for dropping a
/// coroutine, starting from the given block that ends in
/// [TerminatorKind::Yield].
///
/// This path terminates in CoroutineDrop.
pub(crate) fn coroutine_drop_cleanup(&mut self, yield_block: BasicBlock) {
debug_assert!(
matches!(
self.cfg.block_data(yield_block).terminator().kind,
TerminatorKind::Yield { .. }
),
"coroutine_drop_cleanup called on block with non-yield terminator."
);
let (uncached_scope, mut cached_drop) = self
.scopes
.scopes
.iter()
.enumerate()
.rev()
.find_map(|(scope_idx, scope)| {
scope.cached_coroutine_drop_block.map(|cached_block| (scope_idx + 1, cached_block))
})
.unwrap_or((0, ROOT_NODE));
for scope in &mut self.scopes.scopes[uncached_scope..] {
for drop in &scope.drops {
cached_drop = self.scopes.coroutine_drops.add_drop(*drop, cached_drop);
}
scope.cached_coroutine_drop_block = Some(cached_drop);
}
self.scopes.coroutine_drops.add_entry_point(yield_block, cached_drop);
}
/// Utility function for *non*-scope code to build their own drops
/// Force a drop at this point in the MIR by creating a new block.
pub(crate) fn build_drop_and_replace(
&mut self,
block: BasicBlock,
span: Span,
place: Place<'tcx>,
value: Rvalue<'tcx>,
) -> BlockAnd<()> {
let source_info = self.source_info(span);
// create the new block for the assignment
let assign = self.cfg.start_new_block();
self.cfg.push_assign(assign, source_info, place, value.clone());
// create the new block for the assignment in the case of unwinding
let assign_unwind = self.cfg.start_new_cleanup_block();
self.cfg.push_assign(assign_unwind, source_info, place, value.clone());
self.cfg.terminate(block, source_info, TerminatorKind::Drop {
place,
target: assign,
unwind: UnwindAction::Cleanup(assign_unwind),
replace: true,
});
self.diverge_from(block);
assign.unit()
}
/// Creates an `Assert` terminator and return the success block.
/// If the boolean condition operand is not the expected value,
/// a runtime panic will be caused with the given message.
pub(crate) fn assert(
&mut self,
block: BasicBlock,
cond: Operand<'tcx>,
expected: bool,
msg: AssertMessage<'tcx>,
span: Span,
) -> BasicBlock {
let source_info = self.source_info(span);
let success_block = self.cfg.start_new_block();
self.cfg.terminate(block, source_info, TerminatorKind::Assert {
cond,
expected,
msg: Box::new(msg),
target: success_block,
unwind: UnwindAction::Continue,
});
self.diverge_from(block);
success_block
}
/// Unschedules any drops in the top scope.
///
/// This is only needed for `match` arm scopes, because they have one
/// entrance per pattern, but only one exit.
pub(crate) fn clear_top_scope(&mut self, region_scope: region::Scope) {
let top_scope = self.scopes.scopes.last_mut().unwrap();
assert_eq!(top_scope.region_scope, region_scope);
top_scope.drops.clear();
top_scope.invalidate_cache();
}
}
/// Builds drops for `pop_scope` and `leave_top_scope`.
///
/// # Parameters
///
/// * `unwind_drops`, the drop tree data structure storing what needs to be cleaned up if unwind occurs
/// * `scope`, describes the drops that will occur on exiting the scope in regular execution
/// * `block`, the block to branch to once drops are complete (assuming no unwind occurs)
/// * `unwind_to`, describes the drops that would occur at this point in the code if a
/// panic occurred (a subset of the drops in `scope`, since we sometimes elide StorageDead and other
/// instructions on unwinding)
/// * `storage_dead_on_unwind`, if true, then we should emit `StorageDead` even when unwinding
/// * `arg_count`, number of MIR local variables corresponding to fn arguments (used to assert that we don't drop those)
fn build_scope_drops<'tcx>(
cfg: &mut CFG<'tcx>,
unwind_drops: &mut DropTree,
scope: &Scope,
block: BasicBlock,
unwind_to: DropIdx,
storage_dead_on_unwind: bool,
arg_count: usize,
) -> BlockAnd<()> {
debug!("build_scope_drops({:?} -> {:?})", block, scope);
// Build up the drops in evaluation order. The end result will
// look like:
//
// [SDs, drops[n]] --..> [SDs, drop[1]] -> [SDs, drop[0]] -> [[SDs]]
// | | |
// : | |
// V V
// [drop[n]] -...-> [drop[1]] ------> [drop[0]] ------> [last_unwind_to]
//
// The horizontal arrows represent the execution path when the drops return
// successfully. The downwards arrows represent the execution path when the
// drops panic (panicking while unwinding will abort, so there's no need for
// another set of arrows).
//
// For coroutines, we unwind from a drop on a local to its StorageDead
// statement. For other functions we don't worry about StorageDead. The
// drops for the unwind path should have already been generated by
// `diverge_cleanup_gen`.
// `unwind_to` indicates what needs to be dropped should unwinding occur.
// This is a subset of what needs to be dropped when exiting the scope.
// As we unwind the scope, we will also move `unwind_to` backwards to match,
// so that we can use it should a destructor panic.
let mut unwind_to = unwind_to;
// The block that we should jump to after drops complete. We start by building the final drop (`drops[n]`
// in the diagram above) and then build the drops (e.g., `drop[1]`, `drop[0]`) that come before it.
// block begins as the successor of `drops[n]` and then becomes `drops[n]` so that `drops[n-1]`
// will branch to `drops[n]`.
let mut block = block;
for drop_data in scope.drops.iter().rev() {
let source_info = drop_data.source_info;
let local = drop_data.local;
match drop_data.kind {
DropKind::Value => {
// `unwind_to` should drop the value that we're about to
// schedule. If dropping this value panics, then we continue
// with the *next* value on the unwind path.
//
// We adjust this BEFORE we create the drop (e.g., `drops[n]`)
// because `drops[n]` should unwind to `drops[n-1]`.
debug_assert_eq!(unwind_drops.drops[unwind_to].data.local, drop_data.local);
debug_assert_eq!(unwind_drops.drops[unwind_to].data.kind, drop_data.kind);
unwind_to = unwind_drops.drops[unwind_to].next;
// If the operand has been moved, and we are not on an unwind
// path, then don't generate the drop. (We only take this into
// account for non-unwind paths so as not to disturb the
// caching mechanism.)
if scope.moved_locals.iter().any(|&o| o == local) {
continue;
}
unwind_drops.add_entry_point(block, unwind_to);
let next = cfg.start_new_block();
cfg.terminate(block, source_info, TerminatorKind::Drop {
place: local.into(),
target: next,
unwind: UnwindAction::Continue,
replace: false,
});
block = next;
}
DropKind::ForLint => {
// As in the `DropKind::Storage` case below:
// normally lint-related drops are not emitted for unwind,
// so we can just leave `unwind_to` unmodified, but in some
// cases we emit things ALSO on the unwind path, so we need to adjust
// `unwind_to` in that case.
if storage_dead_on_unwind {
debug_assert_eq!(unwind_drops.drops[unwind_to].data.local, drop_data.local);
debug_assert_eq!(unwind_drops.drops[unwind_to].data.kind, drop_data.kind);
unwind_to = unwind_drops.drops[unwind_to].next;
}
// If the operand has been moved, and we are not on an unwind
// path, then don't generate the drop. (We only take this into
// account for non-unwind paths so as not to disturb the
// caching mechanism.)
if scope.moved_locals.iter().any(|&o| o == local) {
continue;
}
cfg.push(block, Statement {
source_info,
kind: StatementKind::BackwardIncompatibleDropHint {
place: Box::new(local.into()),
reason: BackwardIncompatibleDropReason::Edition2024,
},
});
}
DropKind::Storage => {
// Ordinarily, storage-dead nodes are not emitted on unwind, so we don't
// need to adjust `unwind_to` on this path. However, in some specific cases
// we *do* emit storage-dead nodes on the unwind path, and in that case now that
// the storage-dead has completed, we need to adjust the `unwind_to` pointer
// so that any future drops we emit will not register storage-dead.
if storage_dead_on_unwind {
debug_assert_eq!(unwind_drops.drops[unwind_to].data.local, drop_data.local);
debug_assert_eq!(unwind_drops.drops[unwind_to].data.kind, drop_data.kind);
unwind_to = unwind_drops.drops[unwind_to].next;
}
// Only temps and vars need their storage dead.
assert!(local.index() > arg_count);
cfg.push(block, Statement { source_info, kind: StatementKind::StorageDead(local) });
}
}
}
block.unit()
}
impl<'a, 'tcx: 'a> Builder<'a, 'tcx> {
/// Build a drop tree for a breakable scope.
///
/// If `continue_block` is `Some`, then the tree is for `continue` inside a
/// loop. Otherwise this is for `break` or `return`.
fn build_exit_tree(
&mut self,
mut drops: DropTree,
else_scope: region::Scope,
span: Span,
continue_block: Option<BasicBlock>,
) -> Option<BlockAnd<()>> {
let mut blocks = IndexVec::from_elem(None, &drops.drops);
blocks[ROOT_NODE] = continue_block;
drops.build_mir::<ExitScopes>(&mut self.cfg, &mut blocks);
let is_coroutine = self.coroutine.is_some();
// Link the exit drop tree to unwind drop tree.
if drops.drops.iter().any(|drop_node| drop_node.data.kind == DropKind::Value) {
let unwind_target = self.diverge_cleanup_target(else_scope, span);
let mut unwind_indices = IndexVec::from_elem_n(unwind_target, 1);
for (drop_idx, drop_node) in drops.drops.iter_enumerated().skip(1) {
match drop_node.data.kind {
DropKind::Storage | DropKind::ForLint => {
if is_coroutine {
let unwind_drop = self
.scopes
.unwind_drops
.add_drop(drop_node.data, unwind_indices[drop_node.next]);
unwind_indices.push(unwind_drop);
} else {
unwind_indices.push(unwind_indices[drop_node.next]);
}
}
DropKind::Value => {
let unwind_drop = self
.scopes
.unwind_drops
.add_drop(drop_node.data, unwind_indices[drop_node.next]);
self.scopes.unwind_drops.add_entry_point(
blocks[drop_idx].unwrap(),
unwind_indices[drop_node.next],
);
unwind_indices.push(unwind_drop);
}
}
}
}
blocks[ROOT_NODE].map(BasicBlock::unit)
}
/// Build the unwind and coroutine drop trees.
pub(crate) fn build_drop_trees(&mut self) {
if self.coroutine.is_some() {
self.build_coroutine_drop_trees();
} else {
Self::build_unwind_tree(
&mut self.cfg,
&mut self.scopes.unwind_drops,
self.fn_span,
&mut None,
);
}
}
fn build_coroutine_drop_trees(&mut self) {
// Build the drop tree for dropping the coroutine while it's suspended.
let drops = &mut self.scopes.coroutine_drops;
let cfg = &mut self.cfg;
let fn_span = self.fn_span;
let mut blocks = IndexVec::from_elem(None, &drops.drops);
drops.build_mir::<CoroutineDrop>(cfg, &mut blocks);
if let Some(root_block) = blocks[ROOT_NODE] {
cfg.terminate(
root_block,
SourceInfo::outermost(fn_span),
TerminatorKind::CoroutineDrop,
);
}
// Build the drop tree for unwinding in the normal control flow paths.
let resume_block = &mut None;
let unwind_drops = &mut self.scopes.unwind_drops;
Self::build_unwind_tree(cfg, unwind_drops, fn_span, resume_block);
// Build the drop tree for unwinding when dropping a suspended
// coroutine.
//
// This is a different tree to the standard unwind paths here to
// prevent drop elaboration from creating drop flags that would have
// to be captured by the coroutine. I'm not sure how important this
// optimization is, but it is here.
for (drop_idx, drop_node) in drops.drops.iter_enumerated() {
if let DropKind::Value = drop_node.data.kind {
debug_assert!(drop_node.next < drops.drops.next_index());
drops.entry_points.push((drop_node.next, blocks[drop_idx].unwrap()));
}
}
Self::build_unwind_tree(cfg, drops, fn_span, resume_block);
}
fn build_unwind_tree(
cfg: &mut CFG<'tcx>,
drops: &mut DropTree,
fn_span: Span,
resume_block: &mut Option<BasicBlock>,
) {
let mut blocks = IndexVec::from_elem(None, &drops.drops);
blocks[ROOT_NODE] = *resume_block;
drops.build_mir::<Unwind>(cfg, &mut blocks);
if let (None, Some(resume)) = (*resume_block, blocks[ROOT_NODE]) {
cfg.terminate(resume, SourceInfo::outermost(fn_span), TerminatorKind::UnwindResume);
*resume_block = blocks[ROOT_NODE];
}
}
}
// DropTreeBuilder implementations.
struct ExitScopes;
impl<'tcx> DropTreeBuilder<'tcx> for ExitScopes {
fn make_block(cfg: &mut CFG<'tcx>) -> BasicBlock {
cfg.start_new_block()
}
fn link_entry_point(cfg: &mut CFG<'tcx>, from: BasicBlock, to: BasicBlock) {
// There should be an existing terminator with real source info and a
// dummy TerminatorKind. Replace it with a proper goto.
// (The dummy is added by `break_scope` and `break_for_else`.)
let term = cfg.block_data_mut(from).terminator_mut();
if let TerminatorKind::UnwindResume = term.kind {
term.kind = TerminatorKind::Goto { target: to };
} else {
span_bug!(term.source_info.span, "unexpected dummy terminator kind: {:?}", term.kind);
}
}
}
struct CoroutineDrop;
impl<'tcx> DropTreeBuilder<'tcx> for CoroutineDrop {
fn make_block(cfg: &mut CFG<'tcx>) -> BasicBlock {
cfg.start_new_block()
}
fn link_entry_point(cfg: &mut CFG<'tcx>, from: BasicBlock, to: BasicBlock) {
let term = cfg.block_data_mut(from).terminator_mut();
if let TerminatorKind::Yield { ref mut drop, .. } = term.kind {
*drop = Some(to);
} else {
span_bug!(
term.source_info.span,
"cannot enter coroutine drop tree from {:?}",
term.kind
)
}
}
}
struct Unwind;
impl<'tcx> DropTreeBuilder<'tcx> for Unwind {
fn make_block(cfg: &mut CFG<'tcx>) -> BasicBlock {
cfg.start_new_cleanup_block()
}
fn link_entry_point(cfg: &mut CFG<'tcx>, from: BasicBlock, to: BasicBlock) {
let term = &mut cfg.block_data_mut(from).terminator_mut();
match &mut term.kind {
TerminatorKind::Drop { unwind, .. } => {
if let UnwindAction::Cleanup(unwind) = *unwind {
let source_info = term.source_info;
cfg.terminate(unwind, source_info, TerminatorKind::Goto { target: to });
} else {
*unwind = UnwindAction::Cleanup(to);
}
}
TerminatorKind::FalseUnwind { unwind, .. }
| TerminatorKind::Call { unwind, .. }
| TerminatorKind::Assert { unwind, .. }
| TerminatorKind::InlineAsm { unwind, .. } => {
*unwind = UnwindAction::Cleanup(to);
}
TerminatorKind::Goto { .. }
| TerminatorKind::SwitchInt { .. }
| TerminatorKind::UnwindResume
| TerminatorKind::UnwindTerminate(_)
| TerminatorKind::Return
| TerminatorKind::TailCall { .. }
| TerminatorKind::Unreachable
| TerminatorKind::Yield { .. }
| TerminatorKind::CoroutineDrop
| TerminatorKind::FalseEdge { .. } => {
span_bug!(term.source_info.span, "cannot unwind from {:?}", term.kind)
}
}
}
}